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Abstract

I model the functioning of real-time gross settlement systems for large-
value interbank transfers as a linear programming problem in which queueing
arrangements, splitting of payments, Lombard loans, and interbank credit
exposures arise as primal solutions.
Then I use the dual programming problem associated with the maximiza-

tion of the total flow of payments in order to determine the shadow-prices of
banks in the payment system. We use these shadow-prices to set personalized
intraday monetary policies such as reserve requirements, availability of Cen-
tral Bank credit to temporarilly illiquid banks, extension of intraday interbank
credit exposures, etc., so as to make the payment system more efficient and
less costly in terms of systemic liquidity.
The dual approach shows us how to make banks correctly internalize the in-

traday network externalities they create in the real-time gross settlement sys-
tem and provides an objective standard for the daily microprudential surveil-
lance of the payment system.
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1 Introduction

The 1990’s witnessed a worldwide change in the design of payment systems for large-

value transfers. The increase of systemic risk in deferred net settlement systems due

to the increasing value of interbank transfers has been a constant concern for mon-

etary authorities. The Bank for International Settlements has then recommended

the adoption of real-time gross settlement (RTGS) systems for large-value transfers.

In an RTGS system, interbank payments are settled as they are sent by its gross

amount. In other words, no bank can be illiquid any time. This clearly reduces the

time lag between delivery of payment messages and final settlement, hence reducing

systemic risk. However, the holding of reserve money becomes a cost for banks.

Indeed, since no illiquidity is allowed during the day, banks have to hold too much

liquidity for settlement purposes. Any miscalculation obliges the bank to obtain

liquidity from other sources, such as Lombard loans from the Central Bank. In or-

der to facilitate the flow of payments and to reduce the opportunity cost of reserve

money and the risk of gridlocks, some systems allow for queueing mechanisms and

splitting of payments. A payment message that is not covered by sufficient funds

when it is sent is then queued (and/or split) until the sending bank receives liquidity

from other banks in the system.

The literature has focused on the influence of payment systems design on the

behavior of banks [see DeBANDT & HARTMANN (2000) for a survey]. We fo-

cus instead on the Central Bank itself. Given the pattern of interbank transfers

[see McANDREWS & RAJAN (2000) for the pattern of transfers and an analy-

sis of it], what is the best design of real-time gross settlement systems? Recent

research has given attention to this question but our approach is quite different

[see, for instance, ANGELINI (1998) and ROBERDS (1999)]. The only literature

whose approach to this problem somehow resembles ours is the one on gridlock

resolution [GÜNTZER, JUNGNICKEL & LECLERC (1998), LEINONEN & SO-

RAMÄKI (1999), and BECH & SORAMÄKI (2001)]. However, our model is much

more general in that queueing arises endogenously and not as an ad hoc constraint.
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In addition, the novelty of our approach is the focus on duality theory in order to

determine the shadow-prices of banks and optimal intraday monetary policies.

The question that comes to the mind of everyone who is interested in central

banking and specifically in the current trend towards the safety of payment systems

is, How to make an RTGS system less costly in terms of liquidity? This question

is actually too general and hides a series of other relevant questions, some of them

dating back even to Bagehot:

• When is it that an increase on initial balances enhances the flow of payments?

• Is it a good idea to extend free intraday credit to illiquid banks?

• Is it worth for the payment system to allow for an overnight loan between two
banks?

• Does the extension of Lombard (collateralized) loans to certain banks really
enhance the flow of payments?

• Can Lombard loans be allocated optimally or else should the Central Bank
provide banks with liquidity whenever it is requested to do so?

• Is there an optimal queueing mechanism that helps minimize aggregate liquid-
ity needs?

• Can an intraday interbank money market replace the Central Bank’s role as
a provider of intraday liquidity?

• How does the failure of an individual bank affect the overall flow of payments?

These questions are too relevant to be put aside. We want to provide a framework

to answering questions as these, one that is simple enough to be applied to real world

policy concerns but economically meaningful. Our answer is, shadow-prices.

We model the problem of optimal systemic liquidity in real-time gross settlement

systems as a linear programming problem. The primal solution gives the optimal
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queueing arrangement and splitting of payments. The extension of intraday credit

to illiquid banks is also optimally determined. The relevant contribution of our

model lies however on the dual problem associated with the Central Bank’s liq-

uidity management problem. The dual solution gives the shadow-prices of banks.

These shadow-prices can be used by monetary authorities to calculate the effect of

personalized intraday monetary policies, such as reserve requirements, provision of

Lombard loans, net debit caps, the extension of intraday interbank credit exposure,

etc. In addition, shadow-prices help determine intraday monetary policies so as to

bring systemic liquidity down to zero. Therefore, reserve money can be fully used

for settlement purposes, avoiding waste of systemic liquidity. Section 2 presents

the linear programming framework. Section 3 presents the dual program. Section

4 shows how to use shadow-prices and the no-gap theorem to determine liquidity-

efficient intraday monetary policies. In section 5 we suppose that the Central Bank

withdraws its role of the sole provider of intraday credit to illiquid banks and ex-

tend the model to the case of intraday interbank markets. Section 6 presents some

examples and section 7 concludes the paper.

2 Real-Time gross settlement systems

Let B = {1, ..., n} be the set of participants in the RTGS payment system, which we
call generically by banks. Let Bio be the initial balance of bank i ∈ B on its central
bank account. Denote by Bo = {Bio : i ∈ B} the array of initial balances.
The day is divided into a large finite sequence of periods, T = {to < t1 < · · · <

tK ≡ T}, where to denotes the beginning of the day and tK = T denotes the close of
business. Whenever we say that settlement occurs at period t = tk, it indeed occurs

at time tk, though a payment message said to be sent at period t = tk actually means

a payment message sent within the time interval ∆tk = (tk−1, tk]. We interpret this

interval as the time spent on operational procedures for settlement purposes.

Let {xij(τ) : j ∈ B\{i}, τ 6 t} be the bank i’s array of outgoing payments at
time t, where xij(τ) is the payment message sent by bank i to the Central Bank at
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period τ requesting a transfer of xij(τ) units of reserve money from bank i’s account

to bank j’s account. Notice that xii(t) ≡ 0, ∀i ∈ B, ∀t ∈ T, for self-transfers are nil
by definition. Let m = n2 denote the number of pairs of banks. Once we disregard

self-transfers, we set m = n(n− 1).
According to the Bank for International Settlements [see BIS (1997), report

on RTGS), the measure of intraday liquidity at time t from the individual bank’s

perspective is defined by its initial balance plus net receipt of transfers up to time t

minus outgoing transfers at time t:

Li(t) = Bio +
X
τ<t

"X
j∈B

xji(τ)−
X
j∈B

xij(τ)

#
−
X
j∈B

xij(t)

Bank i is said to be illiquid at time t if Li(t) < 0. If Li(t) > 0, then it is said to
be liquid at time t.

The aggregate net intraday liquidity at time t is given by total initial balances

held on the Central Bank at the beginning of the day minus the total value of queued

outgoing payments at time t, that is, L(t) =
P

i∈BB
i
o −

P
i∈B
P

j∈B xij(t). Notice

that L(t) =
P

i∈B L
i(t). Indeed, the sum of net transfers over the set of banks is

identically zero. At any time t, the aggregate net intraday liquidity level depends

only on the initial balances and the current queues of outgoing payments. It does

not depend on the history of queues during the day.

The problem with this definition is that, even if the aggregate net intraday

liquidity is high, the smooth flow of payments does depend strongly on the queueing

arrangement. For instance, under FIFO (first-in first-out), whenever balance is not

enough to cover a funds transfer, all remaining queued payments get stuck. Thus,

the actual aggregate net intraday liquidity is lower. The above definition does

not take this into account. In other words, by not recognizing the role played by

queueing arrangements, the standard definition of aggregate net intraday liquidity

overestimates aggregate liquidity needs and hence impinges an even higher cost

on individual banks. That means that the standard definition downestimates the

settlement capacity of the system. It is not able to recognize that the system can
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work even better than imagined. We interpret the standard definition as potential

aggregate net intraday liquidity. That would be the overall liquidity level should

every queued payment be settled. Ours is the actual aggregate net intraday liquidity

(or simply systemic liquidity).

In order to set a definition of aggregate net intraday liquidity that takes queueing

arrangements into account, we have to introduce some notation.

Consider the payment xij(τ) from bank i to bank j at time τ . Denote by υij(τ , t)

the fraction of xij(τ) that is settled at time t > τ . Call it a settlement function, or

simply a settlement. If υij(τ , τ) = 1, then payment xij(τ) is immediately settled

with finality. If υij(τ , τ) = 0 and υij(τ , t) = 1 for some t > τ , then payment xij(τ)

is queued for settlement at time t. An obvious restriction on the settlements is that,

∀i, j ∈ B:

(a)
P

t>τ υij(τ , t) > 0, ∀τ ∈ T

(b) υij(τ , t) ≡ 0, ∀τ > t, ∀t ∈ T

(c)
P

t>τ υij(τ , t) 6 1, ∀τ ∈ T

Condition (a) says that some portion of the payment xij(τ) has to be settled by

the end of the day. Condition (b) says that a payment cannot be settled if it has not

been sent yet. Condition (c) says that any payment has to be at most fully settled

by the end of the day.

When the RTGS system has no centralized queueing facilities, as FEDWIRE,

then the following restriction is added:

(d) υij(τ , t) ≡ 0, ∀τ < t, ∀t ∈ T

Condition (d) above says that a payment cannot be queued and has to be either

rejected or settled at full at the moment it is sent. Denote byV the set of settlements.

There are further restrictions that could be imposed on the settlements. Let

Sij ⊂ R be a nonempty real set. Assume that υij(τ , t) ∈ Sij, ∀i, j ∈ B and ∀τ , t ∈ T.
Now consider the following cases:
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(i) Sij = {0, 1}

(ii) Sij = [0, 1]

(iii) Sij = [aij, bij], where aij < 0 and bij > 1

In case (i), the payment xij is either settled at full (at whatever time) or not

settled at all. In case (ii), the payment xij can be fractioned. That splitting of

payments is an improvement over 0 − 1 settlement is obvious. One of the possible
causes of gridlock is the fact that payments are indivisible. For instance:

Breaking down transactions enables nearly full usage of system liq-

uidity for settlement purposes at all times. This means that liquidity is

circulating rapidly from bank to bank and that the system is economiz-

ing on its liquidity. Technically, this increases the number of transactions

processed in the system. It may also aid in unwinding a gridlock if there

is some unused liquidity in the system. [Leinonen (1998)]

In case (iii) banks i and j are allowed to make intraday bilateral loans. In other

words, case (iii) refers to an intraday interbank market. Of course, this institution

only makes sense if the Central Bank prevents itself from being the lender of last

resort. The numbers aij < 0 and bij > 1 refer to the extension of intraday bilateral

debt and credit exposures, respectively. These bounds can be set by the Central

Bank as regulatory devices based on whatever measure of soundness.

Obviously some payments are more time-critical than others. This is specially

true about payments related to foreign exchange transactions:

Sequencing transfers is a way of controlling intraday payment flows

by scheduling the timing of outgoing transfers according to the supply of

liquidity provided by incoming transfers. Importantly, to the extent that

incoming and outgoing transfers are successfully sequenced, it could gen-

erate virtual offsetting effects on RTGS payments and hence contribute
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to substantially reducing the necessary liquidity. The most common way

of sequencing is to use queueing arrangements [...] (italics in the original)

Another way of sequencing transfers may involve message codes in-

dicating the time of day that an individual outgoing transfer should be

settled. (BIS report on RTGS, p. 18, italics added).

Time-critically is easily dealt with by our model. If a payment transfer sent

at period τ ∗ has to be settled before the end of the day, say, at period t∗ with

τ ∗ 6 t∗ < T , then the constraint (c) is replaced by
Pt∗

t=τ∗ υij(τ , t) 6 1. This however
will make no serious difference to the nature of our model. Therefore, we will assume

that no payment is time-critical in that it should be fully settled until the end of

the day but not necessarily before it.

Also for simplicity we will assume that Sij = S, for some S as in the cases

considered above, ∀i, j ∈ B.
We propose a modified concept of aggregate net intraday liquidity. Our concept

takes the role of queueing in an explicit way. The actual aggregate net intraday

liquidity level at period t is given by:

`(t) =
X
i∈B

Bio −
X
i∈B

X
j∈B

X
τ6t
xij(τ)υij(τ , t)

Contrary to the standard definition, the history of settled payments up to time

t does matter for liquidity purposes. Unsettled payments are part of payments that

have to be settled at time t, even though they were sent earlier and queued. Even in

payment systems without centralized queueing facilities, rejected payments have to

be re-sent later. Thus the amount xij(τ) includes both payments being sent at period

τ and rejected payments sent before τ . The only difference is that in the later case,

the Central Bank cannot distinguish between these two types of payments, whereas

in the former case it can.

Notice that in payment systems without queueing, the above definition reduces
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to:

`(t) =
X
i∈B

Bio −
X
i∈B

X
j∈B

xij(t)υij(t, t)

We want to make a further modification to the definition above, in order to

take the dynamics of management liquidity by the Central Bank into account. The

systemic liquidity of an RTGS system is given by its total initial balances at the

beginning of the day minus the total value of settleable queued outgoing payments

averaged over time, that is:

Λ =
1

T

X
t∈T

`(t) =
X
i∈B

Bio −
1

T

X
i∈B

X
j∈B

X
t∈T

X
τ6t
xij(τ)υij(τ , t)

Our definition of systemic liquidity makes explicit the role of queueing arrange-

ments in the aggregate net intraday liquidity management by the Central Bank. The

most obvious and reasonable criterion of optimization is that the optimal queue has

to minimize the value of unsettled payments:

The objective of a queueing facility is to optimize queues according

to how time-critical the payments are and to evening out payment flows

over time. [Leinonen (1997)]

The objective function of the Central Bank is to minimize systemic liquidity

needs without violating liquidity constraints of the RTGS system. The lower the

systemic liquidity, the less costly will it be for banks to hold reserves on the Cen-

tral Bank in order to stick to the liquidity constraints imposed by real-time gross

settlement systems.

The liquidity constraint of an RTGS system is that no bank can be illiquid any

time.

In RTGS systems, banks have to hold enough balance throughout the day to

settle interbank payments. Overdrafts are not allowed. At each period t, individual

reserves are given by individual initial balances plus net transfers up to time t.

Period t is not included. Thus, individual banks face a cash-in-advance (or Clower)

constraint. According to Clower’s (1967) seminal paper:
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[T]he total value of goods demanded cannot in any circumstances ex-

ceed the amount of money held by the transactor at the outset of the

period. [Clower (1967)] (Italics in the original)

Though Clower meant goods demanded by consumers in a monetary economy,

the nature of such liquidity constraints is the same one faced by banks in an RTGS

system, the difference being only that the objective function is linear and that the

goods we are dealing with are settlement functions.

In order to write down the liquidity constraints, it is important to decompose

`(t) into `(t) =
P

i∈B `i(t) by setting:

`i(t) = B
i
o +

X
s<t

X
τ<s

[
X
j∈B

xji(τ)υji(τ , s)−
X
j∈B

xij(τ)υij(τ , s)]−
X
j∈B

X
τ6t
xij(τ)υij(τ , t)

The amount `i(t) is the liquidity level of bank i at period t. Thus the liquidity

constraint faced by bank i at period t is `i(t) > 0, which means that no overdraft is
allowed.

In its simplest form, liquidity constraints are given by `i(t) > 0,∀t ∈ T, where:

(L1) `i(to) = Bio −
P

j∈B υij(to, to)xij(to)

(L2) `i(t) = Bio +
P

s<t

P
τ<s[

P
j∈B υji(τ , s)xji(τ)−

P
j∈B υij(τ , s)xij(τ)]−

−Pj∈B
P

τ6t υij(τ , t)xij(τ), for t ∈ T\{to}

Thus liquidity constraints simply say that at any time:

total transfer = current transfer + (a fraction of) previously unsettled transfers

Systemic liquidity is always nonnegative, since no bank can be illiquid in an

RTGS system. The best situation arises when systemic liquidity is zero, for total

reserves will then be sufficient to cover total outflow throughout the day (possibly

through transfers across periods, that is, through queueing and Lombard loans). We

define such a situation as liquidity-efficiency.
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Definition 1 An RTGS system is said to be liquidity-efficient (or simply Λ-efficient)

if systemic liquidity is zero: Λ = 0.

Whenever an RTGS is not Λ-efficient, some liquidity is being unused, that is,

some payments are not being settled even though there is sufficient liquidity in

the system for settlement purposes. Λ-efficiency requires that total reserves be

high enough to cover the average flow of payments, for Λ = 0 means
P

i∈BB
i
o =

1
T

P
i∈B
P

j∈B
P

t∈T
P

τ6t xij(τ)υij(τ , t).

Since the array of initial balance is given, the minimization of systemic liquidity

needs is equivalent to the maximization of the cumulated flow of payments:X
i∈B

X
j∈B

X
t∈T

X
τ6t
xij(τ)υij(τ , t)

Wewill show that we can always define appropriate vectors x and υ, for each different

type of RTGS system, such that systemic liquidity is x · υ.
Our definition of systemic liquidity shows that it is not correct to say that a safe

payment system is one with total reserves high enough to cover the total cumulated

flow of interbank payments throughout the day. In order to cover total payments, it

suffices that total reserves cover the average total outflow (over time). The rest of

the work is done by the settlement function, that is, by the queueing and settlement

arrangement.

A bank that participates in an RTGS system has four different sources of funds:

balances on its Central Bank account, incoming transfers from other participants,

collateralized intraday credit extensions from the Central Bank (also called Lombard

loans), and interbank money market funds (such as overnight and term loans). So

far we have considered only the first two sources.

If πi(t) is a Lombard loan given to bank i at period t, then its liquidity constraint

at time t will be:X
j∈B

X
τ6t

υij(τ , t)xij(τ) 6 Bio +
X
s<t

X
τ<s

[
X
j∈B

υji(τ , s)xji(τ)−
X
j∈B

υij(τ , s)xij(τ)] + πi(t)
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if t < T, since πi(t) is an extra source of liquidity, and:X
j∈B

X
τ6T

υij(τ , T )xij(τ) + πi(T ) 6 Bio +

+
X
s<T

X
τ<s

[
X
j∈B

υji(τ , s)xji(τ)−
X
j∈B

υij(τ , s)xij(τ)]

if t = T . Here πi(T ) >
P

t<T (1 + ri(t))πi(t), since in the end of the day individual

banks have to pay back the loan plus some margin given by interest rates or haircuts.

Thus πi(T ) is actually a debt.

Since these are interest rates on loans made against collateral in the form of

repurchase agreements, we call them repo interest rates. For each t ∈ T\{T}, define
r(t) = (r1(t), ..., rn(t)) and let r = {r(t) : t ∈ T\{T}} be the array of repo interest
rates.

Assume that the Central Bank has a fixed amount M > 0 of money that can be

lent to temporarily illiquid banks against collateral throughout the day. LetMi > 0
be the total amount of money that the Central Bank is able to lend to bank i ∈ B.
Obviously

P
i∈BMi = M . If we qualify π by banks and period, then we might

assume that the credit constraints for each bank are given by:

(C1) 0 6 πi(to) 6Mi

(C2) 0 6 πi(tk) 6Mi −
Pk−1

`=0 πi(t`), 1 6 k 6 K − 1

(C3) πi(tK) >
PK−1

`=0 (1 + ri(t))πi(t`).

Let π = (π(to), ...,π(tK)) ∈ Rn(K+1) be the vector of Lombard loans from the

Central Bank, where π(t) = (π1(t), ...,πn(t)) ∈ Rn, ∀t ∈ T. Denote by Π the set of

vectors satisfying the credit constraints.

Consider the case S = [0, 1]. The Central Bank’s problem is to minimize systemic

liquidity subject to liquidity and credit constraints. Equivalently, it seeks to max-

imize the total cumulated flow of interbank payments subject to those constraints.
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The most general problem can be stated as follows:

max{υij(t,τ),πi(t)}
P

i∈B
P

j∈B
P

t∈T
P

τ6t xij(τ)υij(τ , t)

s.t.
P

j xij(to)υij(to, to) 6 BioP
j xij(t)υij(t, t) +

P
τ<t

P
j xij(τ)υij(τ , t) 6 Bio

+
P

τ<t

P
s6τ [

P
j xji(s)υji(s, τ)−

P
j xij(s)υij(s, τ)]

+αtπi(t), t ∈ T\{to}
αt =

½
+1, ∀t ∈ T\{tK}
−1, t = tK

0 6
P

τ>t υij(t, τ) 6 1,∀t ∈ T,∀i, j ∈ B
0 6 υij(τ , t) 6 1
0 6 πi(to) 6Mi

πi(tk) 6Mi −
Pk−1

`=0 πi(t`), 1 6 k 6 K − 1
πi(tK) >

PK−1
`=0 (1 + ri(t`))πi(t`)

πi(t) > 0,∀i ∈ B,∀t ∈ T

Let 0n = (0, ..., 0) be the n-vector of zeroes. For any i ∈ B, consider the following
n-matrix:

Xi(t) =



0n
...
0n
xi(t)
0n
...
0n


=



0 · · · 0
...

. . .
...

0 · · · 0
xi1(t) · · · xin(t)
0 · · · 0
...

. . .
...

0 · · · 0


n×n

←− ithrow

Now consider the following partitioned n× n2-matrix:

X(t) =
£
X1(t) | · · · | Xn(t)

¤
n×n2

Consider:

Yi(t) =

 xi1(t) · · · 0
...

. . .
...

0 · · · xin(t)


What Yi(t) does is to diagonalize the vector of outgoing payments from bank i

at time t. Now, define the following partitioned n× n2-matrix:

Y (t) =
£
Y1(t) | · · · | Yn(t)

¤
n×n2
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The matrix of coefficients of the liquidity constraints in an RTGS system with

queueing is given by the following n(K + 1)× n2 1
2
(K + 2) (K + 1)-matrix1:

Q =



X(to) 0n 0n · · · 0n · · · 0n
X(to)− Y (to) X(to) X(t1) · · · 0n · · · 0n
X(to)− Y (to) X(to)− Y (to) X(t1)− Y (t1) · · · 0n · · · 0n

...
...

...
. . .

...
...

...
X(to)− Y (to) X(to)− Y (to) X(t1)− Y (t1) · · · 0n · · · 0n
X(to)− Y (to) X(to)− Y (to) X(t1)− Y (t1) · · · X(to) · · · X(tK)



Then matrixQ (the matrix of interbank payments with queueing) is a block lower

triangular matrix defined by Q = [Qαβ], where each Qαβ is a n × n2-submatrix2,
1 6 α, β 6 K + 1, and, for any k = 0, 1, 2, ...,K :

Qαβ =

 X(t`) if α = k + 1 and β = (k+`+1)(k+`+2)
2

, 0 6 ` 6 k
X(t`)− Y (t`) if α > k + 2 and β = (k+`+1)(k+`+2)

2
, 0 6 ` 6 k

0n otherwise

Thus, given k = 0, 1, ...,K, we can find, for any chosen 0 6 ` 6 k, the submatrix
Qαβ, for any3 1 6 α, β 6 K + 1.
For any i ∈ B and any t ∈ T, let υi(τ , t) = (υi1(τ , t), ..., υin(τ , t)) be the portion

of the large-value transfers xi(t) = (xi1(t), ..., x1n(t)) ∈ Rn from bank i to every

other bank sent at time τ and settled at time t, ∀to 6 τ 6 t,∀t ∈ T. Define:

υ(tk) = ((υi(to, tk))16i6n, (υi(t1, tk))16i6n, ..., (υi(tk, tk))16i6n) ∈ Rn+2n+3n+...+(k+1)n

Now consider the vector:

υ = (υ(to), ..., υ(tK)) ∈ Rn2 12 (K+2)(K+1)
1The number of columns in matrix Q with queueing is n2 12(K + 2)(K + 1). Compare this

with matrix A without queueing, where the number of columns is n2(K + 1). This is because,
with queueing, in each period, the central bank settles (fractions of) payments sent at that same
period plus (fractions of) unsettled payments carried over from previous periods. Thus, if at to,
the central bank settles n payments, then at t1 it settles 2n (n from t1 plus n from to), at t2
it settles 3n, and so on. Since there are K + 1 periods, the number of columns with queueing is
n2+2n2+ · · ·+(K+1)n2 = n2 12 (K+2)(K+1). If we disregard self-transfers, the actual dimension
of Q is n(K + 1)× n(n− 1)12(K + 2)(K + 1).

2If we disregard self-transfers, the actual dimension of Qαβ is n× n(n− 1).
3The number β is given by β = 1 + (1 + 2 + 3 + ...+ k + `) = (k+`+1)(k+`+2)

2 , 0 6 ` 6 k.
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Given xi(t), define x(t) = (x1(t), ..., xn(t)) ∈ Rn2 and set:

←−x (tk) = (x(to), ..., x(tk)) = (x(t`))to6`6tk ∈ R(k+1)n
2

, 1 6 k 6 K

Define:

x = (←−x (to),←−x (t1), ...,←−x (tK)) ∈ Rn2 12 (K+2)(K+1)

Let Bo = (B1o , ..., B
n
o ) be the vector of initial balances and define:

b =

 Bo...
Bo


n(K+1)

Now it is easy to see that:

x · υ =
X
i∈B

X
j∈B

X
t∈T

X
τ6t
xij(τ)υij(τ , t)

and, if no Lombard loans were available, that liquidity constraints would be repre-

sented by Qυ 6 b.
The following n2(K+1)×n2 1

2
(K + 2) (K + 1)-matrix is the matrix of consistency

constraints4:

J =


In2 In2 0 In2 0 0 · · · In2 0 0 0 0
0 0 In2 0 In2 0 · · · 0 In2 0 0 0
0 0 0 0 0 In2 · · · 0 0 In2 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
0 0 0 0 0 0 · · · 0 0 0 0 In2


where In2 is the n2-identity matrix5. A compact notation for matrix J is:

J =

 In2

0Kn2×n2

¯̄̄̄
¯̄ I2n2

0(K−1)n2×2n2

¯̄̄̄
¯̄ · · ·

¯̄̄̄
¯̄ IKn2

0n2×Kn2

¯̄̄̄
¯̄ I(K+1)n2


Denote by 1 the n2 1

2
(K + 2) (K + 1)-vector of 1’s. Therefore, we have Jυ 6 1.

Notice that we considered self-transfers xii(t), ∀i ∈ B, ∀t ∈ T, for the sake of
simplicity only. In practice, the dimension of the matrices above is reduced once

4If we disregard self-transfers, the actual dimension of J is n(n − 1)(K + 1) × n(n− 1) 12(K +
2)(K + 1).

5The dimension of the submatrix 0 is obvious.
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we disregard self-transfers, xii(t), and υii(τ , t). In this case, we just replace n2 by

n2 − n, whenever such replacement is applicable.
In order to express the problem above in matrix form in the proper way, we

still have to find the matrix representation of Lombard loans and credit constraints

included. Define the following n(K + 1)× n(K + 1)-matrix:

C =


−In 0 · · · 0 0
0 −In · · · 0 0
...

...
. . .

...
...

0 0 · · · −In 0
0 0 · · · 0 In


Define the n(K + 1)× n(K + 1)-matrix:

H =


In 0 · · · 0 0
In In · · · 0 0
...

...
. . .

...
...

In In · · · In 0
In In · · · In −In


Matrix H describes the coefficients of the credit constraints if no repo rates are

charged. Given the vector M = (M1, ...,Mn), consider:

mo = (M, ...,M)| {z }
K times

∈ RnK

and define m̄ = (mo, 0) ∈ Rn(K+1), where 0 ∈ Rn. Then the credit constraints can
be written as:

Hπ 6 m̄ ≡
·
mo

0

¸
Therefore, in matrix form, we can write the Central Bank’s primal problem as:

(P)


max(υ,π)∈V×Π x · υ

s.t.

 Q C
J 0
0 H

 · υ
π

¸
6

 b
1
m̄


(υ,π) > 0

It is easy to check that the whole matrix of coefficients:

Ψ =

 Q C
J 0
0 H


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has dimension n (2 + n) (K + 1)× 1
2
n (K + 1) (nK + 2 + 2n) and that:

rank(Ψ) 6

 K + 1 if n = 1 and K > 2 (trivial case)
10 if n = 2 and k = 2
n (n+ 1) (K + 1) otherwise

When credit is priced, matrix H requires a slight modification. Let R(t) be a

diagonal n-matrix defined by:

R(t) =


r1(t) 0 · · · 0
0 r2(t) · · · 0
...

...
. . . 0

0 0 · · · rn(t)


Define the n(K + 1)× n(K + 1)-matrix:

R =


In 0 · · · 0 0
In In · · · 0 0
...

...
. . .

...
...

In In · · · In 0
In +R(to) In +R(t1) · · · In +R(tK−1) −In


The primal problem with repo rates is:

(P)


max(υ,π)∈V×Π x · υ

s.t.

 Q C
J 0
0 R

 · υ
π

¸
6

 b
1
m̄


(υ,π) > 0

Definition 2 A optimizing real-time gross settlement system (or simply an opti-

mizing RTGS system) is a collection {(Bo, x, υ,S), (P)} of parameters (Bo, x, υ,S)
paired with the primal problem (P) above.

Definition 3 Let {(Bo, x, υ,S), (P)} be an optimizing RTGS system. A systemic

monetary policy for {(Bo, x, υ,S), (P)} is a vector (Bo,M,π, r), where Bo = {Bio :
i ∈ B} is the array of initial balances, M is the vector of credit lines, π is a vector

of Lombard loans, and r is the vector of repo interest rates. A systemic monetary

policy (B∗o ,M
∗,π∗, r∗) is Λ-efficient if it makes the RTGS system Λ-efficient.
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3 Shadow-prices of banks

Given the matrix formulation of the primal problem, we can easily get the dual

problem associated with it. The solution to the dual will give us the shadow-prices

of banks in an RTGS system.

When no repo rate is charged, the dual is:

(D)


min(λ,µ,ξ) b · λ+ 1 · µ+ m̄ · ξ

s.t.
·
Q> J> 0
C> 0 H>

¸ λ
µ
ξ

 > · x
0

¸
(λ, µ, ξ) > 0

where λ is the vector of shadow-prices associated with liquidity constraints, µ is the

vector of shadow-prices associated with consistency constraints, and ξ is the vector

of shadow-prices associated with credit constraints. Here, Q> is the transpose of Q,

and similarly for the other matrices.

From the first set of dual constraints, Q>λ + J>µ > x, we get, after careful

calculations, that, ∀(i, j) ∈ B×B, i 6= j: xij(t`){λi(tk) +
PK

θ=k+1[λi(tθ)− λj(tθ)]}+ µij(t`) > xij(t`), ∀k = 0, ...,K − 1,
∀` = 0, ..., k

xij(t`)λi(tK) + µij(t`) > xij(t`), k = K,∀` = 0, ...,K

Alternatively, provided xij(t) > 0, ∀t ∈ T, the dual liquidity constraints can be
written as:

λi(tk) +
PK

θ=k+1[λi(tθ)− λj(tθ)] +
µij(t`)

xij(t`)
> 1, ∀k = 0, ...,K − 1,

∀` = 0, ..., k
λi(tK) +

µij(t`)

xij(t`)
> 1, k = K,∀` = 0, ...,K

The dual constraints above are in a more intuitive form, specially because the

shadow-price µij(t`) associated to consistency constraints needs to be interpreted

more carefully. Usually the settlement function lies in the interval [0, 1], for it is

a percentage-type variable. Even when it takes values outside [0, 1], its correct

interpretation still is as a percentage-type variable. Thus (omitting the indices i

and j and the arguments s and t for simplicity) a unit increase from υ = 1 to υ = 2
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means a 100% increase, that is, a change from a payment of x to 2x. If we want

to find the effect of a dollar increase, we have to divide µ by x. Since υij(s, t) is a

“percentage variable”, the effect of a dollar increase on the total amount xij(s) to

be settled upon the maximum flow of payments is
µ∗ij(s)
xij(s)

.

From the second set of dual constraints, C>λ +H>ξ > 0, we get the following
inequalities: ½ −λi(tk) +PK

θ=k ξi(tθ) > 0, ∀k = 0, ...,K − 1, ∀i ∈ B
λi(tK)− ξi(tK) > 0, for k = K, ∀i ∈ B

Hence the dual problem can be rewritten as:

min(λ,µ,ξ)
P

i∈B
P

t∈TB
i
oλi(t) +

P
i∈B
P

j∈B
P

t∈T µij(t) +
P

i∈B
P

t∈T\{T}Miξi(t)

s.t. xij(τ){λi(t) +
PT

θ=t+1[λi(θ)− λj(θ)]}+ µij(τ) > xij(τ),∀t < T,∀τ 6 t
xij(τ)λi(T ) + µij(τ) > xij(τ),∀τ ∈ T
−λi(t) +

PT
θ=t ξi(θ) > 0,∀t < T

λi(T )− ξi(T ) > 0, ∀i, j ∈ B
(λ, µ, ξ) > 0

Consider a payment xij(τ) from bank i to bank j made at period τ . The period

t > τ economic value of this payment is decomposed into two values:

• Its face value, xij(τ), multiplied by a corrective factor: bank i’s current liq-
uidity shadow-price, λi(t), plus an adjusted future bilateral net price between

banks i and j,
PT

θ=t+1[λi(θ)− λj(θ)].

• To all this it is added the consistency shadow-price, µij(τ), associated with
the splitting and queueing of the payment xij(τ).

Thus the economic value of a payment varies as the day passes by. The economic

value of a payment is an affine transformation of its face value. The additive factor

is attached to the payment once it is sent, but the multiplicative factor (the slope)

varies with time.

The objective function of the dual problem is:X
i∈B

X
t∈T

Bioλi(t) +
X
i∈B

X
j∈B

X
t∈T

µij(t) +
X
i∈B

X
t∈T\{T}

Miξi(t)
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The first term,
P

i∈B
P

t∈TB
i
oλi(t), can be rewritten as

P
i∈BB

i
o(
P

t∈T λi(t)).

Thus, each initial balance, Bio, is multiplied by the cumulated shadow-price,
P

t∈T λi(t).

Initial reserves are set at the beginning of the day, i.e., before period to. It is not

possible to change initial balances after that. Then the effect of a dollar increase on

initial reserves is the sum of the effects period by period. Intuitively, a dollar change

of initial reserves is equivalent to a unit change of the constant on the right hand

side of the liquidity constraints period by period. Therefore, the first term reflects

the effect of changes in initial reserves.

Usually, the Central Bank set initial reserves so as to conform them with medium

and long-run macroeconomic monetary policies, such as inflation targets, and so on.

However, for the payment system itself, it is important that monetary authorities

consider the consequences of reserve requirements in the very short-run on a day-

by-day basis.

If the Central Bank knew the shadow-prices associated with liquidity constraints

of individual banks, it would be able to require higher or lower reserves from the

right set of banks. Requiring higher reserves from banks with zero shadow-prices

has no effect on the flow of payments. The only effect is the withdrawal of liquidity

from the economy.

The term
P

i∈B
P

t∈T\{T}Miξi(t) can be rewritten as
P

i∈BMi(
P

t∈T\{T} ξi(t)).

Imagine that each bank begins the day with a certain amount of money, Mi, that

can be lent to it by the Central Bank. The total effect of a dollar increase of credit

is given by the sum of the effects period by period. The last period is naturally

excluded from this calculation for the very simple reason that at the last period no

credit is extended: it is the time to pay back any Lombard loans eventually received.

Thus the last term reflects the overall effect of changes in the total amount of credit

that the Central Bank makes available to each bank. In other words, it measures

the effect of intraday loans from the Central Bank to individual banks.

The middle term,
P

i∈B
P

j∈B
P

t∈T µij(t), is the total shadow-price of consis-

tency constraints. Notice that its dimension is the same as the dimension of pay-
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ments. Imagine that a bank sends a payment at some period and that it is fully

paid by the end of the day, so that, the corresponding consistency constraint is

biding. What is the effect of allowing such bank to transfer an extra dollar to the

receiving bank? The answer is given by the corresponding consistency shadow-price.

Therefore the middle term measures the effect of intraday loans between individual

banks.

When repo rates are charged, the dual is:

(D)


min(λ,µ,ξ) b · λ+ 1 · µ+ m̄ · ξ

s.t.

·
Q> J> 0
C> 0 R>

¸ λ
µ
ξ

 > · x
0

¸
(λ, µ, ξ) > 0

Equivalently:

min(λ,µ,ξ)
P

i∈B
P

t∈TB
i
oλi(t) +

P
i∈B
P

j∈B
P

t∈T µij(t) +
P

i∈B
P

t∈T\{T}Miξi(t)

s.t. xij(τ){λi(t) +
PT

θ=t+1[λi(θ)− λj(θ)]}+ µij(τ) > xij(τ),∀t < T,∀τ 6 t
xij(τ)λi(T ) + µij(τ) > xij(τ),∀τ ∈ T
−λi(t) +

PT−1
θ=t ξi(θ) + (1 + ri(t))ξi(T ) > 0,∀t < T

λi(T )− ξi(T ) > 0, ∀i, j ∈ B
(λ, µ, ξ) > 0

4 Liquidity-efficient systemic monetary policies

Let (λ, µ, ξ) be a solution to the dual problem, that is, the set of shadow-prices.

The vector λ gives the shadow-prices of initial reserve requirements. The vector µ

gives the shadow-prices of queueing and splitting. Finally, the vector ξ gives the

shadow-prices of credit extensions. Now consider the dual value function, i.e., the

dual objective function evaluated at shadow-prices:

D(λ, µ, ξ) =
X
i∈B

X
t∈T

Bioλi(t) +
X
i∈B

X
j∈B

X
t∈T

µij(t) +
X
i∈B

X
t∈T\{T}

Miξi(t)

In the definition just set (with some abuse of notation), the control variables are

initial reserves (the Bio’s), the extent of intraday interbank exposures (the 1’s), and

intraday credit lines available to banks (the Mi’s). Repo interest rates are also a
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control variable, though they appear only in the constraints, not in the dual value

function.

Recall that the primal value function (omitting stars representing optimal primal

solutions for simplicity) is:

P(υ,π) =
X
i∈B

X
j∈B

X
t∈T

X
τ6t
xij(τ)υij(τ , t)

Minimum liquidity is given by:

Λ =
X
i∈B

Bio −
1

T

X
i∈B

X
j∈B

X
t∈T

X
τ6t
xij(τ)υij(τ , t)

Λ-efficiency requires Λ = 0, i.e.,
P

i∈BB
i
o =

1
T
P(υ,π). If there is no duality gap,

P(υ,π) = D(λ, µ, ξ), that is Λ-efficiency requires Pi∈BB
i
o =

1
T
D(Bo,M). Thus

Λ-efficiency is represented by the equation:X
i∈B

Bio(λ̄i − 1) +
X
i∈B

X
,j∈B

µ̄ij +
X
i∈B

Mi(ξ̄i −
1

T
ξi(T )) = 0

where:

λ̄i =
1

T

X
t∈T

λi(t),

µ̄ij =
1

T

X
t∈T

µij(t)

1

T

X
t∈T

ξi(t)

are the average shadow-prices (throughout the day). This is the fundamental equa-

tion for liquidity-efficiency. It shows how reserve requirements, amounts of intraday

credit made available to individual banks, and the extension of interbank exposure

can be used to achieve liquidity-efficiency by means of shadow-prices. Notice that in-

traday interest rates on Lombard loans is also a control variable, even though it does

not appear explicitly in the dual value function. It is hidden in the dual constraints,
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but can certainly be set by the Central Bank so as to achieve liquidity-efficiency as

well.

If the Central Bank knew the shadow-prices, it would be able to set intraday

monetary policies in the best possible way.

Sometimes the Central Bank decides to increase reserve requirements in order

to smooth out the flow of payments or to decrease them in order to economize on

unnecessary liquidity. Our model shows that such policy may be costly in terms

of liquidity. All depends on shadow-prices. If a bank has zero shadow-price, every

extra dollar required from it will not enhance the flow of payments. The opportunity

cost of such extra reserve money will represent a deadweight loss for the economy.

On the other hand, if a bank has a high shadow-price, any extra dollar required

from it will enhance the flow of payments by something more than a dollar. Then

it is less costly for the Central Bank to require higher reserves from the right set of

banks. In the end, it will get the amount of extra reserves it wants without creating

deadweight losses.

Let us first analyze a very simple situation in which no Lombard loans are needed.

Usually a specific amount of initial reserves is set one day (for whatever purposes)

and is not changed for some time until new initial reserves are required. If the

Central Bank knew the pattern of payments and consequently the shadow-prices,

then, in the simple case just mentioned, the Central Bank will want to require new

reserves in such a way as to get Λ-efficiency. When the Central Bank realizes that

Λ > 0, then some liquidity is not being used for settlement purposes. Our first

reaction would be to change reserve requirements by Λ
n
, for every bank. But this is

not a good idea. For instance, a bank with zero shadow-price will simply loose the

amount Λ
n
, if this is an additional reserve, or the Central Bank will simply loose the

same amount if this is a decrease of reserve requirements.

Suppose, for instance, that the only source of intraday liquidity, besides net
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transfers, is the amount of initial reserves. If systemic liquidity is positive, then:

0 < Λ =
X
i∈B

Bio(1− λ̄i)−
X
i∈B

X
,j∈B

µ̄ij

This means that some reserve money is not been used for settlement purposes,

that is, some payments could be settled, but are not. How could the Central Bank

set reserve requirements so as to reduce systemic liquidity and make the RTGS

system as close as possible to a DNS system with no systemic risk? In this simple

case we are analyzing, the answer is given by the equation:X
i∈B

Bi∗o (1− λ̄i)−
X
i∈B

X
,j∈B

µ̄ij = 0

One possible solution to it is:

Bi∗o =

(
1

#B1(λ̄i−1)
P

k∈Bo{Bko (1− λ̄k)−
P

j∈B µ̄kj}−
P
j∈B µ̄ij
λ̄i−1 if i ∈ B1

Bio if i ∈ Bo
Here, B1 = {i : λ̄i > 1} is the set of banks with average liquidity shadow-price

strictly above unity and Bo = {i : 0 6 λ̄i 6 1} = B\B1 is the rest of banks. The
above solution says that banks with low shadow-prices are required to keep their

historical reserve balance, but banks with high shadow-prices are required to change

initial reserves to Bi∗o .

Whenever systemic liquidity has to be reduced, the Central Bank wants to keep

initial reserve levels of those banks with average shadow-prices below unity and to

change reserve requirements of banks with average shadow-price above unity. The

higher the shadow-price of a bank, the lower the change of reserve.

Suppose total reserves have to be decreased. Pick a bank with shadow-price

above unity. Then its contribution to aggregate liquidity is its initial balance plus

its average marginal contribution from liquidity constraints. What is left over if this

bank were not in the system is Λ−Bio(λ̄i − 1). This amount is split equally among
all banks with average shadow-price above unity, and hence each share is weighed

according to the inverse of the excess of the respective shadow-price over and above

unity, i.e., λ̄i − 1. The resulting amount is the first term of the new reserve level,
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Λ−Bio(λ̄i−1)
(λ̄i−1)#B1 . To this it is added the following. Consider the total contribution of every

other bank with shadow-price above unity. This is given by their initial reserves plus

marginal contribution from liquidity constraints plus marginal contributions from

queued and eventually settled payments to everybody else. This amount is split

among the banks with shadow-price above unity and again weighed according to

the inverse of the excess of shadow-price over and above unity.

Among other things, the Central Bank can estimate the effect of different in-

traday credit policies. For instance, what happens when some bank is allowed to

use net debit caps? Suppose the Central Bank could reward some banks with net

debit caps. Let Di(t) be the extension of net debit cap that the Central Bank allows

bank i to incur at time t. It can clearly be reinterpreted as a monetary amount

added to initial reserve requirements at each time during the day. Shadow-prices

tell us the extent of such net debit caps. Therefore the fundamental equation for

liquidity-efficiency becomes:X
i∈B

Bio(λ̄i − 1) +
X
i∈B

1

T

X
t∈T

Di(t)λi(t) +
X
i∈B

X
,j∈B

µ̄ij +
X
i∈B

Mi(ξ̄i −
1

T
ξi(T )) = 0

Suppose, for example, that there are no Lombard loans and that net debit caps

are constant, i.e., banks have the same net debit cap, say D̄i(t) = D > 0. If Λ > 0,

how can the Central Bank setD? Consider systemic liquidity before the introduction

of net debit caps:

Λ =
X
i∈B

Bio(1− λ̄i)−
X
i∈B

X
j∈B

µ̄ij > 0

If the Central Bank introduces a net debit cap, then it wants to set D so as to

get:

X
i∈B

Bio(1− λ̄i)−
X
i∈B

X
j∈B

µ̄ij −D
X
i∈B

λ̄i = 0

that is:
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D∗ =

P
i∈BB

i
o(1− λ̄i)−

P
i∈B
P

j∈B µ̄ijP
i∈B λ̄i

Since the solution above does not depend on the name of the bank, then either

every bank will be granted the same net debit cap or the same tax.

Net debit caps can be personalized. Indeed, suppose we want to set the optimal

D∗i . Then: X
i∈B

Bio(1− λ̄i)−
X
i∈B

X
j∈B

µ̄ij −
X
i∈B

D∗i λ̄i = 0

A possible solution is:

D∗i =
Bio(1− λ̄i)−

P
j∈B µ̄ij

λ̄i

Notice that some banks will get net debit caps, which amount to a form of

intraday subsidy from the Central Bank, whereas other banks will have to pay

taxes. Indeed, depending on the shadow-prices, D∗i may be positive or negative.

Thus net debit caps should be financed by banks themselves through redistribution

of liquidity. While some banks get net debit caps, other banks get a positive lower

bound on current balance during the day.

From a political point of view, it is better to give banks with low shadow-prices

no debit caps and to set another level of net debit caps for banks with high shadow-

prices. Of course, banks with high shadow-prices will have to fully bear the costs of

other banks not paying taxes. Again, consider B1 = {i : λ̄i > 1}, the set of banks
with average liquidity shadow-price strictly above unity and Bo = {i : 0 6 λ̄i 6
1} = B\B1, the rest of banks. Then another solution is:

D∗i =

(
Bio(1−λ̄i)−

P
j∈B µ̄ij

λ̄i
+ 1

#B1λ̄i

P
k∈Bo{Bko (1− λ̄k)−

P
j∈B µ̄kj} if i ∈ B1

0 if i ∈ Bo

Comparing this result with the previous one, we see that net debit caps are

reduced by the amount given by the second term. The amount of reduction is
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exactly the amount of taxes not paid by banks with low shadow-prices divided

equally among banks with high shadow-prices and weighed by the inverse of the

average liquidity shadow-prices. Thus banks with even higher shadow-prices are

rewarded with a lower reduction of net debit caps, whereas banks with not so high

shadow-prices are punished with a higher reduction of net debit caps.

5 Intraday interbank market

One of the key roles of the Central Bank is to extend credit lines to banks that

become illiquid within the day. Usually such credit extension is a collateralized loan

in the form of repurchase agreements: the illiquid bank sells securities to the Central

Bank and commits itself to buying them back until the end of the day. This is an

intraday money market in which the Central Bank is the sole seller of liquidity and

every individual bank is a buyer.

The interbank market, contrariwise, functions on an overnight basis. Individual

banks lend to each other from one day to the next. We are not interested in this

overnight interbank market, but rather on the possibility of an intraday interbank

market. Such money market only makes sense in settlement systems where the

Central Bank prevents itself from extending intraday funds to illiquid banks, hence

transferring all the costs of liquidity provision to the private sector. Such market

did actually exist for some time in the Swiss system (SIC). The Swiss Central Bank

has recently nevertheless resumed its role of seller of intraday funds, so that the

small-scaled Swiss intraday interbank market had indeed a short life.

The main characteristic of an intraday interbank money market through the

RTGS payment system is the bilateral credit exposure between banks. For instance,

if bank i has to send xij dollars to bank j at time t, but actually sends xij + yij,

then yij can be interpreted as a loan from bank i to bank j. A simpler formulation,

and one that fits our notation perfectly, is to allow the settlement function υ to

take values beyond the interval [0, 1]. If bank i sends a payment xij to bank j and

the settlement function takes the value υij = 1.1, then bank i settles its payment
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and lends 0.1xij to bank j. If bank j has to send a payment xji but the settlement

function takes the value υji = −0.2, then bank j does not settle its payment and
gets a loan of 0.2xji from bank i. We regard the loans 0.1xij and 0.2xji as separate

loans from bank i to bank j, even if they occur at the same time and the origins of

the flow are not the same. Intraday interbank loans can be optimally determined

provided we impose upper and lower bounds on the values taken by the settlement

function and the consistency condition.

The interpretation of the bounds mentioned above is straightforward. They rep-

resent the maximum credit exposures, in percentage terms, that pairs of individual

banks can take bilaterally. These bounds can be set up by the banks involved them-

selves or by the Central Bank. In either case, the shadow prices associated with

such constraints will tell us the worth of a variation of the maximum bilateral credit

exposure.

Let Eij > 0 be the maximum credit exposure in the bilateral transaction be-

tween banks i and j. Then −Eij 6 υij 6 1 + Eij. Decompose υij(t, τ) into

υij(t, τ) = υ+ij(t, τ)−υ−ij(t, τ), where υ+ij(t, τ) > 0 is the positive part and υ−ij(t, τ) > 0,
is the negative part of υij(t, τ), respectively. Then the limited credit exposure is rep-

resented by the constraint −Eij 6 υ+ij(t, τ)− υ−ij(t, τ) 6 1 +Eij, that is:½
υ+ij(t, τ)− υ−ij(t, τ) 6 1 +Eij
−υ+ij(t, τ) + υ−ij(t, τ) 6 Eij

If the bounds are not in percentage terms but rather in absolute value, that is,

if the maximum credit exposure of bank i to bank j is set up, for instance, by a

fraction of capital adequacy level or any other criterion, then we have −eij − xij 6
υijxij − xij 6 eij. Therefore, provided xij > 0 :

−eij
xij

6 υij 6 1 +
eij
xij

In this case, we just have to replace Eij by
eij
xij
. Hence there is no loss of generality

in assuming that credit exposure is in percentage terms.

Therefore, the Central Bank’s liquidity management problem in an RTGS system
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with queueing and intraday interbank money market is:

max{υ+ij(t,τ),υ−ij(t,τ)}
P

i∈B
P

j∈B
P

t∈T
P

τ6t xij(τ)[υ
+
ij(τ , t)− υ−ij(τ , t)]

s.t.
P

j xij(t)[υ
+
ij(t, t)− υiij(t, t)] +

Pt−1
τ=0

P
j xij(τ)[υ

+
ij(τ , t)− υ−ij(τ , t)] 6

Bio +
Pt−1

τ=0

Pτ
s=0{

P
j xji(s)[υ

+
ji(s, τ)− υ−ji(s, τ)]−

−Pj xij(s)[υ
+
ij(s, τ)− υ−ij(s, τ)]}

υ+ij(t, τ)− υ−ij(t, τ) 6 1 +Eij
−υ+ij(t, τ) + υ−ij(t, τ) 6 EijP

τ>t υ
+
ij(t, τ)−

P
τ>t υ

−
ij(t, τ) 6 1

−Pτ>t υ
+
ij(t, τ) +

P
τ>t υ

−
ij(t, τ) 6 0,∀t ∈ T,∀i, j ∈ B

υ+ij(t, τ), υ
−
ij(t, τ) > 0,∀t ∈ T,∀τ ∈ {t, ..., T},∀i ∈ B

We will now find the matrix representation of the problem above. For any i ∈ B
and any t ∈ T, let υ+i (τ , t) = (υ+i1(τ , t), ..., υ

+
in(τ , t)) be the positive part of the

portion of the large-value transfers xi(t) = (xi1(t), ..., x1n(t)) from bank i to every

other bank sent at time τ and settled at time t, ∀to 6 τ 6 t,∀t ∈ T. Define:

υ+(tk) = ((υ
+
i (to, tk))16i6n, ..., (υ

+
i (tk, tk))16i6n) ∈ Rn+2n+3n+...+(k+1)n

Now consider the vector:

υ+ = (υ+(to), ..., υ
+(tK)) ∈ Rn2 12 (K+2)(K+1)

After disregarding self-transfers, the actual dimension of the vector υ+ is given

by n(n− 1)1
2
(K + 2) (K + 1) . Analogously, define the vector of the negative parts,

υ−, as:

υ− = (υ−(to), ..., υ−(tK)) ∈ Rn2 12 (K+2)(K+1)

Finally, define the vector:

υ =

·
υ+

υ−

¸
∈ Rn2(K+2)(K+1)

Notice that the actual dimension of υ is much smaller, n(n−1) (K + 2) (K + 1) .
Given the bounds Eij, set Ei = (Ei1, ..., Ein) and define e = (E1, ..., En). There-
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fore the matrix representation of the primal problem is:

max(υ+,υ−) x · υ+ − x · υ−

s.t.


Q −Q
J −J
I −I
−I I

 · υ+

υ−

¸
6


b
1

1+ e
e


υ+, υ− > 0

Hence we have four sets of constraints: liquidity constraints, consistency con-

straints, upper-boundedness constraints, and lower-boundedness constraints. For

each of these, consider the respective vector of shadow-prices: λ, µ, ζ, η.

The dual is: 

min(λ,µ,ζ,η) b · λ+ 1 · µ+ (1+ e) · ζ + e · η

s.t.
£
Q> J> I −I ¤


λ
µ
ζ
η

 = x
(λ, µ, ζ, η) > 0

The typical row of the dual constraint is: xij(t`){λi(tk) +
PK

θ=k+1[λi(tθ)− λj(tθ)]}+ µij(t`) + ζ ij(t`, tk)− ηij(t`, tk) = xij(t`),
∀k = 0, 1, ...,K − 1,∀` = 0, 1, ..., k

xij(t`)λi(tK) + µij(t`) + ζij(t`, tk)− ηij(t`, tk) = xij(t`), k = K,∀` = 0, 1, ...,K

Plugging the dual value into the definition of systemic liquidity yields:

Λ =
X
i∈B

Bio −
1

T

X
i∈B

X
t∈T

Bioλi(t)−
1

T

X
i∈B

X
j∈B

X
t∈T

µij(t)

− 1
T

X
i∈B

X
j∈B

X
t∈T
(1 +Eij)ζ ij(t)−

1

T

X
i∈B

X
j∈B

X
t∈T

Eijηij(t)

Liquidity-efficiency can obviously be implemented through the equation:

b · 1− b · λ− 1 · µ− (1+ e) · ζ − e · η = 0

Among other things, the shadow-prices show how to control the extent of in-

terbank intraday exposures (the control variable e) so as to implement liquidity-

efficiency. Suppose the Central Bank cannot discriminate banks through reserve
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requirements, and that payments have to be settled at full by the end of the day.

Then the only control of systemic liquidity is the extent of interbank intraday ex-

posure. In order to achieve liquidity-efficiency, we have to calculate the extension of

exposure. A possible solution is:

E∗ij =
1
n
Bio(1− λ̄i)− µ̄ij − ζ̄ij

ζ̄ij − η̄ij

provided ζ̄ ij 6= η̄ij, ∀i, j ∈ B.

6 Examples

In this section we give some examples to illustrate our results. Consider the following

RTGS system. There are two banks, B = {1, 2}, and the business day is divided
into three periods, T = {to, t1, t2}, which we call morning, noon, and end of the day,
respectively. The Central Bank has no uncertainty as to the amounts that banks will

transfer to each other throughout the day. The pattern of transfers is represented

by the following matrices:

x(to) =

·
0 80
120 0

¸

x(t1) =

·
0 180
120 0

¸

x(t2) =

·
0 100
120 0

¸
Each entry xij(t) is to be read as “bank i transfers xij(t) dollars to bank j

at period t”. Clearly diagonal entries are set equal to zero, for banks do not do

self-transfers.

Initial balances are given by B1o = 100 and B2o = 120. These are the reserves

banks are required to hold at their Central Bank accounts at the beginning of the

day.

The Central Bank has a certain amount of money, say $130, to lend to temporar-

ily illiquid banks. Suppose that it has M1 = 50 available for lending to bank 1 and

M2 = 80 available for lending to bank 2.
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The first situation we will analyze is the choice between (a) an RTGS system

with no centralized queueing facilities, as FEDWIRE, and in which intraday credit

is extended by the Central Bank as a way to smooth out liquidity problems, and (b)

an RTGS system in which the Central Bank does not provide intraday liquidity but

unfunded payments can be queued and fractioned. We will show that both systems

yields the same amount of waste of reserve money. Then we show that (c) when the

provision of intraday liquidity is shifted down to individual banks via an intraday

interbank market, liquidity-efficiency is achieved and no reserve money is wasted.

Finally, we illustrate (d) the setting up of personalized net debit caps.

6.1 Queueing, no Lombard loans

The choice variable is υij(s, t), which represents the portion of the payment xij(s)

from bank i to bank j at period s that will be settled at period t > s.
The primal problem is:

max 80υ12(to, to) + 80υ12(to, t1) + 80υ12(to, t2) + 120υ21(to, to)+
+120υ21(to, t1) + 120υ21(to, t2) + 180υ12(t1, t1) + 180υ12(t1, t2)+
+120υ21(t1, t1) + 120υ21(t1, t2) + 100υ12(t2, t2) + 120υ21(t2, t2)

s.t. 80υ12(to, to) 6 100
120υ21(to, to) 6 120
80υ12(to, t1) + 180υ12(t1, t1) 6 100 + 120υ21(to, to)− 80υ12(to, to)
120υ21(to, t1) + 120υ21(t1, t1) 6 120 + 80υ12(to, to)− 120υ21(to, to)
80υ12(to, t2) + 180υ12(t1, t2) + 100υ12(t2, t2) 6

6 100 + 120υ21(to, to) + 120υ21(to, t1) + 120υ21(t1, t1)−
−80υ12(to, to)− 80υ12(to, t1)− 180υ12(t1, t1)

120υ21(to, t2) + 120υ21(t1, t2) + 120υ21(t2, t2) 6
6 120 + 80υ12(to, to) + 80υ12(to, t1) + 180υ12(t1, t1)−
−120υ21(to, to)− 120υ21(to, t1)− 120υ21(t1, t1)

υ12(to, to) + υ12(to, t1) + υ12(to, t2) 6 1
υ21(to, to) + υ21(to, t1) + υ21(to, t2) 6 1
υ12(t1, t1) + υ12(t1, t2) 6 1
υ21(t1, t1) + υ21(t1, t2) 6 1
υ12(t2, t2) 6 1
υ21(t2, t2) 6 1
υij(s, t) > 0, ∀t > s

To understand the constraints (which we call liquidity constraints), take, for
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instance, the third one:

80υ12(to, t1) + 180υ12(t1, t1) 6 100 + 120υ21(to, to)− 80υ12(to, to)

At noon, t1, bank 1 sends x12(t1) = 180 to bank 2. A fraction υ12(t1, t1) of

it will be settled at noon. Besides, a fraction υ12(to, t1) of the payment sent in

the morning, x12(to) = 80, is scheduled to be settled at noon. Thus, the value

of outgoing payments from bank 1 to bank 2 at noon is the left-hand side of the

constraint above. The right-hand side is the sum of two things: initial balance,

B1o = 100, plus net transfers received before noon. That is, in the morning, bank

1 sent 80υ12(to, to) to bank 2 and received 120υ21(to, to) from bank 2, so that net

transfers become 120υ21(to, to) − 80υ12(to, to). The same reasoning applies to both
banks every period.

The optimal settlement is:

υ∗12(to, to)
υ∗21(to, to)
υ∗12(to, t1)
υ∗21(to, t1)
υ∗12(to, t2)
υ∗21(to, t2)
υ∗12(t1, t1)
υ∗21(t1, t1)
υ∗12(t1, t2)
υ∗21(t1, t2)
υ∗12(t2, t2)
υ∗21(t2, t2)



=



1
1
0
0
0
0
7/9
2/3
0
1/3
4/5
5/6


Thus υ∗12(to, to) = 1 means that the payment x12(to) = 80 sent by bank 1 to

bank 2 in the morning is fully settled in the morning. Look at υ∗21(t1, t1) =
2
3
and

υ∗21(t1, t2) =
1
3
. These numbers mean that 2

3
of the payment x21(t1) = 120 sent by

bank 2 to bank 1 at noon (that is, $80) is settled at noon, while the remaining

fraction, 1
3
, is settled at the end of the day (that is, $40).
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The value of total outflow is $640. Therefore, minimum liquidity is:

L =
X

Bio −
1

T

X
i

X
j

X
s

X
t>s
xij(s)υij(s, t)

= 220− 1
3
640

=
20

3

= $6.67

Therefore, $6.67 of reserve money remains unused. This represents a waste of

liquidity. In other words, the money is in there, but is not being used.

The dual program gives us the following shadow-prices:

λ∗1(to)
λ∗2(to)
λ∗1(t1)
λ∗2(t1)
λ∗1(t2)
λ∗2(t2)
µ∗12(to)
µ∗21(to)
µ∗12(t1)
µ∗21(t1)
µ∗12(t2)
µ∗21(t2)



=



0
1
1
1
1
1
80
0
0
0
0
0


The dual value is 640, so there is no duality gap. Morning payments are fully

settled. Bank 2’s noon payment is queued and fully settled by the end of the day.

Bank 1’s noon payment is partially settled. The unsettled amount is 1
9
×$180 = $20.

Bank 1’s end of the day payment is partially settled as well. The unsettled amount is
1
5
×$100 = $20. Bank 2’s end of the day payment is partially settled and the unsettled
amount is 1

6
× $120 = $20. Thus bank 1 would have to have its reserve requirements

increased by $y as given by the equation y × (λ∗1(to) + λ∗1(t1) + λ∗1(t2)) = $40, that

is, $20. On the other hand, bank 2 would have to have its reserve requirements

increased by $z as given by the equation z × (λ∗2(to) + λ∗2(t1) + λ∗2(t2)) = $20, that

is, $10. Therefore, if bank 1’s initial reserves were $120 (instead of $100) and bank

2’s initial reserves were $130 (instead of $120), the system would be able to settle

all payments in full through queueing and splitting.
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6.2 Lombard loans, no queueing

Recall that the amounts M1 = 50 and M2 = 80 are available for lending to banks 1

and 2, respectively. These amounts have to be allocated optimally throughout the

day to each bank. Thus if bank 1 needs $10 in the morning, it will have only $40

available at noon, and so on.

The primal solution is: 

υ∗12(to)
υ∗21(to)
υ∗12(t1)
υ∗21(t1)
υ∗12(t2)
υ∗21(t2)
π∗1(to)
π∗2(to)
π∗1(t1)
π∗2(t1)
π∗1(t2)
π∗2(t2)



=



1
1
7/9
3/4
9/10
1
0
0
0
10
0
10


Notice that bank 2 and the Central Bank entered into a repurchase agreement

at noon. Bank 2 got a Lombard loan of $10 at noon from the Central Bank and

paid it back in the end of the day.

The maximum flow of payments is $640. Therefore, minimum liquidity is:

L =
X

Bio −
1

T

X
i

X
j

X
s

X
t>s
xij(s)υij(s, t)

= 220− 1
3
640

=
20

3

= $6.67

This example shows that replacing queueing/no loans by loans/no queueing did

not enhance the flow of payments. It achieved the same minimum liquidity, $6.67,

that queueing allowed the system to achieve.
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The dual solution is: 

λ∗1(to)
λ∗2(to)
λ∗1(t1)
λ∗2(t1)
λ∗1(t2)
λ∗2(t2)
µ∗12(to)
µ∗21(to)
µ∗12(t1)
µ∗21(t1)
µ∗12(t2)
µ∗21(t2)
ξ∗1(to)
ξ∗2(to)
ξ∗1(t1)
ξ∗2(t1)
ξ∗1(t2)
ξ∗2(t2)



=



0
1
1
1
1
1
80
0
0
0
0
0
0
0
0
0
80
1


The dual value is 640, so there is no duality gap. The shadow-price of bank 1’s

credit constraint at the end of the day is ξ∗1(t2) = 80. For the system to be liquidity-

efficient, systemic liquidity has to be reduced by $6.67. Alternatively, the total flow

of payments has to be increased by $20. Thus the amount of credit available to bank

1 has to be increased by $w, where w solves w × ξ∗1(t2) = $20, that is, w = $0.25.

6.3 intraday interbank market with queueing

Consider an RTGS system with queueing, but assume that the Central Bank pro-

vides no intraday liquidity. Then banks have to rely on an interbank intraday

money market. For simplicity we assume that such market is interest-rate-free, but

we can easily introduce interest rates for intraday loans between banks and even get

shadow-prices associated with them.

The choice variable υij(s, t) is now free. However we keep the constraint 0 6P
t>s υij(s, t) 6 1, ∀s.
We call the constraint above the consistency constraint. If it holds with equality,

it says that payments, however queued, have to be fully settled by the end of the day.
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For simplicity we assume it holds with inequality, which means that a portion of

payments may remain unsettled by the end of the day, leaving room for an overnight

interbank market.

The solution to the primal is:

υ12(to, to)
υ21(to, to)
υ12(to, t1)
υ21(to, t1)
υ12(to, t2)
υ21(to, t2)
υ12(t1, t1)
υ21(t1, t1)
υ12(t1, t2)
υ21(t1, t2)
υ12(t2, t2)
υ21(t2, t2)



=



5/4
1
0
0
−1/4
0
2/3
5/6
1/3
1/6
3/5
5/6


Bank 1 settles its morning payment, x12(to) = 80, at full and lends 25% of it,

1
4
× 80 = $20, to bank 2 in the morning. Bank 2 pays its morning payment at full.

Bank 2 will repay the $20 loan in the end of the day, as can be seen form the solution

υ12(to, t2) = −14 , i.e., bank 1 “pays” υ12(to, t2)x12(to) = −14 × 80 = −$20 to bank 2
in the end of the day, which means that bank 1 actually receives it from bank 2.

From υ12(t1, t1) =
2
3
and υ12(t1, t2) =

1
3
, we get that bank 1 settles 2

3
of its noon

payment and queues 1
3
for settlement at the end of the day.

Maximum outflow is $660, so minimum liquidity is zero, that is, the system is

liquidity-efficient:

L =
X

Bio −
1

T

X
i

X
j

X
s

X
t>s
xij(s)υij(s, t)

= 220− 1
3
660

= $0

Therefore, given total reserves,
P

iB
i
o = 220, the optimal arrangement of queue-

ing and interbank intraday money market led the payments system to operate at its

full capacity. All the reserves were used for settlement, no reserve money remained

unused.
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Notice that payments add up to $720, but only $660 were settled. This is be-

cause total reserves were $220 (multiplying it by the number of periods, 3, we get

$660). Here there is no need to determine shadow-prices, since the system is already

liquidity-efficient.

6.4 Net debit caps

Given the shadow-prices calculated in the case of queueing, we get average shadow-

prices given by λ̄
∗
1 =

2
3
, λ̄∗2 = 1, µ̄

∗
12 =

80
3
, and µ̄∗21 = 0. Therefore optimal net debit

caps are given by:

D∗1 =
B1o(1− λ̄1)− µ̄12

λ̄1

=
100(1− 2

3
)− 80

3
2
3

= 10

D∗2 =
B2o(1− λ̄2)− µ̄21

λ̄2

=
120(1− 1)− 0

1

= 0

Hence bank 1 should be granted with a $10 net debit cap whereas bank 2 is not

granted any net debit cap.

7 Conclusion

Our model provides a simple framework for the understanding of real-time gross

settlement systems. It is well known that RTGS systems reduce systemic risk but

are costly for banks in terms of liquidity. Our model shows how to minimize this

cost by designing queueing arrangements, Central Bank credit lines, and splitting

of payments in an optimal way. The main contribution of our model is the focus on

the dual problem. If the Central Bank knew the shadow-prices of banks, it could

set liquidity-efficient intraday monetary policies by controlling reserve requirements,
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intraday interest rates, credit lines, extension of intraday interbank exposures, etc.

The fundamental equation for liquidity-efficiency tells us that such policies should

be personalized. Each bank would be priced according to its marginal contribution

to the total outflow of payments.

Of course in real life the Central Bank does not know ex ante the pattern of

interbank transfers. After business hours, however, it has the complete data set of

interbank transfers during that day. Suppose it uses such data to run the primal

problem and to calculate the collection of individual daily shadow-prices. The primal

solution will tell the Central Banker how intraday monetary policies should have

been set in the first place in order to make the payment system liquidity-efficient

that day. The dual solution will give the Central Banker an objective policy standard

to pricing banks according to their marginal contribution to the overall stability (or

instability) of the payment system. Shadow-prices can be calculated on a day-by-day

basis. Besides, our model shows that the relevant shadow-price of an individual bank

is the average of its shadow-prices within the day. After collecting a long series of

individual daily shadow-prices, the means of individual empirical distributions will

give a good measure of the true shadow-prices of individual banks. It is these mean

shadow-prices that can be used by monetary authorities to regulate payment systems

efficiently. Knowing the initial reserve shadow-price of a bank is close to zero, it

makes no sense for the Central Bank to increase its reserve requirements. Knowing

that bilateral exposure shadow-prices of a bank is well above unity, it is better for

the Central Bank to fetter its bilateral exposures in the intraday interbank market.

Our model therefore provides a solid foundation for the microprudential surveillance

of payment systems6.

Future tasks include the extension of the model to a many-days environment

in which overnight interbank loans would play a prominent role, thus bridging the

gap between intraday monetary policy and medium and long-run macroeconomic

monetary policy. Our model can be used to determine shadow-prices of banks in

6The stochastic version of the model with continuous time is also available.

 41



real world payment systems, provided data on intraday interbank transfers are made

available. Indeed, as a by-product, our model shows that the available data on

intraday interbank transfers should be disaggregated.
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