Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
February, 2003
Optimal Monetary Rules: The Case of Brazil

Charles Lima de Almeida
Marco Aurélio Peres
Geraldo da Silva e Souza
Benjamin Miranda Tabak*

Abstract

Within a dynamic programming approach we derive an optimal rule for the central bank to attain its inflation targeting goals. The short-run nominal interest rate is used as an instrument to achieve monetary objectives. The model is tested for the Brazilian economy and compared with results found for other countries. Evidence for the estimated feedback interest rule for the Central Bank suggests that the cost of reducing inflation in an open economy is lower than that of a closed economy.

JEL Classification: E43, E52.
Keywords: optimal Taylor rule, monetary policy, inflation targeting.

Resumo

Através de técnicas de programação dinâmica derivamos uma regra ótima para o Banco Central atingir suas metas de inflação. A taxa nominal de juros é utilizada como instrumento para atingir os objetivos de política monetária. O modelo é testado para a economia brasileira e compararam-se os resultados com encontrados para outros países. Evidência para regra de feedback encontrada sugere que os custos de reduzir a inflação em economias abertas é menor do que em economias fechadas.

* Research Department, Central Bank of Brazil. Corresponding author’s e-mail address: benjamin.tabak@bcb.gov.br
1. Introduction

Recently, several countries have been adopting a target inflation framework for monetary policy. New Zealand, Canada and United Kingdom have decided to employ an inflation targeting framework in the conduit of monetary policy and have successfully reduced their inflation rates and gained control on inflation\(^1\). It is often argued that an independent central bank is a key element for a successful monetary policy. The good performance in the maintenance of low inflation rates that the National Bank of Switzerland and the Bundesbank have had is mainly attributed to their high level of independence, and it has certainly strongly influenced the position of the system of European central banks toward an independent central bank.

Following this trend, other countries (e.g. Chile, Mexico, Argentina, Spain and France) have been granting a greater independence for their central banks allowing them to conduce monetary policy with much less government interference. The main goal is price stability and a common point among these countries has been the adoption of an inflation targeting framework. In Brazil, since mid-1999, six months after abandoning the fixed exchange rate regime, the Central Bank of Brazil has adopted an inflation targeting regime for the conduit of monetary policy.

The main purpose of this paper is to derive an optimal feedback rule based on the model proposed by Ball (1998) and to estimate a short run reaction function for interest rates for Brazil, for an open economy. The main assumption is that interest rates are the central bank’s main instrument to reduce inflation and the level of activity.

Normally, models estimating IS-AS-type models use OLS regressions. In this paper we derive an optimal feedback rule and use the estimated coefficients from IS-AS equations to find an empirical relation between central bank’s instrument and macroeconomic variables such as inflation, output gap and exchange rates. We suggest the use of two stage least squares using adequate instrumental variables to estimate these equations to overcome problems inherent to the nature of Brazilian macroeconomic variables\(^2\). We also compare our results with those found in the literature.

The plan of the paper is as follows. In the first section we derive a Taylor rule for the Brazilian economy. Section two presents empirical results. In the last section we conclude and give directions for further research.

2. The model

In this section an optimal monetary rule is derived for the Brazilian economy. We use the following IS equation:

\[
y_{t+1} = a_1 y_t - a_2 i_t + a_3 e_t + u_{t+1} \quad \quad \quad (2.1)
\]

where \(y_t\) stands for the output gap, \(i_t\) is the real interest rate, \(e_t\) is the real exchange rate, \(u_{t+1}\) are the shocks.

\(^1\) For an interesting analysis of inflation targeting see Walsh (2001).

\(^2\) Using instrumental variables for the terms containing lagged inflation is crucial because these terms are correlated with the residuals.
and u_t is a demand shock, assumed to be normally distributed.

The supply curve is represented by the traditional Phillips curve:

$$\pi_{t+1} = \pi_t + \gamma y_t + \mu (\varepsilon_t - \varepsilon_{t-1}) + \eta_{t+1} \tag{2.2}$$

where π_t is the inflation rate, $\Delta \varepsilon_t$ is the depreciation rate in the nominal exchange rate, and η_{t+1} is the supply shock not correlated with u_{t+1}.

The policy maker chooses in instant t the interest rate i_t, and the state variable in instant t is:

$$z_t = \gamma y_t + \pi_t + \mu (\varepsilon_t - \varepsilon_{t-1}) \tag{2.3}$$

The optimal feedback rule will be given by:

$$\theta_t = Xz_t \tag{2.4}$$

where

$$\theta_t = a_1 y_t + a_2 i_t + \mu e_t \tag{2.5}$$

Equations (1) and (2) can be rewritten as:

$$y_{t+1} = \theta_t + u_{t+1} \tag{2.6}$$

and

$$\pi_{t+1} = z_t + \eta_{t+1} \tag{2.7}$$

We assume that the central bank's loss function is given by:

$$L = \frac{1}{2} E_i \sum_{t=1}^{\infty} \beta^t \left[\lambda y_{t+1}^2 + \pi_{t+1}^2 \right] \tag{2.8}$$

The objective of the policy maker is to minimize this loss function subject to:

$$z_{t+1} = z_t + \gamma \theta_t + \eta_{t+1} + \gamma u_{t+1} \tag{2.9}$$

Define the value function as:

$$V(z_t) = \min E_i \left[\frac{1}{2} (\lambda y_{t+1}^2 + \pi_{t+1}^2) + \beta V(z_{t+1}) \right] \tag{2.10}$$

replacing (2.6), (2.7) and (2.9) in the value function we obtain:
\[V(z_t) = \min_{\theta_t} \left\{ \frac{1}{2} \lambda E_i(\theta_t + u_{t+1})^2 + \frac{1}{2} E_i(z_t + \eta_{t+1})^2 + \beta E_i V(z_t + \gamma \theta_t + u_{t+1} + \gamma \eta_{t+1}) \right\} \] \hspace{1cm} (2.11)

Solving problem (2.11) with respect to \(\theta_t \) gives the first order condition:

\[\lambda \theta_t + \gamma \beta V \dot{E}_i (z_{t+1}) = 0 \] \hspace{1cm} (2.12)

Applying the envelope theorem with respect to \(z_t \) obtains:

\[V_t(z_t) = z_t + \beta V_t E_i (z_{t+1}) \] \hspace{1cm} (2.13)

Multiplying (2.13) by \(\gamma \), substituting in (2.12), taking this expression one-step forward and the expectations

\[E_i V_t (z_{t+1}) = z_t + \gamma \theta_t - \frac{\lambda}{\gamma} E_i (\theta_{t+1}) \] \hspace{1cm} (2.14)

Replacing (2.14) in (2.12):

\[\theta_t = - \frac{\gamma \beta}{\lambda + \gamma^2 \beta} z_t + \frac{\beta \lambda}{\lambda + \beta \gamma^2} E_i (\theta_{t+1}) \] \hspace{1cm} (2.15)

When the policy is established in instant \(t \), \(z_t \) is the state variable and thus the optimal policy rule has a quadratic form \(\theta_t = X z_t \). Therefore

\[E_i (\theta_{t+1}) = X E_i (z_{t+1}) = X (1 + \gamma X) z_t \] \hspace{1cm} (2.16)

replacing this expression in (2.15) obtains the following quadratic form:

\[\lambda \beta \gamma X^2 - \left(\lambda - \beta \lambda + \gamma^2 \beta \right) X + \gamma \beta = 0 \] \hspace{1cm} (2.17)

Stability requires \(|1 + 2\gamma (1 + \alpha) X| < 1 \). Hence, the solution for (2.17) is given by:

\[X = \frac{(\lambda - \beta \lambda + \gamma^2 \beta) \pm \sqrt{(\lambda - \beta \lambda + \gamma^2 \beta)^2 + 4(\gamma^2 \beta^2 \lambda)}}{2 \beta \gamma \lambda} \] \hspace{1cm} (2.18)

remembering that:

\[z_{t+1} = z_t + \gamma \theta_t = (X \gamma + 1) z_t \] \hspace{1cm} (2.19)

After some algebraic operations the product of the roots is:
The root of interest is the one that satisfies the stability condition, that is the negative root X_2. Finally, replacing X_2 in (2.4) gives

$$\theta_t = \frac{(\lambda - \beta \lambda + \gamma^2 \beta) - \sqrt{(\lambda - \beta \lambda + \gamma^2 \beta)^2 + 4(\gamma^2 \beta^2 \lambda)}}{2\beta \gamma \lambda} z_t$$ \hfill (2.21)$$

We can derive the optimal rule for the interest rate

$$i_t = \frac{a_1 \gamma X_2}{a_2} y_t + \frac{a_3}{a_2} \Delta e_t + \frac{X_2}{a_2} \pi_t + \eta \frac{X_2}{a_2} e_t$$ \hfill (2.22)$$

3. Empirical Results

For the econometric analysis we have used quarterly data and our sample begins in the first quarter of 1994 and ends in the last quarter of 2001. All variables are in natural logs. As a proxy for the output gap we have estimated a Hodrick-Prescott filter and used the difference between observed GDP and the filtered series. The inflation rate is given by IPCA. The interest rate is given by SELIC which is the instrument that the central bank uses to achieve it's price stability goals.

According to the results found in table 1 both the lag of the output gap and lagged interest rate are significant in explaining current output gap, and the sign of the coefficients are in line with the expected sign. We used as instruments a dummy for the Russian crisis, three lags for the interest rate and four lags for the government spending.

<table>
<thead>
<tr>
<th>Table 1. IS equation - Closed Economy</th>
<th>Coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{t-1}</td>
<td>0.34**</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.1697)</td>
<td></td>
</tr>
<tr>
<td>i_t</td>
<td>-0.06*</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.0117)</td>
<td></td>
</tr>
<tr>
<td>Adjusted $R^2 = 77%$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Standard errors are given in parenthesis
* Rejection of the null with 99% confidence
** Rejection of the null with 95% confidence

Table 2 presents empirical results for the Phillips equation. Both lagged output gap and inflation are significant in explaining current inflation. We have used as instruments a dummy for the Russian crisis, six lags for the inflation rate and two lags for government spending.
Table 2. Phillips equation - Closed Economy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{t-1}</td>
<td>0.34**</td>
<td>0.029</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td></td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>0.60*</td>
<td>0.000</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td></td>
</tr>
</tbody>
</table>

Adjusted $R^2 = 90%$

Standard errors are given in parenthesis
* Rejection of the null with 99% confidence
** Rejection of the null with 95% confidence

Applying Augmented Dickey and Fuller tests the null of a unit root for the output gap, interest rates and inflation is rejected. Results for these unit roots are available upon request from the authors.

In order to derive the optimal policy rule for the Brazilian economy we assumed $\beta = 0.7$ and $\lambda = 1$, which are the intertemporal discount factor and the relative weight of output gap in the loss function. After replacing this parameters and coefficients in table 1 and 2 one obtains

$$i_t = 5.5 y_t + 4.2 \pi_t$$ \hspace{1cm} (3.1)

Our results are quite different from those found in Taylor (1993) and Ball (1998) and are more in line with those found in Walsh (1997).

Table 3. Comparison of optimal rules - Closed Economy

<table>
<thead>
<tr>
<th>Coefficients</th>
<th>y_t</th>
<th>π_t</th>
<th>y_{t-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taylor (1993)</td>
<td>0.50</td>
<td>1.50</td>
<td>-</td>
</tr>
<tr>
<td>Walsh (1997)</td>
<td>4.37</td>
<td>1.26</td>
<td>1.59</td>
</tr>
<tr>
<td>Authors</td>
<td>5.5</td>
<td>4.2</td>
<td>-</td>
</tr>
<tr>
<td>Ball (1998)</td>
<td>0.80</td>
<td>1.46</td>
<td>-</td>
</tr>
</tbody>
</table>

The coefficient on the output gap is similar to that found in Ball (1998), while the coefficient on inflation is much higher than that of the rest, which suggests that the central bank of Brazil has to increase it's interest rates much more than developed countries in order to counterbalance an increase in inflation.

In tables 4 and 5 we present results for an open economy.
Table 4. IS equation - Open Economy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{t-1}</td>
<td>0.36**</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td></td>
</tr>
<tr>
<td>e_{t-2}</td>
<td>-0.04**</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>(0.018)</td>
<td></td>
</tr>
<tr>
<td>i_t</td>
<td>0.06*</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
<td></td>
</tr>
</tbody>
</table>

Adjusted R$^2 = 75$

Standard errors are given in parenthesis

* Rejection of the null with 99% confidence
** Rejection of the null with 95% confidence

Table 5. Phillips equation - Open Economy

<table>
<thead>
<tr>
<th>Variables</th>
<th>Coefficients</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>y_{t-1}</td>
<td>0.08**</td>
<td>0.02</td>
</tr>
<tr>
<td></td>
<td>(0.05)</td>
<td></td>
</tr>
<tr>
<td>Δe_t</td>
<td>0.07**</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.01)</td>
<td></td>
</tr>
<tr>
<td>π_{t-1}</td>
<td>0.65*</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.038)</td>
<td></td>
</tr>
</tbody>
</table>

Adjusted R$^2 = 64$

Standard errors are given in parenthesis

* Rejection of the null with 99% confidence
** Rejection of the null with 95% confidence

Replacing the results one obtains the optimal rule:

$$i_t = 5.2y_t + 0.3\pi_t + 0.6e_{t-1} + 0.2\Delta e_t$$

(3.2)

To the best of our knowledge, most research on developed countries has estimated different optimal feedback rules, making comparisons more difficult. As we can see, the coefficient on inflation has decreased to 0.3. Thus, the nominal interest rate is increased more than five-to-one with increases in output gap. The cost to reduce inflation seems to be lower in an open economy, which is an argument in favor of commercial liberalization.

4. Conclusions

In this paper we have presented an optimal policy rule for the central bank to achieve its monetary policy goals, derived using a dynamic programming approach and a dynamic loss function. We estimated IS-AS equations using two stage least squares and fitted an optimal feedback rule for short run interest rates for both a closed and open economy. We have found that the feedback rule behaves differently from similar rules estimated for developed countries. For the open economy evidence suggests that interest rates needs to raise less than a one-to-one with inflation (while the contrary happens within a closed economy). Thus, it is found that within an open economy the central banks have much more power to reduce inflation than within a closed economy. This issue will be left for further research.
References

Working Paper Series

1. **Implementing Inflation Targeting in Brazil**
 Joel Bogdanski, Alexandre Antonio Tombin e Sérgio Ribeiro da Costa Werlang
 Jul/2000

2. **Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil**
 Eduardo Lundberg
 Jul/2000

3. **Private Sector Participation: A Theoretical Justification of the Brazilian Position**
 Sérgio Ribeiro da Costa Werlang
 Jul/2000

4. **An Information Theory Approach to the Aggregation of Log-Linear Models**
 Pedro H. Albuquerque
 Jul/2000

5. **The Pass-through from Depreciation to Inflation: A Panel Study**
 Ilan Goldfajn e Sérgio Ribeiro da Costa Werlang
 Jul/2000

6. **Optimal Interest Rate Rules in Inflation Targeting Frameworks**
 José Alvaro Rodrigues Neto, Fabio Araújo e Marta Baltar J. Moreira
 Jul/2000

7. **Leading Indicators of Inflation for Brazil**
 Marcelle Chauvet
 Set/2000

8. **The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk**
 José Alvaro Rodrigues Neto
 Set/2000

9. **Estimating Exchange Market Pressure and Intervention Activity**
 Emanuel-Werner Kohlscheen
 Nov/2000

10. **Análise do Financiamento Externo a Uma Pequena Economia**
 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior
 Mar/2001

11. **A Note on the Efficient Estimation of Inflation in Brazil**
 Michael F. Bryan e Stephen G. Cecchetti
 Mar/2001

12. **A Test of Competition in Brazilian Banking**
 Márcio I. Nakane
 Mar/2001
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade e Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil Para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: Uma Abordagem de Função de Produção</td>
<td>Tito Níciass Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas e Marcelo Kfoury Muinhos</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: A Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas e Fabio Araújo</td>
<td>Maio/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu e Márcio I. Nakane</td>
<td>Maio/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coatinho e Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>24</td>
<td>Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality</td>
<td>Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn e Alexandre Antonio Tombini</td>
<td>Ago/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Ago/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Ago/2001</td>
</tr>
</tbody>
</table>
27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior
Set/2001

28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: Uma Abordagem de Expectativas Racionais
Marco Antonio Bonomo e Ricardo D. Brito
Nov/2001

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque e Solange Gouvêa
Nov/2001

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates
Benjamim Miranda Tabak e Sandro Canesso de Andrade
Nov/2001

31 Algumas Considerações Sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

32 Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

34 Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga e Daniel Luiz Gleizer
Nov/2001

35 Uma Definição Operacional de Estabilidade de Preços
Tito Nícias Teixeira da Silva Filho
Dez/2001

36 Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Fev/2002

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada e Sérgio Goldenstein
Mar/2002

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

39 Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002

40 Speculative Attacks on Debts, Dollarization and Optimum Currency Areas
Aloisio Araújo e Márcia Leon
Abr/2002

41 Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio
Marcelo Kfoury Muiños, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak e Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Ago/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer e Márcio I. Nakane</td>
<td>Ago/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos e Joanílio Rodolpho Teixeira</td>
<td>Set/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Set/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo e Aquiles Farias</td>
<td>Set/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak e Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: The Case of Latin America</td>
<td>Benjamin Miranda Tabak e Eduardo José Araújo Lima</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araujo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>Número</td>
<td>Título</td>
<td>Autor(es)</td>
<td>Data</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho e Benjamin Miranda Tabak</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>61</td>
<td>O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>62</td>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
</tbody>
</table>