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Non-technical Summary 

In this paper, we explore different ways to improve a traditional econometric method 

to forecast inflation. The goal is to predict the consumer price inflation using a hybrid 

approach that combines a standard Vector Autoregression (VAR) model with survey 

expectations from consumers or professional forecasters. 

The basic idea is to cast a VAR model into a state-space setup, which allows for 

general parameter restriction. In particular, we impose restrictions that guarantee the long-

run forecast produced by the model equals the long-run survey prediction. This way, the 

proposed approach can timely incorporate new survey information into the multi-step-ahead 

forecast. The method also allows for exogenous variables in the system of equations, as a way 

to further improve the information set.  

An empirical exercise with Brazilian data shows the usefulness of the proposed 

method using a pre-COVID-19 sample. Indeed, forecasts from the hybrid model, thus 

incorporating survey expectations about future inflation, tend to prevail over traditional 

methods at longer horizons, confirming the benefits of using forward-looking information in 

the forecasting process. The main reason behind this result is that the proposed method entails 

relevant transformations of the Brazilian economy, occurred in recent years and present in 

survey expectations, such as monetary policy credibility gains and lower inflation targets, 

which affect the inflation dynamics.  

In turn, the empirical results using a more recent sample, up to August 2022, show 

larger forecast errors after the pandemic, due to unexpected shocks and outliers in 

macroeconomic variables, observed not only in Brazil but also worldwide. Altogether, these 

results offer a valuable contribution to applied macroeconomics, especially with regard to 

forecasting inflation in Brazil. 
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Sumário Não Técnico 
 

 
Neste artigo, exploramos diferentes formas de aperfeiçoar um método econométrico 

tradicional de previsão da inflação. O objetivo é prever a inflação de preços ao consumidor 

usando uma abordagem híbrida, que combina um modelo de Vetor Autorregressivo (VAR) 

com expectativas de pesquisa (survey) de consumidores ou analistas profissionais. 

A ideia básica consiste em reescrever um modelo VAR em um arcabouço de espaço 

de estados (state-space), que permite a imposição de restrições genéricas nos parâmetros do 

modelo. Em particular, utilizamos restrições que garantem que a previsão de longo prazo 

produzida pelo modelo seja igual à previsão de longo prazo do survey de expectativas. Dessa 

forma, a abordagem proposta pode incorporar tempestivamente novas informações do survey 

na previsão multipassos à frente. O método também permite incluir variáveis exógenas no 

sistema de equações como forma de aperfeiçoar o conjunto de informação. 

Um exercício empírico com dados brasileiros mostra a utilidade do método proposto 

utilizando uma amostra pré-Covid-19. De fato, as previsões do modelo híbrido, que 

incorporam as expectativas do survey sobre a inflação futura, tendem a prevalecer sobre os 

métodos tradicionais em horizontes mais longos, confirmando os benefícios do uso de 

informações prospectivas (forward-looking) no processo de previsão. A principal razão por 

trás desse resultado é que o método proposto incorpora transformações relevantes na 

economia brasileira, ocorridas nos últimos anos e presentes nas expectativas de inflação, tais 

como ganhos de credibilidade da política monetária e metas de inflação mais baixas, que 

afetam a dinâmica inflacionária. 

Por sua vez, os resultados empíricos utilizando uma amostra mais recente, até agosto 

de 2022, apresentam maiores erros de previsão após a pandemia, devidos a choques 

inesperados e outliers em variáveis macroeconômicas, observados não apenas no Brasil, mas 

em todo o mundo. Em suma, esses resultados oferecem uma valiosa contribuição para a 

macroeconomia aplicada, especialmente no que diz respeito à previsão de inflação no Brasil. 
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Abstract

The objective of this paper is to forecast Brazilian inflation using a hybrid approach

that combines a standard Vector Autoregression (VAR) model with expectations from

surveys of consumers or professional forecasters. We cast a VAR model with parameter

restriction into a state-space setup, where the long-run forecast from the model matches

the long-run survey prediction. The proposed method also allows for exogenous variables

in the system of equations as a way to enlarge the information set, and is designed to

quickly adapt the multi-step-ahead forecasts in response to new survey information. An

empirical exercise with Brazilian data illustrates the usefulness of the method. The re-

sults using a pre-COVID-19 sample indicate forecasts obtained from the proposed model

prevail over traditional methods at longer horizons, thus confirming the benefits of using

forward-looking information from survey in the forecasting process. The main reason is

that the method incorporates relevant transformations observed in the Brazilian econ-

omy in recent years, such as monetary policy credibility gains and lower inflation targets.

In turn, the results based on the full sample, up to August 2022, show larger forecast

errors after the pandemic, which caused huge outliers in macroeconomic variables world-

wide. Altogether, these findings offer a valuable contribution to applied macroeconomics,

especially with regard to forecasting inflation in Brazil using VARs and survey data.
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1 Introduction

Reliable macroeconomic forecasts are crucial for economic agents in an ever-changing world.

In particular, forecasting how the price level evolves is an essential part of economic planning

and decision-making. For instance, higher inflation brings uncertainty to economic agents

and shortens investment horizon, especially in emerging countries, making the construction

of accurate macroeconomic forecasts an important issue in these economies.

Since the seminal paper of Sims (1980), the Vector Autoregressive (VAR) model has been

a workhorse tool in applied macroeconomics, widely used by econometricians for forecasting,

structural inference and policy analysis. A VAR model is a set of linear regression equations,

describing the evolution of a set of endogenous variables, where each equation treats a given

dependent variable as a function of lagged values of all variables considered in the model.

Such method can be viewed as a backward-looking approach reflecting past information.

On the other hand, information obtained from surveys of consumers or professional fore-

casters naturally pertains to future prospects for the economy, representing a rich source

of forward-looking information. Indeed, the usefulness of such data in forecasting has been

shown in many empirical studies. For example, Ang et al. (2007) report true out-of-sample

survey forecasts in the U.S. (such as Michigan or Livingston) outperform a large number

of single-equation and multivariate time series competitors. Faust and Wright (2013) point

out inflation subjective forecasts obtained from surveys seem to prevail over model-based

forecasts in certain dimensions, often by a wide margin, possibly because forecasters have

access to econometric models, but can also add expert judgment to these models.

In fact, in order to improve the forecast accuracy of traditional econometric models, a

whole new set of methods emerged, along the past decades, with the objective of adding

extra information to traditional VARs. The first attempt was the VARX model, in which

an exogenous variable is included in the system of equations.1 More recently, Krüger et al.

(2017) combine medium-term forecasts from Bayesian VARs with short-term forecasts from

surveys using entropic tilting.2 As result, the accuracy of both point and density forecasts

is improved, especially for persistent variables.

In a similar approach, Tallman and Zaman (2018) build hybrid forecasts that combine

survey information with VAR forecasts. They use relative entropy to tilt one-step ahead

and long-run VAR forecasts to match, respectively, the nowcast and long-term forecasts

from the Survey of Professional Forecasters. The results indicate meaningful gains in multi-

horizon forecast accuracy, particularly for inflation, relative to model forecasts that do not

incorporate long-run survey conditions.3

1A VAR process can be affected by other observable variables that are determined outside the system of
interest. Such variables are called exogenous (or independent) variables.

2Tilting is a technique for modifying a baseline distribution to match moment conditions of interest.
3See also Giannone et al. (2019), who propose a class of prior distributions that also discipline the long-

run behavior of VAR forecasts. These priors come from economic theory and provide guidance on the joint
dynamics of macroeconomic time series in the long run. According to the authors, VARs with standard macro
variables and priors based on the long-run predictions of a wide class of theoretical models yield substantial
improvements in forecasting performance.
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Survey data can also provide immediate information about perceived structural changes

in the economy.4 These perceptions of structural shifts can be useful to improve forecast

accuracy. For example, surveys can be used to guide long-run inflation forecasts of VAR mod-

els, which are mean-reverting, by design, and often too insensitive to recent inflation. In this

sense, Kozicki and Tinsley (2012) propose a shifting endpoint5 autoregressive (AR) model

to approximate the implicit inflation forecasting model that underlies survey expectations.

In this paper, we generalize the shifting endpoint univariate approach of Kozicki and

Tinsley (2012) to a multivariate context with exogenous variables. Our goal is to propose

an econometric setup that combines VAR and VARX forecasts with survey data, where

survey expectations are used to anchor long-run forecasts. This way, the multi-step-ahead

forecast is driven in the short- and medium-run by the usual VAR and VARX dynamics, but

gradually converges to the survey prediction in the long run.

To do so, we rewrite VAR and VARX models in a state-space setup,6 that embodies not

only a VAR model structure with parameter restriction, but also delivers a long-run forecast

grounded on forward-looking survey data. This way, the approach allows for exogenous

variables, and also imposes parameter restriction to ensure the shifting endpoint dynamics

driven by survey data. To the best of our knowledge, this is the first paper to address this

particular problem.

The advantages of the proposed method are the following: (i) to timely capture structural

changes in the economy, as perceived by survey respondents, and translate that into a prompt

shift in long-run predictions; and (ii) to enlarge the information set through macroeconomic

and financial variables that can be included as exogenous variables in the model. We illustrate

the usefulness of the proposed methodology using Brazilian data.

The outline of the paper is as follows. In Section 2, we present our methodology to build

VAR and VARX models, imposing the shifting endpoint restriction, within a state-space

framework. Section 3 presents an out-of-sample forecasting exercise to predict inflation in

Brazil, and Section 4 concludes. The Appendix presents proofs of the propositions as well

as examples of the proposed models, besides some additional results.

2 Methodology

Our objective is to improve the accuracy of inflation forecasts, generated by VAR or VARX

models, using information from surveys (although other exogenous variables could be used

as well to anchor the long-run inflation forecasts, such as breakeven inflation extracted from

4Since surveys naturally include judgmental views derived, for instance, from a diverse set of available
macroeconomic and financial variables as well as from different econometric models.

5According to Kozicki and Tinsley (2012):"The endpoint is the level to which inflation expectations even-
tually converge as the forecast horizon is increased, conditional on a given information set... Endpoints may
shift according to information and beliefs at the time the forecast is made. The potential for endpoint shifts
is an essential feature of the model of expectations as endpoint shifts can accommodate the possibility of rapid
reaction to structural change in survey expectations independent of recent movements in actual inflation."

6Building a VAR model within a state-space setup is not a novelty in the literature. For instance, Mittnik
(1989) designs an autoregressive process with exogenous variables in a state-space model. More recently,
Dertimanis and Koulocheris (2011) investigate the interconnection between VAR and state-space models.
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financial data). To do so, we propose a methodology to estimate those models at monthly

frequency within a standard state-space framework. The inflation rate is our variable of

interest and is modeled together with other key macroeconomic and/or financial variables.

The main idea is to impose restrictions on model parameters, such that out-of-sample

long-run forecasts of inflation can be anchored on survey-based inflation expectations. Since

survey data usually report average (long-run) inflation expectations over multiple periods,7

we assume the twelve-month inflation forecast from our proposed model is a proxy for the

respective survey prediction. A similar strategy is adopted in Kozicki and Tinsley (2012). In

other words, we impose the so-called Shifting Endpoint (SE) restriction in a standard VAR

or VARX model, such that the inflation rate forecast accumulated in twelve months matches

the survey-based inflation expectation at a desired (long-run) horizon.

The restricted VAR or VARX models are labelled VAR-SE and VARX-SE models, re-

spectively, due to this long-run forecast anchoring.

2.1 VAR with shifting endpoint

In its basic form, a vector autoregression (VAR) model consists of a set of k endogenous

variables xt =
[
x1,t · · · xk,t

]′
. The VAR(p) process is, then, defined as:

xt = F1xt−1 + ...+ Fpxt−p + φ+ ut, (1)

where Fi are k × k coeffi cient matrices for i = 1, .., p, φ is a k × 1 vector of intercepts, and

ut is a k-dimensional white noise process such that E(ut) = 0.

As is well known, the VAR(p) can be rewritten as a VAR(1), in the following way:

ξt = Fξt−1 + c+ vt, (2)

where ξt =
[
x′t x′t−1 · · · x′t−p+1

]′
is a kp × 1 vector stacking all variables (and lags),

F =



F1 F2 · · · Fp−1 Fp

Ik 0 · · · 0 0

0 Ik · · · 0 0
...

...
. . .

...
...

0 0 · · · Ik 0


is a kp×kp coeffi cient matrix, and c =

[
φ′ 0 · · · 0

]′

and vt =
[
u′t 0 · · · 0

]′
are kp× 1 vectors.

7For example, participants in the Livingston Survey in the U.S. are asked to give 6-month and 12-month
forecasts of the CPI level. In turn, the participants in the Survey of Professional Forecasters (SPF) organized
by the Federal Reserve Bank of Philadelphia report their long-run projections for inflation in annualized
percentage points. The ECB SPF respondents also report their longer-term inflation expectations in annual
percentage changes.
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Now, consider the VARmodel adjusted by shifting endpoint, herein called VAR-SE model,

which can be written in a standard state-space format, as follows:

Xt = AXt−1 +Bεt, (3)

Yt = CXt +Dεt, (4)

where Xt is the state vector, Yt is the observable variables vector, εt and εt are vectors of

innovations, and A, B, C and D are coeffi cient matrices.

To do so, let Yt =
[
y′t 1t ft+H|t

]′
, where yt =

[
y1,t y2,t ... yk,t

]′
is a vector

with k observable variables, the first being the inflation rate, which is our variable of interest

(i.e., y1,t = πt), 1t is equal to 1 for all t, and ft+H|t is the consensus survey-based inflation

expectation (i.e., cross-section average of the individual expectations) for the annualized

inflation rate H periods ahead. Also, let Xt =
[
ξ′t ct µt

]′
,8 where ct is a constant state

associated with the intercept of the equations describing the dynamics of the observable

variables, except for the inflation equation, and the random walk µt = µt−1 + εµ,t replaces

the intercept.9

Next, consider the so-called Shifting Endpoint (SE) restriction, which is an equation that

connects the survey inflation expectation ft+H|t with the long-run forecast from the VAR

model. We guarantee such relationship holds by imposing a set of constraints in the VAR

parameters. The SE restriction is defined as follows:

ft+H|t =
H∑

h=H−11
E[πt+h | Ft], (5)

where E (·) denotes the conditional expectation from the VAR-SE model,10 and Ft is the
information set at period t. As will be later discussed in Proposition 1, this restriction

can be rewritten as ft+H|t = βXt, where β = J1
H∑

h=H−11
Ah, which completes the VAR-SE

model description.11 This way, the survey-based inflation expectation perfectly matches the

forecast from the VAR-SE model for the annualized inflation H periods ahead.12 Next, we

8The model assumptions, later presented, will impose the first k states of ξt to be equal to the observable
variables (xt = yt), whereas the remaining states are their respective lags.

9Kozicki and Tinsley (2012) point out that: "In thinking about the dynamics of such long-horizon percep-
tions, note that if survey participants could forecast future changes to their perceptions of the level at which
inflation would stabilize, then such changes would be immediately incorporated in their long-run perceptions.
Consequently, changes in the endpoint should not be forecastable. This property is captured by assuming that
the endpoint evolves according to a random walk."
10Note the sum in equation (5) has 12 terms, which is due to our interest here in estimating the VAR-SE

model in monthly frequency. For other frequencies, the VAR-SE model setup could be adjusted accordingly.
The horizon H is a choice of the econometrician but also depends on the maximum horizon available in the
survey.
11The vector J1 is part of a family of selection vectors such that, for all i = 1, ..., k, Ji corresponds to the

i-th row of an identity matrix of dimension kp+2. These relationships are obtained by imposing appropriate
constraints on the coeffi cient matrices A, B, C and D.
12Additional restrictions could be further considered in the model. For instance, matching the survey

expectation with the model forecast at different horizons (short- or medium-run) or even considering the
shifting endpoint restriction for other endogenous variables besides inflation. We leave this potential route as
suggestion for future extensions of the proposed setup.
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show some technical assumptions to write the VAR-SE model in a state-space setup:

Assumption A1 Let Yt =
[
y′t 1t ft+H|t

]′
be a (k + 2) × 1 vector, such that yt =[

πt y2,t ... yk,t

]′
and ft+H|t are covariance-stationary processes.

Assumption A2 Let Xt =
[
ξ′t ct µt

]′
be a (kp+ 2)× 1 vector, where ct = 1 for all t,

and µt is a random walk process.

Assumption A3 Let A =



F1 F2 · · · Fp−1 Fp φ ψ

Ik 0k · · · 0k 0k 0k×1 0k×1

0k Ik · · · 0k 0k 0k×1 0k×1
...

...
. . .

...
...

...
...

0k 0k · · · Ik 0k 0k×1 0k×1

01×k 01×k · · · 01×k 01×k 1 0

01×k 01×k · · · 01×k 01×k 0 1


be a (kp+ 2)×

(kp + 2) matrix, where φ = [ 0 φ2 · · · φk ]′ and ψ = [ 1 0 · · · 0 ]′ are k × 1

vectors.

Assumption A4 Let B be a (kp+ 2)× (kp+ 2) matrix with zeros, excepting the following

elements (which are equal to one): (i) the i-th diagonal elements for i = 1, ..., k; and

(ii) the (kp+ 2)-th diagonal element.

Assumption A5 Let C =
[
J ′1 · · · J ′k J

′
β′
]′
be a (k + 2)× (kp+ 2) matrix, where

Ji is a 1× (kp+ 2) selection-vector filled with zeros, excepting the i-th element (which

is equal to one), J is a 1 × (kp + 2) selection-vector filled with zeros, excepting the

(kp+ 1)-th element, which is equal to one, and β = J1
H∑

h=H−11
Ah is a 1× (kp+ 2) row

vector.

Assumption A6 Let D be a (k + 2)× (k + 2) matrix with zeros.

Assumption A7 Let εt =
[
v′t 0 εµ,t

]′
be a (kp + 2) × 1 vector of innovations, where

vt =
[
u′t 0 · · · 0

]′
is a kp×1 vector, and let εt be a (k+2)×1 vector of innovations.

Assume both εt and εt are normally distributed.

Now, we provide our first theoretical result that presents the VAR-SE model in a state-

space format and, most importantly, shows the shifting endpoint restriction (5) indeed holds.

See Appendix B for an example of a simple VAR-SE model.

Proposition 1 Consider a VAR model with p lags and k endogenous variables, such that

the inflation rate πt is the first variable of the VAR. Under Assumptions A1-A7, it follows

that: (i) the VAR model can be rewritten in a state-space setup, as follows:

Xt = AXt−1 +Bεt,

Yt = CXt +Dεt,
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where Xt is a vector of latent states, Yt contains observable variables, A, B, C and D

are coeffi cient matrices, and [εt, εt] are innovations; and (ii) the Shifting Endpoint (SE)

restriction holds, that is, ft+H|t =
H∑

h=H−11
E[πt+h | Ft], where E (·) denotes the conditional

expectation from the restricted VAR, labelled VAR-SE model.

2.2 VARX with shifting endpoint

The vector autoregression model with exogenous variables (VARX) consists of a set of k

endogenous variables xt =
[
x1,t · · · xk,t

]′
and a set of m exogenous (or independent)

variables zt =
[
z1,t · · · zm,t

]′
. Note zt can naturally include lags of the exogenous

variables as well.13 The VARX(p) process is thus defined as:

xt = F1xt−1 + ...+ Fpxt−p + φ+ θzt + ut, (6)

where θ is a k×m matrix of coeffi cients associated with the exogenous variables zt, and the

other terms are the same discussed in the previous section.

The VARX(p) can be rewritten as a VARX(1), as follows:

ξt = Fξt−1 + c+ δzt + vt, (7)

where F is a kp×kp matrix, c is a kp×1 vector, and δ =

[
θk×m

0(kp−k)×m

]
is a kp×m matrix.

Successive substitutions for lagged ξt’s give the following expression:
14

ξt+h = F hξt +
h−1∑
i=0

F i (c+ δzt+h−i + vt+h−i) . (8)

Take the conditional expectation on both sides of the previous expression, as follows:

E
(
ξt+h | Ft

)
= F hξt +

h−1∑
i=0

F i (c+ δzt+h−i) . (9)

Note that in order to predict the future values of the endogenous variables ξt+h, besides

the model parameters present in matrices F , c and δ, the econometrician must also know

the future paths of the exogenous variables, that is, from t+ 1 up to t+ h. This way, define

z∗t =
[
z′t+1 · · · z′t+H

]′
as a Hm×1 vector, which stacks a finite set of future trajectories

of zt.

Now, we discuss the VARX model adjusted by shifting endpoint, herein labelled VARX-

13For instance, one might define zt = [z1,t; z1,t−1; . . . ; z1,t−q1 ; z2,t; z2,t−1; . . . ; z2,t−q2 ; . . . ; zm,t−qm ]
′.

14See Baillie (1980) for a discussion on building forecasts using ARMAX models, and Lütkepohl (2005,
p.403) using VARX models.
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SE model, written in a state-space setup, as follows:

X∗t = A∗X∗t−1 +B∗ε∗t , (10)

Y ∗t = C∗X∗t +D∗ε∗t , (11)

where X∗t is the state vector, Y
∗
t is the observable variables vector, ε

∗
t and ε

∗
t are vectors of

innovations, and A∗, B∗, C∗ and D∗ are coeffi cient matrices. Next, consider the following

technical assumptions:

Assumption B1 Let Y ∗t =
[
Y ′t z∗′t

]′
be a (k + 2 +Hm)× 1 vector, such that Yt and z∗t

are covariance-stationary processes.

Assumption B2 Let X∗t =
[
X ′t x∗′t

]′
be a (kp+ 2 +Hm) × 1 vector, where x∗t =[

x∗′1,t · · · x∗′H,t

]′
is a Hm× 1 vector of states.

Assumption B3 Let A∗ =


A(kp+2)×(kp+2) θ∗(kp+2)×m 0(kp+2)×(H−1)m

0(H−1)m×(kp+2) 0(H−1)m×m I(H−1)m

0m×(kp+2) 0m×m 0m×(H−1)m

 be a (kp +

2 +Hm) matrix, where θ∗(kp+2)×m =

[
θk×m

0(kp+2−k)×m

]
.

Assumption B4 Let B∗ be a (kp + 2 + Hm) matrix with zeros, excepting the following

elements (which are equal to one): (i) the i-th diagonal elements for i = 1, ..., k; (ii)

the (kp + 2)-th diagonal element; and (iii) the (kp + 2 + (H − 1)m + l)-th diagonal

elements for l = 1, ...,m.

Assumption B5 Let C∗ =
[
J∗
′
1 · · · J∗

′
k J∗

′
β∗
′
γ′
]′
be a (k+ 2 +Hm)× (kp+ 2 +

Hm)matrix, where J∗i is a 1×(kp+2+Hm) selection-vector filled with zeros, excepting

the i-th element (which is equal to one), J∗ is a 1×(kp+2+Hm) selection-vector filled

with zeros, excepting the (kp+ 1)-th element (equal to one). Let β∗ = J∗1
H∑

h=H−11
A∗h be

a 1×(kp+2+Hm) vector. Also, let γ =
[

0Hm×(kp+2) IHm

]
be aHm×(kp+2+Hm)

matrix.

Assumption B6 Let D∗ be a (k + 2 +Hm) matrix with zeros.

Assumption B7 Let ε∗t =


εt (kp+2)×1

0
(H−1)m×1

εz,t m×1

 be a (kp + 2 + Hm) × 1 vector of innovations,

and let ε∗t =

[
εt (k+2)×1

0Hm×1

]
be a (k+ 2 +Hm)× 1 vector of innovations. Assume both

ε∗t and ε
∗
t are normally distributed.

Next, we show our second theoretical result that presents the VARX-SE model casted in

a state-space format and, more importantly, ensures the shifting endpoint restriction (5) is

12



valid when building forecasts using a VARX(p) model. See Appendix B for an example of a

simple VARX-SE model.

Proposition 2 Consider the VARX model (6) with p lags, k endogenous variables (such that

the inflation rate πt is the first variable), and m exogenous variables. Under Assumptions

B1-B7, it follows that: (i) the VARX model can be rewritten in a state-space setup, as follows:

X∗t = A∗X∗t−1 +B∗ε∗t

Y ∗t = C∗X∗t +D∗ε∗t

where X∗t is a vector of latent states, Y
∗
t contains observable variables, A∗, B∗, C∗ and

D∗ are coeffi cient matrices and [ε∗t , ε
∗
t ] are innovations; and (ii) the Shifting Endpoint (SE)

restriction holds, that is, ft+H|t =
H∑

h=H−11
E∗[πt+h | Ft], where E∗ (·) denotes the conditional

expectation from the restricted VARX, labelled VARX-SE model.

3 Empirical Exercise

3.1 Data

Our goal is to forecast the Brazilian monthly inflation, as measured by the Extended Na-

tional Consumer Price Index (IPCA), published by the Brazilian Institute of Geography and

Statistics (IBGE). The IPCA inflation (see Figure 1) is used as the offi cial inflation measure

and the target of monetary policy in Brazil.

The sample period spans over roughly 20 years of data, from January 2003 to August 2022

(T = 236 observations). The sample starts almost a decade after the Brazilian monetary

stabilization plan in mid-1994.15

Figure 1 - Inflation rate (IPCA)

% per month % accumulated in 12 months

15The limited sample size is a well-known constraint in Brazilian applied macroeconomic studies, particu-
larly focused on inflation dynamics, where different policy regimes have been the case in past decades. This
way, by starting the sample in 2003 we avoid large structural breaks (see Machado and Portugal, 2014).
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From a theoretical standpoint, numerous models with information rigidities have been

proposed in the literature along the past decades to explain the inflation dynamics and

the expectations formation process.16 Two prominent approaches are the sticky-information

approach of Mankiw and Reis (2002) and the noisy-information model of Sims (2003).17

From an empirical perspective, one of the main drivers of the inflation dynamics observed

in emerging economies is the inflationary inertia (or degree of persistence).18 Besides past

inflation, other predictors suggested in the empirical literature to forecast inflation usually

include economic slack measures (e.g., recall the Phillips curve), measures of real aggregate

activity other than unemployment (Stock and Watson, 199919), financial variables20 (Forni

et al., 2003), and surveys of inflation expectations (Ang et al., 2007; Faust and Wright,

2013), among others.21 See Araujo and Gaglianone (2022) for a recent discussion on variable

importance and top predictors of inflation in Brazil, extracted from a large dataset of macro-

economic and financial variables. According to these authors, the set of variables selected by

machine learning methods to predict monthly inflation (e.g., elastic net and adaptive lasso)

often includes past inflation (inertial inflationary dynamics) and variables related to the real

economy (e.g., commercial electricity consumption). Regarding the 12-month inflation rate,

the set of most frequent variables also includes interest rates, fiscal variables, external sector

variables (current account, dollar index, oil price, CRB), besides some variables not tradi-

tionally used to forecast inflation, such as the temperature of the Pacific Ocean, due to the

role that the El Niño and La Niña might play in food inflation. In this paper, we use the

(ad hoc) set of macroeconomic and financial variables presented in Table 1 to explain the

inflation dynamics in Brazil.

16Because many features of observed inflation expectations (e.g., disagreement and predictable forecast
errors) are not compatible with the standard rational expectations model based on perfect information.
17See also Coibion and Gorodnichenko (2015), and Coibion et al. (2018) for an interesting discussion on

inflation, information rigidity and the expectations formation process. More recently, Areosa et al. (2020)
depart from the sticky-information model by allowing information to be also dispersed, whereas Areosa et al.
(2021) use a similar approach to analyze how price setting changes when the interest rate is understood as a
public signal that informs the view of the monetary authority on the current state of the economy.
18 In Brazil, the relevance of past inflation has been vastly documented in applied studies. For instance, see

Kohlscheen (2012), and Gaglianone, Guillén and Figueiredo (2018).
19 In particular, an index of aggregate activity in the U.S. based on 168 economic indicators.
20An alternative to address the information deficiency problem of the econometric model is to include in

the VAR a forward-looking series of asset prices, such as the Ibovespa stock price index. If financial markets
are effi cient, this series would incorporate relevant information available to agents and its inclusion would
help to align the econometrician’s information set with that of the agents (Kilian and Lütkepohl, 2017).
21Areosa and Areosa (2014) investigate the impact of a mega sports event (e.g., FIFA World Cup 2014 and

the 2016 Olympic Games) in consumer inflation, and conclude the impact of such events on the Brazilian
inflation (IPCA) is limited and transitory.
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Table 1 - Macroeconomic and financial variables

Name Description Source Unit Nickname Transform.

IPCA consumer price index IBGE % p.m. ipca -

IPC-Fipe consumer price index Fipe % p.m. ipc-fipe -

IGP-DI general price index FGV % p.m. igp-di -

FX-rate nominal exchange rate, R$/US$ Reuters Units fx-rate ∆ ln (.)

Interest rate real interest rate (IPCA bond, 1 year) Anbima % p.a. int-rate ∆(.)

IBC-BR central bank economic activity index BCB Index ibc-br HP filter

Ibovespa Brazilian stock exchange index Reuters Index ibovespa ∆ ln (.)

Brent oil price (Brent, Europe) Reuters US$/barrel brent ∆ ln (.)

CRB CRB all commodities index Reuters Index crb ∆ ln (.)

Dollar index U.S. dollar index (DXY) Reuters Index dxy ∆ ln (.)

U.S. interest rate U.S. Treasury 3-month yield Reuters % p.a. t-bill ∆(.)

Energy commercial consumption of electricity Eletrobras GWh energy ∆ ln (.)

Note the set of variables includes past inflation (IPCA, IPC-Fipe, IGP-DI), exchange rate

(which is a central variable regarding the pass-through of imported inflation to domestic infla-

tion), output gap22 and real interest rate (both series representing the traditional channel of

monetary policy based on aggregate demand), besides some usual sources of macroeconomic

shocks (e.g., commodity prices and foreign interest rate). Based on this monthly dataset, we

first estimate ten different VAR and VARX models, without imposing the shifting endpoint

(SE) restriction, and considering p = 1 lag.23 Table 2 summarizes the model specifications.

Note they have from 4 to 6 endogenous variables, and from 0 to 11 exogenous variables.

Table 2 - VAR and VARX models

Model Endogenous Exogenous

1 ipca, fx-rate, int-rate, ibc-br -

2 ipca, fx-rate, int-rate, ibc-br, ipc-fipe, igp-di -

3 ipca, fx-rate, int-rate, ibc-br, ibovespa -

4 ipca, fx-rate, int-rate, ibc-br brent

5 ipca, fx-rate, int-rate, ibc-br crb

6 ipca, fx-rate, int-rate, ibc-br dxy

7 ipca, fx-rate, int-rate, ibc-br t-bill

8 ipca, fx-rate, int-rate, ibc-br energy

9 ipca, fx-rate, int-rate, ibc-br brent, crb, dxy, t-bill, energy

10 ipca, fx-rate, int-rate, ibc-br seasonal dummies

22Proxied by the HP-filtered IBC-BR series.
23According to the Schwarz information criterion and diagnostic testing, considering the maximum of 8 lags

in the tests, p = 1 is the optimal lag for model 1 (VAR without exogenous variables) with no SE restriction.
Future research could consider an optimal lag for each model specification.
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Next, in order to estimate the VAR-SE and VARX-SE models, using the state-space

approach discussed in previous sections, we must choose a proxy for long-term inflation

anchoring. To do so, we use inflation expectations from the Focus survey of professional

forecasts, which is a panel database put together by the Banco Central do Brasil. The

survey covers more than 100 professional forecasters (e.g., banks, asset management firms,

consulting firms and relevant non-financial institutions), which are followed throughout time

with a reasonable turnover. Also, the forecasts are supplied over different horizons and for

a large array of macroeconomic series; see Gaglianone et al. (2022) for further details.

In our empirical exercise, we use the (consensus) average of individual IPCA inflation

forecasts across all survey participants, considering a fixed forecast horizon of 4 years (H =

48 months). For comparison purposes, we also consider H = 12 or 24 months. These

three measures based on fixed forecast horizons are displayed in Figure 2, together with the

inflation target, and are computed from linear interpolation of calendar end-of-year (Focus

survey) inflation forecasts.

Figure 2 - Inflation target and Focus survey inflation expectations (% accum. in 12 months)

Note the consensus inflation forecast four years ahead (orange line in Figure 2) fluctuates

around 4.5% per year (p.y.) after 2004, achieves its highest value of 5.3% p.y. by the

end of 2014, and gradually declines toward 3.0% p.y. since 2016. Possible reasons for this

recent decline observed in long-term inflation expectations are central bank credibility gains

obtained in recent years24 coupled with lower inflation targets set after 2018, as shown in

Table 3.25

24For instance, see Val et al. (2017), Issler and Soares (2019), and Oliveira and Gaglianone (2020).
25Source: https://www.bcb.gov.br/en/monetarypolicy/historicalpath
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Table 3 - Inflation targeting track record (since 2016)

Year Target (%) Tolerance Interval (± p.p.) Actual Inflation (IPCA % p.y.)

2016 4.50 2.00 6.29

2017 4.50 1.50 2.95

2018 4.50 1.50 3.75

2019 4.25 1.50 4.31

2020 4.00 1.50 4.52

2021 3.75 1.50 10.06

2022 3.50 1.50 -

2023 3.25 1.50 -

2024 3.00 1.50 -

2025 3.00 1.50 -

This way, using the three different measures of inflation anchoring discussed above, we

estimate three additional versions of the ten models presented in Table 2. Hereafter, we

label SE-12, SE-24 and SE-48 the VAR (or VARX) models imposing the shifting endpoint

restriction, and using the Focus survey (interpolated) forecast of inflation 12, 24 and 48

months ahead, respectively. In these cases, model parameters are estimated using a Kalman

filter with maximum likelihood estimation.

In total, we estimate an amount of 40 models: 10 models without shifting endpoint,

besides 3× 10 models with the SE restriction as described above. Based on these 40 models,

we conduct an out-of-sample forecasting exercise, with forecast horizon (h) ranging from 1

to 48 months. Following the usual procedure, the first part of the sample (t = 1, ..., T1) is

used to estimate the models, whereas the second part of the sample (t = T1 + 1, ..., T2) is

reserved for genuine out-of-sample forecast comparison.

All models are re-estimated every month in a recursive estimation scheme (i.e., expanding

sample size), as we incorporate every new time-series observation, one at a time. In this

context, each model is initially estimated using the first T1 observations and the out-of-

sample point forecasts are generated. Then, we add an additional observation at the end of

the estimation sample, re-estimate all models, and generate again out-of-sample forecasts.

This process is repeated along the remaining data.

Regarding the exogenous variables, a random walk approach is used to set the future

path of such variables26 beyond the considered estimation sample (t = 1, ..., T1), that is,

E (zT1+h − zT1 | FT1) = 0, for all h = 1, ...,H.

For the sake of completeness, we also considered the case of perfect foresight, where

inflation forecasts are built using the actual figures of the exogenous variables.

As a final robustness check, we estimate all models considering the full sample as well

as a pre-COVID-19 sample, to disregard the more recent macroeconomic shocks due to the

impact of the pandemic in Brazil since March 2020.

26After considering the transformations described in last column of Table 1.
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3.2 Results

In this section, we present the results of the out-of-sample forecasting exercise. Figures 3

and 4 show monthly inflation rates observed up to December 2015, together with inflation

forecasts of selected models, with forecast horizons from 1 up to 48 months. Note the

difference in long-run forecasts between models without shifting endpoint compared to those

models imposing such long-term restriction.

For instance, models without SE produce long-run monthly inflation forecasts (Figure

3) around 0.48% per month (close to 0.49% p.m., which is the sample average of inflation

up to December 2015), whereas the same models now imposing the SE restriction produce

long-run forecasts of 0.40% p.m. The long-run forecasts accumulated in 12 months (Figure

4) for the same models without SE and imposing SE are, respectively, around 5.90% and

4.87% per year. As expected, the inflation anchoring in these cases (i.e., Focus inflation

expectation, 48 months ahead, available in December 2015) is exactly 4.87% p.y.

Figure 3 - Inflation and out-of-sample forecasts (% p.m.)

Figure 4 - Inflation and out-of-sample forecasts (% accum. in 12 months)

18



Figures 5 and 6 show, for illustrative purposes, the IPCA inflation and respective forecasts

of model 2, estimated with sample ending in different periods, corresponding to the months

of December in 2013, 2014, 2015, 2016, 2017 and 2018. It is worth noting in Figure 5 that,

in all cases, the long-term projections are very close to 0.47% p.m. level, illustrating the

diffi culty of the traditional VAR modeling in generating long-term forecasts that capture

recent structural changes in the dynamics of inflation.

In contrast, in the case of the VAR-SE model that imposes the SE restriction, Figure 6

shows the long-term projections fall as the sample incorporates more recent periods, char-

acterized by the gradual decrease in the long-term inflation expectations from the Focus

survey, as shown in Figure 2.

Figure 5 - IPCA (% p.m.) and forecasts from a VAR model, without shifting endpoint (SE)

Figure 6 - IPCA (% p.m.) and forecasts from a VAR-SE model

Note: SE-48 denotes the shifting endpoint restriction, based on 48 months ahead inflation expectation.
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Table 4 presents the accuracy results of the forecasting exercise in terms of mean squared

error (MSE) for selected forecast horizons.27 For each horizon h, we compare the results

of the traditional VAR or VARX model (i.e., without the SE restriction) with the same

specification imposing the SE-48 restriction (i.e., using the Focus survey forecast of inflation

48 months ahead as long-run anchoring). In addition, we present in the last column (SE-PF)

the results of the same SE restriction but together with a perfect foresight assumption for

the exogenous variables. The yellow cells represent the models with the lowest MSEs in a

given horizon, whereas the green cells denote the highest MSEs. To save space here, we only

show the results for 3 model specifications. In Appendix C, we present the results of all

models described in Table 2 considering different proxies of inflation anchoring as well (i.e.,

SE-12, SE-24, and SE-48).

Table 4 - Mean Squared Error (MSE)

Panel A: Pre-COVID-19 sample

h = 1 h = 6

h = 12 h = 48

Panel B: Full sample

h = 1 h = 6

h = 12 h = 48

Notes: Pre-COVID-19 evaluation sample ranges from Feb/2013 to Feb/2020 (85 observations for h=1 and 38 for

h=48). Evaluation based on full sample ranges from Feb/2013 to Aug/2022 (115 observations for h=1 and 68 for

h=48). ***, ** and * indicate rejection at the 1%, 5% and 10% levels, respectively, using the test of Clark and West

(2007). In each row, the model in the first column is the benchmark. Yellow cells indicate the lowest MSEs in a given

horizon h and green cells indicate the highest MSEs.

27Future research could investigate forecast bias (mean forecast error), besides considering other accuracy
measures, such as the mean absolute error (MAE).
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In Panel A of Table 4, first note the yellow cells, in general, belong to unrestricted models

in the short-run (h = 1), whereas in the long-run (h = 48) they tend to belong to restricted

models (SE-Focus or SE-PF), thus confirming the effi cacy of the shifting endpoint approach

to improve VAR forecasts at longer horizons. Furthermore, note the SE restriction indeed

improved the forecast accuracy of model 1 (VAR without exogenous variables), in all consid-

ered horizons, when compared to the same model without the SE restriction. Regarding the

use of exogenous variables (e.g., seasonal dummies), note they seem to improve the forecast

accuracy, in some cases, considering the pre-COVID-19 sample. In turn, the forecasting

exercise considering a perfect foresight assumption to generate the future path of exogenous

variables along the out-of-sample exercise (instead of the random walk assumption) confirms

the previous findings besides delivering (as expected) lower MSEs in many cases.28 Finally,

note the predictive capacity comparison test of Clark and West (2007) statistically confirms

the superiority of the VARX-SE models for h = 48 (excepting model 5, with SE-PF), when

compared to the VARX counterparts without SE.

Panel B of Table 4 shows the same results now considering the full sample, that is, up to

August 2022. First note the cells exhibit much higher figures compared to the ones from Panel

A. This results comes from the fact that more recent observations (i.e., after the COVID-19

impact in Brazil) are characterized by large forecast errors, due to sizeable unanticipated

inflationary shocks. Once again, the empirical results indicate that the SE restriction helps

improving the forecast accuracy at longer horizons, whereas the unrestricted models do a

better job at shorter horizons.29 , 30 Considering the results of the full sample for all model

specifications presented in Appendix C (Tables C.2 and C.4), note the models without SE

usually provide lower MSEs compared to their SE counterparts. One explanation is that

the long-term anchoring, pointing to lower inflation levels (around 3% p.y.), has become

temporarily ineffective during this recent high-uncertainty regime after the COVID-19 pan-

demic, in which inflation rate outliers prevail.31 Nonetheless, long-term anchoring proxies

(properly reflecting the new macroeconomic environment) will likely restore the usefulness

of SE models in the near future.
28For horizons up to one year, and considering an inflation anchoring of 24 or 48 months ahead (SE-24 or

SE-48), the perfect foresight exercise (Table C.3) delivered lower MSEs compared to the random walk approach
(Table C.1) for models 4 to 10 in the majority of cases. In turn, model 8 with no anchoring (without SE)
reduced their MSEs in all considered horizons.
29When considering the full sample, some exogenous variables do improve the forecast accuracy compared

to the models only based on endogenous variables. Excepting the case for h = 1, the orange cells in Tables
C.2 and C.4 always belong to model specifications with exogenous variables (such as, models 5, 8 and 10).
30Again, the perfect foresight approach delivered lower MSEs, in several cases, compared to the random

walk approach. For horizons up to one year, and considering no inflation anchoring (without SE), the perfect
foresight exercise (Table C.4) delivered lower MSEs compared to the random walk approach (Table C.2) for
models 4 and 5, in all cases. In turn, for horizons up to two years, and considering an inflation anchoring of
48 months (SE-48), the perfect foresight produced lower MSEs, compared to the random walk, for models 4
to 10, in several cases.
31Considering post-COVID-19 observations, inflation consistently surprised to the upside (i.e., inflation was

generally higher than forecasts). Because the unconstrained models have an upward bias (as illustrated in
Figures 3 to 6), they tend to perform relatively better in the full sample compared to the constrained ones,
but for the wrong reasons.
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It is worth mentioning our results are in line with a relatively recent discussion in applied

macroeconomics about model estimation after the COVID-19 pandemic. According to Frank

Diebold32 (in his blog entry of July 27, 2020): "The point is that the pandemic recession is

in many respects a massive outlier, so that one has to think hard about what to do with it

in estimation. That is, as always one wants to fit signal, not noise, and the pandemic reces-

sion is in certain respects a massive burst of noise, capable of severely distorting parameter

estimates and hence forecasts and nowcasts."

In the same way, Lenza and Primiceri (2022) report that: "The COVID-19 pandemic

is causing unprecedented variation in many key macroeconomic variables." According to

the authors, the usual (ad hoc) strategy of dropping the observations corresponding to the

pandemic period may be acceptable for the purpose of parameter VAR estimation. However,

the authors point out that disregarding such recent data can be inappropriate for forecasting

purposes, since it vastly underestimates uncertainty.

In the context of Bayesian VARs, Cascaldi-Garcia (2022) reports a very low number

of extreme COVID-19 pandemic observations bias the estimated persistence of macroeco-

nomic variables, affecting forecasts and giving a myopic view of the economic effects after

a structural shock. To deal with these extreme episodes, the author proposes the so-called

Pandemic Priors as an extension of the Minnesota Prior with time dummies.33

4 Conclusions

This paper proposes an econometric model that allows anchoring the long-term VAR and

VARX forecasts using survey data, thus promptly incorporating structural changes in the

economy as perceived by survey respondents.

Long-run forecasts of VAR models, by design, converge to the unconditional mean of

their variables, which is directly linked to the intercept present in each equation of the model.

However, changes in the economy that affect the long-term perspective of macroeconomic

variables are not easily incorporated into traditional VARs, especially in the case of recent

structural changes.

In fact, in a traditional VAR, changes that affect long-run inflation behavior do not

have an immediate impact on model projections. In these cases, it is necessary to wait for a

significant increase in the sample size, so that these changes can affect the unconditional mean

of inflation and, consequently, the long-term forecasts. In addition, in an environment with

more than one regime, the coeffi cients of the VAR would only reflect the average behavior

of the dynamics across all regimes of each variable.

In contrast to the inertial behavior of VARs, changes in the conduct of monetary policy,

or the setting of inflation targets at values other than those usually defined, can be quickly

captured by agents’ expectations for long-term inflation, since those expectations tend to

32https://fxdiebold.blogspot.com/2020/07/the-pandemic-recession-as-giant-outlier.html
33According to Cascaldi-Garcia (2022), the Pandemic Priors succeed in recovering historical relationships

and the proper identification and propagation of structural shocks.
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reflect structural changes in the level of inflation. Timely incorporating these expectations

into VARs is an effective way to improve projections in situations where there are structural

changes in the level of endogenous variables.

We illustrate our methodology using Brazilian data, where credibility gains and the

convergence process of expectations to target in the most recent period are important changes

to the dynamics of inflation. Moreover, after 14 years with an annual inflation target of

4.50%, the National Monetary Council (CMN) set lower targets for inflation: 4.25% for 2019,

which gradually decreases to 3.00% for 2024 and 2025. These changes have been reflected in

the behavior of analysts’expectations captured by the Focus survey conducted by the Banco

Central do Brasil. However, the longer-term inflation projections of VAR models, in general,

have distanced themselves from those derived from other models and analysts’expectations.

To correct this distortion, we propose a state-space model that incorporates VAR and

VARX dynamics, coupled with a shifting endpoint (SE) restriction, where the intercept of the

equation describing the inflation dynamics is time variant, following a random walk process.

This way, long-run inflation forecasts match survey predictions. With this approach, two

benefits are obtained: (i) the model becomes less inertial due to the introduction of long-term

survey expectations; and (ii) the level of forecasts becomes adjustable over the long term.

The empirical results for Brazil using a pre-COVID-19 sample (up to March 2020) confirm

the advantages of our approach over traditional models. Overall, the use of survey infor-

mation in VAR and VARX models improves forecast accuracy in terms of MSE at longer

horizons.34 The Clark and West (2007) test often confirms the superiority of the proposed

models compared to the traditional methods.

In turn, the results considering the full sample (up to August 2022) exhibit much higher

MSEs when compared to the pre-COVID-19 sample, especially because recent observations

are characterized by large forecast errors, due to sizeable and unanticipated macroeconomic

shocks that occurred after the arrival of the pandemic in Brazil. Also, models without SE

tend to provide lower MSEs compared to the SE counterparts. One explanation is that long-

run anchoring driven by survey data (e.g., pointing to an annual inflation rate around 3% p.y.)

has become temporarily ineffective after the COVID-19 impact in Brazil, where inflation rate

outliers prevail together with greater macroeconomic uncertainty. Nonetheless, long-term

anchoring from survey data, properly reflecting the new macroeconomic environment after

the pandemic, will likely restore the usefulness of SE models in the near future.

Altogether, these findings represent a valuable contribution to academics, practitioners

and policymakers interested in macroeconomic forecasting using VAR models with exogenous

variables and survey information, especially with interest in Brazilian inflation.

34 In some cases, the improvement in forecast accuracy due to the SE restriction also occurs in the short
and medium terms.
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Appendix A. Proofs of Propositions

Proof of Proposition 1. (i) First, we show the proposed state-space framework can

reproduce the VAR(p) process. Since Xt = AXt−1 +Bεt, it follows that:

Xt =



xt

xt−1
...

xt−p+2

xt−p+1

ct

µt


=



F1 F2 · · · Fp−1 Fp φ ψ

Ik 0k · · · 0k 0k 0k×1 0k×1

0k Ik · · · 0k 0k 0k×1 0k×1
...

...
. . .

...
...

...
...

0k 0k · · · Ik 0k 0k×1 0k×1

01×k 01×k · · · 01×k 01×k 1 0

01×k 01×k · · · 01×k 01×k 0 1





xt−1

xt−2
...

xt−p+1

xt−p

ct−1

µt−1



+



Ik 0k · · · 0k 0k×1 0k×1

0k 0k · · · 0k 0k×1 0k×1
...

...
. . .

...
...

...

0k 0k · · · 0k 0k×1 0k×1

01×k 01×k · · · 01×k 0 0

01×k 01×k · · · 01×k 0 1





ut

0
...

0

0

εµ,t


.

This way, it follows that xt = F1xt−1+...+Fpxt−p+φct−1+ψµt−1+ut; xt−s = xt−s for all

s = 1, ..., p−1; ct = ct−1 = 1 for all t, and µt = µt−1+εµ,t. Regarding the first variable of the

VAR (i.e., inflation), note that: x1,t = F1,1x1,t−1+ ...+F1,px1,t−p +F2,1x2,t−1+ ...+F2,px2,t−p

+...+µt−1+u1,t, that is, inflation follows an autoregressive process, plus other terms, and a

random walk (instead of the usual intercept). With respect to the other variables, it follows

that: xi,t = Fi,1xi,t−1 + ... + Fi,pxi,t−p + ... + φi + ui,t for all i = 2, ..., k. Therefore, the

proposed state-space model is able to reproduce the original VAR dynamics, but considering

a random walk term in the first equation (inflation) instead of the usual intercept.

(ii) Next, we show the shifting endpoint restriction holds. Since Yt = CXt + Dεt, it

follows that:
[
y1,t · · · yk,t 1t ft+H|t

]′
=
[
J ′1 · · · J ′k J

′
β′
]′
Xt ∴ yi,t = xi,t

for all i = 1, ..., k; 1t = 1 for all t, and ft+H|t = βXt =
H∑

h=H−11
J1A

hXt. On the other

hand, due to the AR(1) structure of the Xt process, it follows that the h-step ahead forecast

of Xt is E(Xt+h | Ft) = AhXt, where Ft is the information set at period t. Since J1

selects the first variable of Xt, one can select πt in Xt as follows: πt = J1Xt ∴ πt+h =

J1Xt+h. Thus, applying the conditional expectation in the previous expression, it follows

that: E[πt+h | Ft] = E[J1Xt+h | Ft] = J1E[Xt+h | Ft] = J1A
hXt. Thus,

H∑
h=H−11

E[πt+h |

Ft] =
H∑

h=H−11
J1A

hXt = βXt, where β ≡
H∑

h=H−11
J1A

h. Therefore, ft+H|t =
H∑

h=H−11
E[πt+h |

Ft].
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Proof of Proposition 2. (i) First, we show the proposed state-space framework can

reproduce the VARX(p) process. Since X∗t = A∗X∗t−1 +B∗ε∗t , it follows that:

X∗t =



xt

xt−1
...

xt−p+2

xt−p+1

ct

µt

x∗1,t
...

x∗H−1,t

x∗H,t



=



F1 F2 · · · Fp−1 Fp φ ψ θ 0 0 0

Ik 0k · · · 0 0 0 0 0
...

...
...

0k Ik · · · 0 0 0 0
...
...

...
...

...
...

. . .
...

...
...

...
...
...

...
...

0 0 · · · Ik 0 0 0
...
...

...
...

0 0 · · · 0 0 1 0
...
...

...
...

0 0 · · · 0 0 0 1
... 0

... 0
...

... · · ·
...

... 0 0
... 1 0

...
...

... · · ·
...

...
...

...
... 0

. . . 0
...

... · · ·
...

...
...

...
...
... 0 1

0 0 · · · 0 0 0 0 0 0 · · · 0





xt−1

xt−2
...

xt−p+1

xt−p

ct−1

µt−1

x∗1,t−1
...

x∗H−1,t−1

x∗H,t−1



+



Ik 0k · · · 0 0 0 0 · · · · · · 0

0k 0k · · · 0 0 0
...

...
...

...
...

...
. . .

...
...

...
...

...
...

...

0 0 · · · 0 0 0
...

...
...

...

0 0 · · · 0 0 0
...

...
...

...

0 0 · · · 0 0 1 0
...

...
...

0 · · · · · · · · · · · · 0 0 · · · · · · 0
... · · · · · · · · · · · · · · ·

...
. . .

...
...

... · · · · · · · · · · · · · · ·
... · · · 0 0

0 · · · · · · · · · · · · 0 0 · · · 0 1





ut

0
...

0

0

εµ,t

0
...

0

εz,t



.

This way, it follows that xt = F1xt−1 + ... + Fpxt−p + φct−1 + ψµt−1 + θx∗1,t−1 + ut;

xt−s = xt−s for all s = 1, ..., p − 1; ct = ct−1 = 1 for all t, µt = µt−1 + εµ,t, x∗i,t = x∗i+1,t−1

for i = 1, ...,H − 1, and x∗H,t = εz,t. Regarding the first endogenous variable of the VARX

(inflation), it follows that: x1,t = F1,1x1,t−1 + ... + F1,px1,t−p +F2,1x2,t−1 + ... + F2,px2,t−p

+...+µt−1+ θzt +u1,t, since from the state-space equation of observable variables, it follows

that: z∗t = γX∗t = x∗t ∴ x∗1,t−1 = z∗1,t−1 = zt. In words, inflation follows an autoregressive

process, plus other terms, and a random walk (instead of the usual intercept, as the case of the

other endogenous variables). Therefore, the proposed state-space model is able to reproduce

the original VARX dynamics, but considering a random walk term in the first equation

(inflation) instead of the usual intercept, besides incorporating exogenous variables.
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(ii) Next, we show the shifting endpoint restriction holds in the VARX setup. Since

Y ∗t = C∗X∗t +D∗ε∗t , it follows that:



y1,t
...

yk,t

1t

ft+H|t

z∗t


=



J∗1
...

J∗k

J∗

β∗

γ


X∗t ∴ yi,t = xi,t for all i = 1, ..., k;

1t = 1 for all t, ft+H|t = β∗X∗t = J∗1
H∑

h=H−11
A∗hX∗t , and z

∗
t = γX∗t = x∗t . On the other hand,

due to the AR(1) structure of theX∗t process, it follows that the h-step ahead forecast ofX
∗
t is

E(X∗t+h | Ft) = A∗hX∗t , where Ft is the information set at period t. Since J∗1 selects the first
variable ofX∗t , one can select πt in vectorX

∗
t , as follows: πt = J∗1X

∗
t ∴ πt+h = J∗1X

∗
t+h. Thus,

applying the conditional expectation in the previous expression, it follows that: E[πt+h |

Ft] = J∗1E[X∗t+h | Ft] = J∗1A
∗hX∗t . Thus,

H∑
h=H−11

E[πt+h | Ft] =
H∑

h=H−11
J∗1A

∗hX∗t = β∗X∗t ,

where β∗ =
H∑

h=H−11
J∗1A

∗h. Therefore, ft+H|t =
H∑

h=H−11
E[πt+h | Ft].

Appendix B. Examples of Models with Shifting Endpoint

Example 1: VAR-SE model

Assume the model has two variables (k = 2), one lag (p = 1), and the forecast horizon of

interest is H = 12 months (i.e., the horizon at which we impose the shifting endpoint

restriction). Let the vector of observable variables Yt =
[
πt it 1t ft+12|t

]′
be a 4 × 1

vector, where πt and it are two observable series (the IPCA monthly inflation rate and the

Selic monetary policy interest rate) and ft+12|t is the Focus survey inflation expectation.

From assumptions A3-A6, it follows that: A =


a b 0 1

c d φ2 0

0 0 1 0

0 0 0 1

 , B =


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1

 ,
C =

[
J ′1 J ′2 J

′
β′
]′
, and D = 04×4. From equation (4), it follows that:

πt

it

1t

ft+12|t

 =


1 0 0 0

0 1 0 0

0 0 1 0

β




x1,t

x2,t

ct

µt

 =


x1,t

x2,t

ct

βXt

 , (12)
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thus, πt = x1,t, it = x2,t, 1t = ct, and ft+12|t = βXt. Now, from equation (3), it follows that:
x1,t

x2,t

ct

µt

 =


a b 0 1

c d φ2 0

0 0 1 0

0 0 0 1




x1,t−1

x2,t−1

ct−1

µt−1

+


1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 1




u1,t

u2,t

0

εµ,t

 (13)

=


ax1,t−1 + bx2,t−1 + µt−1 + u1,t

cx1,t−1 + dx2,t−1 + φ2 + u2,t

ct−1

µt−1 + εµ,t

 , (14)

or, equivalently,

πt = aπt−1 + bit−1 + µt−1 + u1,t, (15)

it = cπt−1 + dit−1 + φ2 + u2,t. (16)

Note that (by design) the equation for πt has a random walk term
(
µt−1

)
instead of the

intercept, whereas the equation for it has the usual VAR intercept (φ2).

Next, we check if the shifting endpoint restriction (5) holds. Due to the AR(1) structure

of the Xt process, it follows that the h-step ahead forecast of Xt is given by E(Xt+h | Ft) =

AhXt, where Ft is the information set at period t. Since, in our example, J1 =
[

1 0 0 0
]

selects the first variable of Xt, one can select x1,t = πt in Xt as follows: πt = J1Xt ∴ πt+h =

J1Xt+h. Thus, applying the conditional expectation in previous expression, it follows that:

E[πt+h | Ft] = E[J1Xt+h | Ft] = J1E[Xt+h | Ft] = J1A
hXt. The accumulated inflation

forecastH = 12months ahead is given by
12∑
h=1

E[πt+h | Ft] =
12∑
h=1

J1A
hXt = J1

12∑
h=1

AhXt = βXt,

where β = J1
12∑
h=1

Ah. Recall from the observable variables equation that ft+12|t = βXt.

Therefore, ft+12|t =
12∑
h=1

E[πt+h | Ft], which is exactly the shifting endpoint restriction,

imposing the sum of monthly VAR forecasts to match the survey-based inflation expectation

12 months ahead.

Example 2: VARX-SE model

Assume the model has two endogenous variables (k = 2), one lag (p = 1), one exogenous

variable (m = 1), and the forecast horizon of interest is again H = 12 months. Let the

vector of observable variables be Yt =
[
πt it 1t ft+12|t z∗′t

]′
, where πt, it and ft+12|t

are the same variables of previous example. Now, let z∗t =
[
oilt+1 · · · oilt+12

]′
be the

vector of future (exogenous) oil prices. From assumptions B3-B6, it follows that:
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A∗ =



a b 0 1 θ1 0 · · · 0

c d φ2 0 θ2 0 · · · 0

0 0 1 0 0 0 · · · 0

0 0 0 1 0 0 · · · 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0
. . . 0

...
...

...
...

... 0 0 1

0 0 0 0 0 0 0 0


, B∗ =



1 0 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0

0 0 0 0 0 · · · 0 0
...
...
...
...
...
. . . 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1


,

C∗ =
[
J∗′1 J∗′2 J∗

′
β∗′ γ′

]′
, and D∗ = 016×16.

From equation (11), it follows that:



πt

it

1t

ft+12|t

z∗t


=



1 0 0 0 · · · 0

0 1 0 0 · · · 0

0 0 1 0 · · · 0

β∗

γ





x1,t

x2,t

ct

µt

x∗t


=



x1,t

x2,t

ct

β∗X∗t

x∗t


. (17)

This way, πt = x1,t, it = x2,t, 1t = ct, ft+12|t = β∗X∗t , and z
∗
t = x∗t . Now, from equation

(10), it follows that:

x1,t

x2,t

ct

µt

x∗1,t
...

x∗H−1,t

x∗H,t


=



a b 0 1 θ1 0 · · · 0

c d φ2 0 θ2 0 · · · 0

0 0 1 0 0 0 · · · 0

0 0 0 1 0 0 · · · 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0
. . . 0

...
...

...
...

... 0 0 1

0 0 0 0 0 0 0 0





x1,t−1

x2,t−1

ct−1

µt−1

x∗1,t−1
...

x∗H−1,t−1

x∗H,t−1


(18)

+



1 0 0 0 0 · · · 0 0

0 1 0 0 0 · · · 0 0

0 0 0 0 0 · · · 0 0

0 0 0 1 0 · · · 0 0

0 0 0 0 0 · · · 0 0
...
...
...
...
...
. . . 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1





u1,t

u2,t

0

εµ,t

0
...

0

εz,t


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

x1,t

x2,t

ct

µt

x∗1,t
...

x∗H−1,t

x∗H,t


=



ax1,t−1 + bx2,t−1 + µt−1 + θ1x
∗
1,t−1 + u1,t

cx1,t−1 + dx2,t−1 + φ2 + θ2x
∗
1,t−1 + u2,t

ct−1

µt−1 + εµ,t

x∗2,t−1
...

x∗H,t−1

εz,t


. (19)

Since x∗t = z∗t =
[
oilt+1 · · · oilt+12

]′
and x∗t−1 = z∗t−1 =

[
oilt · · · oilt+11

]′
, it

follows that x∗1,t−1 = oilt and x∗1,t = oilt+1 = x∗2,t−1. By combining previous results, it also

follows that:

πt = aπt−1 + bit−1 + µt−1 + θ1oilt + u1,t, (20)

it = cπt−1 + dit−1 + φ2 + θ2oilt + u2,t. (21)

Note that (by design) the equation for πt has again a random walk term
(
µt−1

)
instead

of the intercept, whereas the equation for it has an intercept (φ2). Also note both equations

have now a term associated to the exogenous variable. Moreover, note that ct = ct−1 = 1,

µt = µt−1 + εµ,t, x∗i,t = x∗i+1,t−1 for i = 1, ...,H − 1, and x∗H,t = εz,t.

Next, we check whether the VAR shifting endpoint restriction (5) holds in this setup.

Due to the AR(1) structure of the X∗t process, it follows that the h-step ahead forecast

of X∗t is given by E(X∗t+h | Ft) = A∗hX∗t , where Ft is the information set at period t.

Since J∗1 =
[

1 0 ... 0
]
selects the first variable of X∗t , one can select πt in X∗t as

follows: πt = J∗1X
∗
t ∴ πt+h = J∗1X

∗
t+h. By applying the conditional expectation in previous

expression, it follows that: E[πt+h | Ft] = J∗1E[X∗t+h | Ft] = J∗1A
∗hX∗t . The accumulated

inflation forecast H = 12 months ahead is given by
12∑
h=1

E[πt+h | Ft] = J∗1
12∑
h=1

A∗hX∗t = β∗X∗t ,

where β∗ ≡ J∗1
12∑
h=1

A∗h. Recall from equation (11) that ft+12|t = β∗X∗t . Therefore, ft+12|t =

12∑
h=1

E[πt+h | Ft], which is the shifting endpoint restriction, imposing the sum of monthly

VARX forecasts to match the survey-based inflation expectation 12 months ahead.
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Appendix C. Additional Results

Table C.1 - Mean Squared Error (MSE), pre-COVID-19 sample

h = 1 h = 3 h = 6

h = 12 h = 24 h = 48

Notes: Evaluation sample ranges from Feb/2013 to Feb/2020 (85 observations for h=1 and 38 for h=48). ***, **

and * indicate rejection at 1%, 5% and 10% levels, respectively, using the test of Clark and West (2007). In each row,

the model in the first column is the benchmark. Yellow cells indicate the best model (lowest MSE) in each row (orange

denotes the best model in a given horizon h).
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Table C.2 - Mean Squared Error (MSE), full sample

h = 1 h = 3 h = 6

h = 12 h = 24 h = 48

Notes: Evaluation sample ranges from Feb/2013 to Aug/2022 (115 observations for h=1 and 68 for h=48). ***,

** and * indicate rejection at 1%, 5% and 10% levels, respectively, using the test of Clark and West (2007). In each

row, the model in the first column is the benchmark. Yellow cells indicate the best model (lowest MSE) in each row

(orange denotes the best model in a given horizon h).
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Table C.3 - Mean Squared Error (MSE), pre-COVID-19 sample

(perfect foresight assumption for the future path of the exogenous variables)

h = 1 h = 3 h = 6

h = 12 h = 24 h = 48

Notes: Evaluation sample ranges from Feb/2013 to Feb/2020 (85 observations for h=1 and 38 for h=48). ***, **

and * indicate rejection at 1%, 5% and 10% levels, respectively, using the test of Clark and West (2007). In each row,

the model in the first column is the benchmark. Yellow cells indicate the best model (lowest MSE) in each row (orange

denotes the best model in a given horizon h).
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Table C.4 - Mean Squared Error (MSE), full sample

(perfect foresight assumption for the future path of the exogenous variables)

h = 1 h = 3 h = 6

h = 12 h = 24 h = 48

Notes: Evaluation sample ranges from Feb/2013 to Aug/2022 (115 observations for h=1 and 68 for h=48). ***,

** and * indicate rejection at 1%, 5% and 10% levels, respectively, using the test of Clark and West (2007). In each

row, the model in the first column is the benchmark. Yellow cells indicate the best model (lowest MSE) in each row

(orange denotes the best model in a given horizon h).
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