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Non-technical Summary 

In this paper, we explore several machine learning (ML) methods to improve inflation 

forecasting in Brazil. The goal is to forecast the consumer price inflation, based on a large 

number of macroeconomic and financial variables, and observe if ML can improve the 

forecast accuracy in applied macroeconomics. 

ML is a branch of artificial intelligence, often described as the art and science of 

pattern recognition. It is essentially a data-driven approach, with mild assumptions about the 

underlying statistical relationships in the data. The ML methods used here are elastic net, 

lasso, adaptive lasso, ridge regression, random forest, quantile regression forest, xgboost, and 

recurrent neural network. We compare these methods with traditional econometric models 

using a large database of 501 series. In total, there are 50 forecasting methods/models, which 

include ML hybrid approaches, Phillips curves, breakeven inflation, survey-based 

expectations, and forecast combination methods, among others. We also provide tools to 

identify the key variables to predict inflation, thus helping to open the so-called ML black 

box.  

The empirical results indicate ML methods can, in numerous cases, outperform 

traditional econometric models. Moreover, the results indicate the existence of nonlinearities 

in the inflation dynamics that are relevant to forecast inflation. The set of top forecasts often 

includes forecast combinations, tree-based methods (such as random forest and xgboost), 

breakeven inflation, and survey-based expectations. 

In addition, our research contributes to the fast-growing ML literature in several ways: 

(i) development of a new quantile-combination method, based on the quantile regression 

forest model of Meinshausen (2006); (ii) use of a hybrid approach to build new ML methods, 

based on Medeiros et al. (2021); (iii) use of ML as a forecast combination device, and not 

only as a forecast method; (iv) production of fan charts from ML-based inflation forecasts, 

where a measure of uncertainty is attached to the forecasted inflation-path; and 

(v) use of auxiliary graphs available in the literature to investigate the performance of 

competing methods far beyond the usual accuracy analysis based on mean-squared forecast 

error. Altogether, these results offer a valuable contribution to applied macroeconomics, 

especially with regard to forecast inflation in Brazil. 
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Sumário Não Técnico 

Neste artigo, exploramos vários métodos de aprendizado de máquina (machine 

learning - ML) para melhorar a previsão de inflação no Brasil. O objetivo é prever a inflação 

de preços ao consumidor com base em um grande número de variáveis macroeconômicas e 

financeiras, além de investigar se ML é capaz de melhorar a acurácia de previsões em 

macroeconomia aplicada. 

ML é um ramo da inteligência artificial, muitas vezes descrito como a arte e ciência 

de reconhecimento de padrões. Trata-se essencialmente de uma abordagem orientada por 

dados, com hipóteses fracas sobre relações estatísticas dos dados. Os métodos de ML usados 

aqui são elastic net, lasso, adaptive lasso, ridge regression, random forest, quantile regression 

forest, xgboost e recurrent neural network. Comparamos esses métodos com modelos 

econométricos tradicionais usando uma grande base de dados com 501 séries. No total, 

utilizamos 50 métodos/modelos de previsão, que incluem abordagens híbridas de ML, curvas 

de Phillips, breakeven inflation, expectativas baseadas em survey e métodos de combinação 

de previsões, entre outros. Além disso, utilizamos ferramentas para identificar as principais 

variáveis para prever a inflação, ajudando assim a “abrir a caixa-preta” dos métodos de ML. 

Os resultados empíricos indicam que os métodos de ML podem, em muitos casos, 

superar os modelos econométricos tradicionais. Além disso, os resultados indicam a existência 

de não linearidades na dinâmica da inflação, que são relevantes para a previsão de inflação. O 

conjunto dos melhores métodos geralmente inclui combinações de previsões, métodos 

baseados em árvores (como random forest e xgboost), breakeven inflation e expectativas 

baseadas em survey. 

Adicionalmente, nossa pesquisa contribui para a literatura de ML de várias maneiras: 

(i) desenvolvimento de um novo método de combinação quantílica, baseado no modelo 

quantile regression forest de Meinshausen (2006); (ii) uso de uma abordagem híbrida para 

construir novos métodos de ML, baseada em Medeiros et al. (2021); (iii) utilização do ML 

como dispositivo de combinação de previsões, e não apenas como um método de previsão; 

(iv) elaboração de fan charts a partir de previsões de inflação baseadas em ML, onde uma 

medida de incerteza é associada à trajetória de inflação prevista; e (v) uso de gráficos 

auxiliares disponíveis na literatura para investigar o desempenho de métodos, permitindo ir 

muito além da análise usual de acurácia baseada no erro de previsão quadrático médio. Em 

suma, esses resultados oferecem uma valiosa contribuição para a macroeconomia aplicada, 

especialmente no que diz respeito à previsão de inflação no Brasil. 
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new machine learning techniques proposed here, traditional econometric models and
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predict inflation, thus helping to open the ML black box. Despite the evidence of no

universal best model, the results indicate machine learning methods can, in numer-

ous cases, outperform traditional econometric models in terms of mean-squared error.

Moreover, the results indicate the existence of nonlinearities in the inflation dynamics,

which are relevant to forecast inflation. The set of top forecasts often includes fore-

cast combinations, tree-based methods (such as random forest and xgboost), breakeven

inflation, and survey-based expectations. Altogether, these findings offer a valuable
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1 Introduction

Producing reliable inflation forecasts is a constant challenge for policymakers and of greatest

importance to economic agents and their investment decisions. Inflation adds uncertainty

to investment decisions and shortens the investment horizon, especially in emerging markets,

making the construction of accurate forecasts a relevant issue in such economies.

Building accurate forecasts is generally not an easy task, since it requires an approach

complex enough to incorporate relevant variables but also focused on excluding irrelevant data.

In this sense, machine learning (ML) methods, in general, are able to identify nonlinear patterns

in the data, hidden to standard linear models, thus offering an alternative (and compelling)

approach to traditional econometric models.

Moreover, despite the low frequency of data in macroeconomics, where the usual variables

of interest are collected on an annual, quarterly or monthly basis (leading to much less data

accumulation compared, for instance, to an intraday high-frequency database) and the usual

split of data into training and test sets (in-sample and out-of-sample, reducing still further

the amount of data used for model estimation), there is high incentive to use ML methods in

applied macroeconomics since a lot of these methods can deal with large amounts of data (big

data), in contrast to linear econometric models, usually based on a few variables. Furthermore,

the continuous improvement in computer technology allows to run ML algorithms at a much

faster speed.

The objective of this paper is to forecast Brazilian inflation based on a large number of

macroeconomic and financial variables. Our goal is to assess whether machine learning ap-

proaches can indeed offer improvement to forecast accuracy in applied macroeconomics and

make a contribution to the standard statistical toolkit used in macro forecasting.

To do so, we conduct an extensive horse-race (pseudo out-of-sample forecasting exercise)

across 50 models (or methods) to forecast inflation in Brazil at multiple horizons (ranging from

1 up to 18 months). The list of competing methods includes several machine learning meth-

ods, based on regularization approaches (elastic net, lasso, adaptive lasso, ridge) or regression

trees (random forest, quantile regression forest, xgboost), as well as traditional econometric

approaches (ARMA, VAR, factor models), reduced-form structural models (Phillips curves),

survey-based forecasts (Focus), breakeven inflation (BEI) from financial market data, among

many others. Our database covers 501 time series, coming from 167 macroeconomic and finan-

cial variables used to build high-dimensional models.
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The literature on macroeconomic forecasting using machine learning methods is relatively

new. For instance, see Medeiros et al. (2016) and Garcia et al. (2017) for applications with

Brazilian data; Cheng et al. (2019) for aggregating individual survey-based forecasts, using

machine learning tools, to improve forecasting of the U.S. inflation; Kohlscheen (2021) for an

investigation of the drivers of inflation in 20 advanced countries using random forest; and Costa

et al. (2021) for oil price point and density forecasting using machine learning methods.

Our research contributes to this fast-growing literature in five ways: (i) the first original

contribution is to propose a new quantile-combination method, based on the quantile regression

forest model of Meinshausen (2006). The idea is to use information of the conditional distri-

bution from a set of estimated conditional quantiles to build an improved conditional mean

forecast; (ii) the second contribution is to employ a hybrid machine learning approach, inspired

by the work of Medeiros et al. (2021), to build new ML methods. The goal is to disentangle the

forecast accuracy due to variable selection from possible nonlinearities in the data-generating

process; (iii) the third contribution is to use machine learning not only as forecast method,

but also as a forecast combination device. The idea is to check whether ML methods can beat

traditional forecast combination approaches when combining a given set of point forecasts;

(iv) the fourth contribution is to provide a simple way to build fan charts from ML-based

inflation forecasts, where a measure of uncertainty can be attached to the forecasted inflation-

path based on past forecast errors; and (v) the final contribution is to help opening the ML

black box,1 by employing a set of auxiliary graphs2 already available in the literature to further

analyze the performance of competing methods far beyond the usual accuracy analysis based

on mean-squared forecast error.

The outline of the paper is as follows. In Section 2, we present the methodology comprising

machine learning methods and traditional econometric models to predict inflation. Section 3

presents an out-of-sample empirical exercise, where competing methods are used to forecast

Brazilian inflation, in the same spirit of Medeiros et al. (2016).3 Section 4 concludes. The

Appendix presents further details on the methodology and additional empirical results.

1The black box term applied to ML techniques has been around for years now. It is often employed to
criticize neural networks’lack of explainability.

2The set of auxiliary graphs comprises: bias-variance decomposition, cumulative squared prediction error,
word clouds, and variable (or feature) importance.

3Compared to previous papers focused on Brazilian inflation forecasting (e.g., Medeiros et al., 2016, and
Garcia et al., 2017), we considered: (i) a broader set of models (proposing new ML methods and forecast
combination tools); (ii) a larger database of macroeconomic and financial variables, including new potential
predictors; (iii) longer forecast horizons (from one up to 18 months); and (iv) inflation rates measured either
by monthly or twelve-month accumulated rates.
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2 Methodology

2.1 Machine learning in a nutshell

Machine learning is a branch of artificial intelligence, often described as the art and science of

pattern recognition. It is essentially a data-driven approach, with mild assumptions about the

underlying statistical relationships in the data, and entails a large variety of methods. It usually

comprises two core elements, a learning method and an algorithm, enabling one to automate

as many of the modeling choices as possible in a manner that is not subject to the discretion

of the forecaster (Hall, 2018).

Most traditional forecasting methods rely on fitting data to a pre-specified relationship be-

tween dependent and independent variables, thus assuming a specific functional and stochastic

process. In contrast, a different approach to statistical analysis and forecasting, in particular,

is offered by machine learning, which is to a great extent a data-driven approach, since it makes

almost no assumption about the underlying statistical relationship in the data.

According to Samuel (1959), machine learning is the ability of computers to learn from

experience without being explicitly programmed. Cerulli and Drago (2021) point out that ML

places itself at the intersection between statistics, computer science, and artificial intelligence.

According to these authors: "The primary objective of ML is turning information into knowl-

edge and value by ’letting the data speak’". Hansen (2019) explains that ML is: "a new and

somewhat vague term, but typically is taken to mean procedures which are primarily used for

point prediction in settings with unknown structure. Machine learning methods generally allow

for large sample sizes, large number of variables, and unknown structural form."

In fact, machine learning encompasses a wide variety of models, but often comprises two

core elements: a learning method, where data is used to determine the best fit for the input

variables, and an algorithm which captures the relationship between the input and output. In

general, ML can be categorized into three types (see Jung et al., 2018):

(i) supervised learning, where the dependent variables are clearly identified, even if the

specific relationships in the data are not known (e.g., linear regression, logistic regression);

(ii) unsupervised learning, where there is no specific output defined beforehand, and the

goal is to recognize data patterns and determine output classification categories (e.g., cluster

analysis, principal components); and

(iii) reinforcement learning, which iteratively search for an optimal location of the input

variables that yield the highest reward, that is, maximize a reward function using no training
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set (e.g., sarsa, Q-learning).

According to Varian (2014), the growing amounts of data and ever complex-growing rela-

tionships warrant the usage of machine learning approaches in economics. In this paper, we

build inflation forecasts using different machine learning (supervised) algorithms: based either

on penalized-regression models (e.g., ridge regression, lasso, adaptive lasso, and elastic net) or

on tree-based methods (e.g., random forest, quantile regression forest, and XGBoost).

The first approach entails regularization techniques that introduce penalties for overfitting

the data.4 ,5 For example, the elastic net model mixes two different kinds of regularization, by

penalizing both the number of variables in the model and the extent to which any given variable

contributes to the model’s forecast. By applying these penalties, the elastic net learns which

variables are most important, eliminating the need for researchers to make discretionary choices

about which variables to include.

The second (tree-based) approach is nonparametric, based on the recursive binary parti-

tioning of the covariate space, which can deal with very large number of explanatory variables,

thus producing highly nonlinear predicted models.

2.2 Models (or methods) to forecast inflation

There is a variety of approaches in the literature to model the inflation dynamics. According to

Ang et al. (2007), economists use four main methods to forecast inflation: time-series models,

structural models (e.g., Phillips curve), asset price models (e.g., term-structure of interest rates),

and methods that employ survey-based measures (e.g., survey of professional forecasters).

In this paper, inflation forecasts come from 50 forecasting methods listed in Table 1. Besides

some traditional econometric approaches to forecast inflation, such as ARMA and VAR models,

this paper considers Phillips curves, well-known in the macro literature (e.g., Stock andWatson,

1999), survey-based inflation expectations, and inflation forecasts embedded in financial market

data (breakeven inflation). The set of forecasting methods also includes many nonlinear machine

learning methods, based on regularization procedures or regression trees, and several forecast

combination techniques.

4In statistics, overfitting denotes the production of an analysis, which is assumed to be valid for the entire
population (for instance, an estimated input-output relationship), which corresponds too closely to a particular
set of data, but may fail to fit additional data or reliably forecast future observations. In other words, when the
model learns too well the training sample and shows low prediction capability out-of-sample, it is overfitted.

5According to Hall (2018), ML algorithms usually deliver a model complex enough to avoid underfitting the
data but not so complex to overfit it.
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Table 1 - Models (or methods) to forecast inflation

1 Random Walk 26 Hybrid Random Forest - Adalasso

2 Random Walk (Atkeson-Ohanian) 27 Hybrid Random Forest - XGBoost

3 ARMA 28 Inflation Expectations (Breakeven )

4 VAR 29 Inflation Expectations (Focus Survey)

5 Phillips Curve (Backward) 30 Combination 1 (Mean)

6 Phillips Curve (Hybrid) 31 Combination 1 (Median)

7 Factor Model 1 32 Combination 1 (Granger-Ramanathan)

8 Factor Model 2 33 Combination 1 (Constrained Least Squares)

9 Factor Model 3 34 Combination 1 (Complete Subset Regression)

10 Factor Model 4 35 Combination 1 (Adalasso)

11 Elastic Net 36 Combination 1 (Random Forest)

12 LASSO 37 Combination 2 (Mean)

13 Adaptive LASSO (Adalasso) 38 Combination 2 (Median)

14 Ridge Regression 39 Combination 2 (Granger-Ramanathan)

15 Random Forest 40 Combination 2 (Constrained Least Squares)

16 Quantile Regression Forest 41 Combination 2 (Complete Subset Regression)

17 XGBoost 42 Combination 2 (Adalasso)

18 Recurrent Neural Network (RNN) 43 Combination 2 (Random Forest)

19 Disaggregated Inflation (ARMA) 44 Combination 3 (Mean)

20 Disaggregated Inflation (Adalasso) 45 Combination 3 (Median)

21 Disaggregated Infl. (Random Forest) 46 Combination 3 (Granger-Ramanathan)

22 Hybrid Adalasso - OLS 47 Combination 3 (Constrained Least Squares)

23 Hybrid Adalasso - Random Forest 48 Combination 3 (Complete Subset Regression)

24 Hybrid Adalasso - XGBoost 49 Combination 3 (Adalasso)

25 Hybrid Random Forest - OLS 50 Combination 3 (Random Forest)

Notes: Combination 1 is based on models 1-27. Combinations 2 and 3 are based on the superior models

of the model confidence set of Hansen et al. (2011), considering models 1-27 or 1-29, respectively.
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The list of models, of course, is not an exhaustive list, since more complex models could

always be included. Nonetheless, the set of inflation forecasting methods listed in Table 1 is a

good starting point to compare the accuracy of traditional econometric approaches with some

new competing machine learning techniques.

Our main goal here is to forecast the inflation rate yt+h at period t+h using the information

set available at period t. In this sense, inflation is modeled as a function of a set of predictors

x̃t, measured at time t, as follows:

yt+h = Υh (x̃t) + εt+h, (1)

whereΥh (·) is a possibly nonlinear mapping of a set of predictors (a single model or an ensemble

of different specifications), εt+h is the forecasting error, and predictors x̃t may include weakly

exogenous predictors, lagged values of inflation, and a number of factors computed from a large

number of potential covariates (Garcia et al., 2017).

Here, we consider x̃t = {1t, xt, xt−1, . . . , xt−s}′, where 1t is a constant term, xt = {x1,t, . . . , xn,t}

is a set of n predictors, and s is the maximum lag adopted for the set of variables xt when

forming the vector of variables x̃t.

To build our forecasting exercise, we split the sample in three consecutive time sub-periods,

where time is indexed by t = 1, 2, ..., T1, ..., T2, ..., T. The first sub-period (t = 1, ..., T1), usually

called estimation sample, is used for model estimation and forecast inflation yt in the subsequent

periods.6

In the second sub-period (t = T1 + 1, ..., T2), realizations of yt are confronted with forecasts

produced in the estimation sample, and forecast combination weights are estimated, if that is

the case. The first and second sub-periods, together, are labeled as training set. The final sub-

period, also known as test set, is where genuine out-of-sample forecast is entertained, comprising

the last P observations of the sample (t = T2+1, ..., T ). Thus, we have P = T−T2 observations

to compare forecasts and compute accuracy measures.

For the regularization approaches considered in this paper (e.g., elastic net), the mapping

Υh (·) is linear, such that:

yt+h = x̃′tβh + εt+h, (2)

where βh is a vector of unknown parameters. The inflation forecast from the linear ML ap-

6As will be discussed in Section 3.1, we use a recursive estimation scheme (i.e., increasing sample size).

11



proach, fML
yT2+h

, using a sample of t = 1, ..., T2 observations, is given by:

fML
yT2+h

= x̃′T2 β̂h, for h = 1, ..., H. (3)

To evaluate forecast fML
yT2+h

, we compute the respective mean-squared error as follows:

MSEh = 1
P

T∑
t=T2+1

(
yt − fML

yT2+h

)2
. Note that we adopt the direct forecast approach, where the

inflation h periods ahead (yT2+h) is modeled as a function of a set of predictors x̃
′
T2
measured

at time T2. In other words, for each horizon h, we estimate a different vector of unknown para-

meters βh (in contrast to the iterated multistep approach; see Marcellino, Stock and Watson,

2006). Thus, we avoid the necessity of estimating a model for the time-evolution of x̃t.

2.2.1 Elastic Net, Lasso, Adaptive Lasso and Ridge Regression

Elastic net: It is a regularization method proposed by Zou and Hastie (2005),7 which simul-

taneously does automatic variable selection and continuous shrinkage, and can select groups

of correlated variables. The elastic net encourages a grouping-effect, where highly correlated

regressors tend to be jointly included (or excluded) from the model, and it can be particularly

useful when the number of predictors k is high compared to the number of observations T . For

a nonnegative shrinkage parameter λ, and a combination parameter α strictly between 0 and

1, the elastic net solves the following problem:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λPα (β)

 , (4)

where

Pα (β) =
k∑
j=1

α
∣∣βj∣∣+

(1− α)

2
β2j , (5)

and β is the k× 1 vector of parameters, yt is the dependent variable, and {x1,t, . . . , xk,t} is the

k× 1 vector of regressors. The tuning parameter λ controls the overall strength of the penalty

term Pα (β), which interpolates between the l1-norm of β and the squared l2-norm of β. Note

that by setting λ = 0, elastic net becomes the ordinary least squares (OLS) regression. Also

note the objective function has no-closed form solution, but it is convex and can be minimized

using any convex optimization method such as gradient or coordinate descent.8

7According to the authors: “It is like a stretchable fishing net that retains ‘all the big fish’.”
8Although we defined the elastic net by using (λ, α), this is not the only choice as the tuning parameters; see

Zou and Hastie (2005). For example, one could use the l1-norm of the coeffi cients or the fraction of the l1-norm

12



Lasso: The least absolute shrinkage and selection operator (lasso) was proposed by Tib-

shirani (1996). The core idea is to shrink to zero the irrelevant coeffi cients. The lasso is a

penalized least squares method imposing an l1-penalty on the regression coeffi cients, which

allows lasso to do continuous shrinkage and automatic variable selection simultaneously. Also,

it is a particular case of the elastic net estimator (4), considering α = 1 in penalty term (5).

According to Cheng et al. (2019), lasso is “the most intensively studied statistical method

in the past 15 years”. Indeed, it has shown success in many practical situations, since it

can handle more variables than observations. Nonetheless, it has limitations and might even

become an inappropriate variable selection method in some cases. Zou and Hastie (2005) list a

few examples: (i) when the number of predictors k is greater than the number of observations T ,

lasso selects at most T variables before it saturates, due to the nature of the convex optimization

problem; (ii) in the case of grouping effect9 lasso tends to select only one variable from the

group; (iii) when T > k and with high correlated predictors, the ridge regression tends to

perform better than lasso.

Adaptive Lasso: Zou (2006) shows lasso is inconsistent for variable selection under certain

circumstances, and proposes the adaptive lasso (or adalasso), where adaptive weights are used

for penalizing different coeffi cients in the l1-penalty. According to the author, the adaptive

lasso enjoys the oracle properties (i.e., it performs as well as if the true underlying model were

known) and does not select useless variables that may damage the forecasting accuracy. The

core idea behind the model is to use previously known information to select the variables more

effi ciently.10

In practice, it is a two-step estimation that first generates different weights wj for each

candidate variable xj,t, which are used in the second-step (lasso estimation) as additional in-

formation. The adalasso estimator is defined as:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
yt −

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

wj
∣∣βj∣∣

 , (6)

where wj =
∣∣∣β̂∗j ∣∣∣−τ represents the weights; β̂∗j is a parameter estimated in the first-step, and

τ > 0 is an additional tuning parameter that determines how much one wants to emphasize the

to parameterize the elastic net. See Appendix A for further details on the choice of tuning parameters (λ, α) .
9The grouping effect occurs if the regression coeffi cients of a group of highly correlated variables tend to be

equal (up to a change of sign if negatively correlated).
10According to Medeiros and Mendes (2016), the conditions required by the adalasso estimator are very

general, and the model works even when the errors are non-Gaussian, heteroskedastic, and the number of
variables increases faster than the number of observations.
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difference in the weights. In general, τ is set to unity and β̂
∗
j is the respective lasso coeffi cient

estimated in the first-step.11

Ridge Regression: In contrast to lasso, the ridge regression (Hoerl and Kennard, 1970)

minimizes the squared sum of the residuals subject to a bound on the l2-norm of the parameters.

It is a particular case of the elastic net estimator (4), considering α = 0 in penalty term (5).

Since ridge is a continuous shrinkage method, in some cases it can achieve better out-of-sample

performance through a bias-variance trade-off (that is, using regularization to balance the

forecast errors due to bias and variance). In particular, ridge is good at improving the OLS

counterpart when multicollinearity is present. However, ridge cannot be used for variable

selection (and to produce a parsimonious model), since it retains all regressors in the model,

that is, it only shrinks the coeffi cients close (but never equal) to zero.

2.2.2 Random Forest

A random forest (RF) is a collection of decision trees, introduced as a machine learning tool in

Breiman (2001). It is a very popular and powerful method used in high-dimensional regression

or classification. The main idea is to reduce the forecast variance by using bootstrap aggregation

(bagging) of randomly constructed trees. A regression tree is a nonparametric model based on

the recursive binary partitioning of the covariate space X. According to Garcia et al. (2017),

the model is usually displayed in a graph, which has the format of a binary decision tree with

parent nodes (or split nodes) and terminal nodes (also called leaves; which represent different

partitions of X).12 Figure 1 shows an example of a regression tree with two covariates.

Figure 1 - Example of a recursive binary splitting in a regression tree

Notes: The left graph shows the partition of a two-dimensional covariate space. The center graph displays

the corresponding tree, whereas the right graph shows the prediction surface. Source: Hastie et al. (2009).

11In our empirical exercise, we adopt τ = 0.3, following Medeiros et al. (2016). Alternative adalasso models
with τ = 1 or 2, in general, generate less accurate forecasts in terms of MSE.
12According to the authors, the partitions are often defined by a set of hyperplanes, each of which is orthogonal

to the axis of a given predictor variable (also called the split variable).
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Note that we first split the covariate space into two regions (X1 ≤ t1 and X1 > t1)13 and

model the dependent variable by the mean of Y in each region. The selected variable (X1) and

the corresponding split-point (t1) are chosen in order to achieve the best fit. Then, one (or

both) of these regions is (are) split into two more regions, and this process is continued until

some stopping rule is applied. In the example shown in Figure 1, the regression tree model

predicts Y with the constant cm in region Rm, m = 1, ..., 5, as follows (see Appendix B for more

details):

Eregression tree (Y | (X1, X2)) =

5∑
m=1

cm1{(X1,X2)∈Rm}. (7)

In practice, one major problem with regression trees is their high prediction variance. Usu-

ally, a small change in the data leads to a very different sequences of splits. The main reason

for such instability is the hierarchical nature of the algorithm (the effect of a big error in the

top split is propagated down to all of the splits below it).14

To overcome this issue, one can employ the bagging (bootstrap aggregation) method, which

consists on fitting the same tree several times to bootstrap-sampled versions of the training

data and, then, average the result. This approach often improves model performance because

it decreases the forecast variance without increasing too much the bias.15

Random forest uses a modified-bagging method (random subspace projection) that selects a

random subset of covariates at each candidate split. The reason for doing this is the correlation

of trees in the ordinary bootstrap: if few covariates are strong predictors for the dependent

variable, such covariates will be selected in many of the bootstrapped trees, causing them to be

correlated. According to Hansen (2019), the modification adopted in RF aims at decorrelating

the bootstrap trees by introducing extra randomness.16

13Rather than splitting each node into just two groups, one might consider multiple splits at each stage.
However, according to Hastie et al. (2009, p.311), this is not a good strategy, since multiple splits fragment the
data too quickly, leaving insuffi cient data at the next level down.
14According to Hastie et al. (2009), regression trees tend to learn highly irregular data patterns and overfit

their training sets, thus producing low bias but high variance. To reduce variance, RF averages multiple trees,
trained on different parts of the training set. This often generates a small forecast bias, but generally improves
the forecast accuracy.
15Training many trees on a single training set would give strongly correlated trees, whereas bootstrap sampling

helps decorrelating the trees by showing them different training sets.
16This way, forecast variance can be reduced by two ways: (i) in each node, the variable being split is selected

from a random subset of variables (instead of the full set); and (ii) each tree is learned on a bootstrapped
subsample. See Hastie et al. (2009) for further details.
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2.2.3 Quantile-combination method based on QRF

Random forest approximates the conditional mean of Y by constructing a weighted average

over the sample observations of Y . Nonetheless, random forests can also provide information

about the full conditional distribution of the response variable, not only about the conditional

mean. This information can be used, for instance, to build prediction intervals and account for

outliers in the data. This way, conditional quantiles can be inferred with quantile regression

forests (QRF), a generalization of random forest proposed by Meinshausen (2006).17

The idea here is to provide a nonparametric way of estimating conditional quantiles for

a high-dimensional set of predictor variables. According to the author, the QRF algorithm is

shown to be consistent and competitive in terms of predictive power. First, recall the conditional

quantile of Y , given X, at quantile level τ , is defined by:

Qτ (Y | X) = inf{y : F (y | X) ≥ τ} (8)

or, equivalently,

F (y | X) = Pr (Y ≤ y | X) = E
(
I{Y≤y} | X

)
, (9)

where F (y | X) is the conditional cumulative distribution function (CDF) and I{Y≤y} is an

indicator function. Note the probability of Y being smaller than Qτ (·) is equal to τ . Next, we

approximate the CDF by the weighted average of I{Y≤y} over n observations, as follows:

F̂ (y | X) =

n∑
i=1

wi(x)I{Yi≤y}, (10)

using the same weights wi(x) defined in Appendix B for random forest.18 This way, estimates

of the conditional quantiles Q̂τ (·) can be obtained by plugging F̂ (·), instead of F (·) into (8).

Now, we go one step further, by relating the conditional quantiles with the conditional mean

of Y . This could be accomplished by integrating the conditional quantile function of Y over

the entire domain τ ∈ [0, 1] (see Koenker, 2005, p.302). The conditional mean E (Y | X) can,

17The main difference between QRF and RF is that for each node, RF keeps only the mean of the observations
that fall into this node (and neglects all other information). In contrast, QRF keeps the value of all observations
in this node and assesses the conditional distribution based on this full information.
18See Appendix C for a summary of the algorithm used to compute the CDF estimate in QRF.
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thus, be approximated19 by a sum of estimated conditional quantiles, as follows:20

E (Y | X) =

1∫
0

Qτ (Y | X) dτ = lim
P→∞

(
q∑
p=1

Q̂τp (Y | X) ∆τ p

)
. (11)

The idea is to aggregate information from different conditional quantiles in order to achieve

an improved conditional mean. The approximation of the conditional mean by a combination of

conditional quantiles is not a novel approach in the literature. Indeed, it has a long tradition in

statistics (see Judge et al., 1988) and has been previously applied in the forecasting literature.

Nonetheless, our original contribution is to propose a new quantile-combination approach, based

on quantile regression forest, to build conditional mean forecasts through equations (8), (10)

and (11).

The approach proposed here follows the spirit of the averaging scheme applied to quantiles

conditional on predictors selected by lasso, proposed by Lima and Meng (2017), and of Jiang

et al. (2020), which show that aggregating information over different quantiles can produce

superior forecasts for stock return prediction.

The advantage of such approaches relies on the fact that quantiles are robust to outliers

(in our case, extreme unanticipated inflationary shocks), which potentially improves forecast

accuracy and likely impact the performance of standard models, usually designed to account

for average responses. To sum it up, we propose the following three-step algorithm:

1. Choose a finite (equidistant) grid of quantile levels. For example: Γ ≡ [0.05, 0.10, . . . , 0.95];

2. For each τ ∈ Γ, period t, forecast horizon h, and information set Ft, estimate the condi-

tional quantile Q̂τ (yt+h | Ft) using the QRF method of Meinshausen (2006); and

3. Compute the average of Q̂τ (yt+h | Ft) across all τ ∈ Γ, and consider it as proxy for

E (yt+h | Ft), that is, as our (QRF-based) inflation forecast.

19By applying the second fundamental theorem of calculus (or the Newton-Leibniz axiom) on the sum of
quantiles, the Riemann integral is obtained in the limit P → ∞ (see Apostol, 1967) and the partitions ∆τp =
1

P+1 get finer (i.e., ∆τp → 0 as long as P →∞).
20We rely on the fact that the conditional quantiles are consistenly estimated using the QRF approach.
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2.2.4 XGBoost

Extreme Gradient Boosting (or XGBoost) is a decision tree-based ensemble algorithm that uses

a gradient boosting setup, as proposed by Chen and Guestrin (2016). It improves upon the

previous gradient boosting setups through systems optimization and algorithmic enhancements.

According to Morde and Setty (2019), the XGBoost algorithm has the best combination of

prediction performance and processing time compared to other algorithms. Figure 2 shows a

brief comparison of the most common decision tree algorithms.

Figure 2 - Algorithms for decision trees

Source: Morde and Setty (2019). Boosting is an ensemble technique (that is, makes an average of the predictions

of a group of models) that constructs models sequentially, and each subsequent model corrects

the errors of the previous one, whereas bagging constructs models independently.

Thus, XGBoost is a bagging-based algorithm with a key difference wherein only a subset

of features is selected at random. Compared to Random Forest, XGBoost is normally used to

train gradient-boosted decision trees and other gradient boosted models, whereas RF uses the

same model representation and inference (as gradient-boosted decision trees), but a different

training algorithm. Moreover, XGBoost supports missing values, since branch directions for

missing values are learned during training.

In practice, it requires the right configuration of the algorithm for a dataset by tuning the

hyper-parameters. Most of them are related to the bias-variance trade-off. When one allows

the model to get more complicated (e.g., more depth), the model has better ability to fit the

training data (in-sample), resulting in a less biased model. However, such complicated model

requires more data. The best model should trade the model complexity with its predictive

power carefully. See Chen and Guestrin (2016) for further details.21

21For more details, see also https://towardsdatascience.com/a-guide-to-xgboost-hyperparameters-
87980c7f44a9 and https://xgboost.readthedocs.io/en/latest/index.html
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2.2.5 Recurrent Neural Networks (RNN)

A recurrent neural network (Elman, 1990) is a class of artificial neural networks commonly

used for time series data. RNNs are highly nonlinear models that use training data to learn

and represent complex dynamic relationships between variables. They are distinguished by

their internal state (memory), as they make use of sequential information to capture long-term

temporal dependencies between input variables and the output (dependent variable). While

traditional deep neural networks assume inputs and outputs are independent of each other, the

RNN output depends on the prior elements within the sequence and, thus, can exhibit dynamic

temporal behavior.22 See Tealab (2018) and Dupond (2019) for further details.

Figure 3 shows a basic scheme of the RNN, where xt is the input vector of predictors, ot is

the output vector (dependent variable), ht is the hidden layer (a set of neurons) and W and U

are model parameter matrices. The left graph illustrates the recurrent connections as the arc

labeled "V". The graph on the right unfolds the RNN across time, pointing out that RNN is

a class of neural network that exhibits temporal dynamic behavior.

Figure 3 - Basic representation of the RNN

Source: https://en.wikipedia.org/wiki/Recurrent_neural_network

The RNN architecture is essentially driven by the number of hidden layers ht, which control

the overall model complexity23 and the activation function (or basis function) that determines

whether a given neuron in the network should be activated. These nonlinear functions typically

convert the output of a given neuron to a value between 0 and 1 (or −1 and 1). We adopt here

the logistic (or sigmoid) function, given by g(x) = 1/(1 + e−x), as activation function.24

22RNNs can have additional storage states, which may incorporate feedback loops. Such extra states are
referred in the literature to as gated states (or gated memory), and are part of long short-term memory networks
(LSTMs) and gated recurrent units (GRUs). Here, we employ the standard RNN setup to save computational
time and avoid unnecessary model complexity (overfitting).
23The so-called fully recurrent neural networks connect the outputs to the inputs of all neurons. This is the

most general topology, since all other can be represented by setting some connection weights to zero to simulate
the lack of connections between neurons. Also, by considering more than one layer, RNNs are part of a machine
learning field called deep learning.
24Neural networks have been found to be very successful in complex settings, with large number of features.

However, they often require a substantial amount of data in order to work well in practice.
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2.2.6 Hybrid Machine Learning

The use of hybrid models in machine learning to forecast macroeconomic variables is relatively

recent (e.g., Smyl, 2020). Here, the idea is to mix methodologies to produce a hybrid inflation

forecasting method, which allows investigating whether the forecasting accuracy of a given ML

model is primarily due to variable selection or to potential nonlinearities in the inflation data-

generating process. Inspired by the hybrid method of Medeiros et al. (2021), we propose the

following three-step approach:

1. Pre-selection of variables using the target predictor procedure of Bai and Ng (2008). First,

we separately run individual OLS regressions (i.e., we run the dependent variable onto

the intercept and a given individual predictor). Then, each predictor is retained in the

set of selected variables only if it is statistically significant at a 5% level, based on its

respective OLS regression;

2. Choice of the most relevant variables (e.g., Top20), according to either the Adaptive Lasso

or the Random Forest (impurity corrected) approaches (see Appendix D for details on

how to compute the variable importance); and

3. Use the set of top variables as input (e.g., regressors) in the following models: OLS,

Adaptive Lasso, Random Forest or XGBoost in order to forecast the inflation rate.

This way, we build six hybrid models, labelled by Ada-OLS, Ada-RF, Ada-XGB, RF-OLS,

RF-Ada or RF-XGB, where OLS denotes Ordinary Least Squares, Ada means Adaptive Lasso,

RF denotes Random Forest, and XGB means XGBoost. The first nickname stands for the vari-

able selection method, whereas the second one denotes the estimation/forecasting approach.

For example, the hybrid model Ada-OLS employs the Adaptive Lasso to choose the top pre-

dictors, which are then used as regressors in the OLS model to forecast inflation.

Although the set of nonlinear approaches could be further enlarged, we believe the six hybrid

models designed here can help us check the importance of variable selection, as part of many ML

methodologies, and the role nonlinearities play when modeling the inflation dynamics. Also,

we bring to machine learning a flavor of model interpretation, by first revealing the top features

and then using this superior dataset as input in a given ML forecasting method.
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2.2.7 Traditional Inflation Forecasting

We next analyze more traditional forecasting methods, often used by economic agents when

producing inflation forecasts.

Random Walk: The standard random walk (RW) model assumes the h−period inflation

change is an unforecastable martingale difference sequence (MDS), that is E (yt+h − yt | Ft) = 0.

The out-of-sample inflation forecast, for all h = 1, ..., H, is then f rwyT2+h = yT2 .

RW-AO: This is the variant of the random walk model, considered by Atkeson and Ohanian

(2001), which takes the average inflation over the previous twelve months25 as the forecast for

yT2+h, as follows: f
rw−ao
yT2+h

= 1
12

∑11
j=0 yT2−j.

ARMA: One of the most common statistical models used in time-series forecasting is the

autoregressive moving average (ARMA) model, which assumes that future observations are

driven essentially by recent observations. Inflation, which often exhibits persistent behavior, is

largely consistent with this assumption.26

VAR:The vector autoregression (VAR) model is also a traditional method based on a backward-

looking approach. We use here one lag27 and the following endogenous variables: market price

inflation, administered price inflation, one-year real interest rate, log-difference of nominal ex-

change rate (R$/US$) and output gap (proxied by the HP-filtered IBC-BR series).28 The

choice of variables recognizes different time dynamics of the two main components of infla-

tion in Brazil29 and incorporates the pass-through of imported inflation to domestic inflation.

The forecast of headline inflation is built by aggregating the h-step ahead forecasts of the two

inflation components using respective weights.30

Inflation expectations (Focus survey): The Focus survey of professional forecasts is a

panel database put together by the Central Bank of Brazil (Banco Central do Brasil —BCB),

25According to Atkeson and Ohanian (2001, p.10): “...economists have not produced a version of the Phillips
curve that makes more accurate inflation forecasts than those from a naive model that presumes inflation over
the next four quarters will be equal to inflation over the last four quarters.”
26The best ARMA(p,q) model is recursively selected using the Schwarz information criterion.
27According to the Schwarz information criterion and diagnostic testing.
28See variables 2, 3, 27, 51 and 120 in Appendix E.
29The administered price inflation is in some way regulated by a public agency or set by contracts (often

including backward indexation clauses), rather than by the interaction between domestic demand and supply
conditions. According to Minella et al. (2003), the dynamics of such prices differ from the market prices in three
ways: (i) dependence on international prices in the case of refined petroleum products; (ii) greater pass-through
from the exchange rate; and (iii) stronger backward-looking behavior.
30For details on IPCA weights, see https://www.bcb.gov.br/content/ri/inflationreport/201912/ri201912b7i.pdf
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which collects daily information since 1999, after the implementation of the inflation-targeting

regime in Brazil. The survey covers more than 100 professional forecasters (e.g., banks, as-

set management firms, consulting firms and some relevant non-financial institutions), which

are followed throughout time. The Focus survey is constantly used by market agents, special-

ized media and the BCB itself to monitor inflation expectations. The forecasts are supplied

over different horizons and for a large array of macroeconomic series (see Gaglianone et al.,

2021). Here, we consider the median of individual inflation forecasts (IPCA) across all survey

participants.

Inflation expectations (BEI): Another key source of inflation expectations in Brazil is finan-

cial data. For instance, using inflation-linked treasury bond market data,31 and the parametric

model of Svensson (1994), one can extract the so-called Breakeven Inflation (BEI), which is

available on a daily basis and focused on actual financial market agents’decisions (see Val and

Araujo, 2019). However, the usage of such data usually embodies risk premium issues and

maturities with different market liquidity. Since there is no consensus in the finance literature

on how to properly compute risk premium, we do not extract it from the BEI series. Besides,

it is often neglected for short horizons, although it is usually relevant for longer horizons.32

PC-backward: The Phillips curve model (PC) has a long tradition in forecasting inflation

(Stock and Watson, 1999). We consider here a backward-looking version of the curve, only

including past inflation (inertia), imported inflation (pass-through channel)33 and output gap

(traditional monetary policy channel via aggregate demand).34 Following the VAR approach,

we also disaggregate inflation in two components (market price inflation and administered

price inflation), which are modeled separately. First, we estimate a Phillips curve for inflation

of market prices. Then, we estimate an ARMA(p, q) model for the administered price inflation.

Finally, the headline inflation forecast is built by aggregating the forecasts of the two inflation

components using respective weights.

31We use data from NTN-B, which is the acronym for Nota do Tesouro Nacional, type B, similar to the
Treasury Inflation-Protected Securities (TIPS) in the U.S.
32We use end-of-month data when considering inflation expectations at monthly frequency. For example,

when the goal is to forecast the IPCA of June 2021, for h = 1, we use the inflation expectations available on
May 31, 2021. Similarly, in order to forecast the IPCA of June 2021, for h = 2, we use the Focus and BEI data
available on April 30, 2021.
33Defined as the sum of the nominal exchange rate (R$/US$) monthly percentage variation and the U.S.

inflation (assumed, for simplicity, 2.0% per year).
34The output gap is based on the seasonally adjusted IBC-BR index of economic activity. The Hodrick-

Prescott (HP) filter is employed to generate the output gap in a recursive estimation scheme, that is, we
re-construct the entire output gap series for each new observation added to the estimation sample along the
out-of-sample exercise (and, then, re-estimate the Phillips curve to build new forecasts).
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PC-hybrid: This approach considers a hybrid (New Keynesian) version of the Phillips curve,

which includes backward- and forward-looking terms, imported inflation and output gap (see

Arruda et al., 2011, and Gaglianone, Issler and Matos, 2017). The extra term is expected

inflation, proxied here by the Focus survey. We impose the usual coeffi cient restriction35 to

guarantee a vertical long-run Phillips curve. The forecasts for administered price inflation and

headline inflation follow the same procedures described in the previous approach.

Factor model 1 (direct forecast): The idea that time variations in a large number of

variables can be summarized by a small number of factors is empirically attractive and it is

employed in a large number of studies in economics and finance (see Forni et al., 2000, and

Stock and Watson, 2002). Let xi,t ∈ x̃t be the observed data for the i-th cross-section unit at

time t, for i = 1, ..., N and t = 1, ..., T2, and consider the following factor representation of the

data:

xi,t = λ′iFt + ei,t, (12)

where Ft is a vector of common factors, λi is a vector of factor loadings associated with Ft, and

ei,t is the idiosyncratic component of xi,t. Note that λi, Ft and ei,t are unknown since only xi,t

is observable. Here, we estimate the factors and respective loadings using principal components

analysis (PCA). The number of components is determined by the Bai and Ng (2002) criterion.

After the PCA estimation of the common factors Ft, we employ the direct forecast approach to

model the inflation rate at time t+ h as follows:

yt+h = βhFt + εt+h. (13)

Therefore, the inflation forecast from the (direct) factor model above, using a sample of

t = 1, ..., T2 observations, is given by f fm−directyT2+h
= β̂hF̂T2 , for h = 1, ..., H.

Factor model 2 (iterated forecast): This approach is a variant of the previous one, but

using an iterated forecast method instead of the direct forecast approach. The idea is again to

employ common factors, but to model the inflation rate in a contemporaneous way in respect

to the factors, that is:

yt = γFt + vt. (14)

Following the literature (e.g., Bańbura et al., 2013), we specify the factors as following a

VAR process, that is, Ft = Φ(L)Ft + ut. The inflation forecast from this iterated factor model,

35The sum of coeffi cients on past inflation, expected inflation and imported inflation must be equal to one.
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using a sample of t = 1, ..., T2 observations, is given by f fm−iteratedyT2+h
= γ̂F̂T2+h|T2 , for h = 1, ..., H,

where F̂T2+h|T2 are the h−step ahead (out-of-sample) forecasts of the common factors, using

the VAR model estimated in a recursive scheme.

Factor models 3 and 4 (with targeted predictors, direct or iterated): These are the

previous factor models, but now based on a subset of predictors that are selected by taking

into account that our variable of interest is the inflation rate. Here, we follow the idea of Bai

and Ng (2008), who showed the factor model’s out-of-sample forecasting performance could be

improved by previously selecting (or targeting) the predictors.

The core idea is that irrelevant predictors employed to build a factor model only add noise

into the analysis, and thus produce factors with a poor predictive performance. In this sense,

we use in the factor model only pre-selected variables, as follows:

(i) in the direct forecast case, we first regress the inflation rate yt+h (or yt in the iterated

case) on the intercept and the candidate variable xi,t ∈ x̃t, for all i = 1, ..., N ;

(ii) calculate the t−statistics for the coeffi cient associated to xi,t;

(iii) include xi,t in the set of predictors (used to extract the factors) only if it is statistically

significant at a 5% level; and

(iv) proceed as before, in the direct or iterated factor model cases, to build the respective

inflation forecasts.

2.2.8 Disaggregated Forecasts

According to the BCB (2021a), the three main groups of market prices (services, industrial

goods, and food at home) show important differences in terms of average inflation level, dy-

namics and determinants.36 Taking into account such differences in the data-generating process

of the inflation subgroups can (potentially) lead to accuracy gains when forecasting the aggre-

gated inflation.37

This motivates a bottom-up approach, in which we separately model and forecast the infla-

tion dynamics for each one of the main three subgroups of market prices, besides administered

prices. To do so, we employ three different models: ARMA, Adalasso and Random Forest.

36The Inflation Report mentions that: "...disaggregated approaches are useful for extending the scope of the
analysis and broadening the understanding of inflation developments and its prospects." According to the same
report, the greatest inertial component is related to the services sector, which is not directly impacted by
exchange rate changes or by commodity prices. On the other hand, these factors are relevant in the sectors of
industrial goods and food at home.
37Also, in the equity-premium literature, Ferreira and Santa-Clara (2011) report that forecasting separately

the three components of stock market returns (dividend yield, earnings growth, and price-earnings ratio growth)
yields huge forecasting gain.
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Then, we aggregate38 the four individual forecasts (administered prices, services, industrial

goods, and food at home) to form the forecast of headline inflation (IPCA).

2.2.9 Forecast Combination

Since the seminal work of Bates and Granger (1969), it has been observed that combining fore-

casts across multiple models often produces better forecasts compared to a single model. Nowa-

days, the accuracy gains of forecast combination over individual forecasts are well-documented

in the literature. According to Elliott et al. (2015): “...forecast combination offers one ap-

proach for dealing with the effects of estimation error, model uncertainty, and instability in

the underlying data generating process. By diversifying across multiple models, combinations

typically deliver more stable forecasts than those associated with individual models.”

Here, we employ different forecast combination methods based on three main sets of individ-

ual forecasts. The first set of forecasts (set1) entails individual forecasts from models 1-27. The

second and third sets of forecasts (set2 and set3) include only the superior models of the Model

Confidence Set proposed by Hansen et al. (2011), considering models 1-27 or 1-29, respectively.

The Model Confidence Set (MCS) consists of a sequence of tests allowing the construction

of a set of superior models, where the null hypothesis of equal predictive ability is not rejected

at a given confidence level. The test statistic can be evaluated for several loss functions, such

as mean squared error (MSE) or mean absolute error (MAE). The MCS is a sequential testing

procedure, which eliminates the worst model at each step until the hypothesis of equal predictive

ability is accepted for all the models belonging to a set of superior models. The MCS method

is focused not on the selection of optimal weights, but on the selection of superior models. In

other words, it trims out the worst performing models based on a statistical significance test.

We implement the MCS procedure considering the MSE loss function and the 95% confidence

level (see Shang and Haberman, 2018, for further details).

This way, based either on set1, set2 or set3 of forecasts, we use the following forecast

combination approaches: Mean, Median, Adalasso, Random Forest, Granger and Ramanathan

(1984), Constrained Least Squares (CLS), and Complete Subset Regression (CSR). The first

two combination approaches are simply the mean and median forecasts, computed across a given

set of individual forecasts (set1, set2 or set3). The Adalasso and Random Forest approaches

are used here as forecast combination devices (i.e., instead of using a set of predictors, they are

now based on a given set of individual forecasts).

38Using real-time weights of each IPCA subgroup.
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In turn, Granger and Ramanathan (1984) set out the foundations of optimal forecast com-

binations under symmetric and quadratic loss functions. The authors show that under MSE

loss the optimal weights can be estimated through an ordinary least squares (OLS) regression

of the target variable (inflation, in our case) on a given set of forecasts, plus an intercept to

account for possible model bias. However, if the loss function differs from the MSE, then the

computation of optimal weights may require methods other than a simple OLS.

Although the OLS combination of Granger and Ramanathan (1984) enables us to correct

for bias through its intercept term, Nowotarski et al. (2014) point out such unbiasedness comes

at the expense of a poorer performance for highly correlated regressors. The Constrained Least

Squares (CLS) approach advocated by Nowotarski et al. (2014) is a variant of the previous

OLS combination with additional constraints: no intercept term is imposed and the coeffi cients

have to be non-negative and be summed up to 1.

In a distinct approach, Elliott et al. (2013, 2015) propose a method for combining forecasts

based on Complete Subset Regressions (CSR). The method combines forecasts based on predic-

tive regressions with k number of predictors (in our setup, a given set of individual forecasts).39

Hence, assuming k = 1 corresponds to an equal-weighted average of all possible forecasts from

univariate prediction models, whereas k = 2 corresponds to equal-weighted averages of all pos-

sible forecasts from bivariate prediction models. The CSR approach has the computational

advantage that it can be applied even when the number of predictors exceeds the sample size.40

2.3 Fan Chart

Providing confidence intervals is a relevant issue when building point forecasts. Our setup of

competing forecasts can be easily adapted to provide a measure of uncertainty around future

predictions of inflation. To summarize the idea, we first compute the forecast errors of a given

method of interest for a set of horizons h = 1, ..., H. Next, we estimate the forecast variance

(for each h) and smooth out these variances using a spline function to obtain a smooth term-

structure of variances along the horizons h. Finally, we generate the out-of-sample conditional

39The optimal value of k can be determined from the covariance matrix of the potential regressors and, thus,
can be selected recursively in time.
40According to Elliott et al. (2015), Monte Carlo simulations show CSR offers a favorable bias-variance

trade-off in the presence of many weak predictors. However, one drawback is that the number of regressions to
be estimated increases very quickly for large datasets. In such cases, Garcia et al. (2017) adopt a pre-testing
procedure, similar to the targeting predictors approach of Bai and Ng (2008). In this paper, since the number
of predictors is very large, we employ the CSR method with k = 2 as a forecast combination device, based on
a given set of individual forecasts, instead of considering subset regressions on all candidate variables.
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quantiles for a grid of quantile levels τ assuming a Gaussian distribution.41

Thus, in order to produce density forecasts of the inflation rate yt+h, using the information

set Ft available at period t, we assume the conditional distribution of yt+h is Gaussian, with

conditional mean µt+h|t and conditional variance σ
2
t+h|t, that is, (yt+h | Ft) ∼ N(µt+h|t, σ

2
t+h|t).

The conditional quantile of yt+h, evaluated at quantile level τ ∈ (0, 1), is given as follows:

Qτ (yt+h | Ft) = µt+h|t + σt+h|tΦ
−1 (τ) . (15)

Now, let fmt+h|t be the modelm estimate of the conditional mean of yt+h. Thus, f
m
t+h|t = µ̂t+h|t,

where µt+h|t = E (yt+h | Ft). Also, let σ̂2t+h|t be the modelm estimate of the conditional variance

of yt+h, that is σ2t+h|t, computed using the Newey and West (1987)’s HAC covariance matrix

estimator, from a regression of the forecast error of fmt+h|t on the intercept.
42

Provided that [µ̂t+h|t, σ̂
2
t+h|t] are consistent estimates of [µt+h|t, σ

2
t+h|t], one can obtain con-

sistent estimates of the conditional quantiles of yt+h, along a grid of quantile levels τ ∈ Γ, using

equation (15). Therefore, the multi-step ahead density forecasts of yt+h can be summarized by

a fan chart graph, based on the estimated conditional quantiles, over the horizons h = 1, ..., H,

and the grid of quantile levels τ ∈ Γ.43

3 Empirical Exercise

3.1 Data

We focus the analysis on the IPCA, which is the consumer price index (CPI) measured by the

Brazilian Institute of Geography and Statistics (IBGE), used to compute the offi cial inflation

measure and the target of monetary policy in Brazil. The dependent variable is either the

monthly percentage change of the IPCA index, or this measure accumulated over the last twelve

months (12-month inflation). Forecast horizon (h) varies from 1 to 18 months. The sample

period spans over 17 years of data, from January 2004 to August 2021 (T = 212 observations).44

41The objective here is not to produce a density forecast based on a more complex approach (e.g., allowing
for asymmetry and fat tails), but only to attach a simple measure of uncertainty to the path of future inflation
according to each model’s past forecast errors.
42Recall the forecast error

(
fmt+h|t − yt+h

)
is computed along a (pseudo) out-of-sample forecasting exercise,

that is, considering t = toos1, ..., toosT and a given h.
43See Costa et al. (2021) for a similar exercise of density forecasting of the future oil prices.
44According to Machado and Portugal (2014), the limited sample problem is a well-known constraint for

inference in Brazilian studies, particularly in inflation dynamics where different policy regimes have been the
case. In this sense, selecting the sample since 2004 helps us avoid large structural regime breaks.
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Figure 4 shows the IPCA inflation in our sample period, which starts a decade after the Brazilian

monetary stabilization plan in mid-1994 and five years after the implementation of the inflation-

targeting regime in mid-1999. Note that the inflation rate levels are compatible to the ones

observed in many emerging market economies that adopt the inflation-targeting regime.

Figure 4 - Inflation rates (IPCA), % per month (left), % accumulated in 12 months (right)

One of the key features driving the inflation dynamics in emerging economies is the degree of

persistence (or inertia).45 Besides past inflation, other predictors suggested in the literature to

forecast inflation often include economic slack measures (e.g., unemployment rate in a Phillips

curve), variables related to production (Stock and Watson, 1999), financial variables (Forni et

al., 2003), surveys of expectations (Ang et al., 2007; Faust and Wright, 2013), among others.

In this paper, we use a diverse set of macroeconomic and financial variables drawn from a

number of categories.46 Our database consists of n = 167 contemporaneous monthly variables,

including, for instance, price indexes, interest rates, financial markets variables, economic ac-

tivity, labor market variables, government debt, import and export of goods and services, and

international variables that are potentially related to the Brazilian economy. The main data

sources are Anbima, BCB, EPU (Baker et al., 2015), FGV, Funcex, IBGE, Inmet, IpeaData,

and Reuters (Refinitiv Eikon Datastream). Appendix E presents the full list of variables used

as potential predictors for the inflation rate in Brazil.

In order to ensure stationarity, we conduct individual time series transformation, following

the procedure adopted in the FRED-MD database of McCracken and Ng (2015). We consider
45In Brazil, the relevance of past inflation has been vastly documented. For instance, Kohlscheen (2012)

suggests that models in which past inflation have greater weight in the expectations formation process are more
accurate than others purely based on the rational expectations assumption. In turn, Gaglianone, Guillén and
Figueiredo (2018) point out the relevance of considering a time-varying inertia when building more accurate
inflation forecasting models.
46Besides the usual macro series, we included many financial variables, which are shown in the literature

(Forni et al., 2003) to be predictors that help forecast inflation. For example, financial market-based implied
(breakeven) inflation, which provides a closer monitoring of inflation expectations (since they are updated on a
continuously intra-day basis) and are competitive in terms of short-run predictive ability compared to survey
expectations (Araujo and Vicente, 2017). We also included in the database many non-standard variables, for
instance, to capture supply shocks arising from climate factors (e.g., amount of rainfall in Brazilian cities or
even Pacific Ocean temperatures, to capture El Niño or La Niña effects).
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six possibilities, as follows: (1) no transformation; (2) ∆xt; (3) ∆2xt; (4) ln(xt); (5) ∆ln(xt);

and (6) ∆2ln(xt). The transformation adopted for each series is presented in Appendix E.

After transformations, the stationarity of each time series is checked using the Kwiatkowski-

Phillips-Schmidt-Shin (KPSS) test, considering a 5% significance level. The n = 167 contem-

poraneous variables are then lagged s = 3 periods,47 forming a final database containing 501

series. This way, besides an intercept, equation (1) entails dim (x̃′t) = 501 variables, used as

potential predictors for inflation in Brazil.48

Recall the first part of the sample (t = 1, ..., T1) is used to estimate the models, whereas the

second part of the sample (t = T1 + 1, ..., T2) is used for estimation of the forecast combination

weights (where applicable). The remaining observations (t = T2 + 1, ..., T ) are reserved for

genuine out-of-sample forecast comparison. We consider T1 = 72 months (6 years), T2 = 120

months (10 years), and P = T − T2 = 212 − 120 = 92 out-of-sample observations. Thus, the

evaluation period for h = 1 ranges from January 2014 to August 2021 (92 forecasts), whereas

for h = 18 ranges from June 2015 to August 2021 (75 forecasts).49

All models are re-estimated every month in a recursive estimation scheme (i.e., expanding

sample size), as we incorporate every new time-series observation, one at a time. In this context,

each model is initially estimated using the first T1 (or T2 in the case of forecast combinations)

observations and the out-of-sample point forecasts are generated. We, then, add an additional

observation at the end of the training set, re-estimate the models and generate again out-of-

sample forecasts. This process is repeated along the remaining data (test set).50

We also conduct an extensive robustness analysis by considering two alternative train-

ing/test sets: (i) T1 = 96 months (8 years) and T2 = 144 months (12 years); and (ii) T1 = 72

months (6 years) and T2 = 144 months (12 years). The results are presented in Appendix F.

47Inflation models usually comprise a rich lag structure (particularly in emerging countries, more prone to
inflation inertia). Such structure should capture the dynamic relationship between inflation, past inflation and
key macroeconomic variables. Here, we adopt 3 lags to avoid overfitting (besides, forecasting exercises with
more lags generally produced higher MSEs).
48We standardize data (zero mean and unity variance) in the penalized-regression models (elastic net, lasso,

adaptive lasso and ridge), factor models, recurrent neural network and hybrid models. In turn, tree-based
methods (random forest, QRF and XGBoost) do not require feature scaling (since common practice in such
methods is not to standardize features, we follow this approach here).
49Our forecasting exercise is not implemented on a strict real-time basis to avoid unnecessary complications

in the execution of the exercise. Practical limitations arise due to data revisions and/or different release delays
of features in real time. The literature on inflation forecasting is generally focused on pseudo real-time exercises,
such as the one conducted in this paper. Besides, the real-time issue looses relevance when considering longer
horizons, such as 12 or 18 months.
50We adopt such an estimation scheme due to the greater effi ciency, in general, of recursive regressions

compared to rolling-window estimations. However, the latter approach could be justified under a framework
with the possibility of structural changes. See Morales-Arias and Moura (2013) for a good discussion on this
issue.
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The empirical exercise is implemented using the R software (version 4.1.0, 64-bit). The

ridge regression, lasso and elastic net models are estimated using the R package glmnet, which

fits a generalized linear model via penalized maximum likelihood. The adalasso model is im-

plemented using the R package HDeconometrics. The same R package is used to compute the

BIC information criterion for selection of hyper-parameters. In order to implement the random

forest and the quantile regression forest methods,51 we use the R package ranger, whereas the

XGBoost approach is based on the R package xgboost. Finally, the R package rnn is used to

implement the recurrent neural networks, and the R package MCS is used to implement the

model confidence set procedure of Hansen et al. (2011).

3.2 Results

The observed inflation rate (% per month, or simply % p.m.) and the respective out-of-sample

forecasts (h = 1) of the 50 approaches covered in this paper are shown in Figure 5. Appendix

G presents forecasts of the inflation rate accumulated in twelve months.

Figure 5 - Inflation (% p.m.) and forecasts, h = 1

51We used 1, 000 trees in both the random forest and the quantile regression forest. In the latter method, we
adopted the following grid of quantile levels: τ ∈ (0.05, 0.10, ..., 0.95) .
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For each horizon, the forecast errors are squared and averaged to form the out-of-sample

MSE. In addition, we compute the p-value of the Diebold and Mariano (1995) test for non-

nested models,52 using the forecasts from the ARMAmodel as benchmark. Besides the MSE, we

compare the best model with the benchmark, at each horizon, in terms of the R2 out-of-sample

statistics (Rapach et al., 2010).53 Table 2 presents the results.

Table 2 - Mean Squared Error (MSE)

Notes: Yellow cells denote Top10 models (lowest MSEs) in each horizon. ***, **, and * indicate rejection at 1%, 5%,

and 10% levels, respectively, using the Diebold and Mariano (1995) test and considering model 3 as benchmark.

The R2 out-of-sample statistics (R2 oos) refers to the best model in each horizon.

Considering the monthly inflation rate (left panel in Table 2), at the shortest horizon (h = 1),

the best model is model 46 (comb3 GR), which provides an accuracy gain of 47%, in terms

52The null hypothesis assumes equal forecasting accuracy of two competing forecasts. The variances entering
the test statistics use here the Newey and West (1987) HAC covariance estimator.

53It is defined as follows: R2oos = 100 ×
(

1−
(

T∑
t=T2+1

(
yt+h − f̂ it+h|t

)2)
/

(
T∑

t=T2+1

(
yt+h − f̂BMK

t+h|t

)2))
,

where f̂ it+h|t is the forecast of yt+h from model i using information up to period t and f̂BMK
t+h|t is the benchmark

forecast. Positive (negative) values for the R2oos means forecast f̂ it+h|t beats (is beaten by) f̂
BMK
t+h|t .
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of the R2oos statistic, compared to the ARMA model. Such expressive result is statistically

significant (at 1% level, using the Diebold-Mariano test), and it is achieved by using the Model

Confidence Set (MCS) of Hansen et al. (2011) on the largest set of forecasts (that is, including

BEI and Focus), and the Granger and Ramanathan (1984) method to estimate the weights

used to combine the MCS superior forecasts. The top forecasts at h = 1 also include BEI and

Focus, besides other forecast combinations using the third set of forecasts (comb3).

For longer horizons, the accuracy gains of the best models over the benchmark decrease,

ranging from 10% to 27%. Among the machine learning methods, it is worth highlighting

the good performance of the regression tree-based methods (random forest, quantile regression

forest54 and xgboost), in particular, for longer horizons (h ≥ 12). The recurrent neural network

(RNN) also shows a good result at longer horizons.55 These results reflect the importance of

nonlinear methods when modeling the inflation dynamics in Brazil.

On the other hand, traditional inflation forecasting (linear) models, such as ARMA and

VAR, never enter the set of Top10 forecasts (yellow cells in Table 2) at any horizon. Results for

the disaggregated forecasts are a bit disappointing,56 since they beat the benchmark (ARMA)

forecast in just a few cases. The results for the hybrid models seem to be a little more promising

at some horizons.57

In turn, the Phillips curves and the factor models (the latter especially for h ≥ 9) enter more

often into the set of Top10 forecasts. Focus and BEI also belong to the set of best forecasts,

in several cases. Regarding combinations, the third set of forecasts (set3, including Focus and

BEI in the pool of forecasts) clearly provides a superior58 information set, when compared to

set1 and set2. In this sense, the quality of the information set embodied in the pool of forecasts

seems to be more important here than the forecast combination method59 used to weight the

54For medium/long horizons, note QRF shows a non-neglible accuracy improvement over RF, which is due
to the role quantiles play at improving conditional mean forecasts.
55Deep learning models usually stand out when based on a large database, which is not necessarily the case

in our monthly series setup.
56The gains of separetely forecasting inflation components seem not to offset here model misspecification and

parameter uncertainty, among others, when estimating multiple individual models.
57In both inflation rates, Ada-OLS usually performs worser than Adalasso (and RF-OLS worser than RF),

thus suggesting nonlinearities are important to forecast inflation. By comparing Adalasso with RF, there is no
clear indication of the best variable selection method (Adalasso dominates RF-Ada in many horizons, whereas
RF usually dominates Ada-RF for h ≥ 6). However, when including XGBoost, the results become crystal clear
for the 12-month inflation: XGBoost dominates both Ada-XGB and RF-XGB in all horizons (similar results
are obtained, in many cases, with monthly inflation), thus suggesting XGBoost is a strong variable selection
method.
58Recall that market professionals devote considerable resources to inflation forecasting and use a broad range

of information.
59Regarding the use of machine learning methods as forecast combination devices, results are not so encour-

aging when compared to more traditional combination approaches.
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individual forecasts (i.e., there is no clear winner method in comb3 to be used in all horizons).

Now considering the inflation rate in twelve months (right panel in Table 2), note the

excellent performance of BEI and Focus, which belong to the set of Top10 forecasts in almost

all horizons. Besides, both forecasts statistically beat the benchmark (at least) at 10% level,

using the Diebold-Mariano test, from h = 1 to 9 months. The other forecasts that can also

beat the benchmark (but only for horizons up to three months) are the forecast combinations

(comb3, excepting model 50) based on the third set of forecasts. Again, comb3 dominates

the other two sets of combinations at short/medium horizons, which can be attributed to the

quality of the information set (e.g., BEI and Focus) coupled with the MCS method.

Again, stands out the superior accuracy of the machine learning forecasts, compared to

great part of the traditional forecasting approaches. For instance, for horizons from h = 12

to 18 months, the tree-based methods dominate the other competing methods (with a few

exceptions) in set1 of forecasts (models 1 to 27). In particular, for the longest horizon (h = 18),

the XGBoost method is the best among all the 50 candidates, providing an accuracy gain of

66%, in terms of the R2oos statistic, compared to the benchmark (ARMA) model.

The MSEs from the robustness exercises, presented in Appendix F, in general, lead to

similar conclusions. For instance, factor models show the best results among traditional models,

machine learning methods perform better at medium/long horizons, and forecast combination

including all individual forecasts, and using the MCS approach, delivers an improved accuracy

when compared to the other sets of forecasts.

Altogether, these results complement the ones previously reported by the inflation forecast-

ing literature. For instance, regarding Brazilian inflation, Medeiros et al. (2016) report that

machine learning (lasso-based) methods show the smallest errors at short horizons, whereas the

AR is the best model for long horizons, followed by the factor model, in some cases. Garcia et

al. (2017) document the superiority of the CSR method, compared to alternative ML methods,

and argue that forecast combination based on model confidence sets can achieve superior pre-

dictive performances. Regarding U.S. inflation, Medeiros et al. (2021) point out that random

forest is the ML method that deserves more attention, since it dominates all other models.

Next, we deepen the forecast error analysis60 by investigating the trade-off between bias

and variance.61 Following Lima and Meng (2017), we decompose the MSE into two parts: the

60According to Ng (2015), time spent coming up with diagnostics for learning algorithms is time well spent.
61Underfitting usually occurs when a model is too simple (e.g., few predictors), showing low forecast variance

but more bias towards wrong outcomes. In turn, models that are more complex are often able to reduce the
bias, but at the cost of a higher forecast variance. This trade-off between models too simple (high bias) versus
too complex (high variance) is a key issue in statistics and affects all supervised ML methods.
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forecast variance and the squared forecast bias. To do so, we calculate the MSE of any forecast

f̂yt+h as
1
T ∗

∑
t

(
yt+h − f̂yt+h

)2
and the forecast variance as 1

T ∗

∑
t

(
f̂yt+h − 1

T ∗

∑
t f̂yt+h

)2
, where

T ∗ is the number of out-of-sample observations. The squared forecast bias is, then, computed

as the difference between MSE and the forecast variance.

Figure 6 shows the relative forecast variance and squared forecast bias of all 50 forecast-

ing methods considering the monthly inflation rate as dependent variable. This analysis is

particularly important in model selection and helps understanding why some methods display

a better forecast accuracy compared to others. The relative forecast variance (squared bias)

is calculated as the difference between the forecast variance (squared bias) of the i-th model

and the forecast variance (squared bias) of the moving-average approach RW-AO. Thus, the

value of relative forecast variance (squared bias) for the RW-AO is necessarily equal to zero.

Moreover, each point on the red line represents a forecast with the same MSE as the RW-AO.

Points to the right of the line are forecasts outperformed by the RW-AO, and points to the left

represent forecasts that outperform the RW-AO. Since the RW-AO is a simple moving average

of inflation, it will have a low forecast variance but will likely be biased.

Figure 6 - Scatterplot of relative forecast variance and squared forecast bias (h = 1)

Notes: Each point on the red dotted line represents a forecast with the same MSE as the RW-AO; points to the right are

forecasts outperformed by the RW-AO, and points to the left represent forecasts that outperform the RW-AO.

Note that for h = 1 all forecasts (excepting RW and RNN) outperform the RW-AO. Since

forecast variances are generally greater than RW-AO’s variance (note the blue dots are usually

above zero in the vertical axis of Figure 6), the higher accuracy compared to RW-AO relies

almost exclusively on a method’s ability to lower the bias relative to the RW-AO. Also note
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that tree-based methods deliver a lower forecast variance, essentially, due to data bootstrapping

in multiple tree-learning, besides a random subset of variables used in each tree.

On the other hand, forecast combinations seem to increase the forecast variance, when com-

pared to individual forecasting methods. In particular, the best method for h = 1 (Comb3 GR)

delivered the lowest MSE by reducing the bias (e.g., compared to Focus) without increasing

too much the variance. The main message is that the forecasting methods that yield a size-

able reduction in the forecast bias, while keeping variance under control, are able to improve

forecasting accuracy over the lowest-variance approach (RW-AO).

The MSE decomposition for other cases are shown in Appendix G. For the twelve-month

inflation (h = 12 or 18), the tree-based methods again show a lower variance, whereas forecast

combinations in general exhibit a sizeable bias (one possible reason is multicollinearity at long

horizons, due to highly correlated forecasts).62 ,63

The previous analysis enabled a discussion on relative (average) forecast accuracy. However,

such measures alone do not convey any information on how the performance of the competing

methods evolves over time. To tackle this issue, we compute the Cumulative Squared Prediction

Error (CSPE) of each method, compared to the benchmark, along the pseudo out-of-sample

exercise; see Rapach et al. (2010) and Lima and Meng (2017).

Figure 7 shows the differences over time between the CSPEs of the benchmark (ARMA)

and each competing method. When the curve in each graph increases, the considered method

outperforms the benchmark, while the opposite holds when the curve decreases. In addition, if

the curve is higher at the end of the evaluation period, the method has a lower MSE compared

to the benchmark, considering all out-of-sample observations.

Note in Figure 7 the best forecast (model 46) consistently outperformed the benchmark

(smooth decline of the blue line). On the other hand, for several methods (e.g., BEI and

Comb3 CSR) there is a concentrated accuracy loss, compared to benchmark (sharp increase

of the blue line), at the beginning of 2020 (probably due to the COVID-19 pandemic, and the

higher uncertainty about the future of economy).64 In other cases, such as RF and QRF, note

the blue line fluctuates slightly above the zero horizontal line, thus indicating, for h = 1, a bit

worse performance of such methods in comparison to the benchmark.

62Recall that benefits of combination come from a set of forecasts containing low pairwise correlations.
63Besides the bias-variance decomposition, other metrics could be used to further investigate the performance

of ML algorithms, such as overfit and stability measures (e.g., relative overfitting rate and leave-one-out cross-
validation stability).
64Appendix G shows the CSPE curves for other cases. In Figure G4, note the top forecasts improve accuracy

over the benchmark, essentially, by the end of 2016 until 2018, keeping a stable performance outside this period.
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Figure 7 - Cumulative Square Prediction Error (CSPE) for h = 1 (IPCA % p.m.)

Notes: A positively sloped curve in each panel indicates the conditional model is outperformed by the benchmark,

while the opposite holds for a downward sloping curve. Moreover, if the curve is positive (negative) at the end of

the period, then the competing method has a higher (lower) MSE than the benchmark over the evaluation period.
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Another interesting analysis is the identification of the most important variables chosen by

the machine learning methods to predict inflation. A first approach is to track the number of

variables selected (or not) over time, along the pseudo out-of-sample forecasting exercise. Figure

8 reveals, for illustrative purposes, among the 501 potential predictors for inflation, which ones

were indeed selected (and when), according to the Adalasso and Elastic Net methods.

Figure 8 shows how the selection procedure works over time. The horizontal axis represents

the end of the estimation sample, along the out-of-sample forecasting exercise, and the vertical

axis denotes all the 501 regressors. A blue dot indicates that variable i has a non-zero coeffi cient

in the adalasso estimation (a red dot, in the elastic net) with sample ending at period t, used

to build forecasts for yt+h. This allows us to discover how the models change in response to

different economic conditions over time.65 In other words, Figure 8 shows that the statistical

significance of the coeffi cients vary considerably over time for some variables, while staying

relatively stable for several others. For instance, note for h = 1 that adalasso quite regularly

selects 3 variables along the forecasting exercise. As later revealed in Figure 9, these variables

are the IPCA headline and IPC-Fipe inflation rates, lagged one month, both representing the

inertial component of inflation, besides the commercial consumption of electricity, also lagged

one month, which is a variable directly related to economic activity and aggregate demand.

Figure 8 - Variable selection over time

h = 1 (IPCA % p.m.)

h = 12 (IPCA % 12 months)

65In Appendix G, Figure G5 shows the average number of variables selected by lasso, adalasso and elastic net.
Overall, elastic net selects more variables than lasso and adalasso (probably due to the grouping effect; see Zou
and Hastie, 2005). In turn, adalasso is more parsimonious, compared to the other two methods. On the other
hand, fewer variables are selected when the dependent variable is the monthly inflation rate, in comparison to
the 12-month inflation rate (naturally more autocorrelated compared to the monthly rate).
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Now, we identify which variables are more frequently chosen by some machine learning

algorithms. Although we do not attempt to economically interpret the driving forces behind

the ML forecasts here, further inspecting these models allows us to better understand how

they are making forecasts, which may reveal new statistical relationships in the data previously

overlooked by standard linear models.

Figure 9 shows word cloud graphs, which are images composed by the names of the vari-

ables66 most frequently selected by a given method, where the size of each word indicates the

frequency a variable is selected (e.g., non-zero coeffi cient) along the recursive estimations in the

out-of-sample forecasting exercise. Thus, most frequent variables have larger font size, whereas

variables with the same frequency of selection have the same size and color.

Figure 9 - Word cloud (frequency), adalasso (left) and elastic net (right)

h = 1 (IPCA % p.m.)

h = 12 (IPCA % 12 months)

Note: The size of each word indicates the frequency a variable is selected along the out-of-sample forecasting exercise.

Variables with the same frequency of selection have the same size and color.

The variables identified by adalasso and elastic net (for h = 1) include past inflation (inertial

inflationary dynamics) and variables related to the real economy (e.g., commercial electricity

consumption, agriculture exports). Regarding the 12-month inflation rate (for h = 12), the

set of most frequent variables now also includes interest rates, fiscal variables, external sector

variables (current account, dollar index, CRB food, oil price), and also new variables (not

66The names displayed in the word clouds are the nicknames listed in Appendix E.
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traditionally used to forecast inflation), such as the temperature of the Pacific Ocean (oceanic

nino index),67 due to the role that the El Niño and La Niña might play in food inflation.68

Another way to inspect the ML results is to build the so-called variable importance (or

feature importance) graphs. The idea is again to build a rank of variables, but now based on

their usefulness in predicting inflation at a given horizon.69 Word clouds can again be used to

summarize the results.

For the penalized-regression models (elastic net, lasso, adalasso and ridge), we compute the

rank of variable importance based on the absolute value of the estimated coeffi cients (adjusted

for the original scale of each variable) multiplied by the standard deviation of the respective

variable. For tree-based methods, the rank can be computed using either the methods of

permutation or impurity (used here); see Appendix D for further details.

Figure 10 presents variable importance results for monthly inflation (selecting the best

methods in Table 2, among models 11-17), whereas Appendix G shows some results for the

12-month inflation.

Figure 10 - Word cloud (importance), selected models, IPCA % p.m.

h = 1, elastic net (left), random forest (right)

h = 3, ridge regression (left), random forest (right)

Note: The size of each word indicates the variable importance. Most relevant variables have

larger font size and variables with the same importance have the same size and color.

67This series is the Oceanic Niño Index (ONI), provided by the Climate Prediction Center, linked to the
National Oceanic and Atmospheric Administration (NOAA, USA).
68The BCB semistructural models include this variable. See, for instance, the box “Revision of the small-scale

aggregate model”, in BCB (2021b).
69Variable (or feature) importance refers here to techniques that assign scores to variables based on how

useful they are at improving the forecast accuracy of a given model.
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Figures 11-12 also show variable importance results, but only considering the Top 20 most

important variables. Note that in some cases (e.g., adalasso, h = 1), there are just a few

relevant predictors employed by the forecasting method.

In Figures 10 or 11, considering h = 1 and monthly inflation rate, the lagged inflation mea-

sured by the IPC—Fipe stands out as the most relevant predictor according to three methods

(adalasso, elastic net and random forest), being second-place in XGBoost. For h = 3 (Fig-

ure 10), the one-year interest rate gains relevance, together with variables related to the real

economy and the external sector, besides unusual predictors of Brazilian inflation, such as the

amount of rainfall in some Brazilian cities. Also note in Figure 10 that penalized-regressions

(elastic net and ridge) give more importance to fewer predictors, compared to random forest.

On the other hand, Figure 12 shows the results for the twelve-month inflation rate, and

h = 12, confirming that the usual variables often employed to forecast inflation in Brazil (e.g.,

past inflation, lagged interest rates, exchange rate and fiscal variables) are indeed the most

relevant in our empirical exercise.

Figure 11 - Variable importance, top variables, h = 1, IPCA % p.m.

Note: The horizontal axis denotes the variable importance scale based on a given method.

Higher figures represent more relevant features to predict inflation.

40



Figure 12 - Variable importance, top variables, h = 12, IPCA % 12 months

Note: The horizontal axis denotes the variable importance scale based on a given method.

Higher figures represent more relevant features to predict inflation.

Finally, we depart from the point forecast setup and build simple density forecasts associated

with the point forecasts at multiple horizons. Figure 13 shows such density forecasts (fan charts)

for selected methods, which allows us to conduct risk management analysis.70 For example,

according to model 30 (comb1 mean), the probability of the monthly inflation rate to be greater

than 0.8% p.m. (per month) in December 2022 is 20% (and to be above 1.0% p.m. is 9%).

In turn, the chance of the 12-month rate, for instance, being above 5.0% p.y. (per year) in

December 2022 is 36% according to BEI (and 29% according to Focus); see Figure G7 in

Appendix G. Such analysis can be useful when evaluating the chance of future inflation to be

above/below the target.

70Recall that, for simplicity, we assumed a Gaussian distribution, where the conditional mean is the point
forecast of a given method and the conditional variance comes from past forecast errors of such method.
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Figure 13 - Fan charts (IPCA % p.m.)

4 Conclusions

Machine learning is constantly evolving with new methods being developed every day. Progress

has been made in macroeconomics over the recent years on the usage of such methods with big

data. However, model interpretability is usually lost in such approaches. According to Occam’s

razor, models should be simple and explainable. Nonetheless, machine learning methods are

not easily interpreted, for instance, due to a highly nonlinear setup or a large set of inputs.

In this paper, we tackle this issue and take a step towards transparency (turning the black

box into a gray box) by providing complementary tools (e.g., word clouds, variable importance

graphs and fan charts) to better understand the ML outcomes. The tools we provide for

identifying the most important variables to predict inflation also allow shifting the discussion

from big data to good data, in the sense that finding high-quality data is more important than

the quantity of data (Ng, 2015, 2021).

In this context, we study the inflation forecasting accuracy of 50 competing methods, includ-

ing some new machine learning techniques proposed here (e.g., hybrid models and a quantile-

combination method based on quantile regression forest), traditional econometric models (e.g.,

VAR), reduced-form structural models (Phillips curves), factor models, survey-based forecasts,

regularization procedures (e.g., elastic net), and forecast combinations, among others.

The variable of interest is the Brazilian inflation as measured by the IPCA. In order to

evaluate the predictive power of each method, we conduct a pseudo out-of-sample empirical

exercise (horse-race) based on 501 time series, coming from 167 macroeconomic and financial

variables, where each method produces point forecasts for horizons h = 1, ..., 18months ahead.71

71As suggestion for future research, a Monte Carlo experiment could be employed to investigate the stability
and accuracy of the competing models under different circumstances.
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According to Wolpert (1996), there is no universal best model. In other words, the set of

assumptions that works well in one domain may work poorly in another framework. The em-

pirical results documented in this paper go in this direction, suggesting some machine learning

algorithms are, indeed, able to consistently outperform traditional econometric models in terms

of MSE. However, there is no supreme model for all cases, since the performance depends on

the forecast horizon and whether inflation is measured by its monthly rate or accumulated in

twelve months.

The main takeaways are the following: (i) ML methods, often designed to work under low

noise-to-signal ratio setups (e.g., image classification, voice recognition) and large datasets, can

do a pretty good job under medium/high noise-to-signal ratio and a dataset not so large in time-

dimension (e.g., applied macroeconomics); (ii) ML methods consistently beat the benchmark

(ARMA) model and, in many cases, exhibit two-digit accuracy gains in terms of the R2 out-of-

sample statistic; (iii) nonlinearities captured by ML methods (Varian, 2014), such as recurrent

neural networks or random forest, are important to forecast inflation in Brazil; (iv) at shorter

horizons, forecast combinations are useful, especially when using big data to build individual

forecasts and the model confidence set of Hansen et al. (2011) to select the superior forecasts to

be combined; (v) at longer horizons, tree-based methods, such as random forest and XGBoost,

perform quite well and dominate other models in several cases; (vi) Focus and BEI also belong

to the set of top forecasts in many horizons (for monthly inflation, they improve the quality

of the information set used as input in combinations, whereas for the 12-month inflation rate

they belong to the set of top forecasts in almost all horizons); (vii) XGBoost is a competing

variable selection method; and (viii) fan charts can easily be constructed from point forecasts,

which allows estimating the probability of future inflation to be above/below the target.

To sum it up, we analyze machine learning methods that forecasters should have in their

toolkit when predicting inflation in Brazil. Moreover, we reveal the top features that an econo-

metrician should have in mind when building inflation forecast models. These findings represent

a valuable contribution to academics, practitioners and policymakers interested in macroeco-

nomic forecasting using machine learning, in particular, focused on Brazilian inflation.
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Appendix A. Further details on elastic net

There are well-established methods for choosing tuning parameters (λ, α). For instance, K-fold

cross-validation (CV) is a popular method for computing the prediction error and comparing

different models using training data. The loss often used for cross-validation is the mean

squared-error (MSE). The goal is to produce the so-called cross-validation curve, built by

computing the MSE as a function of the tuning parameter λ chosen over a pre-selected grid.72

Note that in the elastic net there are two tuning parameters, so one would need to cross-

validate the model on a two-dimensional surface. The minimum MSE, thus, provides the pair

(λ, α) to be used in the final model estimation. Parameters can be estimated using the penalized

maximum likelihood, in which the regularization path (i.e., the path of each coeffi cient βj

against, for instance, the l1-norm of the whole coeffi cient vector as λ varies) can be computed.

Another way to choose the tuning parameters is to employ information criteria. For ex-

ample, Zou et al. (2007) show one can consistently estimate the degrees of freedom of the

lasso model using information criteria as alternative to cross-validation. An advantage of such

procedure is that selecting the model using information criterion is much faster than using

cross-validation.

More importantly, performing cross-validation in a time-series context is quite challenging,

since data are (usually) not independent and identically distributed (i.i.d.). In other words,

traditional cross-validation methods are not appropriate for time series dataset, since tempo-

ral dependency imposes correlation in the time dimension, meanwhile K-fold cross validation

assumes i.i.d. amid samples (Arlot and Celisse, 2010). Moreover, the temporal dependencies

in the CV approach would split the dataset randomly, loosing the chronological order of obser-

vations, which is troublesome in forecasting, because one would be using the future to predict

the past (Tashman, 2000). See also Medeiros et al. (2016) for further details.

In this paper, since we are mainly interested in a forecasting exercise using time series

data, we select the best lasso, adalasso and elastic net models using an information criterion

procedure (BIC —Bayesian Information Criterion).

72The CV algorithm splits the training set of observations in two parts: training fold (used for the estimation
of parameters) and test fold (based on the remaining observations, used for model predictions). Then, forecast
errors are computed and used to calculate the MSE over the entire set of predictions using K-folds. See Jung
et al. (2018) for further details.
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Appendix B. Further details on random forest

First, we investigate how to properly grow a regression tree.73 The algorithm needs to automat-

ically decide on both the splitting variables and split points. In the example shown in Figure

1, if one assumes a mean-squared error loss function, the optimal ĉm is simply the average of

the response Y in the region Rm. However, finding the best partition in terms of overall MSE,

according to Hastie et al. (2009), is usually computationally infeasible. In this sense, the au-

thors propose the following approach, focused on the implementation of CART (classification

and regression tree) models:

(i) consider a splitting variable j and split point s, and define the pair of half-planes:

R1 (j, s) = {X | Xj ≤ s} and R2 (j, s) = {X | Xj > s} , (16)

(ii) find the splitting variable j and split point s that solve the minimization problem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2
 , (17)

where the previous inner minimizations, for any choice j and s, can be solved by:

ĉ1 = E (yi | xi ∈ R1 (j, s)) and ĉ2 = E (yi | xi ∈ R2 (j, s)) . (18)

Note that for a given splitting variable, the calculation of the optimal split point s can be

easily done. Thus, by searching through all covariates, the determination of the best pair (j, s)

is feasible. Then, based on the best split, we divide the data into the two resulting regions R1

and R2 and repeat the splitting process on each of the two regions. This process is repeated on

all of the resulting regions. To sum it up, the regression tree can be estimated by repeating the

three steps below, for each terminal node of the tree, until the minimum number of observations

at each node is achieved:

(1) randomly select m out of p covariates as possible split variables;74

73According to Hansen (2019): "The literature on regression trees has developed some colorful language to
describe the tools, based on the metaphor of a living tree. 1. A split point is node. 2. A subsample is a branch.
3. Increasing the set of nodes is growing a tree. 4. Decreasing the set of nodes is pruning a tree."
74The size of a tree is a tuning parameter governing the model’s complexity, and the optimal size should be

adaptively chosen from the data. The preferred strategy is to stop the splitting process when some minimum
node size is reached. Typically, for regression problems with p predictors, the literature recommends to use
m = p/3 (rounded down) in each split, with a minimum node size of 5 as the default. Note the reduction of the
tuning parameter m will, in general, reduce the correlation between any pair of trees. See Hastie et al. (2009,
chapter 15.3) for more details.
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(2) select the best variable/split point among the m candidates;

(3) split the node into two child nodes.

Next, we represent mathematically the random forest model, following the discussion in

Meinshausen (2006): consider n independent observations (Yi, Xi), for i = 1, ..., n, and let θ be

the random parameter vector that determines how a tree T (θ) is grown, that is, characterizes

the tree in terms of split variables, cut-points at each node, and terminal-node values. Also,

let = be the space in which X lives, that is X : Ω → =, where = ⊆ Rp and p ∈ N+ is the

dimensionality of the set of covariates X.

Every leaf of a tree (terminal node) l = 1, ..., L corresponds to a subspace of =, that is

Rl ⊆ =. For every x ∈ =, there is one (and only one) leaf l such that x ∈ Rl (corresponding to

the leaf that is obtained when dropping x down the tree). Denote this leaf by l(x, θ) for tree

T (θ). The prediction of a single tree T (θ) conditioned on X = x is obtained by averaging over

the observed values in leaf l(x, θ). Let the weight vector wi(x, θ) be given by a positive constant

if observation Xi is part of leaf l(x, θ) and 0 if it is not. The weights sum to one, such that:

wi(x, θ) =
1{Xi∈Rl(x,θ)}
n∑
j=1

1{Xj∈Rl(x,θ)}

. (19)

The forecasting model based on a single regression tree, conditioned on a covariate X = x,

is then the weighted average of the original observations Yi, for all i = 1, ..., n, that is:

Eregression tree (Y | X = x) =
n∑
i=1

wi(x, θ)Yi. (20)

Note that conditional on the knowledge of the subregions Rl, for l = 1, ..., L, the relationship

between inflation Y and the set of covariates X in equation (1) is approximated here by a

piecewise constant model, where each leaf represents a distinct regime (see Garcia et al., 2017).

Now, using random forests, the conditional mean above is approximated by the averaged

prediction of K single trees, each constructed with a parameter vector θk, k = 1, ..., K. Let

wi(x) be the average of wi(x, θk) over this collection of trees, as follows:

wi(x) =
1

K

K∑
k=1

wi(x, θk). (21)
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The prediction of random forests is, thus, the averaged response of all trees, as follows:

Erandom forest (Y | X = x) =
n∑
i=1

wi(x)Yi. (22)

Note that the approximation of the conditional mean of Y conditioned on X = x is given by

a weighted sum over all observations. The weights vary with the covariate and tend to be large

for those observations i ∈ {1, ..., n} where the conditional distribution of Y , given X = Xi, is

similar to the conditional distribution of Y given X = x.

Appendix C. Further details on quantile regression forest

The QRF algorithm proposed by Meinshausen (2006) for computing the estimate of the condi-

tional distribution function can be summarized as follows:

(a) grow trees T (θk), for k = 1, ..., K , as in random forests. However, for every leaf (on

each tree) consider all observations in the leaf, not just their average.

(b) for a given X = x, drop x down in all trees. Compute the weight wi(x, θk) of observation

i ∈ {1, ..., n} for every tree as in (19). Compute weight wi(x) for every observation i ∈ {1, ..., n}

as an average over wi(x, θk), for all k = 1, ..., K, as in (21).

(c) compute the estimate of the distribution function as in (10) for all y ∈ R, using the

weights from the previous step (b).

Appendix D. Variable importance

The relative importance of individual features can be a crucial aspect to understand the outcome

of a given model. The main idea is to assess the relative importance of a variable based on the

amount by which the inclusion/exclusion of such variable improves/deteriorates the model’s

performance.

In a big data context, the variable importance analysis aims at providing a deeper insight

into the underlying processes that generated the data. The goal is to identify the best subset of

features to predict the target variable. Identifying this set of relevant predictors helps opening

the so-called black box, thus resulting in a more interpretable model (and the model analysis

efforts can be concentrated on the few most informative features).
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In linear models, if one employs standardized regressors (e.g., with zero mean and unit

variance), the higher the absolute value of a given coeffi cient, the more of an impact that

feature has on the dependent variable. In other words, to show which features are the most

important in a linear model, one can simply rank the standardized features according to the

modulus of their coeffi cients.75

However, this simple comparison does not hold outside the linear setup. The diffi culty

on decomposing the importance of variables in more general models is essentially due to the

nonlinear nature of the ML methods. In such cases, there are different approaches to identify

and rank the most important features.

Importance on regression trees

Random forests are among the most popular machine learning methods due to their good

forecasting accuracy, robustness and ease of use. In contrast to parametric methods, random

forests are fully nonparametric and can deal with nonlinear effects, thus offering a great model

flexibility in practical applications. Furthermore, RF can even be applied in the statistically

challenging setting where the number of variables is higher than the number of observations.

This makes random forests especially attractive for complex high-dimensional data applications;

see Janitza et al. (2018).

Nonetheless, a suitable understanding of the black box mechanism behind the random forest

method is of greatest importance. Nowadays, ML models are often deployed to production

without a proper understanding of why exactly the algorithms make the decisions they do. As

these new tools become more relevant in everyday life, model interpretability becomes one of

the most important problems in machine learning these days. In particular, regarding the use

of RF as a forecasting device, it is critical to comprehend the key variable interactions that are

providing the predictive accuracy.

One attempt to tackle this issue is to build the so-called variable importance measures, by

attributing scores to the variables, which reflect their relative importance in the overall model

accuracy. Such measures can be used to identify relevant features, perform variable selection and

quantify the prediction strength of each variable, allowing one to rank the variables according

to their predictive abilities. See Hastie et al. (2009, chapter 15) for further details.76

75In this paper, we rank the modulus of the coeffi cients (from lasso, adalasso, ridge
and elastic net) multiplied by the standard deviation of the respective variable. See
https://stats.stackexchange.com/questions/14853/variable-importance-from-glmnet
76There are many other ways on the lookout for opening the ML black box. Just to mention a few examples:

(i) Partial Dependence Plots (PDP), which show the marginal effect of a given predictor on the outcome of a ML
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There are two main variable importance measures: (i) the permutation approach of Altmann

et al. (2010); and (ii) the impurity-corrected method of Nembrini et al. (2018). Also, one can

carry out the Janitza et al. (2018) hypothesis test of no association between the predictor and

the dependent variable in both measures.

Method 1

The permutation method, also known as the mean decrease in accuracy, is one of the most

common variable importance measures, and it is computed from the change in prediction ac-

curacy when removing any association between the dependent variable and a given predictor,

with large changes indicating that the predictor is important.77 One disadvantage of the per-

mutation approach is to produce biased outcomes when predictors are highly correlated. In

addition, adding a correlated variable to the RF model can decrease the importance of another

variable. Furthermore, the permutation importance is very computationally intensive in the

case of high-dimensional data.

Method 2

Alternative importance measures based on impurity (i.e., how well the regression trees split

the variables) are popular because they are simple, fast to compute and can be more robust

to data perturbations compared with those based on permutation.78 However, the impurity

importance is known to be biased towards variables with more categories or more possible split

points. Also, when the dataset has two (or more) correlated variables, any of them can be

selected as predictor. Nevertheless, once one of these (correlated) variables is used as predictor,

the importance of others is significantly reduced, since the impurity these other variables can

decrease is already reduced by the first selected variable.79 In this sense, Nembrini et al. (2018)

model; (ii) Surrogate Models (SM), which are auxiliary interpretable models (e.g., linear regression), built to
approximate the predictions of a ML model in order to understand the (black box) outcomes by analyzing and
interpreting the surrogate model’s responses; and (iii) Shapley and SHAP values, which are auxiliary measures
of feature importance (Lundberg and Lee, 2017).
77According to Nembrini et al. (2018): “To calculate the permutation importance of the variable xi, its original

association with the response y is broken by randomly permuting the values of all individuals for xi. With this
permuted data, the tree-wise out-of-bag (OOB) estimate of the prediction error is computed. The difference
between this estimate and the OOB error without permutation, averaged over all trees, is the permutation
importance of the variable xi. This procedures is repeated for all variables of interest x1,. . . ,xp. The larger the
permutation importance of a variable, the more relevant the variable is for the overall prediction accuracy.”
78Recall that random forest consists of a number of decision trees. Every node in the trees is a condition on

a given variable, and it is designed to optimally split the dataset into two parts so that overall model accuracy
can be improved. The measure based on which the (locally) optimal condition is chosen is called impurity (or
variance, in the case of the regression trees). This way, one can compute how much each variable reduces the
weighted impurity in a tree. For a forest, the impurity reduction from each variable can be averaged and a
ranking of variables can be constructed according to this importance measure.
79This is not an issue in respect to model forecasting, but regarding model interpretation, it can lead to the
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propose the “corrected impurity”importance measure, which is unbiased in terms of the number

of categories and category frequencies and is computationally effi cient (i.e., almost as fast as

the standard impurity importance and much faster than the permutation importance).

In the case of XGBoost, similarly to the impurity approach of random forest, the importance

of features is based on gains, that represent fractional contribution of each feature to the model,

based on the total gain of the tree node splits of this feature. Higher percentage means a more

important predictive feature.

Hypothesis test

Besides building a ranking of importance, it is also crucial to statistically check whether

a given predictor is important (or not) in respect to the depend variable of the RF model.

According to Janitza et al. (2018), the variable importance depends on many different factors,

including aspects related to the data (e.g., correlations, signal-to-noise ratio or the total number

of variables) as well as on the random forest specific factors (such as the choice of the number of

randomly drawn candidate predictor variables for each split node). Therefore, there is no uni-

versally applicable threshold that can be used to statistically discriminate between important

and non-important variables. Nonetheless, several hypothesis-testing approaches have been

developed. The permutation-based tests entail the repeated computation of random forests.

While for low-dimensional settings those approaches might be computationally tractable, for

high-dimensional models (e.g., including thousands of predictors), computing time might be-

come enormous. In this sense, Janitza et al. (2018) proposes a variable importance test that

is appropriate for high-dimensional data where many variables do not carry any information

related to the dependent variable. According to the authors, the testing approach, based on

cross-validation procedures, shows at least comparable power and a substantially smaller com-

putation time.

incorrect conclusion that one of the variables is a strong predictor while the others (correlated variables) are
not important, while, in reality, they are all close in respect to their statistical relationship with the dependent
variable. This effect can be attenuated by using random variable selection at each node (instead of using all
possible variables) when growing a tree within the random forest setup.
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Appendix E. Database

Table E1 - List of macroeconomic and financial variables

C at ego ry N am e So urc e Or ig ina l  un i t N ic k nam e t c o de

1 Inflation IPCA (consumer price index) IBGE % p.m. IPCA_headline 1

2 Inflation IPCA (consumer price index, market prices) IBGE % p.m. IPCA_market 1

3 Inflation IPCA (consumer price index, administered prices) IBGE % p.m. IPCA_administered 1

4 Inflation IPCA (consumer price index, tradables) BCB % p.m. IPCA_tradables 1

5 Inflation IPCA (consumer price index, nontradables) BCB % p.m. IPCA_nontradables 1

6 Inflation IPCA (consumer price index, services) BCB % p.m. IPCA_services 1

7 Inflation IPCA (consumer price index, industrial goods) BCB % p.m. IPCA_ind_goods 1

8 Inflation IPCA (consumer price index, food at home) BCB % p.m. IPCA_food_at_home 1

9 Inflation IPCA diffusion index BCB % IPCA_diffusion 1

10 Inflation IPCA­15 (consumer price index­extended 15) IBGE % p.m. IPCA15 1

11 Inflation IPC­Fipe (consumer price index) Fipe % p.m. IPC­Fipe 1

12 Inflation IPC­Br (consumer price index) FGV % p.m. IPC­BR 1

13 Inflation IGP­DI (general price index) FGV % p.m. IGP­DI 1

14 Inflation IGP­M  (general price index) FGV % p.m. IGP­M 1

15 Inflation IGP­10 (general price index) FGV % p.m. IGP­10 1

16 Inflation INCC (national index of building costs) FGV % p.m. INCC 1

17 Inflation Core IPC­Br (core inflation) FGV % p.m. core_IPC­BR 1

18 Inflation Core IPCA ­ Exclusion EX0 (core inflation) BCB % p.m. core_IPCA_EX0 1

19 Inflation Core IPCA ­ Exclusion EX1 (core inflation) BCB % p.m. core_IPCA_EX1 1

20 Inflation Core IPCA ­ Double Weight (core inflation) BCB % p.m. core_IPCA_DW 1

21 Inflation Core IPCA ­ Trimmed M eans Smoothed (core inflation) BCB % p.m. core_IPCA_TM 1

22 Interest rates Nominal po licy interest rate (Selic) BCB % p.a. interest_rate_Selic 2

23 Interest rates Nominal po licy interest rate (long­term interest rate, TJLP) BCB % p.a. interest_rate_TJLP 2

24 Interest rates Nominal market interest rate (prefixed, 1 year) Anbima % p.a. interest_rate_1y 2

25 Interest rates Nominal market interest rate (prefixed, 2 years) Anbima % p.a. interest_rate_2y 2

26 Interest rates Nominal market interest rate (prefixed, 5 years) Anbima % p.a. interest_rate_5y 2

27 Interest rates Real market interest rate (indexed IPCA, 1 year) Anbima % p.a. real_interest_1y 2

28 Interest rates Real market interest rate (indexed IPCA, 2 years) Anbima % p.a. real_interest_2y 2

29 Interest rates Real market interest rate (indexed IPCA, 5 years) Anbima % p.a. real_interest_5y 2

30 Interest rates U.S. Treasury 3 months nominal yield Reuters % p.a. US_treasury_3m 2

31 Interest rates U.S. Treasury 2 years nominal yield Reuters % p.a. US_treasury_2y 2

32 Interest rates U.S. Treasury 10 years nominal yield Reuters % p.a. US_treasury_10y 2

33 Interest rates U.S. Treasury 5 years TIPS (Treasury Inflation­Protected Securities) Reuters % p.a. US_treasury_5y_tips 2

34 M oney M onetary base BCB R$ thousand monetary_base 5

35 M oney M oney supply (currency outside banks) BCB R$ thousand money_supply 5

36 M oney Demand deposits BCB R$ thousand demand_deposits 5

37 M oney Savings deposits BCB R$ thousand savings_deposits 5

38 M oney M 1 BCB R$ thousand M 1 5

39 M oney M 2 BCB R$ thousand M 2 6

40 M oney M 3 BCB R$ thousand M 3 6

41 M oney M 4 BCB R$ thousand M 4 6

42 Banking Credit spread (nonearmarked credit rate ­ Selic rate) BCB, authors basis po ints credit_spread 2

43 Banking Non­Performing Loans (NPL) o f to tal credit BCB, authors % non_performing_loans 2

44 Banking Loan­to­Deposit ratio  (LTD) BCB, authors Units loan_to_deposit_ratio 3

45 Banking Reserve requirements ratio  (financial inst. reserve requirements / to tal deposits) BCB, authors Units reserve_requirements 2

46 Banking Nonearmarked credit operations outstanding BCB, authors R$ million credit_outstanding 6

47 Capital markets Ibovespa (Brazil) Reuters Index Ibovespa 5

48 Capital markets Euro  Stoxx 50 price index Reuters Index euro_stoxx50 5

49 Capital markets M SCI emerging countries (EM , US$) Reuters Index M SCI_emerging 5

50 Capital markets M SCI developed countries (World, US$) Reuters Index M SCI_developed 5

51 FX and risk FX­rate (nominal exchange rate, R$/US$) Reuters Units exchange_rate 5

52 FX and risk REER (Real effective exchange rate, IPA­13 currencies) Reuters Index REER 5

53 FX and risk U.S. do llar index (DXY, geometric average of 6 currencies in respect to  US$) Reuters Index dollar_index 5

54 FX and risk U.S. dollar emerging market index (Federal Reserve, 19 countries) Reuters Index dollar_index_em 5

55 FX and risk Embi+Br (Emerging M arkets Bond Index P lus Brazil, spread) Reuters basis po ints embi+br 5

56 FX and risk CDS (Credit Default Swap, Brazil 5 years) Reuters basis po ints CDS_5y 5

57 FX and risk U.S. corporate bonds M oody's seasoned BAA Reuters % p.a. US_corp_bonds 2

58 FX and risk VIX CBOE volatility index (30­day expected vo latility o f the S&P500) Reuters Index VIX 1

Note: The column "tcode" denotes the following data transformations:

(1) no transformation; (2) ∆xt; (3) ∆2xt; (4) ln(xt); (5) ∆ln(xt); (6) ∆2ln(xt).
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Table E1 - List of macroeconomic and financial variables (cont.)

C at ego ry N am e So urc e Or ig ina l  un i t N ic k nam e t c o de

59 Labor Unemployment rate (open) IBGE % unemployment_rate 3

60 Labor Formal employment created ­ South M Tb Units employment_south 2

61 Labor Formal employment created ­ Southeast M Tb Units employment_southeast 2

62 Labor Formal employment created ­ North M Tb Units employment_north 2

63 Labor Formal employment created ­ Northeast M Tb Units employment_northeast 2

64 Labor Formal employment created ­ Central­West M Tb Units employment_central_west 2

65 Labor M inimum wage M Tb R$ minimum_wage 5

66 Labor Hours worked in production (Rio Grande do Sul) Fiergs Index hours_worked_prod_RS 5

67 Labor Disposable overall earnings (accumulated in 12 months) BCB R$ million disposible_earnings 6

68 Industry Industrial production (mineral extraction) IBGE Index ind_prod_mineral_extract 5

69 Industry Industrial production (manufacturing industry) IBGE Index ind_prod_manufacturing 5

70 Industry Industrial production (capital goods) IBGE Index ind_prod_capital_goods 5

71 Industry Industrial production (intermediate goods) IBGE Index ind_prod_interm_goods 5

72 Industry Industrial production (consumer goods) IBGE Index ind_prod_consumer_goods 5

73 Industry Industrial production (durable goods) IBGE Index ind_prod_durable_goods 5

74 Industry Industrial production (semidurable and nondurable goods) IBGE Index ind_prod_non­durable 5

75 Industry Installed capacity utilization (Rio Grande do Sul) Fiergs % capacity_utilization_RS 2

76 Industry Capacity utilization (manufacturing industry, FGV) FGV % capacity_utilization_industry 2

77 Industry Steel production BCB Index steel_production 5

78 Industry Vehicles production (total) Anfavea Units vehicles_production 5

79 Industry Truck production Anfavea Units truck_production 5

80 Industry Bus production Anfavea Units bus_production 5

81 Industry Production of agricultural machinery (to tal) Anfavea Units agricultural_machinery 5

82 Sales Sales volume index in the retail sector (to tal) IBGE Index sales_total 5

83 Sales Sales volume index in the retail sector (fuel and lubricants) IBGE Index sales_fuel 5

84 Sales Sales volume index in the retail sector (hyperm., superm., food, bever. and tobacco) IBGE Index sales_hypermarket 5

85 Sales Sales volume index in the retail sector (textiles, clo thing and footwear) IBGE Index sales_textiles 5

86 Sales Sales volume index in the retail sector (furniture and white goods) IBGE Index sales_furniture 5

87 Sales Sales volume index in the retail sector (vehicles and motorcycles, spare parts) IBGE Index sales_vehicles1 5

88 Sales Vehicle sales (to tal) Anfavea Units sales_vehicles2 5

89 Sales Domestic vehicle sales Anfavea Units domestic_sales_vehicles 5

90 Energy Electric energy consumption (commercial) Eletrobras GWh electricity_commercial 5

91 Energy Electric energy consumption (residential) Eletrobras GWh electricity_residential 5

92 Energy Electric energy consumption (industrial) Eletrobras GWh electricity_industrial 5

93 Energy Electric energy consumption (other) Eletrobras GWh electricity_other 5

94 Energy Electric energy consumption (to tal) Eletrobras GWh electricity_total 5

95 Climate El Niño­Southern Oscillation, as measured by the Oceanic Niño Index (ONI) NOAA Index oceanic_nino_index 2

96 Climate Total monthly precipitation (mm) in Belém INM ET mm rain_Belem 2

97 Climate Total monthly precipitation (mm) in Belo Horizonte INM ET mm rain_Belo_Horizonte 2

98 Climate Total monthly precipitation (mm) in Curitiba INM ET mm rain_Curitiba 2

99 Climate Total monthly precipitation (mm) in Florianópolis INM ET mm rain_Florianopolis 2

100 Climate Total monthly precipitation (mm) in Goiânia INM ET mm rain_Goiania 2

101 Climate Total monthly precipitation (mm) in M anaus INM ET mm rain_M anaus 2

102 Climate Total monthly precipitation (mm) in Palmas INM ET mm rain_Palmas 2

103 Climate Total monthly precipitation (mm) in Porto  A legre INM ET mm rain_Porto_Alegre 2

104 Climate Total monthly precipitation (mm) in Recife INM ET mm rain_Recife 2

105 Climate Total monthly precipitation (mm) in Rio Branco INM ET mm rain_Rio_Branco 2

106 Climate Total monthly precipitation (mm) in Rio de Janeiro INM ET mm rain_Rio_de_Janeiro 2

107 Climate Total monthly precipitation (mm) in Salvador INM ET mm rain_Salvador 2

108 Climate Total monthly precipitation (mm) in São Luís INM ET mm rain_Sao_Luis 2

109 Climate Total monthly precipitation (mm) in São Paulo INM ET mm rain_Sao_Paulo 2

110 Climate Total monthly precipitation (mm) in Vitória INM ET mm rain_Vitoria 2

Note: The column "tcode" denotes the following data transformations:

(1) no transformation; (2) ∆xt; (3) ∆2xt; (4) ln(xt); (5) ∆ln(xt); (6) ∆2ln(xt).
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Table E1 - List of macroeconomic and financial variables (cont.)

C at ego ry N am e So urc e Or ig ina l  un i t N ic k nam e t c o de

111 Public sector Primary result o f consolidated public sector (current monthly flow) BCB R$ million primary_result 2

112 Public sector Primary result of consolidated public sector (flow accum. in 12 months) BCB R$ million primary_result_12m 3

113 Public sector Primary result of consolidated public sector (flow accum. in 12 months, % GDP) BCB % primary_result_%GDP 2

114 Public sector Net public debt (to tal, federal government and central bank, % GDP) BCB % public_debt_total_%GDP 3

115 Public sector Net public debt (internal, federal government and central bank, % GDP) BCB % public_debt_internal_%GDP 3

116 Public sector Net public debt (external, federal government and central bank, % GDP) BCB % public_debt_external_%GDP 2

117 Public sector Net public debt (to tal, consolidated public sector, balances in reais) BCB R$ million public_debt_total 6

118 Public sector Net public debt (internal, consolidated public sector, balances in reais) BCB R$ million public_debt_internal 6

119 Public sector Net public debt (external, consolidated public sector, balances in reais) BCB R$ million public_debt_external 2

120 Economic activity IBC­BR (central bank economic activity index) BCB Index IBC­BR 5

121 Economic activity GDP (accumulated in the last 12 months, current prices) BCB R$ million GDP 6

122 Economic activity Consumer confidence index Fecomercio Index consum_confidence 2

123 Exterior Import price index Funcex Index import_price 6

124 Exterior Import quantum index Funcex Index import_quantum 5

125 Exterior Export price index Funcex Index export_price 6

126 Exterior Export quantum index Funcex Index export_quantum 5

127 Exterior Imports (agriculture, forestry and fishing) M DIC/Secex US$ FOB imports_agriculture 5

128 Exterior Imports (mining and quarrying) M DIC/Secex US$ FOB imports_mining 5

129 Exterior Imports (manufacturing) M DIC/Secex US$ FOB imports_manufacturing 5

130 Exterior Imports (o ther products) M DIC/Secex US$ FOB imports_others 5

131 Exterior Imports (to tal) M DIC/Secex US$ FOB imports_total 5

132 Exterior Exports (agriculture, forestry and fishing) M DIC/Secex US$ FOB exports_agriculture 5

133 Exterior Exports (mining and quarrying) M DIC/Secex US$ FOB exports_mining 5

134 Exterior Exports (manufacturing) M DIC/Secex US$ FOB exports_manufacturing 5

135 Exterior Exports (o ther products) M DIC/Secex US$ FOB exports_others 5

136 Exterior Exports (to tal) M DIC/Secex US$ FOB exports_total 5

137 Exterior International reserves (to tal) BCB US$ million international_reserves 6

138 Exterior Current account (monthly, net) BCB US$ million current_account 2

139 Exterior Current account (accumulated in 12 months, in relation to  GDP) BCB % current_account_%GDP 2

140 Exterior FDI (Foreign Direct Investment, accumulated in 12 months) BCB, authors US$ million FDI 2

141 Exterior FPI (Foreign Portfo lio  Investment, accumulated in 12 months) BCB, authors US$ million FPI 2

142 Commodities CRB all commodities index Reuters Index CRB 5

143 Commodities CRB foodstuffs index Reuters Index CRB_food 5

144 Commodities CRB metals index Reuters Index CRB_metals 5

145 Commodities Baltic exchange dry index Reuters Index Baltic_dry 5

146 Commodities Oil price (Brent, Europe) Reuters US$/barrel Oil_price_Brent 5

147 Commodities Oil price (WTI, Oklahoma­USA) Reuters US$/barrel Oil_price_WTI 5

148 Global uncertainty Economic Policy Uncertainty index for Australia EPU Index EPU_Australia 2

149 Global uncertainty Economic Policy Uncertainty index for Brazil EPU Index EPU_Brazil 2

150 Global uncertainty Economic Policy Uncertainty index for Canada EPU Index EPU_Canada 2

151 Global uncertainty Economic Policy Uncertainty index for Chile EPU Index EPU_Chile 2

152 Global uncertainty Economic Policy Uncertainty index for China EPU Index EPU_China 2

153 Global uncertainty Economic Policy Uncertainty index for Colombia EPU Index EPU_Colombia 2

154 Global uncertainty Economic Policy Uncertainty index for France EPU Index EPU_France 2

155 Global uncertainty Economic Policy Uncertainty index for Germany EPU Index EPU_Germany 2

156 Global uncertainty Economic Policy Uncertainty index for Greece EPU Index EPU_Greece 2

157 Global uncertainty Economic Policy Uncertainty index for India EPU Index EPU_India 2

158 Global uncertainty Economic Policy Uncertainty index for Ireland EPU Index EPU_Ireland 2

159 Global uncertainty Economic Policy Uncertainty index for Italy EPU Index EPU_Italy 2

160 Global uncertainty Economic Policy Uncertainty index for Japan EPU Index EPU_Japan 2

161 Global uncertainty Economic Policy Uncertainty index for Korea EPU Index EPU_Korea 2

162 Global uncertainty Economic Policy Uncertainty index for Netherlands EPU Index EPU_Netherlands 2

163 Global uncertainty Economic Policy Uncertainty index for Russia EPU Index EPU_Russia 2

164 Global uncertainty Economic Policy Uncertainty index for Spain EPU Index EPU_Spain 2

165 Global uncertainty Economic Policy Uncertainty index for Singapore EPU Index EPU_Singapore 2

166 Global uncertainty Economic Policy Uncertainty index for UK EPU Index EPU_UK 2

167 Global uncertainty Economic Policy Uncertainty index for USA EPU Index EPU_USA 2

Note: The column "tcode" denotes the following data transformations:

(1) no transformation; (2) ∆xt; (3) ∆2xt; (4) ln(xt); (5) ∆ln(xt); (6) ∆2ln(xt).
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Appendix F. Robustness analysis

Table F1 - Mean Squared Error (MSE), T1 = 96 months, T2 = 144 months

Notes: Yellow cells denote Top10 models (lowest MSEs) in each horizon. ***, **, and * indicate rejection at 1%, 5%,

and 10% levels, respectively, using the Diebold and Mariano (1995) test, considering model3 (ARMA) as benchmark.

The R2 out-of-sample statistics (R2 oos) refers to the best model in each horizon.
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Table F2 - Mean Squared Error (MSE), T1 = 72 months, T2 = 144 months

Notes: Yellow cells denote Top10 models (lowest MSEs) in each horizon. ***, **, and * indicate rejection at 1%, 5%,

and 10% levels, respectively, using the Diebold and Mariano (1995) test, considering model3 (ARMA) as benchmark.

The R2 out-of-sample statistics (R2 oos) refers to the best model in each horizon.
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Appendix G. Additional results

Figure G1 - Inflation and forecasts

h = 3, IPCA % p.m.

h = 6, IPCA % 12 months

h = 12, IPCA % 12 months

h = 18, IPCA % 12 months
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Figure G2 - Scatterplot of relative forecast variance and squared forecast bias
for the IPCA (% 12 months), h = 12 (top) and h = 18 (bottom)

Notes: The y-axis and x-axis represent relative forecast variance and squared forecast bias, computed as the difference between

the forecast variance (squared bias) of the considered approach and the forecast variance (squared bias) of the RW-AO.

Each point on the red dotted line represents a forecast with the same MSE as the RW-AO; points to the right are

forecasts outperformed by the RW-AO, and points to the left represent forecasts that outperform the RW-AO.
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Figure G3 - Cumulative Square Prediction Error (CSPE) for h = 12 (IPCA % 12 months)

Notes: A positively sloped curve in each panel indicates the conditional model is outperformed by the benchmark,

while the opposite holds for a downward sloping curve. Moreover, if the curve is positive (negative) at the end of

the period, then the competing method has a higher (lower) MSE than the benchmark over the evaluation period.
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Figure G4 - Cumulative Square Prediction Error (CSPE) for h = 18 (IPCA % 12 months)

Notes: A positively sloped curve in each panel indicates the conditional model is outperformed by the benchmark,

while the opposite holds for a downward sloping curve. Moreover, if the curve is positive (negative) at the end of

the period, then the competing method has a higher (lower) MSE than the benchmark over the evaluation period.
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Figure G5 - Average number of variables selected by lasso, adalasso and elastic net

Notes: The vertical axis is the number of selected variables and the horizontal axis is the forecast horizon. The top graph

shows the results for the IPCA (% per month), whereas the bottom graph shows the results for the IPCA (% 12 months).

Figure G6 - Word cloud (importance), selected models, IPCA % 12 months

h = 12, xgboost (left), random forest (right)

h = 18, xgboost (left), random forest (right)
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Figure G7 - Fan chart (IPCA % 12 months)

67


	capa WP561
	Pós-capa WP561
	ISSN 1518-3548
	CGC 00.038.166/0001-05
	p. 1-15
	Working Paper Series

	corpo_WP561



