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Non-technical Summary 

Monitoring business cycle phases is a traditional task in applied macroeconomics. 

Progressive market integration has induced a worldwide interest in analyzing cyclical 

fluctuations using economic indicators. Changes in exchange rates, outputs, consumption, 

inflation, and interest rates in different parts of the world can influence the effectiveness 

of government policies and the competitive position of businesses, even those not directly 

related to international operations. 

Can we use information from adult humans to train an intelligent system for 

diagnosing infant heart disease? Such a problem is known as domain adaptation or 

transfer learning. The population of interest is called the target domain, for which labels 

are usually not available, and training a classifier might not be possible. However, if data 

from a similar population is available, it could be used as a source of additional 

information. 

In this work, we explore the transfer learning capability of artificial neural 

networks and propose a method that combines deep neural networks with transfer 

learning to identify business cycle phases when data is limited or there is no business 

cycle dating committee. The approach demonstrated excellent empirical performance 

with data from the US, Europe, and Brazil, emerging as a potential supplementary tool 

for governments and the private sector to conduct their activities in the light of national 

and international economic conditions. 
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Sumário Não Técnico 

O monitoramento das fases do ciclo de negócios é uma tarefa tradicional em 

macroeconomia aplicada. A integração progressiva do mercado induziu um interesse 

mundial na análise das flutuações cíclicas por meio do uso de indicadores econômicos. 

Mudanças nas taxas de câmbio, PIB, consumo, inflação e taxas de juros em diferentes 

partes do mundo podem influenciar a eficácia das políticas governamentais e a posição 

competitiva das empresas, mesmo aquelas não diretamente relacionadas às operações 

internacionais. 

Podemos usar informações de adultos para treinar um sistema inteligente para 

diagnosticar doenças cardíacas infantis? Esse problema é conhecido como adaptação de 

domínio ou aprendizagem por transferência. A população de interesse é chamada de 

domínio de destino, para a qual os exemplos com identificação, ou rótulos, geralmente 

não estão disponíveis, e treinar um classificador pode não ser possível. No entanto, se 

houver dados de uma população semelhante, eles podem ser usados como fonte de 

informações adicionais. 

Neste trabalho, exploramos a capacidade de aprendizagem por transferência de 

redes neurais artificiais e propomos um método que combina redes neurais profundas com 

aprendizagem por transferência para identificar as fases do ciclo de negócios quando os 

dados são limitados ou na ausência de um comitê de datação do ciclo de negócios. A 

abordagem demonstrou excelente desempenho empírico com dados dos Estados Unidos, 

Europa e Brasil, emergindo como potencial ferramenta complementar para governos e o 

setor privado conduzirem suas atividades à luz das condições econômicas nacionais e 

internacionais. 
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1. Introduction

Monitoring business cycle phases is a traditional task in applied macroeconomics. 

Progressive market integration has induced a worldwide interest in analyzing cyclical 

fluctuations through the use of economic indicators (Chauvet, 2001, p.21). Changes in 

exchange rates, outputs, consumption, inflation, and interest rates in different parts of the 

world can influence the effectiveness of government policies and the competitive position 

of businesses, even those not directly related to international operations (Chauvet and Yu, 

2006, p.43). As a result, a wide range of techniques has been developed since the seminal 

work by Burns and Mitchell (1946). Recently, new approaches have emerged due to the 

progress in machine learning (ML) research, centering on building models that achieve 

better forecasting performance than the non-ML models or that identify turning points 

more timely (Piger, 2020). 

In this work, we contribute to the literature by exploring the transfer learning 

capability of artificial neural networks (Pratt et al., 1991). This characteristic has not yet 

been evaluated to monitor business cycle phases to the best of our knowledge. Our goal 

follows Chauvet and Yu (2006) in providing additional tools for governments and the 

private sector to conduct their activities in light of both national and international 

economic conditions. For that, we adopt a combined strategy of deep neural network and 

transfer learning to address the practical problem of identifying the business cycle phases 

when data is limited or a business cycle dating committee is absent. Deep learning is a 

sub-field within machine learning that is based on algorithms for learning multiple levels 

of representation in order to model complex relationships among data (Deng and Yu, 

2014). Transfer learning improves learning in a new task by transferring knowledge from 

a related task that has already been learned (Torrey and Shavlik, 2009). More specifically, 

domain adaptation can be considered a special set of transfer learning that aims at 

transferring shared knowledge across different but related tasks or domains. A good 

feature representation should be able to reduce the difference in distributions between 

domains as much as possible, while at the same time preserving essential properties of 

the original data (Pan et al., 2011). 

The rest of the paper is organized as follows. Section 2 presents a literature review, 

and in Section 3, we discuss the methodology. Section 4 presents our empirical findings, 

and Section 5, the final remarks. 
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2. Literature

Business cycles are recurrent sequences of alternating phases of expansion and 

contraction among many economic activities (Burns and Mitchell, 1946). According to 

Harding and Pagan (2005), there are three ways in the literature to describe what we mean 

by a cycle, depending on whether the main focus is on the fluctuation of the level of 

economic activity, the level of economic activity less a permanent component, or the 

growth rate of economic activity. 

In the United States, the National Bureau of Economic Research (NBER) Business 

Cycle Dating Committee provides a chronology of business cycle expansion and 

recession dates. According to Piger (2020), because the NBER methodology is not 

explicitly formalized, literature has worked to develop and evaluate formal statistical 

methods for establishing the historical dates of economic recessions and expansions in 

both the U.S. and international data. Estrella and Mishkin (1998), Estrella et al. (2000), 

Kauppi and Saikkonen (2008), Rudebusch and Williams (2009) and Fossati (2016) use 

an available historical indicator of the class, such as the NBER dates, to estimate the 

parameters of models such as logit or probit ones. This strategy is called a supervised 

classifier in the statistical classification literature, in contrast to unsupervised classifiers, 

which endogenously determine the classes. Unsupervised classifiers have also been used, 

with the primary example being the Markov-switching (MS) framework of Hamilton 

(1989), which become a relevant tool for applied work in economics. Chauvet (1998) 

proposes a dynamic factor model with Markov-switching (DFMS) to identify expansion 

and recession phases from a group of coincident indicators and Chauvet and Hamilton 

(2005), Chauvet and Piger (2008) and Camacho et al. (2018) evaluate the performance of 

variants of this DFMS model to identify NBER turning points in real time. See Piger 

(2020) for a comprehensive review. 

Recently, artificial intelligence (AI) has gained considerable prominence due to 

performances in autonomous vehicles, intelligent robots, image and speech recognition, 

automatic translations, medical and law usage (Makridakis, 2017). In Economics, the 

application of machine learning (ML) methods, an AI technique, is not new, and in a way 

it has followed the phases of use in other areas. This has extended from the earliest 

attempts in the 1940s, followed by the rising expectations and the results in the 1960s, 

through the period of frustration in the 1970s, to the continuity of its use by a small group 

of researchers in the 1980s, and the resurgence in the 1990s (Stergiou and Siganos, 2011). 
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Finally, from the beginning of the 21st century, significant progress has been observed in 

many areas, attracting attention and funding for research. 

Applied ML papers related to business cycles can be separated depending on 

whether the main focus is predicting or identifying turning points and phases. For 

example, Hoptroff et al. (1991), Qi (2001), Klinkenberg (2003), Nasr et al. (2007), Berge 

(2013), Ma (2015), Garbellano (2016), Nyman and Ormerod (2017), and James et al. 

(2019) have applied machine learning techniques such as artificial neural networks, 

support vector machines, boosting, k-nearest neighbor, and random forest to forecasting 

turning points, recessions, or business cycles phases mainly in the US, but also other 

countries 1. These studies have generally reported some improvements over non-ML 

strategies. The other set of papers is concerned about identifying the turning points for 

real-time classification. Morik and Ruping (2002), Giusto and Piger (2017), Soybilgen 

(2018), Raffinot and Benoit (2019) and Jackson and Rege (2019) have applied inductive 

logic programming, learning vector quantization, random forest, boosting, k-nearest 

neighbor and artificial neural networks fed with dynamic factors. Piger (2020), in a 

comprehensive analysis, compares five ML techniques with DFMS. These studies have 

reported quickly and accurately turning points identification. 

Lastly, some literature is dedicated to the study of business cycles worldwide, as 

in Chauvet and Yu (2006), Cuba-Borda et al. (2018), Abberger et al. (2020), and the 

reference turning points of the OECD Composite Leading Indicators2. 

3. Methodology

Due to the availability of various ML methods and considering that we are, 

especially in economics, in the explanatory era of its applications, works often apply 

several ML approaches to a specific dataset to compare their performances, a strategy 

known as horse-race, as in Tiffin (2016), Cook and Hall (2017), Garcia et al. (2017), Gu 

et al. (2018), and Piger (2020). Makridakis et al. (2018) go further to compare various 

non-ML and ML forecasting methods. Another usual approach, our choice, is to select in 

advance a suitable strategy for the specific task. Deep learning seems well suited to 

transfer learning because it focuses on learning representations and, in particular, on 

1 United Kingdom, Japan, West Germany and Lebanon. 
2 Available at https://www.oecd.org/sdd/leading-indicators. 
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abstract representations, which ideally disentangle the factors of variation present in the 

input (Bengio, 2012). Learning representations of the data make it easier to extract useful 

information when building classifiers or other predictors, and, in the case of probabilistic 

models, a good representation is often one that captures the posterior distribution of the 

underlying explanatory factors for the observed input (Bengio et al., 2013). 

3.1 Deep neural network 

A deep neural network, also known as deep learning (DL), is an artificial neural 

network (ANN) with multiple layers hidden between the input and output layers (Bengio, 

2009). The analytical function corresponding to one of the simplest forms of an ANN, the 

feed-forward network, can be written as follows (Bishop, 1994, 118-9). In a feed-forward 

network having two layers, there are d inputs, M hidden units and c output units. The 

output of the jth hidden unit is obtained by first forming a weighted linear combination of 

the d input values, and adding a bias, to give 

𝑎𝑎𝑗𝑗 = �𝑤𝑤𝑗𝑗𝑗𝑗
(1)

𝑑𝑑

𝑗𝑗=1

𝑥𝑥𝑗𝑗 + 𝑤𝑤𝑗𝑗0
(1).                                                           (1) 

Here wji
(1) denotes a weight in the first layer, going from input i to hidden unit j, 

and  denotes the bias for hidden unit j. The bias term for the hidden units is made 

explicit by the inclusion of an extra input variable x0 whose value is permanently set at x0 

= 1. This can be represented analytically by rewriting (1) in the form 

𝑎𝑎𝑗𝑗 = �𝑤𝑤𝑗𝑗𝑗𝑗
(1)

𝑑𝑑

𝑗𝑗=0

𝑥𝑥𝑗𝑗 .                                                                         (2) 

The activation of hidden unit j is then obtained by transforming the linear sum in 

(2) using an activation function g(·) to give 

𝑧𝑧𝑗𝑗 = 𝑔𝑔�𝑎𝑎𝑗𝑗�.                                                                                  (3) 

The outputs of the network are obtained by transforming the activations of the 

hidden units using a second layer of processing elements. Thus, for each output unit k, we 

construct a linear combination of the outputs of the hidden units of the form 
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𝑎𝑎𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑗𝑗
(2)

𝑀𝑀

𝑗𝑗=1

𝑧𝑧𝑗𝑗 + 𝑤𝑤𝑘𝑘0
(2).                                                         (4) 

Again, we can absorb the bias into the weights to give 

𝑎𝑎𝑘𝑘 = �𝑤𝑤𝑘𝑘𝑗𝑗
(2)

𝑀𝑀

𝑗𝑗=0

𝑧𝑧𝑗𝑗 ,                                                                   (5) 

which can be represented by including an extra hidden unit with activation z0 = 1. The 

activation of the kth output unit is then obtained by transforming this linear combination, 

using a non-linear activation function, to yield 

𝑦𝑦𝑘𝑘 = 𝑔𝑔�(𝑎𝑎𝑘𝑘).                                                                                (6) 

Here we have used the notation 𝑔𝑔�(·) for the activation function of the output units 

to emphasize that this need not be the same function as used for the hidden units. If we 

combine (2), (3), (5) and (6), we obtain an explicit expression for the complete function 

in the form 

𝑦𝑦𝑘𝑘 = 𝑔𝑔� ��𝑤𝑤𝑘𝑘𝑗𝑗
(2)

𝑀𝑀

𝑗𝑗=0

𝑔𝑔 ��𝑤𝑤𝑗𝑗𝑗𝑗
(1)

𝑑𝑑

𝑗𝑗=0

𝑥𝑥𝑗𝑗�� .                                   (7) 

These models are called feed-forward because information flows through the 

function being evaluated from inputs, through the intermediate computations used to 

define the function, and finally to the output target. There are no feedback connections in 

which the outputs of the models are fed back into itself. When processing sequential data 

is required, there are alternatives, like recurrent neural networks (RNN), including the 

successful long short-term memory (LSTM) model. RNN process an input sequence one 

element at a time, maintaining in their hidden units a state vector that implicitly contains 

information about the history of all past elements of the sequence (LeCun et al., 2015). 

For technical details, see (Goodfellow et al., 2016, 367-415). 

In essence, almost all DL algorithms can be described as a combined specification 

of a data set, a cost function, an optimization procedure, and a model (Goodfellow et al., 

2016). We describe ours in subsections 3.4 and 3.5. 
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3.2 Transfer learning 

Can we use information from adult humans to train an intelligent system for 

diagnosing infant heart disease? Such a problem is known as domain adaptation or 

transfer learning. The population of interest is called the target domain, for which labels 

are usually not available and training a classifier might be not possible. However, if data 

from a similar population is available, it could be used as a source of additional 

information (Kouw and Loog, 2018, 2). Thus, transfer learning (TL) refers to the situation 

where what has been learned in one setting (e.g., distribution P1) is exploited to improve 

generalization in another setting (say, distribution P2). The learner must perform two or 

more different tasks, but it is assumed that many of the factors that explain the variations 

in P1 are relevant to the variations that need to be captured for learning P2 (Goodfellow 

et al., 2016, 534).  

 

 Figure 1: Transfer learning overview - reproduced from Yosinski et al. (2014) 
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In the conventional transfer learning approach, we first train a base network on a 

base dataset and task, and then we repurpose the learned features or transfer them to a 

second target network to be trained on a target dataset and task. This process will tend to 

work if the features are general, meaning suitable to both base and target tasks, instead of 

specific to the base task (Yosinski et al., 2014). Figure 1 illustrates these dynamics. The 

base networks (top two rows) are trained using standard deep learning procedures on 

datasets A and B. The labeled rectangles (e.g., WA1) represent the weight vector learned 

for that layer, with the color indicating which dataset the layer was originally trained on. 

The vertical, ellipsoidal bars between weight vectors represent the activations of the 

network at each layer. The target networks (bottom two rows) represent transfer learning 

strategies. The first n weight layers of the network (in this example, n = 3) are copied 

from a network trained on one dataset (e.g., A), and then the entire network is trained on 

the other dataset (e.g., B). Usually, the first n layers are either locked during training or 

allowed to learn. 

3.3 Some assumptions 

As in the dynamic factor model with Markov-switching introduced by Chauvet 

(1998), the deep neural network approach accounts for the idea of business cycles as the 

simultaneous, asymmetrical, and nonlinear movement of economic activity in various 

sectors. This data-driven framework is flexible enough to be training with different 

features, the independent variables, and targets, the dependent variables. A supervised 

deep learning model learns from the features-targets without the need for strong 

assumptions about its relation, which prevents the expert from choosing an underlying 

economics school of thought to set up a model, although the variable selection might 

represent it. The algorithm maps the input-output relation variables according to the 

training and validation data. For instance, once we choose NBER 3  turning points 

classification data as output label, the deep learning algorithm will learn from them how 

to classify the business cycle, implicitly following the same school of thought. 

When we transfer learning, though, there are additional issues. According to Kouw 

and Loog (2018), the challenge is to overcome the differences between the domains so 

that a classifier trained on the source domain generalizes well to the target domain, but 

3 The most followed classification for U.S. business cycle. 
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generalizing across distributions can be difficult, and it is not clear which conditions have 

to be satisfied for a classifier to perform well. From a macroeconometrics perspective, we 

could assume that the input variables’ marginal contributions in explaining the business 

cycle phases are similar. However, they are probably not equal for the different economic 

areas, as well as the respective input variables’ sample covariance matrix. Our approach 

handles this well when the models successfully build a common representation space for 

the different domains, which can be empirically verified when there are labels for the 

target domain, allowing evaluation by some error criteria. Otherwise, it remains an open 

question. 

3.4 Data 

A deep learning model is capable of handling a large number of explanatory 

variables (features). However, there is a caveat to our strategy: the more features we use 

during learning, the more data preprocessing efforts will be required. For example: if we 

train for the United States business cycles classification using dozens of features, we will 

need the same quantity of features to transfer learning to other datasets or additional 

preprocessing strategies, as in Jackson and Rege (2019), which have fed an ANN with 

dynamic factors. Because it adds challenges, dealing with high-dimensional data is left 

for future work. 

The feature selection comprises the coincident variables indicated by NBER4 as 

the fundamental: gross domestic product (GDP), income, employment, industrial 

production, and wholesale-retail sales. Quarterly data is adopted because this is the 

frequency at which some relevant variables for the classification of the business cycle are 

available, and at this frequency, opposed to higher ones, the data usually carry less noise, 

what may facilitate the training and the transfer learning. We computed the first difference 

of the logarithm of the input features, capturing the growth rate (Harding and Pagan, 2005, 

152-154). Alternatively, we run the model without this transformation, i.e., features in 

level. In both cases, the features are normalized.  

4 The NBER does not define a recession in terms of two consecutive quarters of decline in real GDP. 
Rather, a recession is a significant decline in economic activity spread across the economy, lasting more 
than a few months, normally visible in real GDP, real income, employment, industrial production, and 
wholesale-retail sales. Source: https://www.nber.org/cycles.html. 
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Table 1 - Dataset 

 

14



To have a common starting point for each dataset, we restrict the series’ start to 

eliminate missing values. For example, we do not acquire data for the Euro area before 

2005 because we do not have employment data before this year for all the selected 

countries. We adopted a U.S. dataset for deep learning and two datasets, with data from 

Brazil and Europe, for transfer learning. The target values are the business cycle 

chronology provided by the NBER, the Brazilian Business Cycle Dating Committee 

(CODACE), and the CEPR-EABCN Euro Area Business Cycle Dating Committee 

(CEPR), respectively. Table 1 summarizes the information about all series, mostly from 

the FRED-MD5 dataset, provided by the Federal Reserve Bank of St. Louis. Our data files 

are available at https://github.com/rrsguim/PhD_Economics. 

3.5 Implementation Details 

The models were built using TensorFlow6, an interface for expressing machine 

learning algorithms, and an implementation for executing such algorithms. TensorFlow 

is flexible and can be used to express a wide variety of algorithms, including training and 

inference algorithms for deep neural network models. It has been used to conduct research 

and deploy machine learning systems into production across more than a dozen areas of 

computer science and other fields (Abadi et al., 2015). 

The primary architectural considerations are choosing the depth of the network 

and the width of each layer. Deeper networks are often able to use far fewer units per 

layer and far fewer parameters, as well as frequently generalizing to the test set, but they 

also tend to be harder to optimize. The ideal network architecture for a task must be found 

via experimentation guided by monitoring the validation set error (Goodfellow et al., 

2016, 194). The optimal set of hyperparameters was obtained using Hyperband (Li et al., 

2018) from Keras Tuner7. Following Piger (2020), the objective function to maximize in 

the cross-validation step is the area under the ROC curve (AUC). This metric is desirable 

here for being scale-invariant, measuring how well predictions are ranked, rather than 

their absolute values, and classification-threshold-invariant, measuring the quality of the 

model’s predictions irrespective of what classification threshold is chosen. 

5 https://fred.stlouisfed.org/. 
6 https://www.tensorflow.org/. 
7 https://www.tensorflow.org/tutorials/keras/keras_tuner. 
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Beginning with the deep learning step, we split the U.S. dataset into train, 

validation, and test sets. Then, we define a function that creates a neural network with 

hidden layers, ReLU as activation function, a dropout layer to reduce overfitting, and a 

sigmoid output layer that returns the probability of recession. Next, we retrain the model 

with the optimal hyperparameters, selected with Hyperband, to evaluate the results in 

both datasets, source and target, with binary cross-entropy as a loss function and Adam 

(Kingma and Ba, 2017) for optimization. 

3.6 Robustness 

Our baseline models are a logistic model (Logit) and deep learning models without 

the transfer learning approach. 

The option for a feed-forward network as a deep learning model, which represents 

memoryless models, derives from the focus on contemporary movement between the 

selected variables and the business cycle. This implies disregarding the time dependence 

observed on the variables and shuffling the data to break it. The resulting model accounts 

just for coincident relations. To account for time dependency as an alternative strategy, 

we create additional models including a LSTM layer. 

When transfer learning, the weight layers of the network for Euro and Brazillian 

data were copied from the network trained on the U.S. data, as in the last row of Figure 

1, except that we do not retrain the parameters. It is as if these two datasets function as 

out-of-sample. Additionally, we unlock the last layers and retrain the parameters, a way 

of relaxing the macroeconometrics assumptions about input variables as mentioned in 

subsection 3.3. 

Finally, we retrained the models with other loss function, the squared hinge, 

finding similar results. 

4. Results 

The deep learning models learned how to classify business cycles. Figures 2, 3, 

and 4 consolidate the results found. All codes used are available at 

https://github.com/rrsguim/PhD_ Economics. Results are slightly different each time the 

models are run due to different compositions in the selected data sets for training, 

validation and test, especially in the cross-sectional approach. 

16

https://github.com/rrsguim/PhD_Economics
https://github.com/rrsguim/PhD_Economics
https://github.com/rrsguim/PhD_Economics


 

 

Figure 2: Deep Learning (U.S) and Transfer Learning (Euro and Brazil) 
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Figure 3: Models specifications and results 

 

Figure 2 shows the comparison between business cycles according to NBER, 

CEPR, and CODACE dating and those estimated by feed-forward neural networks (FNN) 

models with the cross-sectional approach. The graphics show the excellent performances 

of both the deep learning (NBER) and the transfer learning (CEPR and CODACE) steps. 

It should be noted that they refer to the locked models, meaning the estimates for EURO 

and Brazil operate as if they were out-of-sample because the parameters trained with U.S 

data are locked in the transfer learning phase when applied to target datasets (EURO and 

Brazil). Figure 3 presents the details of each model. Differences in the sizes of out-of-

sample data sets reflect the need for adjustments according to time series, cross-sectional, 

locked and unlocked strategies. Concerning the baseline models with U.S. data, we 

observed a significantly superior performance, measured by the AUC with out-of-sample 

data, of the deep learning models with data in first difference (1df). The outcomes of the 

baseline models for EURO do not motivate confidence. The FNN model has a perfect 

classification (AUC = 1), while the alternative model that includes an LSTM layer results 

in a model unable to identify crises (AUC = 0.5). This point highlights one of the problems 

that the proposed methodology seeks to solve: identifying business cycles when data is 

limited.  
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Figure 4: AUC out-of-sample 

 

Note, in Figure 3, that there are only two recessions for the EURO in the period 

under analysis so that models trained only on these data show inconsistent results. 
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Regarding Brazil’s outcomes, whose period contains more than one recession, the 

baseline models show more satisfactory performance. Finally, about transfer learning 

models, there is an improvement in the classification of business cycles for EURO and 

Brazil, compared to baseline models, with emphasis on the LSTM locked models. In 

addition to higher AUC, the fact that they are locked models allows more data in the out-

of-sample set, increasing confidence in the results. Also, locked models can be applied 

when there is no business cycle dating committee. Figure 4 presents a summary 

comparison of the performance of each model. 

5. Discussion 

This paper has proposed a method that combines deep neural networks with 

transfer learning to identify business cycle phases when data is limited or in the absence 

of a business cycle dating committee. The approach demonstrated excellent empirical 

performance with data from the US, Europe, and Brazil, emerging as a potential 

supplementary tool for governments and the private sector to conduct their activities in 

the light of national and international economic conditions. To the best of our knowledge, 

the combined deep and transfer learning approach is underused for application to 

economic problems, indicating that there is plenty of room for research development. 
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