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Non-technical Summary

This paper studies machine learning techniques to forecast the oil price. Given the
importance of crude oil to the global economy, constructing reliable forecasts of the oil price
is a relevant issue in applied macroeconomics, since large and unexpected fluctuations of this
commodity impact the global economy, affecting the welfare of countries that are oil
exporters as well as those that import this commodity.

In the era of big data, recent automated tools can potentially improve the oil price
forecast accuracy over traditional approaches. The goal of this paper is to build oil price
forecasts from 22 methods, including several new machine learning techniques, based on
regression trees or regularization procedures, as well as standard econometric models and
forecast combinations, besides the structural factor model of Schwartz and Smith (2000),
which is a model of reference in the field.

To evaluate the predictive power of each method, an extensive out-of-sample
forecasting exercise is conducted in both monthly and quarterly frequencies. The database
contains 315 macroeconomic and financial variables. The sample covers the period from
January 1991 to June 2020, and forecast horizons vary from one month up to five years.

Overall, the empirical results reveal a good performance of the machine learning
methods in the short and medium horizons. Future oil prices and the Schwartz-Smith model
also provide forecasts with comparable accuracy in such horizons. At longer horizons,
forecast combinations become relevant too.

In several cases, the accuracy gains in respect to the random walk (benchmark)
forecast are statistically significant and reach two-digit figures, in percentage terms, using the
R2 out-of-sample statistic. This is an expressive improvement vis-a-vis the previous literature,
thus confirming that machine learning tools can indeed contribute to the standard statistical

toolkit used in macroeconomic forecasting.



Sumario Nao Técnico

Este artigo investiga técnicas de aprendizado de méquina para previsdo do preco do
petr6leo. Dada a importancia do petréleo para a economia global, a construgdo de previsdes
confiaveis do preco do petroleo é uma questdo relevante em macroeconomia aplicada, uma
vez que grandes ou inesperadas flutuagdes dessa commodity tém um impacto na economia
global, afetando tanto o bem-estar de paises exportadores de petréleo como daqueles que
importam essa commodity.

Na atual era de big data, novas ferramentas automatizadas podem potencialmente
melhorar a precisdo da previsao do preco do petréleo em relacdo as abordagens tradicionais.
O objetivo deste artigo é construir previsdes do preco do petrdleo a partir de 22 métodos,
incluindo diversas novas técnicas de aprendizado de maquina, baseadas em arvores de
regressdo ou técnicas de regularizacdo, bem como modelos econométricos usuais e
combinagdes de previsdes, além do modelo estrutural de fatores de Schwartz e Smith (2000),
que € um modelo de referéncia na area.

Para avaliar a capacidade preditiva de cada método, um amplo exercicio de previsao
fora da amostra é realizado nas frequéncias mensal e trimestral. A base de dados contéem 315
variaveis macroecondmicas e financeiras. A amostra considerada abrange o periodo de janeiro
de 1991 a junho de 2020, e os horizontes de previsdo variam de um més até cinco anos.

De maneira geral, os resultados empiricos revelam um bom desempenho dos métodos
de aprendizado de maquina nos horizontes de curto e médio prazos. Os precgos futuros do
petréleo e 0 modelo de Schwartz-Smith fornecem previsées com equivalente grau de precisdo
em tais horizontes. Em horizontes mais longos, as combinacdes de previsdo também se tornam
relevantes em termos de capacidade preditiva.

Em varios casos, 0s ganhos de precisdo em relacdo a previsdo do passeio aleatorio
(modelo benchmark) séo estatisticamente significativos e atingem valores de dois digitos, em
termos percentuais, usando a estatistica R2 fora da amostra. Trata-se de uma melhoria
expressiva em relacdo a literatura anterior, confirmando dessa forma que ferramentas de
aprendizado de maquina podem, de fato, contribuir para o conjunto de ferramentas estatisticas

utilizadas em previsGes macroecondmicas.
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Abstract

The purpose of this paper is to explore machine learning techniques to forecast the
oil price. In the era of big data, we investigate whether new automated tools can improve
over traditional approaches in terms of forecast accuracy. Oil price point and density
forecasts are built from 22 methods, including regression trees (random forest, quantile
regression forest, xgboost), regularization procedures (elastic net, lasso, ridge), standard
econometric models and forecast combinations, besides the structural factor model of
Schwartz and Smith (2000). The database contains 315 macroeconomic and financial
variables, used to build high-dimensional models. To evaluate the predictive power of
each method, an extensive pseudo out-of-sample forecasting exercise is built, in monthly
and quarterly frequencies, with horizons from one month up to five years. Overall, the
results indicate a good performance of the machine learning methods in the short run.
Up to six months, the lasso-based models, oil future prices, and the Schwartz-Smith
model provide the best forecasts. At longer horizons, forecast combinations also become
relevant. In several cases, the accuracy gains in respect to the random walk forecast are
statistically significant and reach two-digit figures, in percentage terms, using the R?

out-of-sample statistic; an expressive achievement compared to the previous literature.
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1 Introduction

Traditional forecasting methods often rely on fitting data to a pre-specified relationship be-
tween dependent and independent variables, thus assuming a specific functional and sto-
chastic process. In contrast, a different approach to statistical analysis and forecasting, in
particular, is offered by machine learning (ML), which is a narrow form of artificial intel-
ligence, often described as the art and science of pattern recognition. Indeed, ML is to a
great extent a data-driven framework, since it requires mild assumptions about the under-
lying statistical relationship in the data. According to Hansen (2019): "The term ‘machine
learning’ is a new and somewhat vague term, but typically is taken to mean procedures which
are primarily used for point prediction in settings with unknown structure. Machine learn-
ing methods generally allow for large sample sizes, large number of variables, and unknown
structural form."

Although machine learning encompasses a wide variety of models, it generally comprises
two core elements: a learning method, where data are used to determine the best fit for
the input variables, and an algorithm, which models the relationship between the input and
output. According to Jung et al. (2018), ML methods can be categorized into three types:

(i) supervised learning, where the dependent variables are clearly identified, even if the
specific relationships in the data are not known (e.g., linear regression, logistic regression);

(i) unsupervised learning, where there is no specific output defined beforehand, and the
goal is to recognize data patterns and determine output classification categories (e.g., cluster
analysis, principal components);

(iii) reinforcement learning, which iteratively search for an optimal location of the input
variables that yields the highest reward, that is, optimizes a given "reward" function using
no training set (e.g., dynamic programming models, sarsa, Q-learning).

According to Varian (2014), the growing amounts of data and ever complex-growing
relationships warrant the usage of machine learning in economics. One of the advantages of
ML over traditional approaches is to automate as many of the modeling choices as possible
in a manner that is not subject to the discretion of the forecaster (Hall, 2018).

Producing accurate forecasts is not an easy task, since it requires an approach complex
enough to incorporate relevant variables but also focused on excluding irrelevant data. ML
methods, in general, are able to deal with large amounts of data (big data) and nonlinear
patterns in the data, often hidden to standard linear models, thus offering an alternative and
compelling approach to traditional econometric models.!

Given the importance of crude oil to the global economy, constructing reliable forecasts
of the oil price is a relevant issue in applied macroeconomics, since large and unexpected
fluctuations of this commodity will have an impact on the global economy, affecting the

welfare of countries that are oil exporters as well as those that import this commodity.

! According to Hall (2018), it is crucial to control the model complexity by using an algorithm that yields
a model complex enough to avoid underfitting the data, but not so complex as to overfit it.



According to Alquist et al. (2013), not only accurate oil price forecasts have the potential
to improve the forecast-accuracy of relevant macro variables, but also some sectors of the
economy directly depend on oil price forecasts for their business (e.g., the oil spot price is
critical to investment decisions in the oil industry). Also, central banks and private sector
agents quite often view the price of oil as one of the key elements in producing macroeconomic
projections and in assessing risks.

The relationship between oil price dynamics and key macroeconomic variables is well
documented in the literature; see, for instance, Hamilton and Herrera (2004), Baumeister and
Kilian (2016), Kilian and Vigfusson (2017), Bjgrnland, Larsen and Maih (2018), Bjgrnland
and Zhulanova (2018).

The literature on oil price forecasting is also vast. Just to mention a few papers, see
Cologni and Manera (2008), Miller and Ni (2011), Ravazzolo and Rothman (2012), Hong and
Yogo (2012), Gargano and Timmermann (2014), Baumeister and Kilian (2015), Mohaddes
and Pesaran (2016), Gogolin et al. (2018) and Yu et al. (2019).

The objective of this paper is to forecast the real oil price (Brent crude) based on a large
number of macroeconomic and financial variables. Our goal is also to assess whether ma-
chine learning techniques can offer real improvement to forecast-accuracy in applied macro-
economics, and thus make a contribution to the standard statistical toolkit used in macro
forecasting. Our research contributes to the latter literature in two ways: The first original
contribution is to density forecast the oil price using machine learning tools. The second
contribution is to help "opening" the machine learning black boz,?> by providing a full set of
auxiliary graphs to help investigating the forecasting exercise results.?

In sum, machine learning tools are used here to build Brent oil price forecasts based on 22
competing methods, including regularization* procedures that introduce penalties for over-
fitting® the data (e.g., LASSO and Elastic Nets), more recent supervised machine learning
techniques (e.g., Quantile Regression Forest and XGBoost), which are nonparametric ap-
proaches based on the recursive binary partitioning of the covariate space, besides standard

econometric models (e.g., ARIMA), the forecast combination methods discussed in Duarte

2The black box expression applied to ML has been around for years now. It is often used to critisize neural
networks’ lack of explainability. Here, we turn the black box into a gray box by providing complementary
tools to analyze and further understand the ML results.

3For instance, (i) word cloud and variable importance plots to reveal the most important variables for oil
price forecasting according to a given ML method of interest; (ii) decomposition of the mean-squared forecast
error plots, which allows one to disentangle the effect of forecast bias from the variance of the forecast. This
is particularly important in model selection and helps understanding why some methods display a better
forecast accuracy compared to others; and (iii) time series plots of the differences between the cumulative
squared prediction error, which complement the graphical analysis, by presenting the cumulative performance
of a given forecasting method over time in respect to a selected benchmark.

4For example, the elastic net mixes two types of regularization, by penalizing the number of variables in
the model and the extent to which any given variable contributes to the model’s forecast. By applying such
penalties, the elastic net model learns which variables are most important, thus eliminating the need for
researchers to make discretionary choices about which variables to include in the model.

°In statistics, overfitting denotes the production of an analysis, which is assumed to be valid for the entire
population (for instance, an estimated input-output relationship), that corresponds too closely to a particular
set of data, but it may fail to fit additional data, or forecast future observations, reliably.



et al. (2019), and the two-factor model of Schwartz and Smith (2000).

To do so, we put together a set of 630 time series, coming from 315 macroeconomic
and financial variables used to build high-dimensional models. In order to evaluate the
forecast accuracy of each approach, an extensive pseudo out-of-sample forecasting exercise is
conducted in monthly and quarterly frequencies. The sample covers the period from January
1991 to June 2020, and forecast horizons vary from one month up to five years.

Overall, the results corroborate recent findings in favor of the nonlinear automated pro-
cedures, indicating machine learning algorithms can indeed statistically surpass, in the short
run, some traditional methods in terms of Root Mean Squared Error (RMSE). One of the rea-
sons is the ability of some machine learning techniques in reducing the forecast variance while
maintaining the forecast bias under control.® As result, forecast accuracy can be improved
when compared to traditional oil price forecasting models.

In particular, the adaptive LASSO (or simply adalasso) exhibited the lowest RMSE at the
one-month forecast horizon. The empirical exercise also revealed a good performance of other
machine learning approaches (e.g., Random Forest and XGBoost) at short/medium horizons,
providing forecasts that are statistically superior to the random walk for horizons up to three
months. In the monthly frequency, other LASSO family models, the Brent future prices
and the Schwartz-Smith model provided the best forecasts for horizons up to six months.
At longer horizons, the forecast combination techniques discussed in Duarte et al. (AF
and BCAF) gain importance, together with the Brent future prices and the Schwartz-Smith
forecasts.

In both frequencies, and in several cases, the forecast accuracy gains over the benchmark
model (random walk without drift) are statistically significant, and reach two-digit figures, in
percentage terms: the R? out-of-sample statistics, for the best model in each horizon, range
from 14% to 40% in monthly frequency, and between 9% to 49% in quarterly frequency;
expressive results compared to the previous literature.

Regarding density forecasts, it is worth mentioning the good performance, in most part
of the horizons considered at monthly frequency, of the Brent future prices, the forecast
combination model AF (long horizons) and the Schwartz-Smith model. The excellent result
of the Schwartz-Smith densities, generated from model simulations, in great part of forecast
horizons at the quarterly frequency, should also be mentioned.

The outline of the paper is as follows. Section 2 presents the methodology comprising
machine learning and traditional econometric models to forecast the oil price. Section 3
presents the forecasting exercise and Section 4 concludes. The Technical Appendix provides

additional results.

In the context of neural networks, Neal et al. (2018) find both bias and variance can decrease as the
number of parameters grows (i.e., model complexity). The authors also discuss this outcome by introducing
a new decomposition of the variance to disentangle the effects of model optimization and data sampling.



2 Methodology

2.1 Point Forecast

In this paper, oil price forecasts are constructed from 22 forecasting methods listed in Table
1. Besides some traditional approaches to forecast the oil prices, such as the random walk
and the ARIMA models, this paper considers factor models, which are well-known in the
macroeconometrics literature (e.g., Stock and Watson, 2002; Schwartz and Smith, 2000).
The set of forecasting methods also includes several non-linear machine learning methods,
based on regularization procedures (e.g., LASSO and elastic net) or regression trees (e.g.,

random forest and quantile regression forest).

Table 1 - Models/methods used to forecast the oil prices

Model References
1 | Random walk -
2 | Random walk with drift -
3 | Random walk with drift (last 5 years) | Alquist et al. (2013)
4 | ARIMA -
5 | Factor model 1 Bai and Ng (2002, 2008)
6 | Factor model 2 Bai and Ng (2002, 2008)
7 | Elastic net Zou and Hastie (2005)
8 | LASSO Tibshirani (1996)
9 | Adaptive LASSO Zou (2006)
10 | Ridge regression Hoerl and Kennard (1988)
11 | Random forest Breiman (2001)
12 | Quantile regression forest Meinshausen (2006)
13 | XGBoost Chen and Guestrin (2016)
14 | AF Issler and Lima (2009)
15 | BCAF Issler and Lima (2009)
16 | Brent futures -
17 | Schwartz-Smith (mean) Schwartz and Smith (2000)
18 | Schwartz-Smith (median) Schwartz and Smith (2000)
19 | Mean (all models) -
20 | Median (all models) -
21 | Mean (selected models) -
22 | Median (selected models) -

The list of models, of course, is far from an exhaustive list, since more complex models
could be included. Although this extension would be valuable, the list presented here seems to
be a reasonable starting point to compare the accuracy of traditional econometric approaches

with competing machine learning techniques.



Our variable of interest is the Brent oil real price Y;, and our goal is to forecast the
h—period change of the logarithm of Y; at period ¢ + h, that is (y;4n — v;), where y; =
In(Y;), using the information set available at period ¢. In this sense, the dependent variable

(Y+n — yi) is modeled as a function of a set of predictors 7;, measured at time ¢, as follows:

(Yern = ye) = Tn (Te) + Esn, (1)

where Y}, (+) is a possibly nonlinear mapping of a set of predictors, €, is the forecasting
error and z; may include weakly exogenous predictors, lagged values of oil prices and a large
number of potential covariates. Let 7} = {14, x4, 241, ..., Z—s}, where 1, is a constant term,
xy =A{X14, ..., Tp} is & set of n predictors and s is the maximum lag adopted for the set of
variables z; when forming the database z}.

In order to build our forecasting exercise, the sample is divided into two periods: the
first one (t = 1,...,T1) is labeled as “training set”, used to estimate the tuning parameters
and model coefficients. The second period, also known as the "test set", comprising the last
P observations (t = T} + 1,...,T'), is used to confront the observations of (y;1n, — y:) with
out-of-sample forecasts. This way, P = T — T} observations are used to compare different
forecasts and compute forecast-accuracy measures.

In regularization methods (models 7-10), the mapping Y, (+) is linear, such that:

(Yirn — Y1) = %ﬂh + €tths (2)

where (3, is a vector of unknown parameters, estimated using a sample of t = 1,...,T}
observations. Note that for these models, the direct forecast approach is adopted, where the
oil price change (yr,+1» — yr;) is modeled as a function of a set of predictors 77, available at
period 77. In other words, for each horizon h, a different vector of unknown parameters 3, is
estimated (in contrast to the iterated multistep approach; see Marcellino, Stock and Watson,
2006). This way, one avoids the necessity of estimating a model for the time-evolution of
7. The pseudo out-of-sample forecast of (yr,+n — yr,) from these ML approaches, labelled
Jyr, ns 18 given by:

I :’ﬂ_pﬁ’;, forh=1,..., H. (3)

To evaluate forecast-accuracy, the root mean-squared error (RMSE) is computed for all
forecasts of the Brent oil real prices Y;, generated from the models listed in Table 1. Next,

the 22 forecasting methods considered in this paper are described in details.

Model 1 (RW): A natural benchmark for all competing methods to forecast the real price
of oil is the canonical random walk (RW) model, which assumes here the h—period oil price
change is an unforecastable martingale difference sequence (MDS), that is E (v, — v | Fi) =
0,forallt=1,...,77 and h =1, ..., H. Thus, the RW forecast assumes the oil price remains

unchanged along the out-of-sample period, that is, yT;L“i-&-h = 0 for all h.
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Models 2 and 3 (RW with drift): These variants of the random walk approach assume
E (Y4on — v | Fi) = driftxh, where the drift parameter is estimated over the training sample

(model 2) or over the last five years (model 3).” Thus, ;;fff — drift * h.

Model 4 (ARIMA): One of the most common statistical models used for time-series fore-
casting is the autoregressive moving average (ARMA) model, which assumes future obser-
vations are primarily driven by recent observations. Here, one considers the ARIMA (Au-
toregressive Integrated Moving Average) approach, which allows for integrated series. The
logarithm of the real oil price, which often exhibits persistent behavior, seems to be consistent
with this setup. Thus, one assumes in this approach y; = In(Y;) follows an ARIMA(p, d, q)
process, where p is the number of AR terms, d is the integration order of y,;, and ¢ is the

number of MA terms.

Model 5 (Factor model 1, direct forecast): The idea that time variations in a large
number of variables can be summarized by a small number of factors is empirically attractive
and it is employed in a large number of studies in economics and finance; see Forni et al.
(2000) and Stock and Watson (2002). Zagaglia (2010) uses a factor model to forecast the
nominal oil price along the 2003-2008 period. Here, one explores the use of factor models for
forecasting the real price of oil. Let x;; be the observed data for the i—th cross-section unit
at time ¢, for ¢ = 1,..., N and t = 1,...,T}, and consider the following factor representation
of the data:

Ty = N Fy + ey, (4)

where F} is a vector of common factors, ); is a vector of factor loadings associated with F;
and e;, is the idiosyncratic component of z;;. Note that A;, F} and e;; are unknown since
only x;, is observable. Here, one estimates the factors and respective loadings using principal
components analysis (PCA), which is a well-established technique for dimension-reduction
in time series. The number of components is determined by the Bai and Ng (2002) criterion.
After the PCA estimation of the common factors F}, the direct forecast approach is used to

model the oil price change at time ¢ + h, as follows:

(Yern — Ye) = BpFt + Evin- (5)
The respective out-of-sample forecast is given by:

ms BB, forh=1,.. H. (6)

YTy +h

It is worth mentioning this approach only uses here a subset of predictors, which are

pre-selected by taking into account our variable of interest is the oil price change. Bai and

"This “local” drift model assumes, for instance, oil traders extrapolate from the recent behavior of the
spot price when they form expectations about the future prices. According to Alquist et al. (2013), the local
drift model is designed to capture “short-term forecastability” that arises from local trends in the oil price
data.

11



Ng (2008) shows the factor model forecasting performance could be improved by previously
selecting (or targeting) the predictors. The core idea is that irrelevant predictors employed
to build a factor model only add noise into the analysis, and thus produce factors with a
poor predictive performance.

In this sense, it is adopted a pre-selection of variables (target predictors) to be included
in the factor analysis, as follows: (i) regress (y;+n — y:) on the intercept and the candidate
variable 7}, € 7}, for all i = 1,..., N; (ii) compute the t-statistic for the coefficient associated
to 7;,; and (iii) include 7, in the set of predictors (used to extract the factors) only if it is

statistically significant at a 5% level.

Model 6 (Factor model 2, iterated forecast): This approach is a variant of the previous
one, but using an iterated method instead of the direct forecast approach. The idea is again
to employ common factors, but to model the oil price change in a contemporaneous way in

respect to the factors, that is:

(Yern = Ye) = VErin + Vesn. (7)

Following Banibura et al. (2013), the factors are assumed to follow a VAR process, that
is, Fy = ®(L)F; 4+ u;. The out-of-sample forecast from this factor model is given by:

" 3 Fn o, for h=1,.. H, (8)

YT +h

where F;rh\lTl is the h—step ahead forecast of the vector of common factors using a VAR
model for F}, estimated in a recursive scheme.

Again, the factor model considers target predictors, as discussed in model 5.

Model 7 (Elastic net): The elastic net is a regularization and variable selection method
proposed by Zou and Hastie (2005) as a generalization of the LASSO. Similarly to the LASSO,
the elastic net simultaneously does automatic variable selection and continuous shrinkage,
and it can select groups of correlated variables. Simulation studies show the elastic net often
outperforms the LASSO, in terms of predictive power, while enjoying a similar sparsity rep-
resentation. The elastic net encourages a grouping-effect, where highly correlated regressors
tend to be jointly included (or excluded) from the model, and it can be particularly useful
when the number of predictors k is high when compared to the number of observations 7.
For a nonnegative shrinkage parameter )\, and a combination parameter « strictly between
0 and 1, the elastic net solves the following problem:

T k 2

3 = argmin Z ((th — 1Y) — Zx;,ﬁJ) + AP, (B) |, 9)
—1 j=1

1
BBt \ T4

12



where
i 1—a) ,
P.(8) =Y alg] + 15 g (10)
j=1

Note that the elastic net becomes the LASSO when o = 1. As « shrinks toward 0, the
elastic net approaches the ridge regression. For other values of «, the penalty term P, (3)
interpolates between the [;-norm of § and the squared /o-norm of 5. Once again, the tuning
parameter A controls the overall strength of the penalty. Note the objective function is
convex and so can be minimized using any convex optimization method such as gradient or
coordinate descent.

Although the elastic net is defined here by using (\, «), this is not the only choice as the
tuning parameters; see Zou and Hastie (2005) for further details. For example, one could use
the [;-norm of the coefficients or the fraction of the /;-norm to parameterize the elastic net.
There are well-established methods for choosing the tuning parameters (A, ). For instance,
K-fold cross-validation (CV) is a popular method for computing the prediction error and
comparing different models using training data. The loss often used is the mean squared
error (MSE) and the goal is to produce the "cross-validation curve", which computes the
MSE as a function of the tuning parameter \ over a pre-selected grid.®

In the elastic net, since there are two tuning parameters, one needs to cross-validate the
model on a two-dimensional surface. The minimum MSE, thus, provides the pair (A, &) to be
used in the final model estimation. In this paper, however, the Bayesian Information Criterion
(BIC) is adopted, instead of cross-validation, to choose the tuning parameters.” Finally, the
vector of parameters [ can be estimated using the penalized maximum likelihood, in which
the regularization path (i.e., the path of each coefficient 3; against, for instance, the /;-norm

of the whole coefficient vector as A varies) can be computed.

Model 8 (LASSO): The least absolute shrinkage and selection operator (LASSO) was
originally proposed by Tibshirani (1996). The core idea is to shrink to zero the irrelevant
coefficients. The LASSO is a penalized least squares method imposing an [;-penalty on the

regression coefficients, as follows:

T

k 2 k
=1 i=1

{Bl 7777 ﬂk} t=1

8To do so, for each fold, the algorithm splits the training set of observations in two parts: training folds
(used for the estimation of parameters) and test fold (based on the remaining observations, used for model
predictions). Then, forecast errors are computed and used to calculate the MSE over the entire set of
predictions using all K-folds.

9Zou et al. (2007) show one can consistently estimate the degrees of freedom of the LASSO model using
information criteria as alternative to the CV approach. An advantage of such procedure is that selecting
the model using information criterion is faster than using cross-validation. More importantly, performing
CV in a time-series context may be complicated in cases where the data are not independent and identically
distributed (i.i.d.); see Medeiros et al. (2016).
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where [ is the vector of parameters and A is the shrinkage parameter. Due to the nature of
the [;-norm, the LASSO approach is able to do continuous shrinkage and automatic variable
selection simultaneously, whereas the ridge regression only shrinks the coefficients close to
zero (but does not exclude them from the model). Again, setting A = 0 leads to the OLS
estimation. According to Cheng et al. (2019), LASSO is “the most intensively studied
statistical method in the past 15 years”. Indeed, it has shown success in many practical
situations, since it can handle more variables than observations. Nonetheless, it has some
limitations and might even become an inappropriate variable selection method in some cases.
Zou and Hastie (2005) list a few examples: (i) when the number of predictors k is greater
than the number of observations 7', the LASSO selects at most 1" variables before it saturates,
due to the nature of the convex optimization problem; (ii) in the case of grouping effect',
the LASSO tends to select only one variable from the group (and does not care which one is

selected); (iii) in the case of T' > k and in the presence of highly correlated predictors, it has
been empirically observed that ridge regression tends to perform better than LASSO.

Model 9 (Adaptive LASSO): Zou (2006) shows the LASSO estimator is inconsistent for
variable selection under certain circumstances. This way, the author proposes a new version
of the LASSO, called the adaptive LASSO (or simply adalasso), where adaptive weights
are used for penalizing different coefficients in the /;-penalty. According to the author, the
adaptive LASSO enjoys the oracle properties (i.e., it performs as well as if the true underlying
model were known) and does not select useless variables (which may damage the forecasting
accuracy). The core idea behind the model is to use some previously known information
to select the variables more efficiently. In practice, it consists of a two-step estimation that
uses a first model to generate different weights w; for each candidate variable z;,. These
weights are used in the second-step as additional information. The adalasso estimator is,
thus, defined as:

T

2
~ 1 . :
B = arg min TZ <(yt+h — yt) — Zx;7tﬂj> + )\ij |BJ| ) (12)
j=1 J=1

{Blu'“?ﬂk} t=1

~k | T

B

7 > 0 is an additional tuning parameter (which can be chosen by using the same criterion

represents the weights; 3;15 a parameter estimated in the first-step, and

where w; =

as A) that determines how much one wants to emphasize the difference in the weights. In
general, 7 is set to unity and E; is estimated in the first-step using LASSO. According to
Medeiros and Mendes (2016), the conditions required by the adalasso estimator are very
general and the model works even when the errors are non-Gaussian, heteroskedastic and the

number of variables increases faster than the number of observations.

10The grouping effect occurs if the regression coefficients of a group of highly correlated variables tend to
be equal (up to a change of sign if negatively correlated).
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Model 10 (Ridge regression): It is well known OLS often does poorly in prediction
on future data (e.g., due to overfitting). In this sense, penalization techniques have been
proposed in the literature to improve OLS accuracy. For instance, the ridge regression (see
Hoerl and Kennard, 1970) minimizes the squared sum of the residuals subject to a bound on

the ls-norm of the parameters, as follows:

T

k 2 k
B = arg min %Z ((yt+h — 1Y) — Zm;tﬁ]> + )\Zﬁi ; (13)
s j=1

{B1s-:Brk} t=1

where (3 is the k x 1 vector of parameters, (y;., — y;) is the dependent variable, {$1,t, e ,x;’t}
is the k£ x 1 vector of regressors and A is the shrinkage parameter, which controls the magni-
tude of the shrinkage penalty. The optimal value of A can be determined by cross-validation
(i.e., splitting the data into K folds and iteratively re-estimating the model for each fold) or
using information criteria. Choosing a higher A leads to a stronger shrinkage of the coeffi-
cients, whereas setting A = 0 produces the same results of the ordinary least squares (OLS)
regression. Also, because ridge regression is a continuous shrinkage method, it can achieve
a better out-of-sample performance through a bias-variance trade-off (i.e., use regularization
to balance the forecast errors due to bias and variance). In particular, the ridge regression
is good at improving the OLS counterpart when multicollinearity is present. However, ridge

cannot produce a parsimonious model, since it always keeps all the predictors in the model.

Model 11 (Random forest): Random Forest (RF) was introduced as a machine learning
tool in Breiman (2001) and have since proven to be very popular and powerful for high-
dimensional regression and classification. A random forest is a collection of regression trees,
designed to reduce the prediction variance by using bootstrap aggregation (bagging) of ran-
domly constructed regression trees. A regression tree is a nonparametric model based on the
recursive binary partitioning of the covariate space X.!!' The main idea is that if a sufficiently
large number of step functions are used, then a step function can be a good approximation
to any functional form.!'? The model is often represented as a binary decision tree, with P
parent nodes (also called "split nodes") and L terminal nodes (also called "leaves"; which
represent different partitions of X).

In practice, one major problem with regression trees is their high forecast variance. Usu-
ally, a small change in the data lead to a very different sequences of splits. The main reason
for such instability is the hierarchical nature of the algorithm: the effect of a big error in the

top split is propagated down to all of the splits below it. To overcome this issue, one can

!1Rather than splitting each node into just two groups, one might consider multiple splits into more than
two groups at each stage. However, according to Hastie et al. (2009, p.311), while this can sometimes be
useful, it is not a good general strategy, since multiple splits fragment the data too quickly, leaving insufficient
data at the next level down.

12 According to Hansen (2019): "The literature on regression trees has developed some colorful language
to describe the tools, based on the metaphor of a living tree. 1. A split point is node. 2. A subsample is a
branch. 3. Increasing the set of nodes is growing a tree. 4. Decreasing the set of nodes is pruning a tree.”

15



employ the bagging technique (i.e., bootstrap aggregation), which consists on fitting the same
regression tree several times to bootstrap-sampled versions of the training data and average
the result. This bootstrapping approach often leads to better model performance because it
decreases the forecast variance, without increasing too much the bias.'?

The random forest approach uses a modified bagging algorithm (random subspace pro-
jection) that selects, at each candidate split in the learning process, a random subset of
covariates. The reason for doing this is the correlation of the trees in an ordinary bootstrap
sample: if one or a few covariates are very strong predictors for the dependent variable, these
covariates will be selected in many of the K bootstraped trees, causing them to become cor-
related. According to Hansen (2019), the modification proposed by RF is to decorrelate the
bootstrap regression trees by introducing extra randomness. The random forest algorithm
can be summarized as follows:!4

Given a training set (Y;, X;), for i = 1,...,n, where Y is the dependent (response) variable
and X represents a set of covariates, bagging repeatedly (K times) selects a random sample
with replacement of the training set and fits regression trees to these bootstraped samples,
that is, for k=1, ..., K:

(i) sample with replacement n training observations from (X,Y’); calling them (X, Y);

(ii) train a regression tree Ty (-) on (X, Yz);

(iii) build the random forest prediction of Y conditioned on the test set (unseen samples

2') by averaging the predictions from all the individual regression trees on z’, as follows:

1
Erandonl forest (Y | X = ZE,) = EZTk("L‘/% (14>

where Ty (z') is the conditional forecast of Y from the k-th regression tree.

Model 12 (Quantile regression forest): Random forest approximates the conditional
mean of Y by constructing a weighted average over the sample observations of Y. Nonetheless,
the technique can also provide information about the full conditional distribution of the
response variable, not only about the conditional mean. This information can be used,
for instance, to build prediction intervals and account for outliers in the data. This way,
conditional quantiles can be inferred with quantile regression forests (QRF), a generalization
of random forests proposed by Meinshausen (2006).

On the other hand, the conditional mean of Y can be approximated by a combination of

conditional quantiles (i.e., integrating the conditional quantile function of Y over the entire

13While the predictions of a single tree are highly sensitive to noise in its training set, the average of many
trees might be not, as long as the trees are not correlated. Besides, training many trees on a single training
set would give strongly correlated trees, whereas bootstrap sampling helps de-correlating the trees by showing
them different training sets.

14See the Technical Appendixes 3-4 and Hastie et al. (2009, chapters 9 and 15) for further details.

15The main difference between QRF and RF is that for each node (in each tree), RF keeps only the mean
of the observations that fall into this node (and neglects all other information). In contrast, QRF keeps the
value of all observations in this node (not just their mean) and assesses the conditional distribution based on
this full information.
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domain). In this sense, Araujo and Gaglianone (2020) proposed a quantile combination
approach using QRF to build conditional mean forecasts of Y'; see the Technical Appendix
3 for further details. The idea follows the averaging scheme of quantiles conditional on
predictors selected by LASSO, as proposed by Lima and Meng (2017).!® The advantage of
both approaches relies on the fact that quantiles are robust to outliers (in our case, extreme
unanticipated oil shocks), which potentially improves forecast-accuracy and likely impact
the performance of standard models, which are usually designed to only account for average

responses.

Model 13 (XGBoost): Extreme Gradient Boosting (or simply XGBoost) is a decision-
tree-based ensemble algorithm that uses a gradient boosting setup proposed by Chen and
Guestrin (2016). It improves upon the previous gradient boosting frameworks through sys-
tems optimization and algorithmic enhancements.'”

According to Morde and Setty (2019), the XGBoost algorithm has the best combination
of prediction performance and processing time compared to other algorithms. As result,
it is widely used in many data science competitions (and there is a strong community of
data scientists contributing to the XGBoost open source projects). Figure 1 shows a brief

comparison of the most common decision tree algorithms.

Figure 1 - Algorithms for decision trees
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Source: Morde and Setty (2019). Boosting is an ensemble technique (that is, makes an average of the predictions
of a group of models) that constructs models sequentially, and each subsequent model corrects

the errors of the previous one, whereas bagging constructs models independently.

In sum, XGBoost is a bagging-based algorithm with a key difference wherein only a subset

of features is selected at random. Compared to Random Forest, XGBoost is normally used to

16 According to the authors, the quantile combination method often results in a prediction model in which
the coefficients of fully weak predictors (those that help predict no quantile at all) are not statistically
significant, in contrast to statistically significant strong predictors (that help forecasting all quantiles), while
the coefficients of partially weak predictors (useful to forecast some, but not all, conditional quantiles of Y')
are adjusted to reflect the magnitude of their contribution to the conditional mean forecast. These methods
potentially offers improvement in forecast accuracy compared to usual conditional mean models not designed
to deal with partial and fully weak predictors across quantiles and over time.

"For instance: (i) the distributed weighted quantile sketch algorithm, to find the optimal split points
among weighted datasets; (ii) sparsity awareness, that admits sparse features for inputs; (iii) cross-validation
at each iteration; among others.
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train gradient-boosted decision trees and other gradient boosted models, whereas RF' uses the
same model representation and inference (as gradient-boosted decision trees), but a different
training algorithm. In addition, XGBoost supports missing values by default, since branch
directions for missing values are learned during training.

In practice, XGBoost requires the right configuration of the algorithm for a dataset by
tuning the hyper parameters (i.e., searching the parameter space for a set of values that
optimizes the model architecture). Hyper parameter tuning is not automatic and must be
fine-tuned manually. Most of hyper parameters in XGBoost are about the bias-variance trade-
off. When one allows the model to get more complicated (e.g., more depth), the model has
better ability to fit the training data (in-sample), resulting in a less biased model. However,
such complicated model requires more data to fit. The best model should trade the model
complexity with its predictive power carefully.'®!® See Chen and Guestrin (2016) for further
details.

Models 14 and 15 (AF and BCAF): Duarte et al. (2019) generate optimal oil price
forecasts using forecast combination tools, in the context where the number of forecasts can
grow without bounds, following the approach proposed in Issler and Lima (2009); see also
Gaglianone and Issler (2019).?° The main idea is to employ a bias-correction device on the
cross-section average of individual forecasts. In this setup, the Average Forecast (AF) is
a special case of the Bias-Corrected Average Forecast (BCAF), in which the bias term is
statistically equal to zero. Such forecast combination setup works well in practice due to risk
diversification: idiosyncratic forecast errors vanish, since the law of large numbers eliminates
the uncertainty associated to them, as long as the number of combined forecasts increases
with no bounds.

Here, the set of covariates used to forecast the oil price is, essentially, the same used in
Duarte et al. (2019). Minor changes include the substitution of some FRED series without
seasonal adjustment by the respective seasonally adjusted series, and the exclusion of the
series from the Goyal and Welch (2008) database, due to infrequent data update.?’ On the

other hand, in order to eliminate excessively high (or low) individual forecasts of the Brent oil

80ne of the most important hyper parameters is the maz depth, which controls the model complexity.
In general, the deeper a tree grows, the more complex the model will become, since there will be more splits
to capture information about the data. Indeed, this is one of the key causes of overfitting in decision trees
because the model can fit perfectly the training data (in-sample) but will not be able to generalize well on
the test set (out-of-sample). Thus, reducing max_ depth can avoid overfitting. Another key hyper parameter
is the learning rate 1, which scales the contribution of each tree by a factor of 0 < n < 1. It is used to prevent
overfitting by making the boosting process more conservative (lower values for 7).

90Other way to tackle overfitting in XGBoost is to add randomness to make training robust to noise.
This can be done by using hyper parameters subsample (ratio of the training instance. Setting it
to 0.5 means that XGBoost randomly collects half of the data to grow trees, thus preventing over-
fitting) and colsample bytree (ratio of features when constructing each tree). For more details, see:
https://xgboost.readthedocs.io/en/latest/index.html

20Technical Appendix 1 provides further details on the referred forecast combination setup.

21 The set of covariates used in this paper is the following: CONSPI; CRB; CRB_ METALS; GPR_ UKRAINE; HUN-
PROINDMISMEI; IPBUSEQ; IPG3311A2S; IPG3364T9S; IPN213111S; IPN3311A2RS; OIL_WTI; OIL_BRENT REAL;
PPICMM; S P _PE_ratio; TB3SMFFM. See Technical Appendix 5 for further details on the description and
source of the selected series.
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prices from models AR, ARMA-X and VAR (which, in turn, impact the aggregate forecasts
AF and BCAF), a trimming strategy is used. In other words, it is removed from the set
of individual forecasts (used to build the AF or BCAF combined forecasts) those individual
predictions of the Brent real oil price that are above US$ 400 or below US$ -30 (i.e., assumed
here as outliers). Such approach can be used as long as the number of models diverges
(N — 00), because even with trimming, the number of models used to compute the average

of individual forecasts grows at the same rate, provided that it is proportional to N.

Model 16 (Brent futures): Contracts of future oil price, daily traded in global financial
markets, naturally contain market expectations about the future prices of oil. Here, the Brent
future prices from ICE Brent Crude Futures are considered, with maturities ranging from 1
up to 12, 24, 36, 48, 60 and 72 months.?? This way, each contract maturity is considered
as the respective forecast horizon,® and the Brent real oil price forecast as the contract
nominal price of the Brent future (that is, assuming a neglible inflation along the considered

horizon).?*

Models 17 and 18 (Schwartz-Smith): Schwartz and Smith (2000) proposed a two-factor
commodity price model, assuming the equilibrium price level, in continuous time, evolves
according to a geometric Brownian motion with drift (equivalent to a random walk with drift
in discrete time). This way, short-run deviations between the spot and equilibrium prices
exhibit mean-reversion, following an Ornstein-Uhlenbeck process. From an econometrics
point of view, the authors propose a decomposition of the oil price into two components:
trend (long run, or fundamental price) and cycle (short-run variations around the trend).
Although these two factors are not directly observable, they can be estimated by using a
Kalman filter approach with spot and future prices.

Intuitively, price movements of future contracts at long maturities provide information
about the equilibrium price level, whereas the differences between prices of short and long
horizons give information about the short-run oil price variations. The authors argue that,
although this model does not explicitly consider changes in convenience yields over time,
this short-term/long-term model is equivalent to the stochastic convenience yield model de-
veloped in Gibson and Schwartz (1990); see also Cortazar and Naranjo (2006) and Cor-
tazar et al. (2015) for further developments. Here, models 17 and 18 are, respectively, the
mean and median of the Brent real oil price density forecast, based on a grid of quantiles
7 = [0,01;0,02;...;0,99], constructed with a numerical simulation of the Schwartz-Smith

two-factor model.?®

22We consider the contracts traded on the last workday of each month or quarter. For further details on
Brent oil futures, see: https://www.theice.com/products/219

23 A linear interpolation of contract future prices provides the oil price forecasts for those horizons in which
there are no available maturities.

24Such assumption is justified by the order of magnitude of the variance of the monthly log difference of
the Brent oil price, In(Y;) — in(Y;—1), which is roughly 100 times bigger than the variance of the monthly
log difference of the U.S. producer price index (PPI all commodities), considering the sample period from
January 1991 to June 2020.

25 Technical Appendix 2 provides more details on the Schwartz-Smith factor model.
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Models 19 and 20 (Mean and median, all models): The forecast combination literature
(e.g., Palm and Zellner, 1992; and Timmermann, 2006) suggests that combining different
models and/or forecasting methods, based on different information sets, might improve the
out-of-sample forecast accuracy over individual models/methods. This exercise considers the

simple average and the median of all models, respectively, on models 19-20.

Models 21 and 22 (Mean and median, selected models): Here, the mean and median
of a subset of models is computed, only considering one method of each class of models.
Thus, the following models are chosen (ad hoc): (1) random walk; (5) factor model 1; (9)
adaptive LASSO (adalasso); (12) quantile regression forest; (14) AF (average forecast); (16)

Brent futures; and (18) Schwartz-Smith median.

2.2 Density Forecast

Following the literature of commodity pricing models (e.g., Schwartz and Smith, 2000), it is
assumed that the logarithm of the real oil price follows a normally distributed process.?% In
other words, the real oil price Y; is assumed to follow a log-normal distribution. One of the
key features of the log-normal distribution is that its support lies on the positive real line R,
that is Y; € (0,+00). This feature is crucial to guarantee non-negative oil price forecasts.
Let y; = In(Y;) ~ N(p,02). Then, Y; ~ log-normal(j, 0?). The main descriptive statistics of

the log-normal distribution are the following;:

= exp(2u+0?) (exp(o?) — 1).

The probability density function (pdf) of Y; and its quantiles are given as follows:

1 (In(Yy) — )’
pdf (Y1) = Yoo &P (—T> ) (19)
quantile(Y,,7) = exp(p+ V202erf™! (27 — 1)), (20)

where erf (.) is the error function, defined as: erf (z) = \% foz e~ dt.

Using the forecasting methods/models described in the previous sections, once can build
direct point forecasts of the h—period log variation of the real oil price at period ¢ + h, that
is, forecasts of A"In(Y;ys) = In(Yin) — In(Y;) = (ye4n — i), using the information set F;
available at period t.

In order to produce density forecasts of Y;,,, one assumes here that the conditional

distribution of A"In(Y;,,) is Gaussian, with conditional mean g, +ne and conditional vari-

26 A positive random variable Y is log-normally distributed if the logarithm of Y is normally distributed.
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ance o2

Frhlt that is (Ah In(Yyin) | ]-"t) ~ N(,uHh“,a?Jrh‘t) or, equivalently, (In(Y,.,) | F;) ~

N(Mt+h|t + Yt, 0-?+h|t>7 Since Yy = ln(}/t) € Ft.
Therefore, the conditional distribution of the real oil price Y}, is log-normal, with mean

and variance given as follows:

2

Tttt
EYin | F) = eXP(Mt+h|t + Y+ 5 ), (21)
Var Yogn | Fo) = exp(2 (yny + ) + 07ome) (exp(0fipy) — 1) - (22)

Similarly, the conditional quantile of Y;.,, evaluated at quantile level 7, € (0,1), is

computed as follows:

Qr,(Yern | Ft) = exp(pynpe + ye + 4/ 2‘7?+h\t erf ! (27 — 1)). (23)

Now, let fi,, be the model m estimate of the conditional mean of A"In(Y;4p,). Thus,

—

Sitne = @t, where ji;, 1 = E (AMIn(Yy4s) | 7). Also, let Uf+h|t be the model m estimate
of the conditional variance of A" In(Y;,4), that is o? e computed using the Newey and West
(1987)’s HAC covariance matrix estimator, from a regression of the forecast error of f}},, on
the intercept.?”

Provided that [@t,

consistent estimates of the conditional quantiles of Y;,,, along a grid of quantile levels 7 €

ﬂ ,J/ are consistent estimates of [y, +h|t,af o .J/; one can obtain
[T1,...,Tp)', using equation (23). In particular, at the median (7; = 0.5), it follows that
Qrim05(Yin | F2) = exp(f7y, + w), since erf " (0) = 0.

Finally, the multi-step ahead density forecasts of Y;,; are summarized by using a fan
chart graph, based on the estimated conditional quantiles over the horizons h = 1,.... H
and the considered grid of quantile levels. In order to obtain a smooth term-structure of
conditional variances (i.e., across the considered horizons), one can also smooth out the

estimated conditional variances using a Spline function.

2.2.1 Density Forecast Evaluation

The density forecasts are evaluated using three approaches: (i) coverage rate, (ii) log predic-

tive density score, and (iii) interval score, next described.

Coverage Rate: According to Clark (2011, p.336): "...a natural starting point for forecast
density evaluation is interval forecasts - that is, coverage rates.” In this sense, a necessary
(but not sufficient) condition for a "good" density model is to produce a conditional density

with an adequate coverage rate.?® The objective is to verify to which extent a given density

2TThe forecast error ( fﬁh‘ . — A"In(Y;,1)) is computed here along a pseudo out-of-sample forecasting

exercise, that is, considering t = 77, ..., 1> and a given h.

28 Coverage rates reveal the difference between the unconditional probability that realizations fall into the
forecasted intervals and the respective nominal coverage. However, the main drawback is that coverage rates
ignore time dependence and cluster behavior.

21



forecast departures from a selected nominal coverage rate.

In practice, one needs to compute the frequency of observations of Y;,; that fall inside a
selected forecast interval. In this paper, the 90% interval band is adopted, which leads to a
forecast interval based on the conditional quantiles @—;(n_‘_h | Fi.m), estimated from model
m, horizon h and quantile levels 7 = 0.05 and 7 = 0.95. The empirical coverage is, thus,

defined as follows:

T
1
Comn = (T, —T1 + 1) hZT 1{Q/z7n(yt+h\ft,m)SYtMS@;(YtM|ft,m)}' (24)
t+h=T1

The lower the distance between the nominal coverage (7 — 1) and the empirical coverage
Cinp, the better is the density forecast. In the case of C,,, >> (T — 1), the forecasted
density is too wide, compared to data, whereas for C,,, << (T — 1) the density forecast is

too narrow.

Log Predictive Density Score (LPDS): Another useful indicator to analyze density
forecasts is the log predictive density score, or simply logarithmic score (e.g., Gneiting and
Raftery, 2007, eq.54). This approach allows one to rank the investigated models m = 1, ..., M,

for each forecast horizon h = 1, ..., H, according to their LPDS, as follows:

Ts
1 —
LPDSmJZ = m Z In (dt+h|t (K—&-h)) (25)
t+h=T,
where dﬁﬁ-&-h) is the conditional density of Y;,, estimated from model m and horizon h,

based on the information set available at period ¢. The referred density is evaluated at the
observed value Y;, and (log) averaged along the pseudo out-of-sample observations 77, ..., T5.
In our case, recall that Y; follows a log-normal distribution, with conditional density given by
equation (19). A higher score implies a better model (see Adolfson et al., 2005). According
to Gneiting and Raftery (2007, p.374): "The logarithmic score is strictly proper but involves

a harsh penalty for low probability events and thus is highly sensitive to extreme cases.”

Interval Score: Scoring rules for intervals provide another way of checking how well-
calibrated are density forecasts in respect to observed data. Given a central prediction
interval forecast [L, U], with associated probability (1 — «) x 100%, where L and U represent
the estimated conditional quantiles from model m, horizon h, quantile levels 7 = ¢ and
T = (1 — %), respectively, and Y;,, > 0 is a realization of the variable of interest, one can
define the following interval scoring rule, proposed by Gneiting and Raftery (2007, eqs. 43,

58):

Ts

1 2 2
Smh = =T +1) > {(U = L)+ (L= Yern) Yvinny + o (Vern = U) Liygo0y |
t+h=T}

(26)
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where L = CZ\M(YH;L | Fim) and U = @,\m(YHh | Fim). This is a proper scoring rule for
intervals (Gneiting, 2011), constructed from two quantile losses at the [r;7] quantile levels.
Since this paper considers the 90% interval band, one should set o = 0.10, 7 = 0.05 and
7 = 0.95. According to Gneiting and Raftery (2007, p.374): "This scoring rule assesses both
calibration and sharpness, by rewarding narrow prediction intervals and penalizing intervals
missed by the observation.” Finally, note that this rule is negatively oriented, acting as a loss

function. Thus, a lower score implies a better interval forecast.

3 Empirical Exercise

3.1 Data

Although the nominal oil price receives great attention in the press, the relevant variable in
terms of economic modeling is the real price of oil. The focus of the analysis is on the Brent
oil price extracted from the International Financial Statistics (IF'S) of the IMF. The nominal
price data were deflated using the U.S. producer price index (PPI), obtained from the FRED
database of the St. Louis FED.

Figure 2 shows that real oil prices over the past 50 years reacted to a variety of geopolitical
and economic events.?? To explain (and forecast) the real oil price dynamics, a quite diverse
set of macroeconomic and financial variables drawn from a number of categories is used here.
They came from a pool of n = 315 contemporaneous variables that are present in different
databases: FRED-MD (McCracken and Ng, 2015), EPU (Economic Policy Uncertainty in-
dexes of Baker, Bloom and Davis, 2015), GPR (Geopolitical Risk indexes of Caldara and
Iacoviello, 2018) and Thomson Reuters Datastream, among others. The Technical Appendix

5 presents the full list of variables used as potential predictors for the real oil prices.

Figure 2 - Real oil prices
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Source: U.S. Energy Information Administration (2020) report, available at:

https://www.eia.gov/finance/markets/crudeoil /reports presentations/crude.pdf

29The real oil prices shown in Figure 2 are computed using the West Texas Intermediate (WTI) crude oil
price, which is strongly correlated with the Brent oil price.
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The relationship between the oil price dynamics and relevant macroeconomic variables is
widely documented in the literature; see Hamilton and Herrera (2004), Kilian and Vigfusson
(2013, 2017), Aastveit et al. (2015), Baumeister and Kilian (2012, 2016), Mohaddes and
Pesaran (2016), Bjgrnland, Larsen and Maih (2018), Bjgrnland and Zhulanova (2018), among
many others. The use of macro variables is motivated, for instance, by empirical evidence
suggesting that measures of global real activity are useful for out-of-sample forecasting the
real price of oil; see Alquist et al. (2013).3° In this sense, the use of industrial production
indexes from several countries, as well as U.S. industry-level and labor market indicators,
within a high-dimensional context can be a promising route.

On the other hand, despite the fact that neither short-term interest rates nor trade-
weighted exchange rates seem to have predictive power in the literature for the nominal
price of oil, several financial market indicators are included in the set of predictors®' (e.g.,
Baltic Exchange Dry*? and indicators based on stock markets, money and credit, interest and
exchange rates), relying on the usage of machine learning nonlinear approaches® to identify
statistical relationships not captured by standard linear models.

Finally, several predictors not usually considered by economists are also included in the
database, in order to potentially improve forecast accuracy, such as data from newspaper
coverage used to build the economic policy uncertainty (EPU) and geopolitical risk (GPR)
indexes; which nowadays are available freely for many countries.3*

Our sample period covers roughly 30 years of data, ranging from January 1991 to June
2020 (T' = 354 monthly observations). All variables are automatically tested for stationarity
using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and first-differentiated when neces-
sary.>® The 315 variables are lagged one period®® and considered in levels and first-differenced
(or first- and second-differenced, in the case of I(1) series), forming a final large data base
containing 630 series. This way, dim (Z}) = 630 variables used as potential predictors for the

oil price variation in equation (1). All models are recursively estimated, considering both

30 According to the authors, global real activity and changes in crude oil inventories can be viewed as
leading indicators of the real price of oil. In addition, models based on the price index changes for non-oil
industrial raw materials might capture the effect of persistent changes in the global business cycle on the
(real) oil price, since shifts in the demand for industrial raw materials are also related to shifts in the demand
for crude oil.

31See Miller and Ratti (2009).

32 As proxy of shipping freight rates. According to Alquist et al. (2013), the idea of using fluctuations in
shipping freight rates as indicators of changes in the global real activity is far from new and dates back to
Isserlis (1938).

33Hamilton (2003) suggested a nonlinear relationship between oil prices and U.S. real GDP.

34The idea is to employ uncertainty proxies to capture oil shocks related to a speculative (or forward-
looking) element in the real price of oil (see Kilian and Murphy, 2014).

35In factor models 1 and 2, all covariates are also standardized (i.e., considered with zero mean and unit
variance), since such approach provided better results in terms of oil price forecast accuracy, compared to
the use of covariates with their original mean and variance.

36Hamilton and Herrera (2004) point out that it is crucial to consider a rich lag structure in studying
the dynamic relationship between the price of oil and the macro aggregates. However, previous empirical
exercises (not reported) indicate that using more lags (2 or 3 lags) in our exercise generates oil price forecasts
with higher RMSEs, especially at longer horizons, compared to the one-lag approach.
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monthly and quarterly frequencies,®” by using a growing window® (increasing sample size),
as one incorporates every new time-series observation, one at a time.

In this context, each model is initially estimated using the first 77 observations and the
out-of-sample point forecasts are generated. One, then, adds an additional observation at the
end of the training set, re-estimate the models and generate again out-of-sample forecasts.
This process is repeated along the remaining data (test set). See Morales-Arias and Moura
(2013) for a detailed discussion about recursive versus rolling window.

This paper uses data over the period from January 1991 to December 2005 (T 1 = 180
monthly observations) for model estimation (training set) and reserve the remaining data
(test set) for the forecast comparison using P = T'— T} = 174 observations, for h = 1. In this
case, the evaluation period ranges from January 2006 to June 2020 (174 monthly forecasts).
For h = 24 months, the evaluation period varies from December 2007 to June 2020 (151
forecasts). Thus, the first part of the sample is used to estimate the econometric models and
train the machine learning approaches (selection of the tuning parameters and estimation of
the § parameters), whereas the remaining observations are used for out-of-sample forecast
comparison for horizons h = 1, ..., 24 months or h = 1, ..., 20 quarters.®”

The empirical exercise is implemented using the R software (version 4.0.2, 64-bit). The
ridge regression, LASSO and elastic net models are estimated using the R package glmnet
(version 2.0-16), which fits a generalized linear model via penalized maximum likelihood. The
adalasso model is implemented using the R package HDeconometrics (version of January 26,
2018), available at: https://github.com/gabrielrvsc/HDeconometrics. The same R package
is used to compute the BIC information criterion. In turn, in order to implement the random
forest and the quantile regression forest methods® the R package ranger (version 0.11.1) is

employed, whereas the XGBoost approach is based on the R package zgboost (version 1.0.0.2).

3T At quarterly frequency, all covariates are aggregated using the quarterly average of monthly series, ex-
cepting the Brent oil prices from future contracts, which are considered at the last workday of each quarter.

38We adopt such an estimation scheme due to the greater efficiency, in general, of recursive regressions
compared to rolling-window estimations. However, the latter approach could be justified under a framework
with the possibility of structural changes.

39To avoid extra (and unnecessary) complications in the implementation of the forecasting exercise, we
refrain to do a real-time analysis. Thus, a note of caution regarding the interpretation of results applies,
mainly due to two concerns: (i) not all useful predictors may be available to the forecaster in real time;
and (ii) several predictors are subject to data revisions (e.g., the CPI data become available only with a
one-month delay). See Baumeister and Kilian (2012) for real-time forecasts of the real price of oil.

40We used 2,000 trees in both the random forest and the quantile regression forest. In the latter method,
we adopted the grid of quantile levels: 7 € (0.05,0.10,0.15, ...,0.95) .
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3.2 Point Forecast Results

Figure 3 presents the out-of-sample forecasts (i.e., along the pseudo out-of-sample forecasting
exercise) of selected models, in which each color represents a given term-structure of forecasts,
formed at a given period ¢, for the following periods ¢t + h, for h = 1, ..., 24 months. Figure 4
shows the log variation of the real price of oil, considering h = 24 months, plotted together
with the respective h-period forecasts from the 22 models/methods listed on Table 1. See
the Technical Appendixes 8 and 9 for several other results from the monthly and quarterly

frequencies, respectively.

Figure 3 - Pseudo out-of-sample forecasts (h = 1, ..., 24 months, monthly freq.)
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Figure 4 - Oil price variation and out-of-sample forecasts (h = 24 months, monthly freq.)
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The individual forecast errors, for each horizon, are used to computed the Root Mean
Squared Error (RMSE) from the out-of-sample evaluation period. In both model estimation
and forecast evaluation, a real price of the Brent oil is computed at constant prices of the
last sample observation used for model estimation (which, in turn, is time-varying along the
pseudo out-of-sample forecasting exercise). The Clark and West (2007) approach®! is used
to statistically test the null hypothesis that a given forecasting method is as accurate as the
random walk (benchmark), a usual forecast to be beaten in the oil price forecast literature,
against the alternative that the competing method is more accurate than the no-change
forecast.

Besides the RMSE, another way to present the results is to compute the R? out-of-sample
statistics (or simply R200s), by comparing different forecast strategies with the benchmark
model, which is an important benchmark to be beaten in the literature on oil price forecasting.
For the Brent oil real price Y;, 1, the R%o0s-statistic is defined as follows (Rapach et al., 2010):

T —~ 2
Z (Y;Jrh - ftl+h\t>
T —~ 2
> (Yo — K

R%00s =100 x |1 —

where f} e 18 the forecast of Y;,;, from method ¢, using information up to period ¢, and

-~

fBMK

ihlt 1S the respective benchmark forecast. Positive (negative) values for the R?0os statistic

~

means that the forecast f; L np beats (is beaten by) f75f.

Table 2 presents the results of RMSE and R?0os for the best model, in each horizon, in
both frequencies; see the Technical Appendix 6 for the full results. The yellow cells reveal
that the Adalasso, Elastic Net and BCAF are the best predictors with horizon up to six
months, considering the exercise conducted in monthly frequency. In particular, note the
good performance of the machine learning methods (e.g., Elastic Net, LASSO and Adalasso)
in the short /medium term, providing forecasts statistically superior when compared to those
from the random walk without drift in horizons from 1 to 3 months. For longer horizons,
still considering the monthly frequency, the forecast combination techniques AF-BCAF gain
importance, together with the Brent future prices and, to a lesser extent, the Schwartz-Smith
forecasts.

In quarterly frequency, the best forecasts are those produced by the forecast combinations
AF and BCAF, the Brent future prices, and the Schwartz-Smith model. Table 2 also reveals
that, in both frequencies, the forecast accuracy gains in respect to the benchmark approach
are statistically significant in several cases and reach two-digit figures, in percentage terms.
Considering the random walk with no drift as benchmark, the R%o0o0s statistics for the best

model, in each horizon, vary between 14% and 40% in monthly frequency, and between 9%

#1The variances entering the test statistics use the Newey and West (1987) HAC covariance estimator.

27



and 49% in quarterly frequency; expressive results compared to the previous literature.*?

Table 2 - Root Mean Squared Error (RMSE)

monthly frequency quarterly frequency

hZFEA  hEB hEH  hED hEFEA2  hER4 hZEA  hEE  hEB  hEA2 hEA6  hER0
(1)RW 6.574 13.723 19432 22.184 23995 30.485 (1)RW 11.010 22959 29.655 32539 36.055 38.086
(2)RWEdrift 6.618 13.972 20.146 23394 25689 35333 (2)Rwdrift 11225 24.664 34410 42767 53.545 66.297
(3)RWELrift5 6.696 14.474 21423 25240 27716 38.260 (3)RWRriftS 11648 26.865 37.347 46.878 62.337 86.501
(4)ARIMA 6.550 13.764 19.466 22.204 23.969 30.466 (4)ARIMA 11360 23495 31.242 35526 39.306 42.133
(5)Factorinodell 6.006*** 13.439** 19.119 21.540 22.800* 31.038 (5)Factor@nodell 10.562** 21.723 33511 35.046 40.552 44.298
(6)Factorinodel2 5.625** 13.788 19.124 21.643 23.794 33.357 (6)Factor@nodel2 10.594* 25.321 37.452 42719 56459 75502
(7)Elastichet 5.192*** 12.419* 18.035 22.400 26.486 40.171 (7)Elasticihet 10.345***25.299 30989 46638 58948  82.425
(8)LASSO 5.221%** 12.447* 17.929 22.455 26535 40.037 (8)LASSO 11734 25703 30915 46553 61238  84.899
(9)RAdalasso 5.174*** 12.454* 18.184 23.751 23.958 37.235 (9)Rdalasso 11.142 24642 32231 59314 51.161 79.353
(10)RidgeRegression 5.754*** 12.935** 17970 21.024 23.489 33.386 (10)RidgeRegression 10.829** 24.789 31916 39.382 50.646 66.150
(11)Randomorest 5.710*** 13.258** 19.117 21.991 24.385 35.487 (11)®Randomorest 10.278** 23.652 33.200 40.576 49.966  55.411
(12)Muant.reg.forest 5.742%*% 13375%* 19078 21.948 24278 35373 (12)@Muant.reg.forest 10.379** 23.622 33414 40837 49919 55.193
(13)KGBoost 5.741%*% 13.593***19.085** 21.899 24394 35.174 (13)XGBoost 10.383***23.411 31.895 40643 49.929  54.485
(14)RAF 9489  13.897 17.814 19.828 20.946* 23.605* (14)BF 11568  21.020* 25.437* 25902** 28.133** 30.603**
(15)BCAF 9376  13.723  17.665 19.800 21.060** 24.678** (15)BCAF 11392 21.746% 26.511** 26.800***30.671***37.408
(16)Brentdutures 5.210%%* 13.402%**19.229%* 21.155%** 22.124*** 25.167*** (16)Brentdutures 10.130%** 21.603*** 24.663** 23.615***26.166** 30.452
(17)BchwartzBmith@nean  5.258*** 13.306***19.235* 21.570** 22.861***27.819*** (17)Bchwartz®Bmith@nean  9.982*** 22.267* 27.315** 29.743** 34.711* 39978
(18)BchwartzBmith@Enedian 5.232*** 13.166*** 18.888*** 21.052*** 22.151*** 26.171*** (18)Bchwartz@Bmith@nedian 9.924*** 21.658***25.754** 26.500*** 29.834** 33,012**
(19)aVieantll 5.492*** 12.803** 17.914 20238 22.023* 30.223 (19)aVeanll 10.025** 22.395* 28989 34.079 40.875 49.150
(20)Vedian@l| 5.404*** 12.920** 18566 20.936* 22.589* 31.512 (20)aviediantll 10.083***22.767 29201 36.080 41.934 50.491
(21)aVeanBelection 5.488*** 12.711** 17.768 19.852* 21.165** 27.865** (21)AMeanBelection 9.892%** 21.310** 27.992** 30.643* 35299  38.829
(22)VedianBelection 5.302*** 12.807** 18.484* 20.735** 22.023** 28.066*** (22)@edianBelection 9.969*** 21.867***28.208** 28.557***33.973** 35.920*
number®fbservations 174 172 169 166 163 151 number®fbservations 58 55 51 47 43 39
bestiEnodel 9 7 15 15 14 14 besti@nodel 21 14 16 16 16 16
R2®os{%) 38 18 17 20 23 40 R2®os{%) 19 16 30 47 47 36

Notes: Yellow cells indicate the Top5 best models (lower RMSESs) in each horizon. *** ** * indicate rejection at 1%, 5%
and 10% levels, respectively, using the Clark and West (2007) test. The benchmark is model 1 (random walk without drift).
Forecast combinations 19 and 20 are based on models 1-18, whereas combinations 21 and 22

are based on selected models from each class (models 1, 5, 9, 12, 14, 16 and 18).

Next, the classical bias-variance trade-off is investigated by decomposing the MSE of
each forecasting method into two parts: the forecast variance and the squared forecast bias;
see Rapach et al. (2010), Elliott et al. (2013) and Lima and Meng (2017). To do so, one

T
~ - 2
calculates the MSE of any forecast fi.p,; as 1% Z (Yt+h — ft+h|t> , and the respective

t=T1+1
T T 2
unconditional forecast variance as 1% E Jeane — 1% E fi+nie |, where P is the total
t=T1+1 t=T1+1

number of out-of-sample forecasts. The squared forecast bias is computed as the difference
between the MSE and the forecast variance.

Figure 5 explores the bias-variance trade-off, in out-of-sample forecasting, by presenting
the relative forecast variance and squared forecast bias of all forecasting methods. The
relative forecast variance (squared bias) is calculated as the difference between the forecast

variance (squared bias) of the i-th method and the forecast variance (squared bias) of the

42 According to Alquist et al. (2013), the forecast of real oil price variation can be improved in horizons
up to three months, but (in general) cannot be improved for horizons beyond six months. More recently,
Duarte et al. (2019) report statistically significant forecast accuracy gains, in respect to the random walk,
of optimal forecast combinations (based on a large database of macro and financial variables), exhibiting a
R?00s statistic that reaches 14% for h = 6 months.
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benchmark approach. This way, the relative forecast variance (and squared bias) for the
benchmark is, by construction, equal to zero. Moreover, each point on the red dotted line
represents a forecast with the same MSE as the benchmark (red dot). Blue dots to the right
and above the red line are forecasts outperformed by the random walk, whereas dots to the

left and below it represent forecasts that outperform the benchmark.

Figure 5 - Relative MSE decomposition
(h = 12 and 24 months, monthly freq.)
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between the forecast variance (squared bias) of the considered method and the forecast variance (squared bias) of the
benchmark (RW). Each point on the red dotted line represents a forecast with the same MSE as the RW (points to

the right are forecasts outperformed by the RW and points to the left represent forecasts that outperform the RW).

Note on Figure 5 that, for ~ = 12 months, great part of forecasts beat the random walk.
Such performance can be attributed to the ability of those models in substantially reducing
the relative forecast variance, while keeping the forecast bias under control. In this sense,
for h = 12 months, the following models are worth mentioning: factor model 1, AF-BCAF,
Brent futures and Schwartz-Smith, besides the mean and median of all (or selected) models.
In the same way, for h = 24 months, the best models include forecast combination devices
or approaches based on Brent futures prices. The good performance of machine learning

methods (such as Adalasso, Elastic Net and Random Forest) only applies to short horizons
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(below six months), in both frequencies; see the Technical Appendixes 8 and 9 for further
details.

The previous analysis focused on the MSE decomposition enables a discussion on relative
average forecast accuracy. However, such measures alone do not convey any information
on how the performance of the competing methods evolves over time. To tackle this issue,
Figure 6 shows the Cumulative Squared Prediction Errors (CSPE) of each forecasting method
compared to the benchmark, built along the pseudo out-of-sample exercise for h = 24 months;
see Rapach et al. (2010).

The cumulative performance-analysis depicted in Figure 6 reveals whether a given method
consistently outperforms the benchmark forecast. For example, the relative good performance
of the AF can be attributed to the consistent forecast accuracy gain over the random walk, in
particular, obtained between 2014 and 2016 (when occurs a smooth decline of the blue line).
On the other hand, for the Elastic Net and LASSO, there is a relevant forecast accuracy
loss concentrated in a few months at the beginning of 2011 (when occurs a sharp increase
of the blue line). In turn, also note that the mean and median of selected models act here
as a hedge against high fluctuations on the relative forecast accuracy curve, exhibiting small
but consistent gains from 2010 until June 2020 (i.e., smooth decline of the blue line, with
no significant fluctuations). The Technical Appendixes 8 and 9 present the CSPE curves for
other horizons in both frequencies.

Another interesting analysis is the identification of the most important variables chosen by
the machine learning methods to predict the real oil price variation. A first way to investigate
such question is to observe the evolution of the number of variables selected (or not) over
time, along the pseudo out-of-sample exercise. Figure 7 reveals, among the 630 potential
predictors for the Brent real price, which ones were indeed selected (and when), according to
the Adalasso and Elastic Net methods, for h = 1 or 6 months, in monthly frequency. Note
that the overall number of variables selected (blue or red dots), in general, increase with the
forecast horizon.

One possible explanation is that the dependent variable (h-period variation of the log of
Brent oil real price) tends to be more persistent in longer horizons. In such cases, it can be
better explained by the set of covariates, compared to shorter horizons, where the dynamics

of the dependent variable approach a white noise pattern.
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Figure 6 - Cumulative Square Prediction Error (CSPE, divided by 10, 000)
(h = 24 months, monthly frequency)
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Notes: A positively sloped curve in each panel indicates that the conditional model is outperformed by the benchmark,
while the opposite holds for a downward sloping curve. Moreover, if the curve is positive (negative) at the end of

the period, then the competing method has a higher (lower) MSE than the benchmark over the evaluation period.
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Figure 7 - Variable Selection (A = 1,6 months, monthly frequency)
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Other interesting analysis that can be done using Figure 7 is checking the existence of
structural breaks and the respective change in the set of variables selected as the main drivers
of oil price dynamics. In particular, note that, after the global financial crisis in 2007/2008,
some variables seem to have lost importance to explain the Brent price variations, whereas
other variables started to be selected in a consistent way by the investigated methods. The
Technical Appendixes 8 and 9 show similar plots for other horizons in both frequencies.

Our next step is to qualitatively investigate the variable selection. In this sense, measures
of variable importance in machine learning methods generally attribute scores to predictors,
reflecting the relative importance of each covariate in the overall fit of the model to data; see
Hastie et al. (2009, chapter 15). Although this paper does not attempt here to economically
(or structurally) interpret the driving-forces behind the machine learning forecasts, further
inspecting these models to better understand how they are making forecasts (open the black-
boz) may reveal new statistical relationships in the data, previously overlooked by standard
linear models.

Regarding the LASSO family of models, the degree of importance of a given variable
x;+ when forecasting (y;+n — y:) can be computed by ‘B\Z‘ * 0p,, Where BAZ is the estimated
coefficient associated with variable x;;, and 7, is the sample standard deviation of x;;. In
the case of standardized variables (zero mean and unit variance), the variable importance is
simply [3,].%

In respect to random forest and quantile regression forest, variable importance, in general,

is computed by using two main methods:** (i) “permutation” by Altmann et al. (2010); and

43GQee https://stats.stackexchange.com/questions/14853 /variable-importance-from-glmnet
44 Gee also Janitza et al. (2018), that proposes for both methods a hypothesis test of no association between
the investigated predictor and the dependent variable.
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(i) “impurity-corrected” by Nembrini et al. (2018); see the Technical Appendix 4 for more
details on variable Importance in random forest. Figure 8 shows the most important variables
in real oil price forecasting, for h = 6 and 24 months, based on the full sample, according to

models: adalasso, random forest and xgboost; see the Technical Appendixes 8 and 9 for more

results.

Figure 8 - Variable importance (h = 6 and 24 months, monthly frequency)
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Note that the set of most important variables changes according to the investigated hori-
zon. Overall, the adalasso is the most parsimonious method, in terms of the number of
selected variables, compared to the other methods shown in Figure 8. However, despite the
methodological differences, it is worth highlighting the existence of a common set of variables
selected across the distinct methods.

For instance, considering h = 6 months, the most important variable according to the
adalasso, random forest and xgboost is the same variable: D CLI Major5 Asia, that is, the
first difference of the leading indicator of economic activity (called CLI), computed by the
OECD, for the five biggest countries in Asia. For h = 24 months, again one finds a common

set of most important variables, across the three different methods presented in Figure 8,
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related to leading indicators of economic activity (CLI Norway and CLI France), besides
variables associated with economic uncertainty policy in developed countries (EPU_ Japan),
or even related to the financial asset purchase program implemented by the Federal Reserve
in the U.S., also known as Quantitative Easing (QE _FED).

The following variables are also worth mentioning as relevant in oil price forecasting
(despite some disagreement among the three methods presented in Figure 8): industrial
production of durable goods in the U.S. (IPN3311A2RS, IPG3311A2S), indicators related
to the labour market in the U.S. (UNRATE, CLAIMSz) or to the U.S. financial markets ( VIX,
VXOCLSz, S&P_PE ratio). Such results are in line with previous empirical evidence, for
instance, suggesting that changes in the nominal price of industrial raw materials, other than
crude oil, can be used to improve forecast-accuracy of the oil price in the short run (Barsky
and Kilian, 2002).

Variable importance can alternatively be presented by using word clouds. Figure 9
presents, for illustrative purpose, the most important variables according to the zgboost
method, for h = 24 months. The variables with the largest font size are the most im-
portant ones, whereas variables with similar importance are depicted with the same size and

color; see the Technical Appendixes 8 and 9 for further results.

Figure 9 - Word cloud, xgboost (h = 24 months, monthly frequency)
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3.3 Density Forecast Results

Density forecasts provide much more information about a given variable of interest than a
single point forecast such as the expected value or the conditional mean. Indeed, beyond
the location (or central tendency of the conditional distribution), the density forecast also
provides information about the scale of such distribution (for instance, related to the second
moment of the target variable), besides informing about the existence (or not) of asymmetry,
thick tails, among other empirical features of the variable of interest.

This way, density forecasts should be designed to fit the future data well, not only in terms
of location but also in respect to scale. In other words, models that exhibit a poor forecast
performance (e.g., in terms of RMSE) will likely produce poor density forecasts too. However,
models with superior forecast accuracy (e.g., lower RMSESs) not necessarily generate good

density forecasts, since an adequate forecast of the conditional quantiles of the distribution is
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also crucial. Tables 3, 4 and 5 show a summary of results of the density forecast evaluation,
using the three metrics discussed in section 2.2.1; see the Technical Appendix 7 for the full
results.

Table 3 presents the empirical coverage results. Ideally, the density forecasts should ex-
hibit an empirical coverage as close as possible to the chosen nominal coverage of 90%. Indeed,
in many cases, one finds in Table 3 several figures equal or very close to 90% (green cells).
Also note there are many more figures close to the nominal coverage in short horizons than
in longer ones. It is worth mentioning the good performance of the density forecasts from
the random walk, Brent futures, AF (longer horizons) and the Schwartz-Smith, in monthly

frequency, besides the excellent performance of the Schwartz-Smith model in quarterly fre-

quency.
Table 3 - Empirical coverage rate
monthly frequency quarterly frequency

h=1 h=3 h=6 h=9 h=12 h=24 h=1 h=4 h=8 h=12 h=16 h=20
(1) RW 0.85 0.87 0.86 088 090 0.82 (1) RW 073 0.85 076 076 088 090
(2) RW-drift 085 0.88 0.89 089 0.50 079 (2) Rw-drift 076 085 0.69 050 050 027
(3) RW-drifts 0.85 090 0.90 090 090 077 (3) Rw-drifts 0.84 087 0.67 055 035 017
(4) ARIMA 084 0.87 087 080 091 083 (4) ARIMA 057 085 0.83 084 079 037
(5) Factor modell 090 0.86 084 084 076 073 (5) Factor model1 067 074 050 045 047 0.23
(6) Factor model2 0.89 0.85 0.87 0.87 0.87 073 (6) Factor model2 0.69 083 0.55 0.66 044 007
(7) Elastic net 086 0.85 083 77 079 0375 (7) Elastic net 078 074 0.50 058 053 013
(8) LASSO 095 0.85 0.81 079 0.79 075 (8) LassO 071 070 0.57 053 053 013
(9) Adalasso 097 0.87 0.85 076 078 067 (9) Adalasso 0.67 054 0.55 058 050 017
(10) Ridge regression 0.90 088 0.86 0.85 0.80 071 (10) Ridge regression 073 061 0.57 0.42 044 0.13
(11) Random forest 092 0.87 0.88 0.89 0.83 079 (11) Random forest 073 0.80 071 0.61 047 0.23
(12) Quant.reg.forest 050 0.88 0.88 087 0.82 079 (12) Quant.reg.forest 073 0.83 071 0.61 0.47 0.27
(13) XGBoost 0.80 0.87 0.88 087 0.81 078 (13) XGBoost 0.69 074 0.69 058 044 027
(14) AF 061 | o083 088 092 094 094 (14) AF 0.65 0.80 0.88 076 079 090
(15) BCAF 062 0.83 0.87 092 090 083 (15) BCAF 0.65 078 0.81 079 088 093
(16) Brent futures 083 0.88 0.87 050 0.89 0382 (16) Brent futures 076 074 074 058 068 0.80
(17) Schwartz-Smith mean 092 0.89 0.86 083 0.80 0.86 (17) Schwartz-Smith mean 094 085 081 0.82 094 093
(18) Schwartz-Smith median 092 0.89 0.86 0.83 0.80 0.86 (18) Schwartz-Smith median 0.94 0.85 0.81 0.82 094 093
(19) Mean all 092 0.88 088 090 0.88 0.80 (19) Mean all 067 0585 076 068 050 027
(20) Median all 092 0.88 0.88 090 091 0.82 (20) Median all 0.69 0.85 079 071 053 0.30
(21) Mean selection 092 0.88 0.88 050 0.89 0.80 (21) Mean selection 076 087 079 0.66 053 0.37
(22) Median selection 052 0.88 0.89 0.80 0.50 083 (22) Median selection 0.76 0.85 0.79 0.61 059 0.53

Notes: The nominal coverage rate is 90%. The closer the empirical coverage rate is to 90%

(green cells) the better is the fit of the density forecast in respect to observed data.

On the other hand, the red or orange cells indicate a poor fit of the density forecast in
respect to the observed data. In several cases, such result is due to a poor point forecast (see
the respective RMSEs in Table 2), providing an inadequate location of the forecasted density
and, thus, an empirical coverage far from the nominal one. In this sense, recall that empirical
coverages much below the nominal coverage might indicate (besides a bad location) that the
variance of the density forecast, for instance, is low compared to the unconditional empirical
distribution of the data.

Tables 4 and 5 present the results of the density forecast evaluation in terms of interval
score and log predictive density score (LPDS). Overall, these results corroborate the ones
previously shown in Table 3. In particular, note that the set of best density forecasts, con-
sidering the interval score, includes the factor model 1, ridge regression and Schwartz-Smith
approach, in monthly frequency, and the Brent futures and Schwartz-Smith, in quarterly

frequency; see the Technical Appendix 7 for the full results, in both frequencies.
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Table 4 - Interval score

monthly frequency quarterly frequency

h=1 h=3 h=6 h=9 h=12 h=24 h=1 h=4 h=8 h=12 h=16 h=20
(1) RW 302 629 1514 2141 2859 2084 (1) RW 67.4 1116 1483 1579 2410 3106
(2) RW-drift 4459 70.3 1256 1784 2485 3464 (2) RW-drift 64.0 127.9 2081 2886 3739 49638
(3) RW-drifts 36.4 65.8 1369 3802 5417 3820 (3) RW-drifts 749 1452 4724 4005 6007 9728
(4) ARIMA 311 65.7 1501 2139 2860 2161 (4) ARIMA 61.0 1060 1686 2483 3466 4140
(5) Factor modell 517 75.9 92.1 1294 1355 2754 (5) Factor madell 63.0 1049 2302 2293  269.9 3425
(6) Factor model2 342 89.6 1811 2285 2574 1867 (6) Factor madel2 63.7 1196 2336 2363 3758 11063
(7) Elastic net 586 95.8 150.4 2200 2768 4496 (7) Elastic net 56.2 1225 1725 3319 4160 8765
(8) LASSO 60.4 86.7 1167 1718 1863 4348 (8) LASSO 67.8 127.3 1729 2835 4228 8554
(9) Adalasso 493 83.9 1092 1939 1477 3308 (9) Adalasso 68.5 162.8 2083  46l1 3653 8371
(10) Ridge regression 277 59.8 899 1222 1555 278.3 (10) Ridge regression 68.2 1440 266.0 3927 516.8 8458
(11) Random forest 410 88.2 1567 2030 2494 2823 (11) Random forest 53.4 1152 1940 2764 4418 4702
(12) Quant.reg.forest 333 1713 3375 406.1 4466 2447 (12) Quant.reg.forest 526 1149 197.3 2805 482.7 466.3
(13) XGBoost 342 810 136.3 185.6 2229 2299 (13) XGBoost 55.2 1129 1918 270.1 391.0 465.0
(14) AF 57.3 76.9 1313 1720 2010 1029 (14) AF 66.9 936 1762 2963 3985 3970
(15) BCAF 55.9 76.6 1328 1758 2074 1206 (15) BCAF 657 1129 1920 2899 3948 40638
(16) Brent futures 337 75.8 1746 2507 3192 1867 (16) Brent futures 57.0 1226 1477 1468 1118 1327
(17) Schwartz-Smith mean 28.8 67.0 95.4 106.6 1109 1224 (17) Schwartz-Smith mean 435 106.2 1250 1280 1463 1709
(18) Schwartz-Smith median 288 67.0 95.4 106.6 1109 1224 (18) Schwartz-Smith median 495 106.2 1250 128.0 1463 1709
(19) Mean all 87.6 1452 2037 2296 2222 2390 (19) Mean all 53.4 1069 1399 1725 2195 3507
(20) Median all 29.4 62.5 1289 1754 2264 2474 (20) Median all 54.4 117.9 1937 2645 2975 3229
(21) Mean selection 282 77.0 2427 2738 2901 1953 (21) Mean selection 52.7 1004 1367 1506 1704 2080
(22) Median selection 23.0 63.0 135.2 1868 2359 1575 (22) Median selection 53.8 108.0 1494 1428  157.0 1587

Note: A lower score implies a better interval forecast. Yellow cells indicate the Top5 best models in each horizon.

Table 5 - Log predictive density score (LPDS)

monthly frequency quarterly frequency

h=1 h=3 h=6 h=9 h=12 h=24 h=1 h=4 h=8 h=12 h=16 h=20
(1) RW -3.42 421 -4.57 -4.56 -471 -4.83 (1) RW -4.14 487 -5.09 -4.87 -4.85 -a.94
(2) RW-drift -3.46 -4.23 -4.59 -4.58 -4.76 -5.08 (2) RW-drift -4.20 -4.97 -5.67 -5.98 -6.17 -6.86
(3) RW-drifts -3.47 -4.21 -4.43 -4.61 -4.79 -5.31 (3) RW-drifts -4.00 -5.17 -6.81 875 -1088 -13.34
(4) ARIMA 341 -4.22 -4.56 -4.56 -4.73 -4.86 (4) ARIMA -4.32 -4.80 -491 -4.87 -5.08 -5.43
(5) Factor modell -3.30 -4.19 454 -4.65 -4.98 577 (5) Factor model1l -4.58 465 575 5.62 -6.38 751
(6) Factor model2 -3.18 -4.28 -4.45 -4.55 -4.75 -5.12 (6) Factor model2 -4.45 -4.89 -6.26 5.61 -815  -43.21
(7) Elastic net -315 -4.13 -4.79 -5.50 -5.22 -5.62 (7) Elastic net -4.58 -5.10 -5.29 -6.11 -6.69 -14.15
(8) LASSO -3.16 -4.14 -4.78 -5.43 5.18 573 (8) LasSO -4.75 -5.19 -5.29 5.81 639 -12.80
(9) Adalasso -3.21 -4.15 -4.75 -5.68 -5.53 -7.01 (9) Adalasso -4.83 -5.86 -5.58 951 651 -14.85
(10) Ridge regression -3.20 -4.17 -4.53 -472 -5.05 -6.64 (10) Ridge regression -4.59 -554 -9.68 -11.87  -1463  -2253
(11) Random forest -323 -4.20 -4.42 -4.51 -473 -4.98 (11) Random forest -4.03 -484 -5.62 -6.04 -6.86 -7.48
(12) Quant.reg.forest -322 421 -4.42 -4.52 -a74 -498 (12) Quant.reg.forest -399 -484 564 -6.09 -6.86 -7.50
(13) XGBoost -3.21 -421 -4.40 -452 -479 -5.01 (13) XGBoost 411 -495 -5.68 -5.95 -6.91 -7.68
(14) AF -4.24 -4.29 -4.45 -4.44 -4.55 -4.50 (14) AF -4.64 -4.65 -473 -4.70 -4.79 -4.82
(15) BCAF -421 -4.29 -4.46 -1.46 -4.57 -456 (15) BCAF -4.64 -480 -4.82 462 -4.69 -4.92
(16) Brent futures -3.03 -4.10 -4.38 -4.50 -4.61 -4.66 (16) Brent futures -4.06 -511 -5.94 -5.03 -477 -4.81
(17) Schwartz-Smith mean -3.06 -4.11 -4.39 -4.49 -4.66 -4.79 (17) Schwartz-Smith mean -4.10 -5.30 -6.95 -5.96 -5.80 -5.93
(18) Schwartz-Smith median -3.05 -4.09 -4.36 -4.47 -4.63 -4.70 (18) Schwartz-Smith median -4.07 -5.06 -6.42 -5.43 -5.28 -5.17
(19) Mean all -3.17 -4.15 -4.38 -4.44 -4.58 -479 (19) Mean all -4.05 -475 -5.00 -4.94 -5.33 -6.43
(20) Median all -3.14 -4.13 -4.45 -4.48 -4.64 -4.79 (20) Median all -4.10 -4.83 -4.92 -4.90 -5.21 -6.21
(21) Mean selection -313 -4.13 -4.36 -4.40 -4.53 -4.66 (21) Mean selection -4.00 -463 -5.00 -4.89 -5.14 -5.61
(22) Median selection -3.08 -4.10 -4.39 -4.47 -4.62 -4.69 (22) Median selection -4.04 -4377 5.18 -4.87 -5.06 -5.20

Note: A higher score implies a better density forecast. Yellow cells indicate the Top5 best models in each horizon.

In turn, Figure 10 shows the truly out-of-sample density forecasts of the real oil prices (at
constant prices of June 2020) built at monthly frequency. To do so, the so-called fan charts
are built to illustrate the evolution of oil price point forecasts, along the term-structure of
horizons, plotted together with the uncertainty (blue shades) associated with each forecasting
method and considered horizon. Figure 10 also presents the probability density functions
(PDFs) for selected horizons. Note the asymmetry of the estimated densities, consequence

of the log-normality assumption discussed in section 2.2.
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Figure 10 - Fan charts and probability density functions (PDFs)
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Fan chart of model BCAF
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Finally, point forecasts selected*® at monthly frequency indicate the Brent oil real price,
for June 2022, ranging from US$ 40 to 58. The same models, estimated at quarterly frequency,
predict the price of oil for June 2025 to be between US$ 30 and 50.

In respect to risk management of oil prices, the density forecasts provide a 90% probability
interval forecast of the Brent oil real price. For example, according to the AF monthly model,
with 90% of probability, the oil price for June 2022 will be in the range of US$ 28 and 90 (and
for June 2025, between US$ 8 and 126, according to the quarterly frequency estimation). The
same interval forecast from the Schwartz-Smith model, for June 2022, ranges from US$ 24 to
79 (and for June 2025, from US$ 19 to 101). Such intervals can be useful, for instance, when

hedging against extreme oil price fluctuations.

45Based on the RMSEs shown in the Technical Appendix 6, we select here the following models: random
walk without drift, random forest, quantile regression forest, xgboost, AF, BCAF, Brent futures and Schwartz-
Smith (mean and median).
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4 Conclusions

The price of oil is considered a key variable in macroeconomic because its dynamics affect the
global economy. The linkages between the oil price fluctuations and several macroeconomic
aggregates have been extensively investigated in the literature. Nonetheless, the current con-
text of big data, coupled with novel machine learning tools, allows one to further investigate
potential oil price nonlinearities, so far hidden or not considered by traditional statistical
models.

In this sense, this paper studies the forecast accuracy of 22 competing methods, which
are used to build point forecasts of the Brent oil price variation. The selected suite of meth-
ods includes recent machine learning techniques based on regression trees, more traditional
machine learning approaches using regularization procedures, standard econometric models
and forecast combinations, besides the structural factor model of Schwartz and Smith (2000).
In order to evaluate the predictive power of each method, an extensive pseudo out-of-sample
forecasting exercise is conducted, in both monthly and quarterly frequencies, where each
method produces point and density forecasts for horizons from one month up to five years.

According to Alquist et al. (2013) the no-change forecast of the real price of oil can
typically be improved upon horizons up to three months, but generally not at horizons
beyond half a year. This paper provides evidence that reduced-form models based on machine
learning algorithms can indeed reduce the out-of-sample MSE in the short run compared to
the no-change forecast. Our main findings are the following:

(i) in respect to point forecasts, the Adaptive LASSO model presents the lowest RMSE
in our shortest (one-month) horizon. In this sense, the machine learning methods (e.g.,
Adalasso, Elastic Net), together with the BCAF forecasts, exhibit a good performance in the
short run, providing forecasts statistically superior to the ones from a random walk without
drift, in horizons from one to three months;

(ii) the forecasting exercise in monthly frequency also revealed that other models from the
LASSO family, the Brent future prices and the median of the Schwartz-Smith density forecast
provide the best forecasts in horizons up to six months. For longer horizons, considering
the same frequency, the forecast combination techniques AF and BCAF, and the mean (or
median) of models gain importance, together with the Brent future prices and the forecasts
from the Schwartz-Smith model. In quarterly frequency, the best forecasts come from the
approaches AF and BCAF, Brent future prices and Schwartz-Smith;

(iii) in both frequencies, and several cases, the forecast accuracy gains in respect to the
benchmark model (random walk without drift) are statistically significant and reach two-
digit figures, in percentage terms: the R? out-of-sample statistics, for the best model in
each horizon, range from 14% and 40% in monthly frequency, and between 9% and 49% in

quarterly frequency, which represents an improvement in respect to the previous literature;
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(iv) regarding density forecasts, it is worth mentioning the relatively good performance
of the density forecasts, using our proposed approach, built from the random walk, Brent
future prices, forecast combination AF (longer horizons) and the Schwartz-Smith model.

In sum, the forecasting methods applied here to solve an important economic forecasting
problem (including some fresh machine learning nonlinear algorithms as well as traditional
econometric approaches) can be useful to help improving the set of tools currently used
by academics and market agents to build oil price forecasts, thereby offering a valuable

contribution to the field of macroeconomic forecasting.
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Appendix 1. Forecast combination and bias-correction

In this section, we discuss econometric techniques used to optimally forecast the oil
prices under a quadratic risk function. These tools are appropriate to forecast a
weakly stationary and ergodic univariate process {y;} from a vast number of individual
forecasts that are combined to generate an optimal forecast. Such individual forecasts
are the outcome of different econometric models that must be estimated before the
forecast combination. We label the forecasts of y, (h-period change of the logarithm
of the real price of oil), computed using the information set lagged h periods, fi’ft,
t=1,2,...,N. This way, f{ft are h periods ahead forecasts and N is the number of
estimated models used to predict ;.

Issler and Lima (2009) consider three consecutive distinct time sub-periods. The
first sub-period is labeled the “estimation sample”, where models are usually fitted
to forecast y; subsequently. The next sub-period is labeled the post-model-estimation
or “training sample”, where realizations of y; are usually confronted with forecasts
produced in the estimation sample, and weights and bias-correction terms are esti-
mated.! The final sub-period is where genuine out-of-sample forecast is entertained.
In this setup, the individual forecasts Z-’ft are considered approximations of the optimal

forecast (By_5(y;)), as follows:
fi},Lt =B n(y) + kzh + 5zh,t7 (1)

where kI is the time invariant bias and 5215 is the error term of model 7, such that
]E(sz}ft) = 0 for all ¢, ¢, and h. Here, the optimal forecast is the common feature of all
individual forecasts and k' and €', arise due to model misspecification. The term k" is
assumed to be identically distributed (but not independently), i.e., k! ~ i.d. (Bh, aih).

Issler and /L\ima propi)ﬁed the feasible Bias-Corrected Average Forecast (BCAF)

LS fl — Bh, where B" is a consistent estimate of B", that obeys:

N
. 1 —
plim (N E fft - Bh) = Ein(ye), (2)
i=1

(T,N—00)seq

where  plim is the probability limit using the asymptotic structure proposed in
(T, N—00) seq

Phillips and Moon (1999). Therefore, the BCAF is an optimal forecast device. They
also proposed a test for zero bias, that is, Hy : B" = 0, using the approach of Conley
(1999). Note that if Hy is not rejected, there is no need to use the bias correction. In

this case, the optimal forecast will be the simple cross-section average forecast:

1 N
T2

ISee Laster et al. (1999) e Batchelor (2007).
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Gaglianone and Issler (2019) proposed an extended setup, now including two

sources of bias: the intercept bias k" and the slope bias B?, as follows:
fi},Lt = kzh + B?Et—h(yt) + 5?,# (3)

By comparing (1) with (3), it becomes clear that the first setup is a special case of

the second framework, where 3, = 1 for all 7. Gaglianone and Issler proposed the use

N
— —\/ PR
of GMM to estimate the model parameters § = (Bh, 6h> , where B" = % Z kl and
i=1

N
1

E =~ Z ﬁ? , are cross-section averages for each h. Starting with (3), and using the

i=1
law of iterated expectations with valid observable instruments z;_,, where s > h, it

follows that:
E [(fz}ft - kzh - B?yt) ® ztfs] = 07 (4)

which is valid for all + = 1,.... N, t = 1,...,7, and h = 1,..., H. The system of
equations (4) has 2N H parameters and (at least) 2N H moment conditions, provided
that dim(z;_s) > 2, which is necessary for overidentification. Despite that, a problem
remains: as long as N — oo, the number of parameters in (4) diverges, which works
against consistency. To overcome this curse of dimensionality, one can use the cross-

section averages of fl, k' and 3y, resulting in the following moment restrictions:

B|(ff—B"—5w) 2] =0, (5)

N N
fort =1,..,7, and h = 1,..., H, where fh = %Zﬁ}t, Br = %Zkf and " =
i=1 i=1

N
% Z B?, represent cross-section averages for each h. Finally, Gaglianone and Issler
i=1
— —\/
show how to obtain consistent estimates of the model parameters 6 = <Bh, ﬂh> using

GMM and the previous cross-section averages within different asymptotic setups.

46



Appendix 2. The factor model of Schwartz and
Smith (2000) and others

Schwartz and Smith (2000) assume the logarithm of the spot oil price, In (S;), defined

in continuous time, can be decomposed as follows:

In (St) =X+ &

where x, and &, are, respectively, the short-run price deviation and the equilibrium
price level. The authors also assume that the first term is zero mean-reverting, fol-
lowing an Ornstein-Uhlenbeck process, whereas the second term follows a Brownian

motion, as follows:

dx, = —rxdt+o,dz,,
d§, = pedt+ oedze,

where dz, and dz¢ are correlated terms from a standard Brownian motion, such that

dzydze = p,edt. The first and second centered moments of (x;, ¢,) are, respectively:

E [(Xt? ft)] = [eime 50 + /th] ) and
B (1 . 6—2/%) % (1 o e—,‘it) pxiZXUE
COV [(Xta é.t)] - (1 i 67"“) pxgixaf O'gt 9

where x, and ¢, are initial conditions. Given these initial conditions, and the as-
sumption of log-normality for In (S;), the future spot prices have mean and variance,

respectively, given as follows:

E[ln(S)] = e "™xo+& + pet, and, (6)

2
VAR[In(S)] = (1=e7) g rodt+2(1-e) SO,

which implies the following expected future spot prices:
1
Bl = exp { Bl (5] + VAR I ()]},
and, therefore,

In(E[S]) = E[ln(St)]Jr%VAR[ln(St)]

1 o 0,0
= e xo+ &+ et + B [(1 — e ) ﬁ +U§t+ 2(1-e™) P

K

By considering ¢ — oo in the last expression, the log of expected prices can be
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calculated as long as the horizon increases, i.e.,

o? o\0 1
lim In (E[S;]) = (50 + =+ %) + <,u£ + —Ug) t.

t—o0 4/{ 2

This way, in the long-run, the expected spot price behave as if it has started with
an "effective long-run price" equal to exp (50 + % + %) and further increased
at the rate (,ug + %ag). Note this effective long-run price is slightly different from
the equilibrium price (exp (£,)), where the difference reflects the contribution of the
short-run volatility related to the expected spot prices.

Schwartz and Smith discuss a risk-neutral process and the respective cash-flow

evaluation. The authors argue that, under risk-neutral probabilities, it follows that:

dft = (,u5 — )\g)dt + O'gdzg,
——

*

He

where dzidz{ = p,dt, and show that:

* —K —K A *
E* [(x:,&)] = |e th - (1 —¢€ t) ;Xafo + pet| and

COV* [(Xt? ét)] = COV [(Xtv gt)] )

where [E* denotes the respective variable under risk-neutral probabilities, instead of
physical probabilities, and A, is the average adjustment needed in the Ornstein-

Uhlenbeck process under risk-neutral probabilities. Thus, it follows that:

E'In(S)] = e xo+&— (1—e™) % + pgt, and, (7)
VAR" [In(S;)] = VAR[In(S;)].

This way, by comparing (6) with (7), note the risk premium decreases the log of
the expected spot price by:

(1) 2 gt

After discussing the risk-neutral approach based on future contracts, with maturi-
ties 11,15, - -+, T},, Schwartz and Smith show that the state-space form that represents
In (S;) is the following:

Xt = C+ GXt—l + Wi, (8)
yi = di+F X, + vy, 9)

where X, = (x,&,), ¢ = (O, ugAt)/, and At represents the duration of time periods,
wy 1s a 2 x 1 vector of disturbances with covariance matrix

COV(wt) :COV[(Xtv 51‘,)}’ y: = [ln (FT1> ,h’l (FTz) y Tt ,ll’l (FTn)]/7 where FT17 FT27 e 7FTN
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are future prices, respectively, with maturities 77,75, --- , T}, with constant terms

d, =[A(T1),A(Ty),---,A(T,)] associated to them,

F, = [e*”Tll,e*“TQI, e ,e*’“Tnl]/, with 1 =(1,1), and v; is a n x 1 vector of nor-
mal disturbances without serial correlation, zero mean, and COV|v;| = V. The total

number of periods is nr, i.e., t =1,2,--- ,np, and:

GzlenAt O]
0 1

The equation (8) is often called the transition equation, whereas the equation (9) is
known as the measurement equation. Under a joint normality hypothesis for (w, v;)’
it is easy to estimate the parameters of interest associated to equations (8) and (9)
using the Kalman filter (maximum likelihood estimates). These parameters are set in
vector (/<a, Txs les Ty Pyes Axs ug),. Implicitly, future prices with different maturities are
being used to identify the short- and long-run price components. Schwartz and Smith
employ a Bayesian approach in the model estimation, using a multivariate Gaussian
distribution as a prior: distribution. Besides, they also use Kalman filter techniques
in the steady state, where COV([(;, &;)] becomes independent of the initial conditions
assumed in the filter.

Based on the framework above, Cortazar and Naranjo (2006) proposed a Gaussian
model with N —factors to explain the stochastic behavior of future oil prices, which
is estimated using all price available information, in contrast to the traditional ap-
proaches that aggregate data for a set of maturities. The model is calibrated using
a Kalman filter procedure that allows for a number of time-dependent daily observa-
tions. The model shows a relatively good performance, requiring at least three factors
to explain the term structure of future prices, but four factors to properly adjust the
volatility term structure.

Cortazar et al. (2015) argue that stochastic models of commodity prices have con-
siderably evolved in respect to both structure and state variable interpretation. How-
ever, it is not well emphasized in the literature that those models, besides providing
a risk-neutral distribution for future prices, also give their physical distribution. Al-
though the parameters of the risk-neutral distribution can be more precisely estimated
(and, in general, are statistically significant), some parameters of the physical distri-
bution are typically measured with huge confidence bands, and are not statistically
significant. This way, in order to improve the model performance, some parameters
— in particular, the risk premium parameters — must be obtained from other sources.
In this sense, to reduce the uncertainty related to the future risk premium estimates,
a model restriction can be made using the CAPM (Capital Asset Pricing Model) ap-
proach, that is, the authors set the term structure of risk premium based on a satellite
CAPM model. Using such restriction, Cortazar et alli argue that the estimate of the

physical distribution becomes stable and reliable.
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Appendix 3. Random Forest and Quantile Regres-

sion Forest

Random Forest

In this section, we first discuss how to properly grow a single regression tree and
(automatically) decide on both the splitting variables and split points. Hastie et al.
(2009) propose the following algorithm, in the context of CART (classification and
regression tree) models:

(i) consider a splitting variable j and split point s, and define the pair of half-planes:
Ry (j,s) ={X | X; <s} and Ry (j,s) =4{X|X; > s}, (10)

(ii) find the splitting variable j and split point s that solve the minimization prob-

lem:

min |min Z (y; — ¢1)* + min Z yi — )’ (11)
2

J»8 1 ,
z;€R1(4,s) z;€R2(j,s)

where the previous inner minimizations, for any choice j and s, can be solved by:
a=F(y |z €R(js) and é=FE(y; | x; € Ry(j,9)). (12)

Note that for a given splitting variable, the computation of the optimal split point
s can be easily done. Thus, by searching through all covariates, the determination
of the best pair (7, s) is feasible. Then, based on the best split one divides the data
into the two resulting regions R; and R, and repeat the splitting process on each of
the two regions. This process is repeated on all of the resulting regions until some
stopping rule is applied. Finally, the forecast of Y conditioned on the covariate space
X, which is partitioned into L regions R, (j,s), l =1, ..., L, according to the regression

tree approach, is the following:

Eregresmon tree Y ’ X chl{XeRl (4,8)} (13)

where ¢; = E (Y | X € R;(j,s)). To sum it up, the regression tree can be estimated by
repeating the three steps below, for each terminal node of the tree, until the minimum
number of observations at each node is achieved:?

(1) randomly select m out of p covariates as possible split variables;®

2The size of a tree is a tuning parameter governing the model’s complexity, and the optimal size
should be adaptively chosen from the data. The preferred strategy is to stop the splitting process
when some minimum node size is reached. Typically, for regression problems with p predictors, the
literature recommends to use m = p/3 (rounded down) in each split, with a minimum node size of 5
as the default; see Hastie et al. (2009, chapter 15.3) for more details.

3The reduction of the tuning parameter m will, in general, reduce the correlation between any
pair of trees.
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(2) select the best variable/split point among the m candidates;
(3) split the node into two child nodes.

Next, we represent mathematically the Random Forest (RF) model, following the
discussion in Meinshausen (2006). Consider n independent observations (Y;, X;), for
1 = 1,...,n, and let # be the random parameter vector that determines how a tree
T (0) is grown, that is, characterizes the tree in terms of split variables, cut-points at
each node, and terminal-node values. Also, let & be the space in which X lives, that
is X : Q — S, where & C R? and p € N, is the dimensionality of the set of covariates
X.

Every leaf of a tree (terminal node) [ = 1,..., L corresponds to a subspace of <,
that is R, C . For every x € S, there is one (and only one) leaf [ such that z € R,
(corresponding to the leaf that is obtained when dropping = down the tree). Denote
this leaf by [(x, ) for tree T (f). The prediction of a single tree 7' (6) conditioned on
X = z is obtained by averaging over the observed values in leaf [(z, 0). Let the weight
vector w;(z, @) be given by a positive constant if observation X; is part of leaf [(x, )
and 0 if it is not. The weights sum to one, such that:

17y,
wi(ﬂf7 0) — {XzeRl(:c,O)} ) (14)

n

E :1{Xj€Rl(z,9)}
j=1

The forecasting model based on a single regression tree, conditioned on a covariate
X =z, is then the weighted average of the original observations Y;, for all i = 1, ..., n,
that is:

Erogrossion tree (Y | X = .T) = Zw@(x, Q)Y; (15)
=1

Note that conditional on the knowledge of the subregions R, for [ = 1,..., L, the
relationship between inflation Y and the set of covariates X is approximated here by
a piecewise constant model, where each leaf represents a distinct regime; see Garcia et
al. (2017). Now, using random forest, the conditional mean above is approximated by
the averaged prediction of K single trees, each constructed with a parameter vector
O, k =1,..., K. Let w;(z) be the average of w;(x, ) over this collection of trees, as

follows:

1 K

w;(x) = EZwi(x, O). (16)

k=1

The RF forecast is the averaged response of all trees, as follows:*

4 According to Hastie et al. (2009), tree learning is invariant under scaling and various other
transformations (and it is robust to inclusion of irrelevant covariates), however it is seldom accurate.
In particular, large trees tend to learn highly irregular patterns and overfit their training sets, thus
producing low bias but very high prediction variance. In order to reduce such high variance, random
forests average multiple decision trees, trained on different parts of the training set. This often comes
at the expense of a small increase in the bias, but usually improves the overall performance of the
model.
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Erandom forest (Y ‘ X = l’) = sz(x)y; (17)
=1

Note that the approximation of the conditional mean of Y given X = x is given by
a weighted sum over all observations. The weights vary with the covariate and tend
to be large for those observations i € {1,...,n} where the conditional distribution of

Y, given X = X, is similar to the conditional distribution of ¥ given X = z.

Quantile Regression Forest (QRF)

The quantile regression forest algorithm proposed by Meinshausen (2006) to com-

pute the estimate of the conditional distribution function can be summarized as follows:

(a) grow trees T (0), for k = 1,..., K , as in random forests. However, for every

leaf (on each tree) consider all observations in the leaf, not just their average.

(b) for a given X = z, drop = down all trees. Compute the weight w;(z,0y) of
observation ¢ € {1,...,n} for every tree as in (14). Compute weight w;(z) for every

observation i € {1,...,n} as an average over w;(xz,0y), for all k =1, ..., K, as in (16).

(c) compute the estimate of the distribution function as in (20) for all y € R, using

the weights from the previous step (b).

This way, conditional quantiles can be inferred with QRF as a generalization of
random forests. The idea is to provide a non-parametric way of estimating conditional
quantiles for a high-dimensional set of predictor variables. According to Meinshausen
(2006), the QRF algorithm is shown to be consistent and competitive in terms of
predictive power. First, recall that the conditional distribution function (CDF) of Y,

given X = x, is given by:
F(y]X::c):Pr(Y§y|X:aj):E([{y§y}\X:x). (18)

Also, recall that the conditional quantile of Y, given X = x, at quantile level 7, is
given by:
QY| X=x)=inf{y: F(y | X =2) > 71}. (19)

In other words, for a continuous distribution function of Y, conditional on X = x,
the probability of Y being smaller than @, (-) is equal to 7. Now, similarly to the
random forest approximation of the conditional mean, define an approximation to

E (Ity<y | X = z) by the weighted mean over the observations of I{y<yy, as follows:
Fly| X =z)=)Y wi(x)ly<y, (20)
i=1

using the same weights w;(x) for random forests, as defined above. Estimates Q, () of
the conditional quantiles @ (-) can, thus, be obtained by simply plugging F (y | X =2),
instead of F'(y | X = z), into (19).
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On the other hand, the conditional mean of Y can be approximated by a combi-
nation of conditional quantiles. It is not a novel approach in the literature. Indeed,
it has a long tradition in statistics (see Judge et al., 1988) and has been previously
applied in the forecasting literature; see Lima and Meng (2017). We follow here the
approach of Araujo and Gaglianone (2020), that proposed a quantile combination ap-
proach using the QRF algorithm to build conditional mean forecasts of Y. This could
be accomplished by integrating the conditional quantile function of Y over the entire
domain 7 € [0, 1], as follows (see Koenker, 2005, p.302):

E(Y\X:x):/olQT(Y]X:x)dr. (21)

The conditional mean of Y, based on the QRF approach, can thus be approxi-

mated® by a sum of estimated conditional quantiles, as follows:®

/QT(Y|X:x)dT:Pli_IL10 (Z@TP<Y|X::C)ATP>. (22)
0 p=1

Therefore, one can build conditional mean forecasts of Y through equations (19),
(20), (21) and (22).

Appendix 4. Variable Importance in Random Forest

Random forests are among the most popular machine learning methods due to their
relatively good forecasting accuracy, robustness and ease of use. In contrast to para-
metric methods, random forests are fully non-parametric and can deal with nonlinear
effects, thus offering a great model flexibility in practical applications. Furthermore,
RF can even be applied in the statistically challenging setting in which the number
of variables is higher than the number of observations. This makes random forests
especially attractive for complex high-dimensional data applications; see Janitza et al.
(2018).

Nonetheless, a suitable understanding of the black box mechanism behind the ran-
dom forest method is of greatest importance. Nowadays, machine-learning models
are often deployed to production without a proper understanding of why exactly the
algorithms make the decisions they do. As these new tools become more relevant in
everyday life, model interpretability becomes one of the most important problems in

machine learning these days. In particular, regarding the use of RF as a forecasting

By applying the second fundamental theorem of calculus (or the Newton-Leibniz axiom) on the
sum of quantiles, the Riemann integral is obtained in the limit P — oo (see Apostol, 1967) and the
partitions A7, = P+H get finer (i.e., A7, — 0 as long as P — 00).

6We rely on the fact that the conditional quantiles are consistenly estimated using the QRF
approach.
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device, it is critical to comprehend the key variable interactions that are providing the
predictive accuracy.

One attempt to tackle this issue is to compute the so-called “variable importance
measures”, by attributing scores to the variables, which reflect their relative impor-
tance in the overall model accuracy. Such measures can be used to identify relevant
features, perform variable selection and quantify the prediction strength of each vari-
able, allowing one to rank the variables according to their predictive abilities. See
Hastie et al. (2009, chapter 15) for further details.”

A global insight into the random forest’s behavior can be obtained by computing
the two main variable importance measures, based on the “permutation” approach
of Altmann et al. (2010) and on the “impurity-corrected” method of Nembrini et al.
(2018). Moreover, one can carry out the Janitza et al. (2018) hypothesis test of no
association between the predictor and the dependent variable for both measures.

The permutation method, also known as the mean decrease in accuracy, is one of
the most common variable importance measures, and it is computed from the change
in prediction accuracy when removing any association between the dependent variable
(response) and a given regressor (i.e., feature or predictor), with large changes indicat-
ing that the predictor is important.® One disadvantage of the permutation approach
is to produce biased outcomes when predictors are highly correlated. In addition,
adding a correlated variable to the RF model can decrease the importance of another
variable. Furthermore, the permutation importance is very computationally intensive
in the case of high dimensional data.

Alternative importance measures based on impurity (i.e., how well the regression
trees split the variables) are popular because they are simple, fast to compute and can
be more robust to data perturbations compared with those based on permutation.’
However, the impurity importance is known to be biased towards variables with more
categories or more possible split points. Also, when the dataset has two (or more)

correlated variables, any of them can be selected as predictor. Nevertheless, once

"There are many other ways on the lookout for opening the ML black box. Just to mention a few
examples: (i) Partial Dependence Plots (PDP), which show the marginal effect of a given predictor on
the outcome of a ML model; and (ii) Surrogate Models (SM), which are auxiliary interpretable models
(e.g., linear regression), built to approximate the predictions of a ML model in order to understand
the black box outcomes by analyzing (and interpreting) the surrogate model’s responses.

8 According to Nembrini et al. (2018): “To calculate the permutation importance of the variable
xi, its original association with the response y is broken by randomly permuting the values of all
individuals for xi. With this permuted data, the tree-wise out-of-bag (OOB) estimate of the prediction
error is computed. The difference between this estimate and the OOB error without permutation,
averaged over all trees, is the permutation importance of the variable xi. This procedure is repeated
for all variables of interest x1,. .. ,xp. The larger the permutation importance of a variable, the more
relevant the variable is for the overall prediction accuracy.”

9Recall that random forest consists of a number of decision trees. Every node in the trees is a
condition on a given variable, and it is designed to optimally split the dataset into two parts so
that overall model accuracy can be improved. The measure based on which the (locally) optimal
condition is chosen is called impurity (or variance, in the case of the regression trees). This way,
one can compute how much each variable reduces the weighted impurity in a tree. For a forest, the
impurity reduction from each variable can be averaged and a ranking of variables can be constructed
according to this importance measure.
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one of these (correlated) variables is used as predictor, the importance of others is
significantly reduced, since the impurity these other variables can decrease is already
reduced by the first selected variable.! In this sense, Nembrini et al.(2018) propose the
“corrected impurity” importance measure, which is unbiased in terms of the number
of categories and category frequencies and is computationally efficient (i.e., almost
as fast as the standard impurity importance and much faster than the permutation
importance).

Besides building a ranking of importance, it is also crucial to statistically check
whether a given predictor is important (or not) in respect to the dependent variable of
the RF model. According to Janitza et al. (2018), the variable importance depends on
many different factors, including aspects related to the data (e.g., correlations, signal-
to-noise ratio or the total number of variables) as well as on the random forest specific
factors (such as the choice of the number of randomly drawn candidate predictor
variables for each split node). Therefore, there is no universally applicable threshold
that can be used to statistically discriminate between important and non-important
variables. Nonetheless, several hypothesis-testing approaches have been developed.
The permutation-based tests entail the repeated computation of random forests. While
for low-dimensional settings those approaches might be computationally tractable, for
high-dimensional models (e.g., including thousands of predictors), computing time
might become enormous. In this sense, Janitza et al. (2018) propose a variable
importance test that is appropriate for high-dimensional data where many variables
do not carry any information related to the dependent variable. According to the
authors, the testing approach, based on cross-validation procedures, shows at least

comparable power at a substantially smaller computation time.

10This is not an issue in respect to model forecasting, but regarding model interpretation, it can
lead to the incorrect conclusion that one of the variables is a strong predictor while the others (cor-
related variables) are not important, while, in reality, they are all close in respect to their statistical
relationship with the dependent variable. This effect can be attenuated by using random variable
selection at each node (instead of using all possible variables) when growing a tree within the random
forest setup.
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Appendix 5. Database

Table 5.1 - List of macroeconomic and financial variables

Category Name Source Nickname
1 |[Brentoilreallprice EuropeBrentSpotF OB (W$/BBL Daily,deflated by P P liallcommodities FRED, ThomsonReuters BRENT_REAL
2 |Outputiandincome RealPersonalincome FREDMD RPI
3 |Outputandincome Realpersonalincome exitransferreceipts FREDIMD W875RX1
4 |Outputandincome IP Index FREDMD INDPRO
5 |Outputandincome IP:Final Products andNonindustrial Supplies FREDMD IPFPNSS
6 |Outputandincome IP:Final Products (M arket Group) FREDIMD IPFINAL
7 |Outputandincome IP:iConsumerGoods FREDMD IPCONGD
8 |Outputandincome IP:DurableConsumerGoods FREDIMD IPDCONGD
9 |Outputandincome IP:Nondurable ConsumerGoods FREDMD IPNCONGD
10 |Outputandincome IP:Business Equipment FREDMD IPBUSEQ
1 |Outputandincome IP: M aterials FREDMD IPMAT
12 |Outputandincome IP:DurableM aterials FREDMD IPDMAT
13 |Outputiandincome IP:Nondurable M aterials FREDMD IPNMAT
% |Outputandincome IP:Manufacturing(SIC) FREDMD IPMANSICS
1 |Outputiandincome IP:Residential Utilities FREDMD IPB51222s
16 |Outputandincome IP:Fuels FREDIMD IPFUELS
17 |Outputandincome Capacity Utilization: M anufacturing FREDMD CUMFNS
18 |Labormarket HelpWantedIndexforUnited States FREDMD HWI
19 |Labormarket Ratio ofHelpWanted/No.Unemployed FREDMD HWIURATIO
20 |Labormarket CivilianLaborForce FREDIMD CLF160V
21 |Labormarket Civilian Employment FREDMD CE®BOV
22 |Labormarket CivilianlWUnemployment Rate FREDMD UNRATE
23 [Laborimarket Average DurationoflUnemployment/(Weeks) FREDMD UEMPMEAN
24 [Labormarket Civilians Unemployed TlessThan 5Weeks FREDMD UEMPLT5
25 [Labormarket Civilians Unemployed for54 Weeks FREDIMD UEMP5TO#
26 [Labormarket Civilians Unemployed 5 Weeks & Over FREDMD UEM P150V
27 |Labormarket Civilians Unemployed for/15/26 Weeks FREDMD UEMP15T26
28 [Labormarket Civilians Unemployed for27 Weeks and Over FREDIMD UEMP270V
29 |Labormarket Initial Claims FREDIMD CLAIM Sx
30 |Labormarket AllEmployees: Totalnonfarm FREDMD PAYEMS
31 |Labormarket AllEmployees:Goods ProducingIndustries FREDMD USGOOD
32 [Laborimarket AllEmployees:MiningiandLogging:Mining FREDMD CES1021000001
33 |Labormarket AllEmployees:Construction FREDMD USCONS
34 [Labormarket AllEmployees: M anufacturing FREDMD MANEMP
35 |Labormarket AllEmployees:Durablegoods FREDMD DMANEMP
36 |Labormarket AllEmployees:Nondurable/goods FREDMD NDMANEM P
37 |Labormarket AllEmployees:Service ProvidingIndustries FREDMD SRVPRD
38 [Labormarket AllEmployees: Trade, Transportation & Utilities FREDMD USTPU
39 |Labormarket AllEmployees:Wholesale Trade FREDMD USWTRADE
40 |Labormarket AllEmployees:Retail Trade FREDMD USTRADE
41 [Labormarket AllEmployees:FinancialActivities FREDMD USFIRE
42 |Labormarket AllEmployees:Government FREDIMD USGOVT
43 |Labormarket AvgWeeklyHoursIGoodsProducing FREDMD CES0600000007
44 |Labormarket AvgWeekly Overtime Hours :IM anufacturing FREDMD AWOTMAN
45 |Labormarket AvgWeeklyHours:IM anufacturing FREDMD AWHM AN
46 |Labormarket AvgHourlyEarnings ZiGoodsProducing FREDIMD CES0600000008
47 |Labormarket AvgHourlyEarnings ZiConstruction FREDMD CES2000000008
48 |Labormarket AvgHourlyEarnings :IM anufacturing FREDMD CES3000000008
49 [Housing HousingStarts: TotalNewPrivatelyOwned FREDMD HOUST
50 [Housing HousingStarts,Northeast FREDIMD HOUSTNE
51 |Housing HousingStarts, Midwest FREDMD HOUSTMW
52 |Housing Housing Starts, South FREDMD HOUSTS
53 [Housing HousingStarts, West FREDMD HOUSTW
54 [Housing NewPrivatelHousing Permits (SAAR) FREDMD PERMIT
55 [Housing NewPrivate[Housing P ermits,Northeast (SAAR) FREDMD PERMITNE
56 |Housing NewPrivate[HousingP ermits, M idwest (SAAR) FREDMD PERMITMW
57 |Housing NewPrivate[Housing P ermits, South(SAAR) FREDMD PERMITS
58 |Housing NewPrivatelHousing P ermits, West (SAAR) FREDMD PERMITW
59 |Consumption,orders, andiinventorid Real personal'consumption expenditures FREDMD DPCERA3MO086SBEA
60 [Consumption,orders,andinventorid RealM anu.andTradelndustries Sales FREDMD CMRMTSPLx
61 |Consumption,orders, andiinventorid Retailand FoodServices Sales FREDMD RETAILx
62 |Consumption,orders,andinventori{ NewOrders forConsumerGoods FREDMD ACOGNO
63 [Consumption,orders,andinventori NewOrders forDurable Goods FREDMD AMDMNOx
64 [Consumption,orders,andinventori NewOrders forNondefenseCapital Goods FREDMD ANDENOx
65 |Consumption,orders,andinventorid Unfilled Orders for[Durable Goods FREDIMD AMDMUOx
66 |Consumption,orders,andinventori{ Total BusinessInventories FREDIMD BUSINVx
67 [Consumption,orders,andinventori TotalBusiness:lInventories to Sales Ratio FREDMD ISRATIOX
68 |Consumption,orders, andinventorid Consumer/Sentiment Index FREDMD UMCSENTx
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Table 5.1 - List of macroeconomic and financial variables (cont.)

69 |Moneyandcredit M 1MoneyStock FREDMD M1SL

70 [Moneylandicredit M2MoneyStock FREDMD M2SL

71 |Moneyandcredit RealM 2M oney Stock FREDMD M2REAL

72 [Moneyandicredit MonetaryBase FREDIMD BOGMBASE

73 [Moneyandicredit TotalReservesofDepositorylnstitutions FREDMD TOTRESNS

74 |Moneyandcredit Reserves Of Depositorylnstitutions FREDMD NONBORRES

75 |Moneyandcredit Commercialiandindustrial Loans FREDMD BUSLOANS

76 [Moneylandicredit Real EstatelLloansat/AlllCommercial Banks FREDMD REALLN

77 [Moneyandicredit TotalNonrevolvingCredit FREDMD NONREVSL

78 |Moneyandcredit Nonrevolvinglconsumericreditifo Personalincome FREDMD CONSPI

79 [Moneylandcredit MZM MoneyStock FREDMD MZMSL

80 |Moneylandcredit ConsumerMotorVehicleLoans QOutstanding FREDMD DTCOLNVHFNM

81 [Moneyandicredit TotalConsumerlLoansiandLeases Outstanding FREDIMD DTCTHFNM

82 [Moneyandicredit Securities inBank Creditat/AllCommercial Banks FREDMD INVEST

83 |Interestiand exchange rates Effective Federal Funds Rate FREDMD FEDFUNDS

84 |Interestiand exchange rates 3'Month/AA Financial Commercial Paper Rate FREDMD CP3Mx

85 [Interestiandiexchangerates 3'MonthTreasuryBill FREDMD TB3MS

86 [Interestiandiexchangerates 6/MonthTreasuryBill FREDMD TB6MS

87 [Interestiandiexchangerates 1YearTreasuryRate FREDMD Gs1

88 |Interestiandexchangerates 5YearTreasuryRate FREDMD GS5

89 [Interestiandiexchangerates 10/ YearTreasuryRate FREDMD GS10

90 [Interestiandiexchangerates Moody's'SeasonedAaaCorporate Bond Yield FREDIMD AAA

91 |Interestiandiexchangelrates Moody's'SeasonedBaaCorporate BondYield FREDIMD BAA

92 |Interestiand exchange rates 3/Month Commercial PaperMinus FEDFUNDS FREDMD COMPAPFFx

93 |Interestiand exchange rates 3/MonthTreasurylC MinusFEDFUNDS FREDMD TB3SMFFM

94 [Interestiandiexchangerates 6/MonthTreasurylC MinusFEDFUNDS FREDMD TB6SMFFM

95 [Interestiandiexchangerates 1YearTreasurylC MinusFEDFUNDS FREDMD TIYFFM

96 [Interestiandiexchangerates 5YearTreasuryCMinus FEDFUNDS FREDMD T5YFFM

97 |Interestiandexchangerates 0 YearTreasuryC Minus FEDFUNDS FREDMD TOYFFM

98 |Interestiand exchange rates Moody's/AaaCorporateBondMinus FEDFUNDS FREDMD AAAFFM

99 [Interestiandiexchangerates Moody'sBaaCorporateBondMinus FEDFUNDS FREDIMD BAAFFM

100 |Interestandiexchangerates TradeWeightedU.S. Dollarindex FREDIMD TWEXAFEGSM THx
101 |Interestiandiexchange rates Switzerland //U.S. Foreign Exchange Rate FREDMD EXSZUSx

102 [Interestiandiexchange rates Japan/IU.S.Foreign Exchange Rate FREDMD EXJPUSX

103 |Interestiandiexchangerrates U.S.7UK.ForeignExchange Rate FREDIMD EXUSUKx

104 |Interestandiexchangerrates Canada7U.S.ForeigniExchange Rate FREDMD EXCAUSX

105 [Prices PPI:Finished Goods FREDIMD WPSFD49207

106 [Prices PPI:Finished ConsumerGoods FREDIMD WPSFD49502

107 |Prices PPlIntermediate M aterials FREDMD WPSID61

108 |Prices PPI:Crude M aterials FREDMD WPSID62

109 |Prices Crude(Oil,ispliced WT l'and Cushing FREDMD OILPRICEX

10 [Prices PPI:M etals andmetal products FREDMD PPICMM

M |Prices CPI:Allltems FRED MD CPIAUCSL

12 |Prices CPI:Apparel FREDMD CPIAPPSL

18 |Prices CPI:Transportation FREDMD CPITRNSL

1M |Prices CPl:Medical Care FREDMD CPIMEDSL

15 |Prices CPI:ICommodities FRED'MD CUSR0000SAC

16 |Prices CPI:Durables FREDMD CUSR0000SAD

117 |Prices CPI:Services FRED'MD CUSR0000SAS

18 |Prices CPI:Allltems/Less Food FRED'MD CPIULFSL

19 |Prices CPI:Allitems less shelter FREDMD CUSR0000SAOL2
120 [Prices CPI:Allitems less medical care FRED'MD CUSR0000SAOLS
11 |Prices Personal/Cons. Expend.: ChainIndex FRED/MD PCEPI

22 [Prices PersonaliCons.Exp:Durableigoods FREDMD DDURRG3M086SBEA
123 |Prices PersonalCons.Exp:Nondurableigoods FREDMD DNDGRG3M086SBEA
14 |Prices Personal Cons.Exp:Services FREDIMD DSERRG3M086SBEA
125 |Stockmarket S&P’s CommoniStock Pricelndex:Composite FREDIMD S&P500

16 [Stockmarket S&P’s CommonStock PriceIndex:Industrials FREDIMD S&P_indust

127 |Stock market S&P’siComposite Common Stock:Dividend Yield FREDIMD S&P_div_yield

128 |Stockmarket S&P’sComposite CommoniStock:PriceEarnings Ratio FREDIMD S&P_PE_ratio

29 [Stockmarket CBOES&P 00 VolatilityIndex: VXO FREDMD VXOCLSx

130 |Industrial Production Productionof Total Industryin/Austria FRED AUTPROINDM ISM EI
1B1 |Industrial Production ProductionofTotalIndustryinBelgium FRED BELPROINDMISMEI
132 |IndustrialProduction ProductionofTotallndustryinBrazil FRED BRAPROINDM ISM EI
133 |IndustrialProduction ProductionofTotallndustryiniCanada FRED CANPROINDM ISM EI
134 |Industrial Production ProductionofTotallndustryinCzech Republic FRED CZEPROINDM ISM EI
185 |IndustrialProduction ProductionofTotallndustryin'Germany FRED DEUPROINDM ISMEI
186 |Industrial Production Productionof TotalIndustryinDenmark FRED DNKPROINDM ISMEI
137 |IndustrialProduction Productioniof TotallndustryinSpain FRED ESPPROINDM ISMEI
138 |IndustrialProduction ProductionofTotallndustryinFinland FRED FINPROINDM ISM EI
139 |Industrial Production Productioniof TotallndustryinFrance FRED FRAPROINDMISMEI
140 |IndustrialProduction Productioniof TotalIndustryiinthe United Kingdom FRED GBRPROINDM ISM EI
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Table 5.1 - List of macroeconomic and financial variables (cont.)

#1 [IndustrialProduction ProductionofTotallndustryin Greece FRED GRCPROINDM ISM EI
42 |Industrial Production ProductioniofTotallndustryinHungary FRED HUNPROINDM ISMEI
#3 |Industrial Production ProductioniofTotallndustryinireland FRED IRLPROINDM ISM EI
#4 |Industrial Production Productioniof Totallndustryinisrael FRED ISRPROINDM ISM EI
45 [IndustrialProduction Productionof Totallndustryintaly FRED ITAPROINDM ISM EI
46 |IndustrialProduction Productioniof TotallndustryiniJapan FRED JPNPROINDM ISM EI
#7 |Industrial Production Productioniof Totallndustryin’Korea FRED KORPROINDM ISMEI
#8 |Industrial Production ProductionofTotalIndustryin Netherlands FRED NLDPROINDMISMEI
49 [IndustrialProduction ProductionofTotalIndustryinNorway FRED NORPROINDM ISM EI
160 |Industrial Production ProductioniofTotallIndustryin Poland FRED POLPROINDM ISM EI
11 |Industrial Production ProductionofTotalIndustryin/Portugal FRED PRTPROINDMISMEI
152 |Industrial Production Productionof Total Industryin Slovak Republic FRED SVKPROINDM ISMEI
63 |Industrial Production Productionof TotallIndustryinSweden FRED SWEPROINDM ISM EI
154 |IndustrialProduction ProductionofTotallndustryin Turkey FRED TURPROINDM ISM EI
165 |IndustrialProductioninthe.S. Industrial Production:Durable Goods:lronandsteel products FRED IPG3311A2S

166 |IndustrialProductioniinthe U.S. Industrial Production: Durable/Goods:/Aluminaandaluminumproductioniand processin FRED IPG3313S

157 |Industrial Productioniinthe U.S. Industrial Production: Durable/Goods: Rawisteel FRED IPN3311A2RS

168 |Industrial ProductionintheU.S. Industrial Production:Durable Goods: Automotive products FRED IPB51110S

159 |Industrial ProductioniintheU.S. Industrial Production: Durable Goods: Cementiandconcreteproduct FRED IPG3273S

160 [IndustrialProductionintheU.S. Industrial Productio n: Durable manufacturing: Primarymetal FRED IPG3318

161 |Industrial Productioninthe U.S. Industrial P roduction: Durableimanufacturing: M achinery FRED IPG333S

162 |Industrial ProductioninitheU.S. Industrial Productio n:Durable manufacturing:Aerospaceandmiscellaneous transportd FRED IPG3364T9S

163 |Industrial Productioninthe U.S. Industrial Productio n:Nondurable manufacturing: P etroleum andicoal products FRED IPG324S

164 |Industrial Productioniinthe U.S. Industrial Production: Nondurable manufacturing: Chemical FRED IPG3258

165 |IndustrialProductioninthe.S. Industrial Production:Nondurable manufacturing: Plastics andrubberproducts FRED IPG326S

66 [Industrial ProductioniintheU.S. Industrial Production:Nondurable/Goods: P etroleum refineries FRED IPG324 115

67 |Industrial Productioninithe/U.S. Industrial Production:Nondurable(Goods: P harmaceutical and medicine FRED IPG3254S

8 |Industrial Productioninithe/U.S. Industrial Production:Nondurable Goods: P lastics material and resin FRED IPN3252 118

169 [IndustrialProductioninthel.S. Industrial Production:Nondurable/Goods: Chemical products FRED IPB51213S

170 |Industrial ProductioninitheU).S. Industrial Production:[Constructionsupplies FRED IPB54100S

171 |Industrial Productioninthe U.S. Industrial Production:Non(energy,total FRED IPX5001ES

172 |Industrial ProductioninitheU.S. Industrial Production: Energy M aterials: Energy, total FRED IPB50089S

173 |Industrial Productioninthe.S. Industrial Productio n:Electric powerigeneration, transmission,and distribution FRED IPG22118

174 |Industrial ProductioninitheU.S. Industrial Production:Mining: Crudeoil FRED IPG211111CS

175 |Industrial ProductionintheU.S. Industrial Production: M ining: Crude petroleum and natural gas extraction FRED IPG211111S

176 |Industrial ProductioninitheU.S. Industrial Production:Mining:(Oillandigas extraction FRED IPG2118

177 |IndustrialProductioniinithe).S. Industrial Production:Mining:'Co pper,nickel, lead,’and zinc mining FRED IPG21223S

178 |IndustrialProductionintheU.S. Industrial Production:Mining:Natural gas FRED IPN211111GS

179 |Industrial Productioniinithe/U.S. Industrial Production:Mining: Coal mining FRED IPN2121S

180 |Industrial Productioniinithe/U.S. Industrial Production:Mining:(ron(ore mining FRED IPN212218

81 |Industrial ProductioninitheU).S. Industrial P roduction:Mining: Drilling 0il'andgas wells FRED IPN213111S

182 |Economicindicators fortheU.S. UniversityofiMichigan:ConsumerSentiment FRED UMCSENT

183 |Economicindicators fortheU.S. Leading/Indexforithe United States FRED USSLIND

184 |Economicliindicators fortheU.S. NBER based/Recession/ndicators forthe/United States FRED USREC

185 |Economicuncertainty Policyrelatedieconomicuncertaintyindex EconomicPolicylUncertainty EPU_Brazil

186 |Economicuncertainty Policyirelatedieconomic uncertaintyindex EconomicPolicylUncertainty EPU_Canada

187 |Economicuncertainty Policylrelatedieconomicuncertaintyindex Economic/PolicyUncertainty EPU_France

188 |Economicuncertainty Policy/related economic uncertaintyindex Economic/PolicyUncertainty EPU_lreland

189 |Economic uncertainty Policyirelatedieconomiciuncertaintyindex EconomicPolicylUncertainty EPU_Japan

190 |Economic uncertainty Policyirelatedieconomiciuncertaintyindex EconomicPolicylUncertainty EPU_Korea

191 |Economicuncertainty Policylrelatedieconomicuncertaintyindex Economic/PolicyUncertainty EPU_US

192 |Economicuncertainty Policy'related economicuncertaintyindex Economic/PolicyUncertainty EPU_Sweden

193 |Economicuncertainty Geopolitical Risk Indexof/Caldaraandilacoviello Geopolitical Risk GPR_ARGENTINA
194 |Economiciuncertainty Geopolitical Risk Indexof Caldaraandilacoviello Geopolitical Risk GPR_BRAZIL

195 |Economicuncertainty Geopolitical RiskIndexof Caldaraandacoviello Geopolitical Risk GPR_CHINA

196 |Economiciuncertainty Geopolitical Risk Indexof Caldara'and/lacoviello Geopolitical Risk GPR_COLOMBIA
197 |Economiciuncertainty Geopolitical Risk Indexof Caldaraiandilacoviello Geopolitical Risk GPR_HONG_KONG
198 |Economiciuncertainty Geopolitical Risk Indexof Caldaraiandilacoviello GeopoliticalRisk GPR_INDIA

199 |Economiciuncertainty Geopolitical Risk IndexofCaldaraandlacoviello Geopolitical Risk GPR_INDONESIA
200 |Economicluncertainty Geopolitical Risk Index of Caldara/and/lacoviello Geopolitical Risk GPR_ISRAEL

201 |Economiciuncertainty Geopolitical Risk Indexof Caldaraiandilacoviello Geopolitical Risk GPR_KOREA

202 |Economiciuncertainty Geopolitical RiskIndexofCaldaraandilacoviello Geopolitical Risk GPR_MALAYSIA
203 |Economiciuncertainty Geopolitical RiskIndexofCaldaraandilacoviello Geopolitical Risk GPR_MEXICO

204 |Economicluncertainty Geopolitical Risk Index of Caldara/and/lacoviello Geopolitical Risk GPR_PHILIPPINES
205 |Economiciuncertainty Geopolitical Risk Indexof Caldaraiandilacoviello Geopolitical Risk GPR_RUSSIA

206 |Economiciuncertainty Geopolitical RiskIndexofCaldaraandilacoviello Geopolitical Risk GPR_SAUDI_ARABIA
207 |Economiciuncertainty Geopolitical RiskIndexofCaldaraandilacoviello Geopolitical Risk GPR_SOUTH_AFRICA
208 |Economicluncertainty Geopolitical Risk Index of Caldara/and/lacoviello Geopolitical Risk GPR_THAILAND
209 |Economiciuncertainty Geopolitical Risk Indexof Caldaraiandilacoviello Geopolitical Risk GPR_TURKEY
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Table 5.1 - List of macroeconomic and financial variables (cont.)

210 |Economiciuncertainty Geopolitical RiskIndexiofCaldaraandacoviello Geopolitical Risk GPR_UKRAINE

21 |Economicluncertainty Geopolitical Risk Indexof Caldara and/lacoviello Geopolitical Risk GPR_VENEZUELA
212 |Economiciuncertainty Geopolitical Risk Indexof Caldara’andilacoviello Geopolitical Risk GPR

213 | Economiciuncertainty Geopolitical RiskIndexofCaldaraandiacoviello Geopolitical Risk GPR_THREAT

2% |Economicluncertainty Geopolitical Risk Index of Caldaraiand/lacoviello Geopolitical Risk GPR_ACT

215 |Economiciuncertainty Geopolitical Risk Index of Caldaraiandllacoviello Geopolitical Risk GPR_BROAD

2% |Economiciuncertainty Geopolitical Risk IndexofCaldaraiandilacoviello Geopolitical Risk GPR_NARROW

21 |Leadinglndicator OECD CompositeLeading/Indicator(CLI)for/Australia OECD CLI_Australia

218 |Leadinglindicator OECD Composite LeadingIndicator((CLI)for/Austria OECD CLI_Austria

219 |Leading/Indicator OECDCompositeLeadingndicator(CLI)forBelgium OECD CLI_Belgium

220 [LeadinglIndicator OECD CompositeLeading/Indicator(CLI)forBrazil OECD CLI_Brazil

221 |LeadinglIndicator OECD CompositeLeading/Indicator(CLI)foriCanada OECD CLI_Canada

222 |Leadinglndicator OECD CompositeLeading/Indicator{(CLI)forChile OECD CLI_Chile

223 |LeadingIndicator OECDICompositeLeadingIndicator/(CLI)for/China OECD CLI_China

224 [LeadinglIndicator OECD CompositeLeadingIndicator(CLI)forDenmark OECD CLI_Denmark

225 |Leadinglndicator OECD CompositeLeadingIndicator(CLI)forFinland OECD CLI_Finland

226 |LeadingIndicator OECD Composite Leading/Indicator((CLI)for[France OECD CLI_France

227 |Leadinglindicator OECD CompositeLeadingIndicator(CLI)forGermany OECD CLI_Germany

228 [Leadinglndicator OECDCompositeLeadinglIndicator(CLI)forGreece OECD CLI_Greece

229 [LeadingIndicator OECD Composite LeadingIndicator(CLI)forHungary OECD CLI_Hungary

230 [LeadingIndicator OECD Composite LeadingIndicator/(CLI)forreland OECD CLI_lIreland

231 |Leadinglndicator OECD CompositeLeadinglndicator(CLI)foriltaly OECD CLI_ltaly

232 [LeadingIndicator OECD Composite Leading/Indicator(CLI)forlJapan OECD CLI_Japan

233 [LeadingIndicator OECD Composite Leading/Indicator(CLI)forKorea OECD CLI_Korea

234 |LeadingIndicator OECD Composite LeadingIndicator((CLI)forM exico OECD CLI_Mexico

235 [LeadinglIndicator OECD Composite/LeadingIndicator/(CLI)forNetherlands OECD CLI_Netherlands

236 |LeadinglIndicator OECD Composite/Leading/Indicator(CLI)forNorway OECD CLI_Norway

237 |LeadinglIndicator OECD CompositeLeadingIndicator{CLI)forPoland OECD CLI_Poland

238 |Leading Indicator OECD Composite LeadingIndicator/(CLI)forPortugal OECD CLI_Portugal

239 [LeadinglIndicator OECD CompositeLeadingIndicator(CLI)forRussia OECD CLI_Russia

240 [Leadinglndicator OECD CompositeLeadinglIndicator(CLI)forSouth_Africa OECD CLI_South_Africa
241 [Leading/Indicator OECD Composite/LeadingIndicator(CLI)forSpain OECD CLI_Spain

242 |LeadingIndicator OECD Composite Leading Indicator((CLI)for'Sweden OECD CLI_Sweden

243 [Leadinglndicator OECDCompositeLeadingIndicator(CLI)forSwitzerland OECD CLI_Switzerland

244 |LeadinglIndicator OECD Composite LeadingIndicator(CLI)forTurkey OECD CLI_Turkey

245 |LeadingIndicator OECD Composite Leading Indicator(CLI) forUnited Kingdom OECD CLI_UK

246 |LeadinglIndicator OECD CompositeLeadingIndicator((CLI)forUnited States of America OECD CLI_USA

247 |LeadinglIndicator OECD Composite/LeadingIndicator(CLI)forEuro areal("@countries) OECD CLI_Euro_area

248 |LeadingIndicator OECD Composite LeadingIndicator(CLI)forBigfourEuropean OECD CLI_Big4_European
249 |LeadingIndicator OECD Composite Leading Indicator((CLI)for G7 OECD CL_G7

250 [LeadingIndicator OECDIComposite/LeadingIndicator/(CLI)forNAFTA OECD CLI_NAFTA

251 |LeadinglIndicator OECD Composite LeadingIndicator(CLI)forMajorfive Asia OECD CLI_Major5_Asia
252 |Leadinglndicator OECD CompositeLeadingIndicator{CLI)forlOECD Europe OECD CLI_OECD_Europe
253 |LeadingIndicator OECD CompositeLeading Indicator((CLI)forlOECD Total OECD CLI_OECD_Total
254 [LeadinglIndicator OECD Composite LeadingIndicator(CLI)forOECD MajorisixNM E OECD CLI_OECD_Major6_NME
255 [Realbusinessconditionsinthe.S.|AruobaDieboldScottiBusiness Conditions Index Federal Reserve Bank of/P hiladelphig ADS_index

256 |QuantitativeEasing Total Assets(US$ trillions), FederalReserve FederalReserveBankofiSt.Louis |QE_FED

257 |Quantitative Easing TotalAssets (US$ trillions), Federal Reserve +European Central Bank +Bank of Japan| Federal Reserve Bank of St.Louis |QE_FED_ECB_BOJ
258 |EnergyOutlook Liquid[Fuels Consumption, World{millionbarrels perday) ShortTermEnergyOutlook, U.S.EIA | STEO.PATC_WORLD.M
259 [Energy Outlook Liquid Fuels Consumption, OECD (millionbarrels perday) Short Term EnergyOutlook, U.S.EIA | STEO.PATC_OECD.M
260 [EnergyOutlook Liquid Fuels Consumption,non OECD (million barrels periday) Short TermEnergyOutlook, U.S.EIA | STEO.PATC_NON_OECD.M
261 | EnergyOutlook Crude(OilProductionCapacity, OP EC (millionbarrels perday) ShortTermEnergyQutlook, U.S.EIA | STEO.COPC_OPEC.M
262 |EnergyOutlook PetroleumProductSupply, Total (millionbarrels perday) Short TermEnergyQutlook, U.S.[EIA | STEO.PASUPPLY .M
263 |Energy Outlook Crude/QilProduction,U.S./(million barrels per day) Short Term Energy Outlook, U.S.EIA | STEO.COPRPUSM
264 [EnergyOutlook Crude(OiliandOtherLiquidsinventory,.S.(millionbarrels) ShortTermEnergyOutlook,U.S.EIA | STEO.PASC_USM
265 |EnergyOutlook PetroleumNetimports,U.S.(millionbarrels perday) ShortTermEnergyOutlook, U.S.EIA | STEO.PAIMPORT.M
266 [Energy Outlook Net/InventoryWithdrawals, Crude Oil:and Other Liquids, U.S.(millionbarrels perday) Short TermEnergyQutlook, U.S.EIA | STEO.T3_STCHANGE_USM
267 |EnergyOutlook NaturalGas HenryHub/SpotPrice,U.S.(dollars perthousandicubic feet) Short Term EnergyOutlook, U.S.EIA | STEO.NGHHM CF.M
268 [EnergyOutlook CostofCoalDeliveredito Electric'GeneratingPlants,U.S.(do llars permillionB tu) ShortTermEnergyOutlook, U.S.EIA | STEO.CLEUDUS M
269 |EnergyOutlook CoalProduction,U.S.[(millionishorttons) Short Term EnergyQutlook, U.S.EIA | STEO.CLPRPUS_TON.M
270 [EnergyOutlook Coal Consumption,U.S.(millionshortitons) Short Term EnergyOutlook, U.S.EIA | STEO.CLTCPUS_TON.M
271 |EnergyOutlook ConsumptionofElectricity,U.S. (billion kilowatthours) Short TermEnergyOutlook, U.S.EIA | STEO.ELCOTWHM
272 |EnergyOutlook RawiSteel Production,U.S.(millionishort tons perday) Short Term EnergyOutlook, U.S.EIA | STEO.RSPRPUSM
273 |EnergyOutlook Aircraft Utilization,U.S.{revenuetonimiles/daythousands) ShortTermEnergyQutlook, U.S.EIA | STEO.RMZZPUSM
274 |EnergyOutlook VehicleMiles Traveled, U.S.(millionmiles/day) Short Term EnergyOutlook, U.S.EIA | STEOMVVMPUSM
275 |Financialmarkets Baltic[Exchange DryIndex(BDI) ThomsonReuters BALTIC_DRY

276 |Financialmarkets CBOESPXVOLATILITYVIX ThomsonReuters VIX

277 |Financialmarkets USDollarindexDXY ThomsonReuters US_DOLLAR_INDEX
278 |Financial markets M SCIEmerging M arkets U$ ThomsonReuters MSCI_EM

279 |Financialmarkets M SCIWorld U$ ThomsonReuters MSCI_WORLD

280 |Financialmarkets EUROSTOXX50 ThomsonReuters EURO_STOXX50
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Table 5.1 - List of macroeconomic and financial variables (cont.)

28
282
283
284
285
286
287
288
289
290
29
29
293
294
295
296
297
298

[

Financial markets
Financial markets
Financialmarkets
Financialmarkets
Financial markets
Financial markets
Financialmarkets
Financial markets
Financial markets
Financialmarkets
Financial markets
Financial markets
Financial markets
Financialmarkets
Financial markets
Financial markets
Financialmarkets

Financialmarkets

S&P 500 ESENERGY

S&P GSClEnergy TotalReturn TRETURNIIND.(OFCL)

CRB BLSISpotiindex(1967=100)

CRB BLSSpotindexRawindustrials

CRB BLSSpotIndexM etals

CRB BLSISpotindexFoodstuffs

CRBBLSSpotindexFats&Oils

CRB BLSSpotindexLivestock

CRB BLSSpotindexTextiles

ThomsonReuters Equal Weight Continuous CommodityIndex(CCl)Energy1967 =100
ThomsonReuters Equal Weight Continuous CommodityIindex(CCI)Energy1977=100
ThomsonReuters Equal Weight Continuous CommoditylIndex((CCl)Industrials
Thomson Reuters Equal Weight Continuous CommodityIndex(CCl)Precious M etals
ThomsonReuters Equal Weight Co ntinuous CommoditylIndex(CCl)Grains & Oilseed
ThomsonReuters Equal Weight Continuous CommodityIndex(CCl)lInterestRates
ThomsonReuters Equal Weight Continuous Commoditylindex (CCl) Livestock/Index
ThomsonReuters Equal Weight Continuous CommoditylIndex(CCl)SoftsIndex
RefinitiviEqual Weight CCI

ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters

ThomsonReuters

SP500_ENERGY
SP_GSCI_ENERGY
CRB
CRB_RAW_IND
CRB_METALS
CRB_FOOD
CRB_FATS
CRB_LIVESTOCK
CRB_TEXTI
CCI_ENERGY67
CCI_ENERGY77
CCI_IND
CCI_PREC_METALS
CCI_GRAINS
CCI_INTEREST
CCI_LIVESTOCK
CCI_SOFT
CCI_REFINITIV

299
300
30
30:
303
304
305
306
307
308
309
310
31
3R
38
3%
36

o =2

Financial markets
Financial markets
Financialmarkets
Financial markets
Financial markets
Financialmarkets
Financialmarkets
Financial markets
Financialmarkets
Financialmarkets
Financial markets
Financial markets
Financialmarkets
Financialmarkets
Financial markets
Financialmarkets

Financialmarkets

Futures Brentcrude/oil,Intercontinental Exchange (ICE), Tmonth
Futures Brent/crude/oil, Intercontinental Exchange (ICE),2 months
Futures Brenticrudeoil,Intercontinental Exchange(ICE),3months
Futures Brenticrude/oil,Intercontinental Exchange (ICE), 4 months
Futures Brentcrude oil, Intercontinental Exchange/(ICE), 5 months
Futures Brenticrudeoil, Intercontinental Exchange(ICE), 6 months
Futures Brenticrudeoil,Intercontinental Exchange(ICE), 7 months
Futures Brent'crude oil, Intercontinental Exchange/(ICE), 8 months
Futures Brenticrude/oil, Intercontinental Exchange(ICE), 9 months
Futures Brenticrude/oil, Intercontinental Exchange(ICE),00months
Futures Brenticrudeoil,[Intercontinental Exchange(ICE), imonths
Futures Brentcrude oil, Intercontinental Exchange((ICE), 2 months
Futures Brenticrudeoil, Intercontinental Exchange(ICE),24 months
Futures Brenticrude/oil,[Intercontinental Exchange (ICE), 36 months
Futures Brenticrude oil, Intercontinental Exchange((ICE), 48 months
Futures Brenticrude/oil,Intercontinental Exchange (ICE), 80 months

Futures Brenticrudeoil, Intercontinental Exchange(ICE), 72months

ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsonReuters
ThomsoniReuters

ThomsonReuters

FUTURE_BRENT_M1
FUTURE_BRENT_M2
FUTURE_BRENT_M3
FUTURE_BRENT_M4
FUTURE_BRENT_M5
FUTURE_BRENT_M6
FUTURE_BRENT_M7
FUTURE_BRENT_M8
FUTURE_BRENT_M9
FUTURE_BRENT_M 10
FUTURE_BRENT_M 11
FUTURE_BRENT_M 12
FUTURE_BRENT_M24
FUTURE_BRENT_M36
FUTURE_BRENT_M48
FUTURE_BRENT_M60
FUTURE_BRENT_M72
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Appendix 8. Other results - monthly frequency

Figure 8.1 - Root Mean Squared Error (RMSE)
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Note: RMSE (vertical axis) computed along the pseudo out-of-sample exercise for each forecast horizon (horizontal axis).
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Forecast Variance (*1e-2, relative to benchmark)

Forecast Variance (*1e-2, relative to benchmark)

Figure 8.2 - MSE Decomposition (h = 6,12)
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Figure 8.3 - MSE Decomposition (h = 18,24)
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Pseudo pl

Figure 8.5 - Pseudo out-of-sample forecasts (h = 1,.
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Figure 8.6 - Cumulative Square Prediction Error (h = 1)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure

8.7 - Cumulative

Square Prediction Error (h = 6)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.8 - Cumulative Square Prediction Error (h = 12)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.9 - Cumulative Square Prediction Error (h = 24)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.10 - Number of selected variables (lasso, adalasso, elastic net)

200 400 600

0

200 400 600

0

200 400 600

0

15 20 25 30

5 10

0

Average number of variables selected in each horizon (h)

— LAssC
— Adalasso
—— Elastic net

Figure 8.11 - Variable selection over time (h = 1,6)
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Figure 8.12 - Variable selection
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over time (h = 12,24)
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Figure 8.13 - Variable importance (h = 1,6)
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Figure 8.14 - Variable importance
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Figure 8.15 - Word clouds (h = 24)
Panel (a): elastic net (left) and adalasso (right)
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Figure 8.16 - Fan charts and probability density functions (PDF's)
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Probability Density Functions of model RW
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Figure 8.17 - Fan charts and probability density functions (PDF's)
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Appendix 9. Other results - quarterly frequency

Figure 9.1 - Root Mean Squared Error (RMSE)

RMSE for each forecast horizon (h)
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Forecast Variance (*1e-2, relative to benchmark)

Forecast Variance (*1e-2, relative to benchmark)

Figure 9.2 - MSE Decomposition (h = 4,8)
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Forecast Variance (*1e-2, relative to benchmark)

Forecast Variance (*1e-2, relative to benchmark)

Figure 9.3 - MSE Decomposition (h = 14, 20)
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Figure 9.4 - Oil price change and forecasts (h = 1,4, 8, 20)
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Figure 9.5 - Pseudo out-of-sample forecasts (h = 1,.

Pseudo out-of-sample multi-step ahead forecasts of model RW
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Figure 9.6 - Cumulative Square Prediction Error (h = 1)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.7 - Cumulative Square Prediction Error (h = 4)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.8 - Cumulative Square Prediction Error (h = 8)
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Notes: Graphs show time series plots of the differences (over time) between the Cumulative
Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.9 - Cumulative Square Prediction Error (h = 20)
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benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.10 - Number of selected variables (lasso, adalasso, elastic net)
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Figure 9.11 - Variable selection
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Figure 9.12 - Variable selection
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Figure 9.13 - Variable importance (h = 1,4)
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Figure 9.14 - Variable importance (h = 8,20)
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Figure 9.15 - Word clouds (h = 20)
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Figure 9.16 - Fan charts and probability density functions (PDFs)

Fan chart of modael RW

— Mean
— Medisn

6%
s

[

o

&

sggiussggdEel

7

=888383

e

207

2018

208

2020

2021

Fan chart of model RW-drift

2022

2026

— Mean
— Medisn

o5

o0

oo

%

&

BEsEiBEEEEEEEE

czBEEEE3

Fan chart of model Random forest

2022

2026

[ Mean
|— Median

%

o

Fan chart of model Quant.reg.forest

2022

2026

I Mean
— Median

%

o0

0%

2022

99

0.02 0.04 0.06 008

0.00

0.02 0.04 0.08 008

0.00

0.02 0.04 006 008

0.00

0.02 0.04 0.06 008

0.00

Probability Density Functions of model RW

0 50 100 150 200

Last oil price (gray) = 29.4

Probability Density Functions of model RW-drift

T T T T T
0 50 100 150 200

Last oil price (gray) = 29.4

Probability Density Functions of model Random forest

T T T T
0 50 100 150

Last oil price (gray) = 29.4

Probability Density Functions of model Quant.reg forest

Last oil price (gray) = 29.4




Figure 9.17 - Fan charts and probability density functions (PDFs)
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