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Non-technical Summary 

This paper studies machine learning techniques to forecast the oil price. Given the 

importance of crude oil to the global economy, constructing reliable forecasts of the oil price 

is a relevant issue in applied macroeconomics, since large and unexpected fluctuations of this 

commodity impact the global economy, affecting the welfare of countries that are oil 

exporters as well as those that import this commodity. 

In the era of big data, recent automated tools can potentially improve the oil price 

forecast accuracy over traditional approaches. The goal of this paper is to build oil price 

forecasts from 22 methods, including several new machine learning techniques, based on 

regression trees or regularization procedures, as well as standard econometric models and 

forecast combinations, besides the structural factor model of Schwartz and Smith (2000), 

which is a model of reference in the field.  

To evaluate the predictive power of each method, an extensive out-of-sample 

forecasting exercise is conducted in both monthly and quarterly frequencies. The database 

contains 315 macroeconomic and financial variables. The sample covers the period from 

January 1991 to June 2020, and forecast horizons vary from one month up to five years.  

Overall, the empirical results reveal a good performance of the machine learning 

methods in the short and medium horizons. Future oil prices and the Schwartz-Smith model 

also provide forecasts with comparable accuracy in such horizons. At longer horizons, 

forecast combinations become relevant too. 

In several cases, the accuracy gains in respect to the random walk (benchmark) 

forecast are statistically significant and reach two-digit figures, in percentage terms, using the 

R² out-of-sample statistic. This is an expressive improvement vis-a-vis the previous literature, 

thus confirming that machine learning tools can indeed contribute to the standard statistical 

toolkit used in macroeconomic forecasting. 
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Sumário Não Técnico 

Este artigo investiga técnicas de aprendizado de máquina para previsão do preço do 

petróleo. Dada a importância do petróleo para a economia global, a construção de previsões 

confiáveis do preço do petróleo é uma questão relevante em macroeconomia aplicada, uma 

vez que grandes ou inesperadas flutuações dessa commodity têm um impacto na economia 

global, afetando tanto o bem-estar de países exportadores de petróleo como daqueles que 

importam essa commodity. 

Na atual era de big data, novas ferramentas automatizadas podem potencialmente 

melhorar a precisão da previsão do preço do petróleo em relação às abordagens tradicionais. 

O objetivo deste artigo é construir previsões do preço do petróleo a partir de 22 métodos, 

incluindo diversas novas técnicas de aprendizado de máquina, baseadas em árvores de 

regressão ou técnicas de regularização, bem como modelos econométricos usuais e 

combinações de previsões, além do modelo estrutural de fatores de Schwartz e Smith (2000), 

que é um modelo de referência na área. 

Para avaliar a capacidade preditiva de cada método, um amplo exercício de previsão 

fora da amostra é realizado nas frequências mensal e trimestral. A base de dados contém 315 

variáveis macroeconômicas e financeiras. A amostra considerada abrange o período de janeiro 

de 1991 a junho de 2020, e os horizontes de previsão variam de um mês até cinco anos. 

De maneira geral, os resultados empíricos revelam um bom desempenho dos métodos 

de aprendizado de máquina nos horizontes de curto e médio prazos. Os preços futuros do 

petróleo e o modelo de Schwartz-Smith fornecem previsões com equivalente grau de precisão 

em tais horizontes. Em horizontes mais longos, as combinações de previsão também se tornam 

relevantes em termos de capacidade preditiva. 

Em vários casos, os ganhos de precisão em relação à previsão do passeio aleatório 

(modelo benchmark) são estatisticamente significativos e atingem valores de dois dígitos, em 

termos percentuais, usando a estatística R² fora da amostra. Trata-se de uma melhoria 

expressiva em relação à literatura anterior, confirmando dessa forma que ferramentas de 

aprendizado de máquina podem, de fato, contribuir para o conjunto de ferramentas estatísticas 

utilizadas em previsões macroeconômicas. 
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The purpose of this paper is to explore machine learning techniques to forecast the

oil price. In the era of big data, we investigate whether new automated tools can improve

over traditional approaches in terms of forecast accuracy. Oil price point and density

forecasts are built from 22 methods, including regression trees (random forest, quantile

regression forest, xgboost), regularization procedures (elastic net, lasso, ridge), standard

econometric models and forecast combinations, besides the structural factor model of

Schwartz and Smith (2000). The database contains 315 macroeconomic and financial

variables, used to build high-dimensional models. To evaluate the predictive power of

each method, an extensive pseudo out-of-sample forecasting exercise is built, in monthly

and quarterly frequencies, with horizons from one month up to five years. Overall, the

results indicate a good performance of the machine learning methods in the short run.

Up to six months, the lasso-based models, oil future prices, and the Schwartz-Smith

model provide the best forecasts. At longer horizons, forecast combinations also become

relevant. In several cases, the accuracy gains in respect to the random walk forecast are

statistically significant and reach two-digit figures, in percentage terms, using the R2

out-of-sample statistic; an expressive achievement compared to the previous literature.
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1 Introduction

Traditional forecasting methods often rely on fitting data to a pre-specified relationship be-

tween dependent and independent variables, thus assuming a specific functional and sto-

chastic process. In contrast, a different approach to statistical analysis and forecasting, in

particular, is offered by machine learning (ML), which is a narrow form of artificial intel-

ligence, often described as the art and science of pattern recognition. Indeed, ML is to a

great extent a data-driven framework, since it requires mild assumptions about the under-

lying statistical relationship in the data. According to Hansen (2019): "The term ‘machine

learning’is a new and somewhat vague term, but typically is taken to mean procedures which

are primarily used for point prediction in settings with unknown structure. Machine learn-

ing methods generally allow for large sample sizes, large number of variables, and unknown

structural form."

Although machine learning encompasses a wide variety of models, it generally comprises

two core elements: a learning method, where data are used to determine the best fit for

the input variables, and an algorithm, which models the relationship between the input and

output. According to Jung et al. (2018), ML methods can be categorized into three types:

(i) supervised learning, where the dependent variables are clearly identified, even if the

specific relationships in the data are not known (e.g., linear regression, logistic regression);

(ii) unsupervised learning, where there is no specific output defined beforehand, and the

goal is to recognize data patterns and determine output classification categories (e.g., cluster

analysis, principal components);

(iii) reinforcement learning, which iteratively search for an optimal location of the input

variables that yields the highest reward, that is, optimizes a given "reward" function using

no training set (e.g., dynamic programming models, sarsa, Q-learning).

According to Varian (2014), the growing amounts of data and ever complex-growing

relationships warrant the usage of machine learning in economics. One of the advantages of

ML over traditional approaches is to automate as many of the modeling choices as possible

in a manner that is not subject to the discretion of the forecaster (Hall, 2018).

Producing accurate forecasts is not an easy task, since it requires an approach complex

enough to incorporate relevant variables but also focused on excluding irrelevant data. ML

methods, in general, are able to deal with large amounts of data (big data) and nonlinear

patterns in the data, often hidden to standard linear models, thus offering an alternative and

compelling approach to traditional econometric models.1

Given the importance of crude oil to the global economy, constructing reliable forecasts

of the oil price is a relevant issue in applied macroeconomics, since large and unexpected

fluctuations of this commodity will have an impact on the global economy, affecting the

welfare of countries that are oil exporters as well as those that import this commodity.

1According to Hall (2018), it is crucial to control the model complexity by using an algorithm that yields
a model complex enough to avoid underfitting the data, but not so complex as to overfit it.
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According to Alquist et al. (2013), not only accurate oil price forecasts have the potential

to improve the forecast-accuracy of relevant macro variables, but also some sectors of the

economy directly depend on oil price forecasts for their business (e.g., the oil spot price is

critical to investment decisions in the oil industry). Also, central banks and private sector

agents quite often view the price of oil as one of the key elements in producing macroeconomic

projections and in assessing risks.

The relationship between oil price dynamics and key macroeconomic variables is well

documented in the literature; see, for instance, Hamilton and Herrera (2004), Baumeister and

Kilian (2016), Kilian and Vigfusson (2017), Bjørnland, Larsen and Maih (2018), Bjørnland

and Zhulanova (2018).

The literature on oil price forecasting is also vast. Just to mention a few papers, see

Cologni and Manera (2008), Miller and Ni (2011), Ravazzolo and Rothman (2012), Hong and

Yogo (2012), Gargano and Timmermann (2014), Baumeister and Kilian (2015), Mohaddes

and Pesaran (2016), Gogolin et al. (2018) and Yu et al. (2019).

The objective of this paper is to forecast the real oil price (Brent crude) based on a large

number of macroeconomic and financial variables. Our goal is also to assess whether ma-

chine learning techniques can offer real improvement to forecast-accuracy in applied macro-

economics, and thus make a contribution to the standard statistical toolkit used in macro

forecasting. Our research contributes to the latter literature in two ways: The first original

contribution is to density forecast the oil price using machine learning tools. The second

contribution is to help "opening" the machine learning black box,2 by providing a full set of

auxiliary graphs to help investigating the forecasting exercise results.3

In sum, machine learning tools are used here to build Brent oil price forecasts based on 22

competing methods, including regularization4 procedures that introduce penalties for over-

fitting5 the data (e.g., LASSO and Elastic Nets), more recent supervised machine learning

techniques (e.g., Quantile Regression Forest and XGBoost), which are nonparametric ap-

proaches based on the recursive binary partitioning of the covariate space, besides standard

econometric models (e.g., ARIMA), the forecast combination methods discussed in Duarte

2The black box expression applied to ML has been around for years now. It is often used to critisize neural
networks’ lack of explainability. Here, we turn the black box into a gray box by providing complementary
tools to analyze and further understand the ML results.

3For instance, (i) word cloud and variable importance plots to reveal the most important variables for oil
price forecasting according to a given ML method of interest; (ii) decomposition of the mean-squared forecast
error plots, which allows one to disentangle the effect of forecast bias from the variance of the forecast. This
is particularly important in model selection and helps understanding why some methods display a better
forecast accuracy compared to others; and (iii) time series plots of the differences between the cumulative
squared prediction error, which complement the graphical analysis, by presenting the cumulative performance
of a given forecasting method over time in respect to a selected benchmark.

4For example, the elastic net mixes two types of regularization, by penalizing the number of variables in
the model and the extent to which any given variable contributes to the model’s forecast. By applying such
penalties, the elastic net model learns which variables are most important, thus eliminating the need for
researchers to make discretionary choices about which variables to include in the model.

5In statistics, overfitting denotes the production of an analysis, which is assumed to be valid for the entire
population (for instance, an estimated input-output relationship), that corresponds too closely to a particular
set of data, but it may fail to fit additional data, or forecast future observations, reliably.
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et al. (2019), and the two-factor model of Schwartz and Smith (2000).

To do so, we put together a set of 630 time series, coming from 315 macroeconomic

and financial variables used to build high-dimensional models. In order to evaluate the

forecast accuracy of each approach, an extensive pseudo out-of-sample forecasting exercise is

conducted in monthly and quarterly frequencies. The sample covers the period from January

1991 to June 2020, and forecast horizons vary from one month up to five years.

Overall, the results corroborate recent findings in favor of the nonlinear automated pro-

cedures, indicating machine learning algorithms can indeed statistically surpass, in the short

run, some traditional methods in terms of Root Mean Squared Error (RMSE). One of the rea-

sons is the ability of some machine learning techniques in reducing the forecast variance while

maintaining the forecast bias under control.6 As result, forecast accuracy can be improved

when compared to traditional oil price forecasting models.

In particular, the adaptive LASSO (or simply adalasso) exhibited the lowest RMSE at the

one-month forecast horizon. The empirical exercise also revealed a good performance of other

machine learning approaches (e.g., Random Forest and XGBoost) at short/medium horizons,

providing forecasts that are statistically superior to the random walk for horizons up to three

months. In the monthly frequency, other LASSO family models, the Brent future prices

and the Schwartz-Smith model provided the best forecasts for horizons up to six months.

At longer horizons, the forecast combination techniques discussed in Duarte et al. (AF

and BCAF) gain importance, together with the Brent future prices and the Schwartz-Smith

forecasts.

In both frequencies, and in several cases, the forecast accuracy gains over the benchmark

model (random walk without drift) are statistically significant, and reach two-digit figures, in

percentage terms: the R2 out-of-sample statistics, for the best model in each horizon, range

from 14% to 40% in monthly frequency, and between 9% to 49% in quarterly frequency;

expressive results compared to the previous literature.

Regarding density forecasts, it is worth mentioning the good performance, in most part

of the horizons considered at monthly frequency, of the Brent future prices, the forecast

combination model AF (long horizons) and the Schwartz-Smith model. The excellent result

of the Schwartz-Smith densities, generated from model simulations, in great part of forecast

horizons at the quarterly frequency, should also be mentioned.

The outline of the paper is as follows. Section 2 presents the methodology comprising

machine learning and traditional econometric models to forecast the oil price. Section 3

presents the forecasting exercise and Section 4 concludes. The Technical Appendix provides

additional results.
6In the context of neural networks, Neal et al. (2018) find both bias and variance can decrease as the

number of parameters grows (i.e., model complexity). The authors also discuss this outcome by introducing
a new decomposition of the variance to disentangle the effects of model optimization and data sampling.

8



2 Methodology

2.1 Point Forecast

In this paper, oil price forecasts are constructed from 22 forecasting methods listed in Table

1. Besides some traditional approaches to forecast the oil prices, such as the random walk

and the ARIMA models, this paper considers factor models, which are well-known in the

macroeconometrics literature (e.g., Stock and Watson, 2002; Schwartz and Smith, 2000).

The set of forecasting methods also includes several non-linear machine learning methods,

based on regularization procedures (e.g., LASSO and elastic net) or regression trees (e.g.,

random forest and quantile regression forest).

Table 1 - Models/methods used to forecast the oil prices

Model References

1 Random walk -

2 Random walk with drift -

3 Random walk with drift (last 5 years) Alquist et al. (2013)

4 ARIMA -

5 Factor model 1 Bai and Ng (2002, 2008)

6 Factor model 2 Bai and Ng (2002, 2008)

7 Elastic net Zou and Hastie (2005)

8 LASSO Tibshirani (1996)

9 Adaptive LASSO Zou (2006)

10 Ridge regression Hoerl and Kennard (1988)

11 Random forest Breiman (2001)

12 Quantile regression forest Meinshausen (2006)

13 XGBoost Chen and Guestrin (2016)

14 AF Issler and Lima (2009)

15 BCAF Issler and Lima (2009)

16 Brent futures -

17 Schwartz-Smith (mean) Schwartz and Smith (2000)

18 Schwartz-Smith (median) Schwartz and Smith (2000)

19 Mean (all models) -

20 Median (all models) -

21 Mean (selected models) -

22 Median (selected models) -

The list of models, of course, is far from an exhaustive list, since more complex models

could be included. Although this extension would be valuable, the list presented here seems to

be a reasonable starting point to compare the accuracy of traditional econometric approaches

with competing machine learning techniques.
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Our variable of interest is the Brent oil real price Yt, and our goal is to forecast the

h−period change of the logarithm of Yt at period t + h, that is (yt+h − yt), where yt =

ln(Yt), using the information set available at period t. In this sense, the dependent variable

(yt+h − yt) is modeled as a function of a set of predictors x̃t, measured at time t, as follows:

(yt+h − yt) = Υh (x̃t) + εt+h, (1)

where Υh (·) is a possibly nonlinear mapping of a set of predictors, εt+h is the forecasting
error and x̃t may include weakly exogenous predictors, lagged values of oil prices and a large

number of potential covariates. Let x̃′t ≡ {1t, xt, xt−1, . . . , xt−s}, where 1t is a constant term,
xt = {x1,t, . . . , xn,t} is a set of n predictors and s is the maximum lag adopted for the set of

variables xt when forming the database x̃′t.

In order to build our forecasting exercise, the sample is divided into two periods: the

first one (t = 1, ..., T1) is labeled as “training set”, used to estimate the tuning parameters

and model coeffi cients. The second period, also known as the "test set", comprising the last

P observations (t = T1 + 1, ..., T ), is used to confront the observations of (yt+h − yt) with
out-of-sample forecasts. This way, P = T − T1 observations are used to compare different
forecasts and compute forecast-accuracy measures.

In regularization methods (models 7-10), the mapping Υh (·) is linear, such that:

(yt+h − yt) = x̃′tβh + εt+h, (2)

where βh is a vector of unknown parameters, estimated using a sample of t = 1, ..., T1

observations. Note that for these models, the direct forecast approach is adopted, where the

oil price change (yT1+h − yT1) is modeled as a function of a set of predictors x̃′T1 available at
period T1. In other words, for each horizon h, a different vector of unknown parameters βh is

estimated (in contrast to the iterated multistep approach; see Marcellino, Stock and Watson,

2006). This way, one avoids the necessity of estimating a model for the time-evolution of

x̃t. The pseudo out-of-sample forecast of (yT1+h − yT1) from these ML approaches, labelled

fyT1+h, is given by:

fyT1+h = x̃′T1 β̂h, for h = 1, ..., H. (3)

To evaluate forecast-accuracy, the root mean-squared error (RMSE) is computed for all

forecasts of the Brent oil real prices Yt, generated from the models listed in Table 1. Next,

the 22 forecasting methods considered in this paper are described in details.

Model 1 (RW): A natural benchmark for all competing methods to forecast the real price

of oil is the canonical random walk (RW) model, which assumes here the h−period oil price
change is an unforecastable martingale difference sequence (MDS), that is E (yt+h − yt | Ft) =

0, for all t = 1, ..., T1 and h = 1, ..., H. Thus, the RW forecast assumes the oil price remains

unchanged along the out-of-sample period, that is, fm1yT1+h
= 0 for all h.
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Models 2 and 3 (RW with drift): These variants of the random walk approach assume

E (yt+h − yt | Ft) = drift∗h, where the drift parameter is estimated over the training sample
(model 2) or over the last five years (model 3).7 Thus, fm2,m3yT1+h

= d̂rift ∗ h.

Model 4 (ARIMA): One of the most common statistical models used for time-series fore-

casting is the autoregressive moving average (ARMA) model, which assumes future obser-

vations are primarily driven by recent observations. Here, one considers the ARIMA (Au-

toregressive Integrated Moving Average) approach, which allows for integrated series. The

logarithm of the real oil price, which often exhibits persistent behavior, seems to be consistent

with this setup. Thus, one assumes in this approach yt = ln(Yt) follows an ARIMA(p, d, q)

process, where p is the number of AR terms, d is the integration order of yt, and q is the

number of MA terms.

Model 5 (Factor model 1, direct forecast): The idea that time variations in a large

number of variables can be summarized by a small number of factors is empirically attractive

and it is employed in a large number of studies in economics and finance; see Forni et al.

(2000) and Stock and Watson (2002). Zagaglia (2010) uses a factor model to forecast the

nominal oil price along the 2003-2008 period. Here, one explores the use of factor models for

forecasting the real price of oil. Let xi,t be the observed data for the i−th cross-section unit
at time t, for i = 1, ..., N and t = 1, ..., T1, and consider the following factor representation

of the data:

xi,t = λ′iFt + ei,t, (4)

where Ft is a vector of common factors, λi is a vector of factor loadings associated with Ft
and ei,t is the idiosyncratic component of xi,t. Note that λi, Ft and ei,t are unknown since

only xi,t is observable. Here, one estimates the factors and respective loadings using principal

components analysis (PCA), which is a well-established technique for dimension-reduction

in time series. The number of components is determined by the Bai and Ng (2002) criterion.

After the PCA estimation of the common factors Ft, the direct forecast approach is used to

model the oil price change at time t+ h, as follows:

(yt+h − yt) = βhFt + εt+h. (5)

The respective out-of-sample forecast is given by:

fm5yT1+h
= β̂hF̂T1 , for h = 1, ..., H. (6)

It is worth mentioning this approach only uses here a subset of predictors, which are

pre-selected by taking into account our variable of interest is the oil price change. Bai and

7This “local” drift model assumes, for instance, oil traders extrapolate from the recent behavior of the
spot price when they form expectations about the future prices. According to Alquist et al. (2013), the local
drift model is designed to capture “short-term forecastability” that arises from local trends in the oil price
data.
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Ng (2008) shows the factor model forecasting performance could be improved by previously

selecting (or targeting) the predictors. The core idea is that irrelevant predictors employed

to build a factor model only add noise into the analysis, and thus produce factors with a

poor predictive performance.

In this sense, it is adopted a pre-selection of variables (target predictors) to be included

in the factor analysis, as follows: (i) regress (yt+h − yt) on the intercept and the candidate
variable x̃′i,t ∈ x̃′t, for all i = 1, ..., N ; (ii) compute the t-statistic for the coeffi cient associated

to x̃′i,t; and (iii) include x̃
′
i,t in the set of predictors (used to extract the factors) only if it is

statistically significant at a 5% level.

Model 6 (Factor model 2, iterated forecast): This approach is a variant of the previous

one, but using an iterated method instead of the direct forecast approach. The idea is again

to employ common factors, but to model the oil price change in a contemporaneous way in

respect to the factors, that is:

(yt+h − yt) = γFt+h + vt+h. (7)

Following Bańbura et al. (2013), the factors are assumed to follow a VAR process, that

is, Ft = Φ(L)Ft + ut. The out-of-sample forecast from this factor model is given by:

fm6yT1+h
= γ̂F̂T1+h|T1 , for h = 1, ..., H, (8)

where F̂T1+h|T1 is the h−step ahead forecast of the vector of common factors using a VAR
model for Ft, estimated in a recursive scheme.

Again, the factor model considers target predictors, as discussed in model 5.

Model 7 (Elastic net): The elastic net is a regularization and variable selection method

proposed by Zou and Hastie (2005) as a generalization of the LASSO. Similarly to the LASSO,

the elastic net simultaneously does automatic variable selection and continuous shrinkage,

and it can select groups of correlated variables. Simulation studies show the elastic net often

outperforms the LASSO, in terms of predictive power, while enjoying a similar sparsity rep-

resentation. The elastic net encourages a grouping-effect, where highly correlated regressors

tend to be jointly included (or excluded) from the model, and it can be particularly useful

when the number of predictors k is high when compared to the number of observations T .

For a nonnegative shrinkage parameter λ, and a combination parameter α strictly between

0 and 1, the elastic net solves the following problem:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
(yt+h − yt)−

k∑
j=1

x′j,tβj

)2
+ λPα (β)

 , (9)
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where

Pα (β) =
k∑
j=1

α
∣∣βj∣∣+

(1− α)

2
β2j . (10)

Note that the elastic net becomes the LASSO when α = 1. As α shrinks toward 0, the

elastic net approaches the ridge regression. For other values of α, the penalty term Pα (β)

interpolates between the l1-norm of β and the squared l2-norm of β. Once again, the tuning

parameter λ controls the overall strength of the penalty. Note the objective function is

convex and so can be minimized using any convex optimization method such as gradient or

coordinate descent.

Although the elastic net is defined here by using (λ, α), this is not the only choice as the

tuning parameters; see Zou and Hastie (2005) for further details. For example, one could use

the l1-norm of the coeffi cients or the fraction of the l1-norm to parameterize the elastic net.

There are well-established methods for choosing the tuning parameters (λ, α). For instance,

K-fold cross-validation (CV) is a popular method for computing the prediction error and

comparing different models using training data. The loss often used is the mean squared

error (MSE) and the goal is to produce the "cross-validation curve", which computes the

MSE as a function of the tuning parameter λ over a pre-selected grid.8

In the elastic net, since there are two tuning parameters, one needs to cross-validate the

model on a two-dimensional surface. The minimum MSE, thus, provides the pair (λ, α) to be

used in the final model estimation. In this paper, however, the Bayesian Information Criterion

(BIC) is adopted, instead of cross-validation, to choose the tuning parameters.9 Finally, the

vector of parameters β can be estimated using the penalized maximum likelihood, in which

the regularization path (i.e., the path of each coeffi cient βj against, for instance, the l1-norm

of the whole coeffi cient vector as λ varies) can be computed.

Model 8 (LASSO): The least absolute shrinkage and selection operator (LASSO) was

originally proposed by Tibshirani (1996). The core idea is to shrink to zero the irrelevant

coeffi cients. The LASSO is a penalized least squares method imposing an l1-penalty on the

regression coeffi cients, as follows:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
(yt+h − yt)−

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

∣∣βj∣∣
 , (11)

8To do so, for each fold, the algorithm splits the training set of observations in two parts: training folds
(used for the estimation of parameters) and test fold (based on the remaining observations, used for model
predictions). Then, forecast errors are computed and used to calculate the MSE over the entire set of
predictions using all K-folds.

9Zou et al. (2007) show one can consistently estimate the degrees of freedom of the LASSO model using
information criteria as alternative to the CV approach. An advantage of such procedure is that selecting
the model using information criterion is faster than using cross-validation. More importantly, performing
CV in a time-series context may be complicated in cases where the data are not independent and identically
distributed (i.i.d.); see Medeiros et al. (2016).
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where β is the vector of parameters and λ is the shrinkage parameter. Due to the nature of

the l1-norm, the LASSO approach is able to do continuous shrinkage and automatic variable

selection simultaneously, whereas the ridge regression only shrinks the coeffi cients close to

zero (but does not exclude them from the model). Again, setting λ = 0 leads to the OLS

estimation. According to Cheng et al. (2019), LASSO is “the most intensively studied

statistical method in the past 15 years”. Indeed, it has shown success in many practical

situations, since it can handle more variables than observations. Nonetheless, it has some

limitations and might even become an inappropriate variable selection method in some cases.

Zou and Hastie (2005) list a few examples: (i) when the number of predictors k is greater

than the number of observations T , the LASSO selects at most T variables before it saturates,

due to the nature of the convex optimization problem; (ii) in the case of grouping effect10,

the LASSO tends to select only one variable from the group (and does not care which one is

selected); (iii) in the case of T > k and in the presence of highly correlated predictors, it has

been empirically observed that ridge regression tends to perform better than LASSO.

Model 9 (Adaptive LASSO): Zou (2006) shows the LASSO estimator is inconsistent for

variable selection under certain circumstances. This way, the author proposes a new version

of the LASSO, called the adaptive LASSO (or simply adalasso), where adaptive weights

are used for penalizing different coeffi cients in the l1-penalty. According to the author, the

adaptive LASSO enjoys the oracle properties (i.e., it performs as well as if the true underlying

model were known) and does not select useless variables (which may damage the forecasting

accuracy). The core idea behind the model is to use some previously known information

to select the variables more effi ciently. In practice, it consists of a two-step estimation that

uses a first model to generate different weights wj for each candidate variable xj,t. These

weights are used in the second-step as additional information. The adalasso estimator is,

thus, defined as:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
(yt+h − yt)−

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

wj
∣∣βj∣∣

 , (12)

where wj =
∣∣∣β̂∗j ∣∣∣−τ represents the weights; β̂∗j is a parameter estimated in the first-step, and

τ > 0 is an additional tuning parameter (which can be chosen by using the same criterion

as λ) that determines how much one wants to emphasize the difference in the weights. In

general, τ is set to unity and β̂
∗
j is estimated in the first-step using LASSO. According to

Medeiros and Mendes (2016), the conditions required by the adalasso estimator are very

general and the model works even when the errors are non-Gaussian, heteroskedastic and the

number of variables increases faster than the number of observations.
10The grouping effect occurs if the regression coeffi cients of a group of highly correlated variables tend to

be equal (up to a change of sign if negatively correlated).
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Model 10 (Ridge regression): It is well known OLS often does poorly in prediction

on future data (e.g., due to overfitting). In this sense, penalization techniques have been

proposed in the literature to improve OLS accuracy. For instance, the ridge regression (see

Hoerl and Kennard, 1970) minimizes the squared sum of the residuals subject to a bound on

the l2-norm of the parameters, as follows:

β̂ = arg min
{β1,...,βk}

 1

T

T∑
t=1

(
(yt+h − yt)−

k∑
j=1

x′j,tβj

)2
+ λ

k∑
j=1

β2j

 , (13)

where β is the k×1 vector of parameters, (yt+h − yt) is the dependent variable,
{
x1,t, . . . , x

′
k,t

}
is the k× 1 vector of regressors and λ is the shrinkage parameter, which controls the magni-

tude of the shrinkage penalty. The optimal value of λ can be determined by cross-validation

(i.e., splitting the data into K folds and iteratively re-estimating the model for each fold) or

using information criteria. Choosing a higher λ leads to a stronger shrinkage of the coeffi -

cients, whereas setting λ = 0 produces the same results of the ordinary least squares (OLS)

regression. Also, because ridge regression is a continuous shrinkage method, it can achieve

a better out-of-sample performance through a bias-variance trade-off (i.e., use regularization

to balance the forecast errors due to bias and variance). In particular, the ridge regression

is good at improving the OLS counterpart when multicollinearity is present. However, ridge

cannot produce a parsimonious model, since it always keeps all the predictors in the model.

Model 11 (Random forest): Random Forest (RF) was introduced as a machine learning

tool in Breiman (2001) and have since proven to be very popular and powerful for high-

dimensional regression and classification. A random forest is a collection of regression trees,

designed to reduce the prediction variance by using bootstrap aggregation (bagging) of ran-

domly constructed regression trees. A regression tree is a nonparametric model based on the

recursive binary partitioning of the covariate space X.11 The main idea is that if a suffi ciently

large number of step functions are used, then a step function can be a good approximation

to any functional form.12 The model is often represented as a binary decision tree, with P

parent nodes (also called "split nodes") and L terminal nodes (also called "leaves"; which

represent different partitions of X).

In practice, one major problem with regression trees is their high forecast variance. Usu-

ally, a small change in the data lead to a very different sequences of splits. The main reason

for such instability is the hierarchical nature of the algorithm: the effect of a big error in the

top split is propagated down to all of the splits below it. To overcome this issue, one can

11Rather than splitting each node into just two groups, one might consider multiple splits into more than
two groups at each stage. However, according to Hastie et al. (2009, p.311), while this can sometimes be
useful, it is not a good general strategy, since multiple splits fragment the data too quickly, leaving insuffi cient
data at the next level down.
12According to Hansen (2019): "The literature on regression trees has developed some colorful language

to describe the tools, based on the metaphor of a living tree. 1. A split point is node. 2. A subsample is a
branch. 3. Increasing the set of nodes is growing a tree. 4. Decreasing the set of nodes is pruning a tree."
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employ the bagging technique (i.e., bootstrap aggregation), which consists on fitting the same

regression tree several times to bootstrap-sampled versions of the training data and average

the result. This bootstrapping approach often leads to better model performance because it

decreases the forecast variance, without increasing too much the bias.13

The random forest approach uses a modified bagging algorithm (random subspace pro-

jection) that selects, at each candidate split in the learning process, a random subset of

covariates. The reason for doing this is the correlation of the trees in an ordinary bootstrap

sample: if one or a few covariates are very strong predictors for the dependent variable, these

covariates will be selected in many of the K bootstraped trees, causing them to become cor-

related. According to Hansen (2019), the modification proposed by RF is to decorrelate the

bootstrap regression trees by introducing extra randomness. The random forest algorithm

can be summarized as follows:14

Given a training set (Yi, Xi), for i = 1, ..., n, where Y is the dependent (response) variable

and X represents a set of covariates, bagging repeatedly (K times) selects a random sample

with replacement of the training set and fits regression trees to these bootstraped samples,

that is, for k = 1, ..., K:

(i) sample with replacement n training observations from (X, Y ); calling them (Xk, Yk);

(ii) train a regression tree Tk (·) on (Xk, Yk);

(iii) build the random forest prediction of Y conditioned on the test set (unseen samples

x′) by averaging the predictions from all the individual regression trees on x′, as follows:

Erandom forest (Y | X = x′) =
1

K

K∑
k=1

Tk(x
′), (14)

where Tk(x′) is the conditional forecast of Y from the k-th regression tree.

Model 12 (Quantile regression forest): Random forest approximates the conditional

mean of Y by constructing a weighted average over the sample observations of Y . Nonetheless,

the technique can also provide information about the full conditional distribution of the

response variable, not only about the conditional mean. This information can be used,

for instance, to build prediction intervals and account for outliers in the data. This way,

conditional quantiles can be inferred with quantile regression forests (QRF), a generalization

of random forests proposed by Meinshausen (2006).15

On the other hand, the conditional mean of Y can be approximated by a combination of

conditional quantiles (i.e., integrating the conditional quantile function of Y over the entire

13While the predictions of a single tree are highly sensitive to noise in its training set, the average of many
trees might be not, as long as the trees are not correlated. Besides, training many trees on a single training
set would give strongly correlated trees, whereas bootstrap sampling helps de-correlating the trees by showing
them different training sets.
14See the Technical Appendixes 3-4 and Hastie et al. (2009, chapters 9 and 15) for further details.
15The main difference between QRF and RF is that for each node (in each tree), RF keeps only the mean

of the observations that fall into this node (and neglects all other information). In contrast, QRF keeps the
value of all observations in this node (not just their mean) and assesses the conditional distribution based on
this full information.
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domain). In this sense, Araujo and Gaglianone (2020) proposed a quantile combination

approach using QRF to build conditional mean forecasts of Y ; see the Technical Appendix

3 for further details. The idea follows the averaging scheme of quantiles conditional on

predictors selected by LASSO, as proposed by Lima and Meng (2017).16 The advantage of

both approaches relies on the fact that quantiles are robust to outliers (in our case, extreme

unanticipated oil shocks), which potentially improves forecast-accuracy and likely impact

the performance of standard models, which are usually designed to only account for average

responses.

Model 13 (XGBoost): Extreme Gradient Boosting (or simply XGBoost) is a decision-

tree-based ensemble algorithm that uses a gradient boosting setup proposed by Chen and

Guestrin (2016). It improves upon the previous gradient boosting frameworks through sys-

tems optimization and algorithmic enhancements.17

According to Morde and Setty (2019), the XGBoost algorithm has the best combination

of prediction performance and processing time compared to other algorithms. As result,

it is widely used in many data science competitions (and there is a strong community of

data scientists contributing to the XGBoost open source projects). Figure 1 shows a brief

comparison of the most common decision tree algorithms.

Figure 1 - Algorithms for decision trees

Source: Morde and Setty (2019). Boosting is an ensemble technique (that is, makes an average of the predictions

of a group of models) that constructs models sequentially, and each subsequent model corrects

the errors of the previous one, whereas bagging constructs models independently.

In sum, XGBoost is a bagging-based algorithm with a key difference wherein only a subset

of features is selected at random. Compared to Random Forest, XGBoost is normally used to

16According to the authors, the quantile combination method often results in a prediction model in which
the coeffi cients of fully weak predictors (those that help predict no quantile at all) are not statistically
significant, in contrast to statistically significant strong predictors (that help forecasting all quantiles), while
the coeffi cients of partially weak predictors (useful to forecast some, but not all, conditional quantiles of Y )
are adjusted to reflect the magnitude of their contribution to the conditional mean forecast. These methods
potentially offers improvement in forecast accuracy compared to usual conditional mean models not designed
to deal with partial and fully weak predictors across quantiles and over time.
17For instance: (i) the distributed weighted quantile sketch algorithm, to find the optimal split points

among weighted datasets; (ii) sparsity awareness, that admits sparse features for inputs; (iii) cross-validation
at each iteration; among others.
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train gradient-boosted decision trees and other gradient boosted models, whereas RF uses the

same model representation and inference (as gradient-boosted decision trees), but a different

training algorithm. In addition, XGBoost supports missing values by default, since branch

directions for missing values are learned during training.

In practice, XGBoost requires the right configuration of the algorithm for a dataset by

tuning the hyper parameters (i.e., searching the parameter space for a set of values that

optimizes the model architecture). Hyper parameter tuning is not automatic and must be

fine-tuned manually. Most of hyper parameters in XGBoost are about the bias-variance trade-

off. When one allows the model to get more complicated (e.g., more depth), the model has

better ability to fit the training data (in-sample), resulting in a less biased model. However,

such complicated model requires more data to fit. The best model should trade the model

complexity with its predictive power carefully.1819 See Chen and Guestrin (2016) for further

details.

Models 14 and 15 (AF and BCAF): Duarte et al. (2019) generate optimal oil price

forecasts using forecast combination tools, in the context where the number of forecasts can

grow without bounds, following the approach proposed in Issler and Lima (2009); see also

Gaglianone and Issler (2019).20 The main idea is to employ a bias-correction device on the

cross-section average of individual forecasts. In this setup, the Average Forecast (AF) is

a special case of the Bias-Corrected Average Forecast (BCAF), in which the bias term is

statistically equal to zero. Such forecast combination setup works well in practice due to risk

diversification: idiosyncratic forecast errors vanish, since the law of large numbers eliminates

the uncertainty associated to them, as long as the number of combined forecasts increases

with no bounds.

Here, the set of covariates used to forecast the oil price is, essentially, the same used in

Duarte et al. (2019). Minor changes include the substitution of some FRED series without

seasonal adjustment by the respective seasonally adjusted series, and the exclusion of the

series from the Goyal and Welch (2008) database, due to infrequent data update.21 On the

other hand, in order to eliminate excessively high (or low) individual forecasts of the Brent oil

18One of the most important hyper parameters is the max_depth, which controls the model complexity.
In general, the deeper a tree grows, the more complex the model will become, since there will be more splits
to capture information about the data. Indeed, this is one of the key causes of overfitting in decision trees
because the model can fit perfectly the training data (in-sample) but will not be able to generalize well on
the test set (out-of-sample). Thus, reducing max_depth can avoid overfitting. Another key hyper parameter
is the learning rate η, which scales the contribution of each tree by a factor of 0 < η < 1. It is used to prevent
overfitting by making the boosting process more conservative (lower values for η).
19Other way to tackle overfitting in XGBoost is to add randomness to make training robust to noise.

This can be done by using hyper parameters subsample (ratio of the training instance. Setting it
to 0.5 means that XGBoost randomly collects half of the data to grow trees, thus preventing over-
fitting) and colsample_bytree (ratio of features when constructing each tree). For more details, see:
https://xgboost.readthedocs.io/en/latest/index.html
20Technical Appendix 1 provides further details on the referred forecast combination setup.
21The set of covariates used in this paper is the following: CONSPI; CRB; CRB_METALS; GPR_UKRAINE; HUN-

PROINDMISMEI; IPBUSEQ; IPG3311A2S; IPG3364T9S; IPN213111S; IPN3311A2RS; OIL_WTI; OIL_BRENT_REAL;

PPICMM; S_P_PE_ratio; TB3SMFFM. See Technical Appendix 5 for further details on the description and
source of the selected series.
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prices from models AR, ARMA-X and VAR (which, in turn, impact the aggregate forecasts

AF and BCAF), a trimming strategy is used. In other words, it is removed from the set

of individual forecasts (used to build the AF or BCAF combined forecasts) those individual

predictions of the Brent real oil price that are above US$ 400 or below US$ -30 (i.e., assumed

here as outliers). Such approach can be used as long as the number of models diverges

(N →∞), because even with trimming, the number of models used to compute the average
of individual forecasts grows at the same rate, provided that it is proportional to N .

Model 16 (Brent futures): Contracts of future oil price, daily traded in global financial

markets, naturally contain market expectations about the future prices of oil. Here, the Brent

future prices from ICE Brent Crude Futures are considered, with maturities ranging from 1

up to 12, 24, 36, 48, 60 and 72 months.22 This way, each contract maturity is considered

as the respective forecast horizon,23 and the Brent real oil price forecast as the contract

nominal price of the Brent future (that is, assuming a neglible inflation along the considered

horizon).24

Models 17 and 18 (Schwartz-Smith): Schwartz and Smith (2000) proposed a two-factor

commodity price model, assuming the equilibrium price level, in continuous time, evolves

according to a geometric Brownian motion with drift (equivalent to a random walk with drift

in discrete time). This way, short-run deviations between the spot and equilibrium prices

exhibit mean-reversion, following an Ornstein-Uhlenbeck process. From an econometrics

point of view, the authors propose a decomposition of the oil price into two components:

trend (long run, or fundamental price) and cycle (short-run variations around the trend).

Although these two factors are not directly observable, they can be estimated by using a

Kalman filter approach with spot and future prices.

Intuitively, price movements of future contracts at long maturities provide information

about the equilibrium price level, whereas the differences between prices of short and long

horizons give information about the short-run oil price variations. The authors argue that,

although this model does not explicitly consider changes in convenience yields over time,

this short-term/long-term model is equivalent to the stochastic convenience yield model de-

veloped in Gibson and Schwartz (1990); see also Cortazar and Naranjo (2006) and Cor-

tazar et al. (2015) for further developments. Here, models 17 and 18 are, respectively, the

mean and median of the Brent real oil price density forecast, based on a grid of quantiles

τ = [0, 01; 0, 02; ...; 0, 99], constructed with a numerical simulation of the Schwartz-Smith

two-factor model.25

22We consider the contracts traded on the last workday of each month or quarter. For further details on
Brent oil futures, see: https://www.theice.com/products/219
23A linear interpolation of contract future prices provides the oil price forecasts for those horizons in which

there are no available maturities.
24Such assumption is justified by the order of magnitude of the variance of the monthly log difference of

the Brent oil price, ln(Yt) − ln(Yt−1), which is roughly 100 times bigger than the variance of the monthly
log difference of the U.S. producer price index (PPI all commodities), considering the sample period from
January 1991 to June 2020.
25Technical Appendix 2 provides more details on the Schwartz-Smith factor model.
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Models 19 and 20 (Mean and median, all models): The forecast combination literature

(e.g., Palm and Zellner, 1992; and Timmermann, 2006) suggests that combining different

models and/or forecasting methods, based on different information sets, might improve the

out-of-sample forecast accuracy over individual models/methods. This exercise considers the

simple average and the median of all models, respectively, on models 19-20.

Models 21 and 22 (Mean and median, selected models): Here, the mean and median

of a subset of models is computed, only considering one method of each class of models.

Thus, the following models are chosen (ad hoc): (1) random walk ; (5) factor model 1; (9)

adaptive LASSO (adalasso); (12) quantile regression forest; (14) AF (average forecast); (16)

Brent futures; and (18) Schwartz-Smith median.

2.2 Density Forecast

Following the literature of commodity pricing models (e.g., Schwartz and Smith, 2000), it is

assumed that the logarithm of the real oil price follows a normally distributed process.26 In

other words, the real oil price Yt is assumed to follow a log-normal distribution. One of the

key features of the log-normal distribution is that its support lies on the positive real line R+,
that is Yt ∈ (0,+∞). This feature is crucial to guarantee non-negative oil price forecasts.

Let yt = ln(Yt) ∼ N(µ, σ2). Then, Yt ∼ log-normal(µ, σ2). The main descriptive statistics of
the log-normal distribution are the following:

mean(Yt) = exp(µ+
σ2

2
), (15)

median(Yt) = exp(µ), (16)

mode(Yt) = exp(µ− σ2), (17)

variance(Yt) = exp(2µ+ σ2)
(
exp(σ2)− 1

)
. (18)

The probability density function (pdf) of Yt and its quantiles are given as follows:

pdf(Yt) =
1

Ytσ
√

2π
exp

(
−(ln(Yt)− µ)2

2σ2

)
, (19)

quantile(Yt, τ) = exp(µ+
√

2σ2 erf−1 (2τ − 1)), (20)

where erf (.) is the error function, defined as: erf (z) = 2√
π

∫ z
0
e−t

2
dt.

Using the forecasting methods/models described in the previous sections, once can build

direct point forecasts of the h−period log variation of the real oil price at period t+ h, that

is, forecasts of ∆h ln(Yt+h) ≡ ln(Yt+h) − ln(Yt) = (yt+h − yt), using the information set Ft
available at period t.

In order to produce density forecasts of Yt+h, one assumes here that the conditional

distribution of ∆h ln(Yt+h) is Gaussian, with conditional mean µt+h|t and conditional vari-

26A positive random variable Y is log-normally distributed if the logarithm of Y is normally distributed.
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ance σ2t+h|t, that is
(
∆h ln(Yt+h) | Ft

)
∼ N(µt+h|t, σ

2
t+h|t) or, equivalently, (ln(Yt+h) | Ft) ∼

N(µt+h|t + yt, σ
2
t+h|t), since yt = ln(Yt) ∈ Ft.

Therefore, the conditional distribution of the real oil price Yt+h is log-normal, with mean

and variance given as follows:

E (Yt+h | Ft) = exp(µt+h|t + yt +
σ2t+h|t

2
), (21)

V ar (Yt+h | Ft) = exp(2
(
µt+h|t + yt

)
+ σ2t+h|t)

(
exp(σ2t+h|t)− 1

)
. (22)

Similarly, the conditional quantile of Yt+h, evaluated at quantile level τ i ∈ (0, 1), is

computed as follows:

Qτ i(Yt+h | Ft) = exp(µt+h|t + yt +
√

2σ2t+h|t erf−1 (2τ i − 1)). (23)

Now, let fmt+h|t be the model m estimate of the conditional mean of ∆h ln(Yt+h). Thus,

fmt+h|t = µ̂t+h|t, where µt+h|t = E
(
∆h ln(Yt+h) | Ft

)
. Also, let σ̂2t+h|t be the model m estimate

of the conditional variance of ∆h ln(Yt+h), that is σ2t+h|t, computed using the Newey and West

(1987)’s HAC covariance matrix estimator, from a regression of the forecast error of fmt+h|t on

the intercept.27

Provided that [µ̂t+h|t, σ̂
2
t+h|t]′ are consistent estimates of [µt+h|t, σ

2
t+h|t]′, one can obtain

consistent estimates of the conditional quantiles of Yt+h, along a grid of quantile levels τ ∈
[τ 1, ..., τn]′, using equation (23). In particular, at the median (τ i = 0.5), it follows that

Q̂τ i=0.5(Yt+h | Ft) = exp(fmt+h|t + yt), since erf−1 (0) = 0.

Finally, the multi-step ahead density forecasts of Yt+h are summarized by using a fan

chart graph, based on the estimated conditional quantiles over the horizons h = 1, ..., H

and the considered grid of quantile levels. In order to obtain a smooth term-structure of

conditional variances (i.e., across the considered horizons), one can also smooth out the

estimated conditional variances using a Spline function.

2.2.1 Density Forecast Evaluation

The density forecasts are evaluated using three approaches: (i) coverage rate, (ii) log predic-

tive density score, and (iii) interval score, next described.

Coverage Rate: According to Clark (2011, p.336): "...a natural starting point for forecast

density evaluation is interval forecasts - that is, coverage rates." In this sense, a necessary

(but not suffi cient) condition for a "good" density model is to produce a conditional density

with an adequate coverage rate.28 The objective is to verify to which extent a given density

27The forecast error
(
fmt+h|t −∆h ln(Yt+h)

)
is computed here along a pseudo out-of-sample forecasting

exercise, that is, considering t = T1, ..., T2 and a given h.
28Coverage rates reveal the difference between the unconditional probability that realizations fall into the

forecasted intervals and the respective nominal coverage. However, the main drawback is that coverage rates
ignore time dependence and cluster behavior.
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forecast departures from a selected nominal coverage rate.

In practice, one needs to compute the frequency of observations of Yt+h that fall inside a

selected forecast interval. In this paper, the 90% interval band is adopted, which leads to a

forecast interval based on the conditional quantiles Q̂τ ,m(Yt+h | Ft,m), estimated from model

m, horizon h and quantile levels τ = 0.05 and τ = 0.95. The empirical coverage is, thus,

defined as follows:

Cm,h =
1

(T2 − T1 + 1)

T2∑
t+h=T1

1{Q̂τ,m(Yt+h|Ft,m)≤Yt+h≤Q̂τ,m(Yt+h|Ft,m)}. (24)

The lower the distance between the nominal coverage (τ − τ) and the empirical coverage

Cm,h, the better is the density forecast. In the case of Cm,h >> (τ − τ), the forecasted

density is too wide, compared to data, whereas for Cm,h << (τ − τ) the density forecast is

too narrow.

Log Predictive Density Score (LPDS): Another useful indicator to analyze density

forecasts is the log predictive density score, or simply logarithmic score (e.g., Gneiting and

Raftery, 2007, eq.54). This approach allows one to rank the investigated modelsm = 1, ...,M ,

for each forecast horizon h = 1, ..., H, according to their LPDS, as follows:

LPDSm,h =
1

(T2 − T1 + 1)

T2∑
t+h=T1

ln
(

̂dmt+h|t (Yt+h)
)

(25)

where ̂dmt+h|t (Yt+h) is the conditional density of Yt+h, estimated from model m and horizon h,

based on the information set available at period t. The referred density is evaluated at the

observed value Yt+h and (log) averaged along the pseudo out-of-sample observations T1, ..., T2.

In our case, recall that Yt follows a log-normal distribution, with conditional density given by

equation (19). A higher score implies a better model (see Adolfson et al., 2005). According

to Gneiting and Raftery (2007, p.374): "The logarithmic score is strictly proper but involves

a harsh penalty for low probability events and thus is highly sensitive to extreme cases."

Interval Score: Scoring rules for intervals provide another way of checking how well-

calibrated are density forecasts in respect to observed data. Given a central prediction

interval forecast [L,U ], with associated probability (1−α)× 100%, where L and U represent

the estimated conditional quantiles from model m, horizon h, quantile levels τ = α
2
and

τ =
(
1− α

2

)
, respectively, and Yt+h > 0 is a realization of the variable of interest, one can

define the following interval scoring rule, proposed by Gneiting and Raftery (2007, eqs. 43,

58):

Sm,h =
1

(T2 − T1 + 1)

T2∑
t+h=T1

[
(U − L) +

2

α
(L− Yt+h)1{Yt+h<L} +

2

α
(Yt+h − U)1{Yt+h>U}

]
,

(26)
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where L = Q̂τ ,m(Yt+h | Ft,m) and U = Q̂τ ,m(Yt+h | Ft,m). This is a proper scoring rule for

intervals (Gneiting, 2011), constructed from two quantile losses at the [τ ; τ ] quantile levels.

Since this paper considers the 90% interval band, one should set α = 0.10, τ = 0.05 and

τ = 0.95. According to Gneiting and Raftery (2007, p.374): "This scoring rule assesses both

calibration and sharpness, by rewarding narrow prediction intervals and penalizing intervals

missed by the observation." Finally, note that this rule is negatively oriented, acting as a loss

function. Thus, a lower score implies a better interval forecast.

3 Empirical Exercise

3.1 Data

Although the nominal oil price receives great attention in the press, the relevant variable in

terms of economic modeling is the real price of oil. The focus of the analysis is on the Brent

oil price extracted from the International Financial Statistics (IFS) of the IMF. The nominal

price data were deflated using the U.S. producer price index (PPI), obtained from the FRED

database of the St. Louis FED.

Figure 2 shows that real oil prices over the past 50 years reacted to a variety of geopolitical

and economic events.29 To explain (and forecast) the real oil price dynamics, a quite diverse

set of macroeconomic and financial variables drawn from a number of categories is used here.

They came from a pool of n = 315 contemporaneous variables that are present in different

databases: FRED-MD (McCracken and Ng, 2015), EPU (Economic Policy Uncertainty in-

dexes of Baker, Bloom and Davis, 2015), GPR (Geopolitical Risk indexes of Caldara and

Iacoviello, 2018) and Thomson Reuters Datastream, among others. The Technical Appendix

5 presents the full list of variables used as potential predictors for the real oil prices.

Figure 2 - Real oil prices

Source: U.S. Energy Information Administration (2020) report, available at:

https://www.eia.gov/finance/markets/crudeoil/reports_presentations/crude.pdf

29The real oil prices shown in Figure 2 are computed using the West Texas Intermediate (WTI) crude oil
price, which is strongly correlated with the Brent oil price.
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The relationship between the oil price dynamics and relevant macroeconomic variables is

widely documented in the literature; see Hamilton and Herrera (2004), Kilian and Vigfusson

(2013, 2017), Aastveit et al. (2015), Baumeister and Kilian (2012, 2016), Mohaddes and

Pesaran (2016), Bjørnland, Larsen and Maih (2018), Bjørnland and Zhulanova (2018), among

many others. The use of macro variables is motivated, for instance, by empirical evidence

suggesting that measures of global real activity are useful for out-of-sample forecasting the

real price of oil; see Alquist et al. (2013).30 In this sense, the use of industrial production

indexes from several countries, as well as U.S. industry-level and labor market indicators,

within a high-dimensional context can be a promising route.

On the other hand, despite the fact that neither short-term interest rates nor trade-

weighted exchange rates seem to have predictive power in the literature for the nominal

price of oil, several financial market indicators are included in the set of predictors31 (e.g.,

Baltic Exchange Dry32 and indicators based on stock markets, money and credit, interest and

exchange rates), relying on the usage of machine learning nonlinear approaches33 to identify

statistical relationships not captured by standard linear models.

Finally, several predictors not usually considered by economists are also included in the

database, in order to potentially improve forecast accuracy, such as data from newspaper

coverage used to build the economic policy uncertainty (EPU) and geopolitical risk (GPR)

indexes; which nowadays are available freely for many countries.34

Our sample period covers roughly 30 years of data, ranging from January 1991 to June

2020 (T = 354 monthly observations). All variables are automatically tested for stationarity

using the Kwiatkowski-Phillips-Schmidt-Shin (KPSS) test and first-differentiated when neces-

sary.35 The 315 variables are lagged one period36 and considered in levels and first-differenced

(or first- and second-differenced, in the case of I(1) series), forming a final large data base

containing 630 series. This way, dim (x̃′t) = 630 variables used as potential predictors for the

oil price variation in equation (1). All models are recursively estimated, considering both

30According to the authors, global real activity and changes in crude oil inventories can be viewed as
leading indicators of the real price of oil. In addition, models based on the price index changes for non-oil
industrial raw materials might capture the effect of persistent changes in the global business cycle on the
(real) oil price, since shifts in the demand for industrial raw materials are also related to shifts in the demand
for crude oil.
31See Miller and Ratti (2009).
32As proxy of shipping freight rates. According to Alquist et al. (2013), the idea of using fluctuations in

shipping freight rates as indicators of changes in the global real activity is far from new and dates back to
Isserlis (1938).
33Hamilton (2003) suggested a nonlinear relationship between oil prices and U.S. real GDP.
34The idea is to employ uncertainty proxies to capture oil shocks related to a speculative (or forward-

looking) element in the real price of oil (see Kilian and Murphy, 2014).
35In factor models 1 and 2, all covariates are also standardized (i.e., considered with zero mean and unit

variance), since such approach provided better results in terms of oil price forecast accuracy, compared to
the use of covariates with their original mean and variance.
36Hamilton and Herrera (2004) point out that it is crucial to consider a rich lag structure in studying

the dynamic relationship between the price of oil and the macro aggregates. However, previous empirical
exercises (not reported) indicate that using more lags (2 or 3 lags) in our exercise generates oil price forecasts
with higher RMSEs, especially at longer horizons, compared to the one-lag approach.
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monthly and quarterly frequencies,37 by using a growing window38 (increasing sample size),

as one incorporates every new time-series observation, one at a time.

In this context, each model is initially estimated using the first T1 observations and the

out-of-sample point forecasts are generated. One, then, adds an additional observation at the

end of the training set, re-estimate the models and generate again out-of-sample forecasts.

This process is repeated along the remaining data (test set). See Morales-Arias and Moura

(2013) for a detailed discussion about recursive versus rolling window.

This paper uses data over the period from January 1991 to December 2005 (T1 = 180

monthly observations) for model estimation (training set) and reserve the remaining data

(test set) for the forecast comparison using P = T −T1 = 174 observations, for h = 1. In this

case, the evaluation period ranges from January 2006 to June 2020 (174 monthly forecasts).

For h = 24 months, the evaluation period varies from December 2007 to June 2020 (151

forecasts). Thus, the first part of the sample is used to estimate the econometric models and

train the machine learning approaches (selection of the tuning parameters and estimation of

the β parameters), whereas the remaining observations are used for out-of-sample forecast

comparison for horizons h = 1, ..., 24 months or h = 1, ..., 20 quarters.39

The empirical exercise is implemented using the R software (version 4.0.2, 64-bit). The

ridge regression, LASSO and elastic net models are estimated using the R package glmnet

(version 2.0-16), which fits a generalized linear model via penalized maximum likelihood. The

adalasso model is implemented using the R package HDeconometrics (version of January 26,

2018), available at: https://github.com/gabrielrvsc/HDeconometrics. The same R package

is used to compute the BIC information criterion. In turn, in order to implement the random

forest and the quantile regression forest methods40 the R package ranger (version 0.11.1) is

employed, whereas the XGBoost approach is based on the R package xgboost (version 1.0.0.2).

37At quarterly frequency, all covariates are aggregated using the quarterly average of monthly series, ex-
cepting the Brent oil prices from future contracts, which are considered at the last workday of each quarter.
38We adopt such an estimation scheme due to the greater effi ciency, in general, of recursive regressions

compared to rolling-window estimations. However, the latter approach could be justified under a framework
with the possibility of structural changes.
39To avoid extra (and unnecessary) complications in the implementation of the forecasting exercise, we

refrain to do a real-time analysis. Thus, a note of caution regarding the interpretation of results applies,
mainly due to two concerns: (i) not all useful predictors may be available to the forecaster in real time;
and (ii) several predictors are subject to data revisions (e.g., the CPI data become available only with a
one-month delay). See Baumeister and Kilian (2012) for real-time forecasts of the real price of oil.
40We used 2, 000 trees in both the random forest and the quantile regression forest. In the latter method,

we adopted the grid of quantile levels: τ ∈ (0.05, 0.10, 0.15, ..., 0.95) .

25



3.2 Point Forecast Results

Figure 3 presents the out-of-sample forecasts (i.e., along the pseudo out-of-sample forecasting

exercise) of selected models, in which each color represents a given term-structure of forecasts,

formed at a given period t, for the following periods t+ h, for h = 1, ..., 24 months. Figure 4

shows the log variation of the real price of oil, considering h = 24 months, plotted together

with the respective h-period forecasts from the 22 models/methods listed on Table 1. See

the Technical Appendixes 8 and 9 for several other results from the monthly and quarterly

frequencies, respectively.

Figure 3 - Pseudo out-of-sample forecasts (h = 1, ..., 24 months, monthly freq.)

Figure 4 - Oil price variation and out-of-sample forecasts (h = 24 months, monthly freq.)

26



The individual forecast errors, for each horizon, are used to computed the Root Mean

Squared Error (RMSE) from the out-of-sample evaluation period. In both model estimation

and forecast evaluation, a real price of the Brent oil is computed at constant prices of the

last sample observation used for model estimation (which, in turn, is time-varying along the

pseudo out-of-sample forecasting exercise). The Clark and West (2007) approach41 is used

to statistically test the null hypothesis that a given forecasting method is as accurate as the

random walk (benchmark), a usual forecast to be beaten in the oil price forecast literature,

against the alternative that the competing method is more accurate than the no-change

forecast.

Besides the RMSE, another way to present the results is to compute the R2 out-of-sample

statistics (or simply R2oos), by comparing different forecast strategies with the benchmark

model, which is an important benchmark to be beaten in the literature on oil price forecasting.

For the Brent oil real price Yt+h, the R2oos-statistic is defined as follows (Rapach et al., 2010):

R2oos = 100×

1−

T∑
t=T1+1

(
Yt+h − f̂ it+h|t

)2
T∑

t=T1+1

(
Yt+h − f̂BMK

t+h|t

)2
 , (27)

where f̂ it+h|t is the forecast of Yt+h, from method i, using information up to period t, and

f̂BMK
t+h|t is the respective benchmark forecast. Positive (negative) values for the R

2oos statistic

means that the forecast f̂ it+h|t beats (is beaten by) f̂
BMK
t+h|t .

Table 2 presents the results of RMSE and R2oos for the best model, in each horizon, in

both frequencies; see the Technical Appendix 6 for the full results. The yellow cells reveal

that the Adalasso, Elastic Net and BCAF are the best predictors with horizon up to six

months, considering the exercise conducted in monthly frequency. In particular, note the

good performance of the machine learning methods (e.g., Elastic Net, LASSO and Adalasso)

in the short/medium term, providing forecasts statistically superior when compared to those

from the random walk without drift in horizons from 1 to 3 months. For longer horizons,

still considering the monthly frequency, the forecast combination techniques AF-BCAF gain

importance, together with the Brent future prices and, to a lesser extent, the Schwartz-Smith

forecasts.

In quarterly frequency, the best forecasts are those produced by the forecast combinations

AF and BCAF, the Brent future prices, and the Schwartz-Smith model. Table 2 also reveals

that, in both frequencies, the forecast accuracy gains in respect to the benchmark approach

are statistically significant in several cases and reach two-digit figures, in percentage terms.

Considering the random walk with no drift as benchmark, the R2oos statistics for the best

model, in each horizon, vary between 14% and 40% in monthly frequency, and between 9%

41The variances entering the test statistics use the Newey and West (1987) HAC covariance estimator.

27



and 49% in quarterly frequency; expressive results compared to the previous literature.42

Table 2 - Root Mean Squared Error (RMSE)

monthly frequency quarterly frequency

h = 1 h = 3 h = 6 h = 9 h = 12 h = 24
(1) RW 6.574 13.723 19.432 22.184 23.995 30.485
(2) RW­drift 6.618 13.972 20.146 23.394 25.689 35.333
(3) RW­drift5 6.696 14.474 21.423 25.240 27.716 38.260
(4) ARIMA 6.550 13.764 19.466 22.204 23.969 30.466
(5) Factor model1 6.006*** 13.439** 19.119 21.540 22.800* 31.038
(6) Factor model2 5.625** 13.788 19.124 21.643 23.794 33.357
(7) Elastic net 5.192*** 12.419* 18.035 22.400 26.486 40.171
(8) LASSO 5.221*** 12.447* 17.929 22.455 26.535 40.037
(9) Adalasso 5.174*** 12.454* 18.184 23.751 23.958 37.235
(10) Ridge regression 5.754*** 12.935** 17.970 21.024 23.489 33.386
(11) Random forest 5.710*** 13.258** 19.117 21.991 24.385 35.487
(12) Quant.reg.forest 5.742*** 13.375** 19.078 21.948 24.278 35.373
(13) XGBoost 5.741*** 13.593*** 19.085** 21.899 24.394 35.174
(14) AF 9.489 13.897 17.814 19.828 20.946* 23.605*
(15) BCAF 9.376 13.723 17.665 19.800 21.060** 24.678**
(16) Brent futures 5.210*** 13.402*** 19.229** 21.155*** 22.124*** 25.167***
(17) Schwartz­Smith mean 5.258*** 13.306*** 19.235* 21.570** 22.861*** 27.819***
(18) Schwartz­Smith median 5.232*** 13.166*** 18.888***21.052*** 22.151*** 26.171***
(19) Mean all 5.492*** 12.803** 17.914 20.238 22.023* 30.223
(20) Median all 5.404*** 12.920** 18.566 20.936* 22.589* 31.512
(21) Mean selection 5.488*** 12.711** 17.768 19.852* 21.165** 27.865**
(22) Median selection 5.302*** 12.807** 18.484* 20.735** 22.023** 28.066***
number of observations 174 172 169 166 163 151
best model 9 7 15 15 14 14
R2 oos (%) 38 18 17 20 23 40

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20
(1) RW 11.010 22.959 29.655 32.539 36.055 38.086
(2) RW­drift 11.225 24.664 34.410 42.767 53.545 66.297
(3) RW­drift5 11.648 26.865 37.347 46.878 62.337 86.501
(4) ARIMA 11.360 23.495 31.242 35.526 39.306 42.133
(5) Factor model1 10.562** 21.723 33.511 35.046 40.552 44.298
(6) Factor model2 10.594* 25.321 37.452 42.719 56.459 75.502
(7) Elastic net 10.345*** 25.299 30.989 46.638 58.948 82.425
(8) LASSO 11.734 25.703 30.915 46.553 61.238 84.899
(9) Adalasso 11.142 24.642 32.231 59.314 51.161 79.353
(10) Ridge regression 10.829** 24.789 31.916 39.382 50.646 66.150
(11) Random forest 10.278** 23.652 33.200 40.576 49.966 55.411
(12) Quant.reg.forest 10.379** 23.622 33.414 40.837 49.919 55.193
(13) XGBoost 10.383*** 23.411 31.895 40.643 49.929 54.485
(14) AF 11.568 21.020* 25.437* 25.902** 28.133** 30.603**
(15) BCAF 11.392 21.746* 26.511** 26.800*** 30.671*** 37.408
(16) Brent futures 10.130*** 21.603***24.663** 23.615*** 26.166** 30.452
(17) Schwartz­Smith mean 9.982*** 22.267* 27.315** 29.743** 34.711* 39.978
(18) Schwartz­Smith median 9.924*** 21.658***25.754** 26.500*** 29.834** 33.012**
(19) Mean all 10.025** 22.395* 28.989 34.079 40.875 49.150
(20) Median all 10.083*** 22.767 29.201 36.080 41.934 50.491
(21) Mean selection 9.892*** 21.310** 27.992** 30.643* 35.299 38.829
(22) Median selection 9.969*** 21.867***28.208** 28.557*** 33.973** 35.920*
number of observations 58 55 51 47 43 39
best model 21 14 16 16 16 16
R2 oos (%) 19 16 30 47 47 36

Notes: Yellow cells indicate the Top5 best models (lower RMSEs) in each horizon. ***, **, * indicate rejection at 1%, 5%

and 10% levels, respectively, using the Clark and West (2007) test. The benchmark is model 1 (random walk without drift).

Forecast combinations 19 and 20 are based on models 1-18, whereas combinations 21 and 22

are based on selected models from each class (models 1, 5, 9, 12, 14, 16 and 18).

Next, the classical bias-variance trade-off is investigated by decomposing the MSE of

each forecasting method into two parts: the forecast variance and the squared forecast bias;

see Rapach et al. (2010), Elliott et al. (2013) and Lima and Meng (2017). To do so, one

calculates the MSE of any forecast f̂t+h|t as 1
P

T∑
t=T1+1

(
Yt+h − f̂t+h|t

)2
, and the respective

unconditional forecast variance as 1
P

T∑
t=T1+1

(
f̂t+h|t − 1

P

T∑
t=T1+1

f̂t+h|t

)2
, where P is the total

number of out-of-sample forecasts. The squared forecast bias is computed as the difference

between the MSE and the forecast variance.

Figure 5 explores the bias-variance trade-off, in out-of-sample forecasting, by presenting

the relative forecast variance and squared forecast bias of all forecasting methods. The

relative forecast variance (squared bias) is calculated as the difference between the forecast

variance (squared bias) of the i-th method and the forecast variance (squared bias) of the

42According to Alquist et al. (2013), the forecast of real oil price variation can be improved in horizons
up to three months, but (in general) cannot be improved for horizons beyond six months. More recently,
Duarte et al. (2019) report statistically significant forecast accuracy gains, in respect to the random walk,
of optimal forecast combinations (based on a large database of macro and financial variables), exhibiting a
R2oos statistic that reaches 14% for h = 6 months.

28



benchmark approach. This way, the relative forecast variance (and squared bias) for the

benchmark is, by construction, equal to zero. Moreover, each point on the red dotted line

represents a forecast with the same MSE as the benchmark (red dot). Blue dots to the right

and above the red line are forecasts outperformed by the random walk, whereas dots to the

left and below it represent forecasts that outperform the benchmark.

Figure 5 - Relative MSE decomposition

(h = 12 and 24 months, monthly freq.)

Notes: The y-axis and x-axis represent relative forecast variance and squared forecast bias, computed as the difference

between the forecast variance (squared bias) of the considered method and the forecast variance (squared bias) of the

benchmark (RW). Each point on the red dotted line represents a forecast with the same MSE as the RW (points to

the right are forecasts outperformed by the RW and points to the left represent forecasts that outperform the RW).

Note on Figure 5 that, for h = 12 months, great part of forecasts beat the random walk.

Such performance can be attributed to the ability of those models in substantially reducing

the relative forecast variance, while keeping the forecast bias under control. In this sense,

for h = 12 months, the following models are worth mentioning: factor model 1, AF-BCAF,

Brent futures and Schwartz-Smith, besides the mean and median of all (or selected) models.

In the same way, for h = 24 months, the best models include forecast combination devices

or approaches based on Brent futures prices. The good performance of machine learning

methods (such as Adalasso, Elastic Net and Random Forest) only applies to short horizons
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(below six months), in both frequencies; see the Technical Appendixes 8 and 9 for further

details.

The previous analysis focused on the MSE decomposition enables a discussion on relative

average forecast accuracy. However, such measures alone do not convey any information

on how the performance of the competing methods evolves over time. To tackle this issue,

Figure 6 shows the Cumulative Squared Prediction Errors (CSPE) of each forecasting method

compared to the benchmark, built along the pseudo out-of-sample exercise for h = 24months;

see Rapach et al. (2010).

The cumulative performance-analysis depicted in Figure 6 reveals whether a given method

consistently outperforms the benchmark forecast. For example, the relative good performance

of the AF can be attributed to the consistent forecast accuracy gain over the random walk, in

particular, obtained between 2014 and 2016 (when occurs a smooth decline of the blue line).

On the other hand, for the Elastic Net and LASSO, there is a relevant forecast accuracy

loss concentrated in a few months at the beginning of 2011 (when occurs a sharp increase

of the blue line). In turn, also note that the mean and median of selected models act here

as a hedge against high fluctuations on the relative forecast accuracy curve, exhibiting small

but consistent gains from 2010 until June 2020 (i.e., smooth decline of the blue line, with

no significant fluctuations). The Technical Appendixes 8 and 9 present the CSPE curves for

other horizons in both frequencies.

Another interesting analysis is the identification of the most important variables chosen by

the machine learning methods to predict the real oil price variation. A first way to investigate

such question is to observe the evolution of the number of variables selected (or not) over

time, along the pseudo out-of-sample exercise. Figure 7 reveals, among the 630 potential

predictors for the Brent real price, which ones were indeed selected (and when), according to

the Adalasso and Elastic Net methods, for h = 1 or 6 months, in monthly frequency. Note

that the overall number of variables selected (blue or red dots), in general, increase with the

forecast horizon.

One possible explanation is that the dependent variable (h-period variation of the log of

Brent oil real price) tends to be more persistent in longer horizons. In such cases, it can be

better explained by the set of covariates, compared to shorter horizons, where the dynamics

of the dependent variable approach a white noise pattern.

30



Figure 6 - Cumulative Square Prediction Error (CSPE, divided by 10, 000)

(h = 24 months, monthly frequency)

Notes: A positively sloped curve in each panel indicates that the conditional model is outperformed by the benchmark,

while the opposite holds for a downward sloping curve. Moreover, if the curve is positive (negative) at the end of

the period, then the competing method has a higher (lower) MSE than the benchmark over the evaluation period.
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Figure 7 - Variable Selection (h = 1, 6 months, monthly frequency)

Other interesting analysis that can be done using Figure 7 is checking the existence of

structural breaks and the respective change in the set of variables selected as the main drivers

of oil price dynamics. In particular, note that, after the global financial crisis in 2007/2008,

some variables seem to have lost importance to explain the Brent price variations, whereas

other variables started to be selected in a consistent way by the investigated methods. The

Technical Appendixes 8 and 9 show similar plots for other horizons in both frequencies.

Our next step is to qualitatively investigate the variable selection. In this sense, measures

of variable importance in machine learning methods generally attribute scores to predictors,

reflecting the relative importance of each covariate in the overall fit of the model to data; see

Hastie et al. (2009, chapter 15). Although this paper does not attempt here to economically

(or structurally) interpret the driving-forces behind the machine learning forecasts, further

inspecting these models to better understand how they are making forecasts (open the black-

box) may reveal new statistical relationships in the data, previously overlooked by standard

linear models.

Regarding the LASSO family of models, the degree of importance of a given variable

xi,t when forecasting (yt+h − yt) can be computed by
∣∣∣β̂i∣∣∣ ∗ σ̂xi , where β̂i is the estimated

coeffi cient associated with variable xi,t, and σ̂xi is the sample standard deviation of xi,t. In

the case of standardized variables (zero mean and unit variance), the variable importance is

simply |βi|.43

In respect to random forest and quantile regression forest, variable importance, in general,

is computed by using two main methods:44 (i) “permutation”by Altmann et al. (2010); and

43See https://stats.stackexchange.com/questions/14853/variable-importance-from-glmnet
44See also Janitza et al. (2018), that proposes for both methods a hypothesis test of no association between

the investigated predictor and the dependent variable.
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(ii) “impurity-corrected”by Nembrini et al. (2018); see the Technical Appendix 4 for more

details on variable Importance in random forest. Figure 8 shows the most important variables

in real oil price forecasting, for h = 6 and 24 months, based on the full sample, according to

models: adalasso, random forest and xgboost ; see the Technical Appendixes 8 and 9 for more

results.

Figure 8 - Variable importance (h = 6 and 24 months, monthly frequency)

Note that the set of most important variables changes according to the investigated hori-

zon. Overall, the adalasso is the most parsimonious method, in terms of the number of

selected variables, compared to the other methods shown in Figure 8. However, despite the

methodological differences, it is worth highlighting the existence of a common set of variables

selected across the distinct methods.

For instance, considering h = 6 months, the most important variable according to the

adalasso, random forest and xgboost is the same variable: D_CLI_Major5_Asia, that is, the

first difference of the leading indicator of economic activity (called CLI), computed by the

OECD, for the five biggest countries in Asia. For h = 24 months, again one finds a common

set of most important variables, across the three different methods presented in Figure 8,
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related to leading indicators of economic activity (CLI_Norway and CLI_France), besides

variables associated with economic uncertainty policy in developed countries (EPU_Japan),

or even related to the financial asset purchase program implemented by the Federal Reserve

in the U.S., also known as Quantitative Easing (QE_FED).

The following variables are also worth mentioning as relevant in oil price forecasting

(despite some disagreement among the three methods presented in Figure 8): industrial

production of durable goods in the U.S. (IPN3311A2RS, IPG3311A2S), indicators related

to the labour market in the U.S. (UNRATE, CLAIMSx) or to the U.S. financial markets (VIX,

VXOCLSx, S&P_PE_ratio). Such results are in line with previous empirical evidence, for

instance, suggesting that changes in the nominal price of industrial raw materials, other than

crude oil, can be used to improve forecast-accuracy of the oil price in the short run (Barsky

and Kilian, 2002).

Variable importance can alternatively be presented by using word clouds. Figure 9

presents, for illustrative purpose, the most important variables according to the xgboost

method, for h = 24 months. The variables with the largest font size are the most im-

portant ones, whereas variables with similar importance are depicted with the same size and

color; see the Technical Appendixes 8 and 9 for further results.

Figure 9 - Word cloud, xgboost (h = 24 months, monthly frequency)

3.3 Density Forecast Results

Density forecasts provide much more information about a given variable of interest than a

single point forecast such as the expected value or the conditional mean. Indeed, beyond

the location (or central tendency of the conditional distribution), the density forecast also

provides information about the scale of such distribution (for instance, related to the second

moment of the target variable), besides informing about the existence (or not) of asymmetry,

thick tails, among other empirical features of the variable of interest.

This way, density forecasts should be designed to fit the future data well, not only in terms

of location but also in respect to scale. In other words, models that exhibit a poor forecast

performance (e.g., in terms of RMSE) will likely produce poor density forecasts too. However,

models with superior forecast accuracy (e.g., lower RMSEs) not necessarily generate good

density forecasts, since an adequate forecast of the conditional quantiles of the distribution is
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also crucial. Tables 3, 4 and 5 show a summary of results of the density forecast evaluation,

using the three metrics discussed in section 2.2.1; see the Technical Appendix 7 for the full

results.

Table 3 presents the empirical coverage results. Ideally, the density forecasts should ex-

hibit an empirical coverage as close as possible to the chosen nominal coverage of 90%. Indeed,

in many cases, one finds in Table 3 several figures equal or very close to 90% (green cells).

Also note there are many more figures close to the nominal coverage in short horizons than

in longer ones. It is worth mentioning the good performance of the density forecasts from

the random walk, Brent futures, AF (longer horizons) and the Schwartz-Smith, in monthly

frequency, besides the excellent performance of the Schwartz-Smith model in quarterly fre-

quency.

Table 3 - Empirical coverage rate

monthly frequency quarterly frequency

Notes: The nominal coverage rate is 90%. The closer the empirical coverage rate is to 90%

(green cells) the better is the fit of the density forecast in respect to observed data.

On the other hand, the red or orange cells indicate a poor fit of the density forecast in

respect to the observed data. In several cases, such result is due to a poor point forecast (see

the respective RMSEs in Table 2), providing an inadequate location of the forecasted density

and, thus, an empirical coverage far from the nominal one. In this sense, recall that empirical

coverages much below the nominal coverage might indicate (besides a bad location) that the

variance of the density forecast, for instance, is low compared to the unconditional empirical

distribution of the data.

Tables 4 and 5 present the results of the density forecast evaluation in terms of interval

score and log predictive density score (LPDS). Overall, these results corroborate the ones

previously shown in Table 3. In particular, note that the set of best density forecasts, con-

sidering the interval score, includes the factor model 1, ridge regression and Schwartz-Smith

approach, in monthly frequency, and the Brent futures and Schwartz-Smith, in quarterly

frequency; see the Technical Appendix 7 for the full results, in both frequencies.
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Table 4 - Interval score

monthly frequency quarterly frequency

Note: A lower score implies a better interval forecast. Yellow cells indicate the Top5 best models in each horizon.

Table 5 - Log predictive density score (LPDS)

monthly frequency quarterly frequency

Note: A higher score implies a better density forecast. Yellow cells indicate the Top5 best models in each horizon.

In turn, Figure 10 shows the truly out-of-sample density forecasts of the real oil prices (at

constant prices of June 2020) built at monthly frequency. To do so, the so-called fan charts

are built to illustrate the evolution of oil price point forecasts, along the term-structure of

horizons, plotted together with the uncertainty (blue shades) associated with each forecasting

method and considered horizon. Figure 10 also presents the probability density functions

(PDFs) for selected horizons. Note the asymmetry of the estimated densities, consequence

of the log-normality assumption discussed in section 2.2.
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Figure 10 - Fan charts and probability density functions (PDFs)

Finally, point forecasts selected45 at monthly frequency indicate the Brent oil real price,

for June 2022, ranging fromUS$ 40 to 58. The same models, estimated at quarterly frequency,

predict the price of oil for June 2025 to be between US$ 30 and 50.

In respect to risk management of oil prices, the density forecasts provide a 90% probability

interval forecast of the Brent oil real price. For example, according to the AF monthly model,

with 90% of probability, the oil price for June 2022 will be in the range of US$ 28 and 90 (and

for June 2025, between US$ 8 and 126, according to the quarterly frequency estimation). The

same interval forecast from the Schwartz-Smith model, for June 2022, ranges from US$ 24 to

79 (and for June 2025, from US$ 19 to 101). Such intervals can be useful, for instance, when

hedging against extreme oil price fluctuations.

45Based on the RMSEs shown in the Technical Appendix 6, we select here the following models: random
walk without drift, random forest, quantile regression forest, xgboost, AF, BCAF, Brent futures and Schwartz-
Smith (mean and median).
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4 Conclusions

The price of oil is considered a key variable in macroeconomic because its dynamics affect the

global economy. The linkages between the oil price fluctuations and several macroeconomic

aggregates have been extensively investigated in the literature. Nonetheless, the current con-

text of big data, coupled with novel machine learning tools, allows one to further investigate

potential oil price nonlinearities, so far hidden or not considered by traditional statistical

models.

In this sense, this paper studies the forecast accuracy of 22 competing methods, which

are used to build point forecasts of the Brent oil price variation. The selected suite of meth-

ods includes recent machine learning techniques based on regression trees, more traditional

machine learning approaches using regularization procedures, standard econometric models

and forecast combinations, besides the structural factor model of Schwartz and Smith (2000).

In order to evaluate the predictive power of each method, an extensive pseudo out-of-sample

forecasting exercise is conducted, in both monthly and quarterly frequencies, where each

method produces point and density forecasts for horizons from one month up to five years.

According to Alquist et al. (2013) the no-change forecast of the real price of oil can

typically be improved upon horizons up to three months, but generally not at horizons

beyond half a year. This paper provides evidence that reduced-form models based on machine

learning algorithms can indeed reduce the out-of-sample MSE in the short run compared to

the no-change forecast. Our main findings are the following:

(i) in respect to point forecasts, the Adaptive LASSO model presents the lowest RMSE

in our shortest (one-month) horizon. In this sense, the machine learning methods (e.g.,

Adalasso, Elastic Net), together with the BCAF forecasts, exhibit a good performance in the

short run, providing forecasts statistically superior to the ones from a random walk without

drift, in horizons from one to three months;

(ii) the forecasting exercise in monthly frequency also revealed that other models from the

LASSO family, the Brent future prices and the median of the Schwartz-Smith density forecast

provide the best forecasts in horizons up to six months. For longer horizons, considering

the same frequency, the forecast combination techniques AF and BCAF, and the mean (or

median) of models gain importance, together with the Brent future prices and the forecasts

from the Schwartz-Smith model. In quarterly frequency, the best forecasts come from the

approaches AF and BCAF, Brent future prices and Schwartz-Smith;

(iii) in both frequencies, and several cases, the forecast accuracy gains in respect to the

benchmark model (random walk without drift) are statistically significant and reach two-

digit figures, in percentage terms: the R2 out-of-sample statistics, for the best model in

each horizon, range from 14% and 40% in monthly frequency, and between 9% and 49% in

quarterly frequency, which represents an improvement in respect to the previous literature;
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(iv) regarding density forecasts, it is worth mentioning the relatively good performance

of the density forecasts, using our proposed approach, built from the random walk, Brent

future prices, forecast combination AF (longer horizons) and the Schwartz-Smith model.

In sum, the forecasting methods applied here to solve an important economic forecasting

problem (including some fresh machine learning nonlinear algorithms as well as traditional

econometric approaches) can be useful to help improving the set of tools currently used

by academics and market agents to build oil price forecasts, thereby offering a valuable

contribution to the field of macroeconomic forecasting.
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Appendix 1. Forecast combination and bias-correction

In this section, we discuss econometric techniques used to optimally forecast the oil

prices under a quadratic risk function. These tools are appropriate to forecast a

weakly stationary and ergodic univariate process {yt} from a vast number of individual
forecasts that are combined to generate an optimal forecast. Such individual forecasts

are the outcome of different econometric models that must be estimated before the

forecast combination. We label the forecasts of yt (h-period change of the logarithm

of the real price of oil), computed using the information set lagged h periods, fhi,t,

i = 1, 2, . . . , N . This way, fhi,t are h periods ahead forecasts and N is the number of

estimated models used to predict yt.

Issler and Lima (2009) consider three consecutive distinct time sub-periods. The

first sub-period is labeled the “estimation sample”, where models are usually fitted

to forecast yt subsequently. The next sub-period is labeled the post-model-estimation

or “training sample”, where realizations of yt are usually confronted with forecasts

produced in the estimation sample, and weights and bias-correction terms are esti-

mated.1 The final sub-period is where genuine out-of-sample forecast is entertained.

In this setup, the individual forecasts fhi,t are considered approximations of the optimal

forecast (Et−h(yt)), as follows:

fhi,t = Et−h(yt) + khi + εhi,t, (1)

where khi is the time invariant bias and ε
h
i,t is the error term of model i, such that

E(εhi,t) = 0 for all i, t, and h. Here, the optimal forecast is the common feature of all

individual forecasts and khi and ε
h
i,t arise due to model misspecification. The term khi is

assumed to be identically distributed (but not independently), i.e., khi ∼ i.d.
(
Bh, σ2

kh

)
.

Issler and Lima proposed the feasible Bias-Corrected Average Forecast (BCAF)
1
N

∑N
i=1 f

h
i,t − B̂h, where B̂h is a consistent estimate of Bh, that obeys:

plim
(T,N→∞)seq

(
1

N

N∑
i=1

fhi,t − B̂h

)
= Et−h(yt), (2)

where plim
(T,N→∞)seq

is the probability limit using the asymptotic structure proposed in

Phillips and Moon (1999). Therefore, the BCAF is an optimal forecast device. They

also proposed a test for zero bias, that is, H0 : Bh = 0, using the approach of Conley

(1999). Note that if H0 is not rejected, there is no need to use the bias correction. In

this case, the optimal forecast will be the simple cross-section average forecast:

1

N

N∑
i=1

fhi,t.

1See Laster et al. (1999) e Batchelor (2007).
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Gaglianone and Issler (2019) proposed an extended setup, now including two

sources of bias: the intercept bias khi and the slope bias β
h
i , as follows:

fhi,t = khi + βhi Et−h(yt) + εhi,t. (3)

By comparing (1) with (3), it becomes clear that the first setup is a special case of

the second framework, where βi = 1 for all i. Gaglianone and Issler proposed the use

of GMM to estimate the model parameters θ =
(
Bh, βh

)′
, where Bh = 1

N

N∑
i=1

khi and

βh = 1
N

N∑
i=1

βhi , are cross-section averages for each h. Starting with (3), and using the

law of iterated expectations with valid observable instruments zt−s, where s ≥ h, it

follows that:

E
[(
fhi,t − khi − βhi yt

)
⊗ zt−s

]
= 0, (4)

which is valid for all i = 1, ..., N , t = 1, ..., T , and h = 1, ..., H. The system of

equations (4) has 2NH parameters and (at least) 2NH moment conditions, provided

that dim(zt−s) > 2, which is necessary for overidentification. Despite that, a problem

remains: as long as N → ∞, the number of parameters in (4) diverges, which works
against consistency. To overcome this curse of dimensionality, one can use the cross-

section averages of fhi,t, k
h
i and β

h
i yt, resulting in the following moment restrictions:

E
[(
fh·,t −Bh − βhyt

)
⊗ zt−s

]
= 0, (5)

for t = 1, ..., T , and h = 1, ..., H, where fh·,t = 1
N

N∑
i=1

fhi,t, Bh = 1
N

N∑
i=1

khi and β
h =

1
N

N∑
i=1

βhi , represent cross-section averages for each h. Finally, Gaglianone and Issler

show how to obtain consistent estimates of the model parameters θ =
(
Bh, βh

)′
using

GMM and the previous cross-section averages within different asymptotic setups.
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Appendix 2. The factor model of Schwartz and

Smith (2000) and others

Schwartz and Smith (2000) assume the logarithm of the spot oil price, ln (St), defined

in continuous time, can be decomposed as follows:

ln (St) = χt + ξt,

where χt and ξt are, respectively, the short-run price deviation and the equilibrium

price level. The authors also assume that the first term is zero mean-reverting, fol-

lowing an Ornstein-Uhlenbeck process, whereas the second term follows a Brownian

motion, as follows:

dχt = −κχtdt+ σχdzχ,

dξt = µξdt+ σξdzξ,

where dzχ and dzξ are correlated terms from a standard Brownian motion, such that

dzχdzξ = ρχξdt. The first and second centered moments of (χt, ξt)
′ are, respectively:

E [(χt, ξt)] =
[
e−κtχ0, ξ0 + µξt

]
, and

COV [(χt, ξt)] =

[
(1− e−2κt)

σ2χ
2κ

(1− e−κt) ρχξσχσξ
κ

(1− e−κt) ρχξσχσξ
κ

σ2
ξt

]
,

where χ0 and ξ0 are initial conditions. Given these initial conditions, and the as-

sumption of log-normality for ln (St), the future spot prices have mean and variance,

respectively, given as follows:

E [ln (St)] = e−κtχ0 + ξ0 + µξt, and, (6)

VAR [ln (St)] =
(
1− e−2κt

) σ2
χ

2κ
+ σ2

ξt+ 2
(
1− e−κt

) ρχξσχσξ
κ

,

which implies the following expected future spot prices:

E [St] = exp

{
E [ln (St)] +

1

2
VAR [ln (St)]

}
,

and, therefore,

ln (E [St]) = E [ln (St)] +
1

2
VAR [ln (St)]

= e−κtχ0 + ξ0 + µξt+
1

2

[(
1− e−2κt

) σ2
χ

2κ
+ σ2

ξt+ 2
(
1− e−κt

) ρχξσχσξ
κ

]
.

By considering t → ∞ in the last expression, the log of expected prices can be
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calculated as long as the horizon increases, i.e.,

lim
t→∞

ln (E [St]) =

(
ξ0 +

σ2
χ

4κ
+
ρχξσχσξ

κ

)
+

(
µξ +

1

2
σ2
ξ

)
t.

This way, in the long-run, the expected spot price behave as if it has started with

an "effective long-run price" equal to exp
(
ξ0 +

σ2χ
4κ

+
ρχξσχσξ

κ

)
and further increased

at the rate
(
µξ + 1

2
σ2
ξ

)
. Note this effective long-run price is slightly different from

the equilibrium price (exp (ξ0)), where the difference reflects the contribution of the

short-run volatility related to the expected spot prices.

Schwartz and Smith discuss a risk-neutral process and the respective cash-flow

evaluation. The authors argue that, under risk-neutral probabilities, it follows that:

dχt = (−κχt + λχ) dt+ σχdz
∗
χ,

dξt =
(
µξ − λξ

)︸ ︷︷ ︸
µ∗ξ

dt+ σξdz
∗
ξ ,

where dz∗χdz
∗
ξ = ρχξdt, and show that:

E∗ [(χt, ξt)] =

[
e−κtχ0 −

(
1− e−κt

) λχ
κ
, ξ0 + µ∗ξt

]
, and

COV∗ [(χt, ξt)] = COV [(χt, ξt)] ,

where E∗ denotes the respective variable under risk-neutral probabilities, instead of
physical probabilities, and λχ is the average adjustment needed in the Ornstein-

Uhlenbeck process under risk-neutral probabilities. Thus, it follows that:

E∗ [ln (St)] = e−κtχ0 + ξ0 −
(
1− e−κt

) λχ
κ

+ µ∗ξt, and, (7)

VAR∗ [ln (St)] = VAR [ln (St)] .

This way, by comparing (6) with (7), note the risk premium decreases the log of

the expected spot price by: (
1− e−κt

) λχ
κ

+ λξt.

After discussing the risk-neutral approach based on future contracts, with maturi-

ties T1, T2, · · · , Tn, Schwartz and Smith show that the state-space form that represents
ln (St) is the following:

Xt = c+GXt−1 + ωt, (8)

yt = dt + F′tXt + vt, (9)

where Xt = (χt, ξt)
′, c =

(
0, µξ∆t

)′
, and ∆t represents the duration of time periods,

ωt is a 2× 1 vector of disturbances with covariance matrix

COV(ωt) =COV[(χt, ξt)], yt = [ln (FT1) , ln (FT2) , · · · , ln (FTn)]′, where FT1 , FT2 , · · · , FTN
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are future prices, respectively, with maturities T1, T2, · · · , Tn, with constant terms
dt = [A (T1) , A (T2) , · · · , A (Tn)]′ associated to them,

Ft =
[
e−κT11, e−κT21, · · · , e−κTn1

]′
, with 1 = (1, 1)′, and vt is a n × 1 vector of nor-

mal disturbances without serial correlation, zero mean, and COV[vt] = V. The total

number of periods is nT , i.e., t = 1, 2, · · · , nT , and:

G =

[
e−κ∆t 0

0 1

]
.

The equation (8) is often called the transition equation, whereas the equation (9) is

known as the measurement equation. Under a joint normality hypothesis for (ωt,vt)
′

it is easy to estimate the parameters of interest associated to equations (8) and (9)

using the Kalman filter (maximum likelihood estimates). These parameters are set in

vector
(
κ, σχ, µξ, σξ, ρχξ, λχ, µ

∗
ξ

)′
. Implicitly, future prices with different maturities are

being used to identify the short- and long-run price components. Schwartz and Smith

employ a Bayesian approach in the model estimation, using a multivariate Gaussian

distribution as a priori distribution. Besides, they also use Kalman filter techniques

in the steady state, where COV[(χt, ξt)] becomes independent of the initial conditions

assumed in the filter.

Based on the framework above, Cortazar and Naranjo (2006) proposed a Gaussian

model with N−factors to explain the stochastic behavior of future oil prices, which
is estimated using all price available information, in contrast to the traditional ap-

proaches that aggregate data for a set of maturities. The model is calibrated using

a Kalman filter procedure that allows for a number of time-dependent daily observa-

tions. The model shows a relatively good performance, requiring at least three factors

to explain the term structure of future prices, but four factors to properly adjust the

volatility term structure.

Cortazar et al. (2015) argue that stochastic models of commodity prices have con-

siderably evolved in respect to both structure and state variable interpretation. How-

ever, it is not well emphasized in the literature that those models, besides providing

a risk-neutral distribution for future prices, also give their physical distribution. Al-

though the parameters of the risk-neutral distribution can be more precisely estimated

(and, in general, are statistically significant), some parameters of the physical distri-

bution are typically measured with huge confidence bands, and are not statistically

significant. This way, in order to improve the model performance, some parameters

—in particular, the risk premium parameters —must be obtained from other sources.

In this sense, to reduce the uncertainty related to the future risk premium estimates,

a model restriction can be made using the CAPM (Capital Asset Pricing Model) ap-

proach, that is, the authors set the term structure of risk premium based on a satellite

CAPM model. Using such restriction, Cortazar et alli argue that the estimate of the

physical distribution becomes stable and reliable.
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Appendix 3. Random Forest and Quantile Regres-

sion Forest

Random Forest

In this section, we first discuss how to properly grow a single regression tree and

(automatically) decide on both the splitting variables and split points. Hastie et al.

(2009) propose the following algorithm, in the context of CART (classification and

regression tree) models:

(i) consider a splitting variable j and split point s, and define the pair of half-planes:

R1 (j, s) = {X | Xj ≤ s} and R2 (j, s) = {X | Xj > s} , (10)

(ii) find the splitting variable j and split point s that solve the minimization prob-

lem:

min
j,s

min
c1

∑
xi∈R1(j,s)

(yi − c1)2 + min
c2

∑
xi∈R2(j,s)

(yi − c2)2

 , (11)

where the previous inner minimizations, for any choice j and s, can be solved by:

ĉ1 = E (yi | xi ∈ R1 (j, s)) and ĉ2 = E (yi | xi ∈ R2 (j, s)) . (12)

Note that for a given splitting variable, the computation of the optimal split point

s can be easily done. Thus, by searching through all covariates, the determination

of the best pair (j, s) is feasible. Then, based on the best split one divides the data

into the two resulting regions R1 and R2 and repeat the splitting process on each of

the two regions. This process is repeated on all of the resulting regions until some

stopping rule is applied. Finally, the forecast of Y conditioned on the covariate space

X, which is partitioned into L regions Rl (j, s), l = 1, ..., L, according to the regression

tree approach, is the following:

Eregression tree (Y | X) =

L∑
l=1

cl1{X∈Rl(j,s)}, (13)

where cl = E (Y | X ∈ Rl (j, s)). To sum it up, the regression tree can be estimated by

repeating the three steps below, for each terminal node of the tree, until the minimum

number of observations at each node is achieved:2

(1) randomly select m out of p covariates as possible split variables;3

2The size of a tree is a tuning parameter governing the model’s complexity, and the optimal size
should be adaptively chosen from the data. The preferred strategy is to stop the splitting process
when some minimum node size is reached. Typically, for regression problems with p predictors, the
literature recommends to use m = p/3 (rounded down) in each split, with a minimum node size of 5
as the default; see Hastie et al. (2009, chapter 15.3) for more details.

3The reduction of the tuning parameter m will, in general, reduce the correlation between any
pair of trees.
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(2) select the best variable/split point among the m candidates;

(3) split the node into two child nodes.

Next, we represent mathematically the Random Forest (RF) model, following the

discussion in Meinshausen (2006). Consider n independent observations (Yi, Xi), for

i = 1, ..., n, and let θ be the random parameter vector that determines how a tree

T (θ) is grown, that is, characterizes the tree in terms of split variables, cut-points at

each node, and terminal-node values. Also, let = be the space in which X lives, that

is X : Ω→ =, where = ⊆ Rp and p ∈ N+ is the dimensionality of the set of covariates

X.

Every leaf of a tree (terminal node) l = 1, ..., L corresponds to a subspace of =,
that is Rl ⊆ =. For every x ∈ =, there is one (and only one) leaf l such that x ∈ Rl

(corresponding to the leaf that is obtained when dropping x down the tree). Denote

this leaf by l(x, θ) for tree T (θ). The prediction of a single tree T (θ) conditioned on

X = x is obtained by averaging over the observed values in leaf l(x, θ). Let the weight

vector wi(x, θ) be given by a positive constant if observation Xi is part of leaf l(x, θ)

and 0 if it is not. The weights sum to one, such that:

wi(x, θ) =
1{Xi∈Rl(x,θ)}
n∑
j=1

1{Xj∈Rl(x,θ)}

. (14)

The forecasting model based on a single regression tree, conditioned on a covariate

X = x, is then the weighted average of the original observations Yi, for all i = 1, ..., n,

that is:

Eregression tree (Y | X = x) =
n∑
i=1

wi(x, θ)Yi. (15)

Note that conditional on the knowledge of the subregions Rl, for l = 1, ..., L, the

relationship between inflation Y and the set of covariates X is approximated here by

a piecewise constant model, where each leaf represents a distinct regime; see Garcia et

al. (2017). Now, using random forest, the conditional mean above is approximated by

the averaged prediction of K single trees, each constructed with a parameter vector

θk, k = 1, ..., K. Let wi(x) be the average of wi(x, θk) over this collection of trees, as

follows:

wi(x) =
1

K

K∑
k=1

wi(x, θk). (16)

The RF forecast is the averaged response of all trees, as follows:4

4According to Hastie et al. (2009), tree learning is invariant under scaling and various other
transformations (and it is robust to inclusion of irrelevant covariates), however it is seldom accurate.
In particular, large trees tend to learn highly irregular patterns and overfit their training sets, thus
producing low bias but very high prediction variance. In order to reduce such high variance, random
forests average multiple decision trees, trained on different parts of the training set. This often comes
at the expense of a small increase in the bias, but usually improves the overall performance of the
model.
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Erandom forest (Y | X = x) =
n∑
i=1

wi(x)Yi. (17)

Note that the approximation of the conditional mean of Y given X = x is given by

a weighted sum over all observations. The weights vary with the covariate and tend

to be large for those observations i ∈ {1, ..., n} where the conditional distribution of
Y , given X = Xi, is similar to the conditional distribution of Y given X = x.

Quantile Regression Forest (QRF)

The quantile regression forest algorithm proposed by Meinshausen (2006) to com-

pute the estimate of the conditional distribution function can be summarized as follows:

(a) grow trees T (θk), for k = 1, ..., K , as in random forests. However, for every

leaf (on each tree) consider all observations in the leaf, not just their average.

(b) for a given X = x, drop x down all trees. Compute the weight wi(x, θk) of

observation i ∈ {1, ..., n} for every tree as in (14). Compute weight wi(x) for every

observation i ∈ {1, ..., n} as an average over wi(x, θk), for all k = 1, ..., K, as in (16).

(c) compute the estimate of the distribution function as in (20) for all y ∈ R, using
the weights from the previous step (b).

This way, conditional quantiles can be inferred with QRF as a generalization of

random forests. The idea is to provide a non-parametric way of estimating conditional

quantiles for a high-dimensional set of predictor variables. According to Meinshausen

(2006), the QRF algorithm is shown to be consistent and competitive in terms of

predictive power. First, recall that the conditional distribution function (CDF) of Y ,

given X = x, is given by:

F (y | X = x) = Pr (Y ≤ y | X = x) = E
(
I{Y≤y} | X = x

)
. (18)

Also, recall that the conditional quantile of Y , given X = x, at quantile level τ , is

given by:

Qτ (Y | X = x) = inf{y : F (y | X = x) ≥ τ}. (19)

In other words, for a continuous distribution function of Y , conditional on X = x,

the probability of Y being smaller than Qτ (·) is equal to τ . Now, similarly to the
random forest approximation of the conditional mean, define an approximation to

E
(
I{Y≤y} | X = x

)
by the weighted mean over the observations of I{Y≤y}, as follows:

F̂ (y | X = x) =

n∑
i=1

wi(x)I{Yi≤y}, (20)

using the same weights wi(x) for random forests, as defined above. Estimates Q̂τ (·) of
the conditional quantilesQτ (·) can, thus, be obtained by simply plugging F̂ (y | X = x),

instead of F (y | X = x), into (19).
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On the other hand, the conditional mean of Y can be approximated by a combi-

nation of conditional quantiles. It is not a novel approach in the literature. Indeed,

it has a long tradition in statistics (see Judge et al., 1988) and has been previously

applied in the forecasting literature; see Lima and Meng (2017). We follow here the

approach of Araujo and Gaglianone (2020), that proposed a quantile combination ap-

proach using the QRF algorithm to build conditional mean forecasts of Y . This could

be accomplished by integrating the conditional quantile function of Y over the entire

domain τ ∈ [0, 1], as follows (see Koenker, 2005, p.302):

E (Y | X = x) =

∫ 1

0

Qτ (Y | X = x) dτ . (21)

The conditional mean of Y , based on the QRF approach, can thus be approxi-

mated5 by a sum of estimated conditional quantiles, as follows:6

1∫
0

Qτ (Y | X = x) dτ = lim
P→∞

(
P∑
p=1

Q̂τp (Y | X = x) ∆τ p

)
. (22)

Therefore, one can build conditional mean forecasts of Y through equations (19),

(20), (21) and (22).

Appendix 4. Variable Importance in Random Forest

Random forests are among the most popular machine learning methods due to their

relatively good forecasting accuracy, robustness and ease of use. In contrast to para-

metric methods, random forests are fully non-parametric and can deal with nonlinear

effects, thus offering a great model flexibility in practical applications. Furthermore,

RF can even be applied in the statistically challenging setting in which the number

of variables is higher than the number of observations. This makes random forests

especially attractive for complex high-dimensional data applications; see Janitza et al.

(2018).

Nonetheless, a suitable understanding of the black box mechanism behind the ran-

dom forest method is of greatest importance. Nowadays, machine-learning models

are often deployed to production without a proper understanding of why exactly the

algorithms make the decisions they do. As these new tools become more relevant in

everyday life, model interpretability becomes one of the most important problems in

machine learning these days. In particular, regarding the use of RF as a forecasting

5By applying the second fundamental theorem of calculus (or the Newton-Leibniz axiom) on the
sum of quantiles, the Riemann integral is obtained in the limit P → ∞ (see Apostol, 1967) and the
partitions ∆τp = 1

P+1 get finer (i.e., ∆τp → 0 as long as P →∞).
6We rely on the fact that the conditional quantiles are consistenly estimated using the QRF

approach.
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device, it is critical to comprehend the key variable interactions that are providing the

predictive accuracy.

One attempt to tackle this issue is to compute the so-called “variable importance

measures”, by attributing scores to the variables, which reflect their relative impor-

tance in the overall model accuracy. Such measures can be used to identify relevant

features, perform variable selection and quantify the prediction strength of each vari-

able, allowing one to rank the variables according to their predictive abilities. See

Hastie et al. (2009, chapter 15) for further details.7

A global insight into the random forest’s behavior can be obtained by computing

the two main variable importance measures, based on the “permutation” approach

of Altmann et al. (2010) and on the “impurity-corrected”method of Nembrini et al.

(2018). Moreover, one can carry out the Janitza et al. (2018) hypothesis test of no

association between the predictor and the dependent variable for both measures.

The permutation method, also known as the mean decrease in accuracy, is one of

the most common variable importance measures, and it is computed from the change

in prediction accuracy when removing any association between the dependent variable

(response) and a given regressor (i.e., feature or predictor), with large changes indicat-

ing that the predictor is important.8 One disadvantage of the permutation approach

is to produce biased outcomes when predictors are highly correlated. In addition,

adding a correlated variable to the RF model can decrease the importance of another

variable. Furthermore, the permutation importance is very computationally intensive

in the case of high dimensional data.

Alternative importance measures based on impurity (i.e., how well the regression

trees split the variables) are popular because they are simple, fast to compute and can

be more robust to data perturbations compared with those based on permutation.9

However, the impurity importance is known to be biased towards variables with more

categories or more possible split points. Also, when the dataset has two (or more)

correlated variables, any of them can be selected as predictor. Nevertheless, once

7There are many other ways on the lookout for opening the ML black box. Just to mention a few
examples: (i) Partial Dependence Plots (PDP), which show the marginal effect of a given predictor on
the outcome of a ML model; and (ii) Surrogate Models (SM), which are auxiliary interpretable models
(e.g., linear regression), built to approximate the predictions of a ML model in order to understand
the black box outcomes by analyzing (and interpreting) the surrogate model’s responses.

8According to Nembrini et al. (2018): “To calculate the permutation importance of the variable
xi, its original association with the response y is broken by randomly permuting the values of all
individuals for xi. With this permuted data, the tree-wise out-of-bag (OOB) estimate of the prediction
error is computed. The difference between this estimate and the OOB error without permutation,
averaged over all trees, is the permutation importance of the variable xi. This procedure is repeated
for all variables of interest x1,. . . ,xp. The larger the permutation importance of a variable, the more
relevant the variable is for the overall prediction accuracy.”

9Recall that random forest consists of a number of decision trees. Every node in the trees is a
condition on a given variable, and it is designed to optimally split the dataset into two parts so
that overall model accuracy can be improved. The measure based on which the (locally) optimal
condition is chosen is called impurity (or variance, in the case of the regression trees). This way,
one can compute how much each variable reduces the weighted impurity in a tree. For a forest, the
impurity reduction from each variable can be averaged and a ranking of variables can be constructed
according to this importance measure.
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one of these (correlated) variables is used as predictor, the importance of others is

significantly reduced, since the impurity these other variables can decrease is already

reduced by the first selected variable.10 In this sense, Nembrini et al.(2018) propose the

“corrected impurity”importance measure, which is unbiased in terms of the number

of categories and category frequencies and is computationally effi cient (i.e., almost

as fast as the standard impurity importance and much faster than the permutation

importance).

Besides building a ranking of importance, it is also crucial to statistically check

whether a given predictor is important (or not) in respect to the dependent variable of

the RF model. According to Janitza et al. (2018), the variable importance depends on

many different factors, including aspects related to the data (e.g., correlations, signal-

to-noise ratio or the total number of variables) as well as on the random forest specific

factors (such as the choice of the number of randomly drawn candidate predictor

variables for each split node). Therefore, there is no universally applicable threshold

that can be used to statistically discriminate between important and non-important

variables. Nonetheless, several hypothesis-testing approaches have been developed.

The permutation-based tests entail the repeated computation of random forests. While

for low-dimensional settings those approaches might be computationally tractable, for

high-dimensional models (e.g., including thousands of predictors), computing time

might become enormous. In this sense, Janitza et al. (2018) propose a variable

importance test that is appropriate for high-dimensional data where many variables

do not carry any information related to the dependent variable. According to the

authors, the testing approach, based on cross-validation procedures, shows at least

comparable power at a substantially smaller computation time.

10This is not an issue in respect to model forecasting, but regarding model interpretation, it can
lead to the incorrect conclusion that one of the variables is a strong predictor while the others (cor-
related variables) are not important, while, in reality, they are all close in respect to their statistical
relationship with the dependent variable. This effect can be attenuated by using random variable
selection at each node (instead of using all possible variables) when growing a tree within the random
forest setup.
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Appendix 5. Database

Table 5.1 - List of macroeconomic and financial variables

Category Name Source Nickname
1 Brent o il real price Europe Brent Spot FOB U$/BBL Daily, deflated by PPI all commodities FRED, Thomson Reuters BRENT_REAL

2 Output and Income Real Personal Income FRED­M D RPI

3 Output and Income Real personal income ex transfer receipts FRED­M D W875RX1

4 Output and Income IP Index FRED­M D INDPRO

5 Output and Income IP: Final Products and Nonindustrial Supplies FRED­M D IPFPNSS

6 Output and Income IP: Final Products (M arket Group) FRED­M D IPFINAL

7 Output and Income IP: Consumer Goods FRED­M D IPCONGD

8 Output and Income IP: Durable Consumer Goods FRED­M D IPDCONGD

9 Output and Income IP: Nondurable Consumer Goods FRED­M D IPNCONGD

10 Output and Income IP: Business Equipment FRED­M D IPBUSEQ

11 Output and Income IP: M aterials FRED­M D IPM AT

12 Output and Income IP: Durable M aterials FRED­M D IPDM AT

13 Output and Income IP: Nondurable M aterials FRED­M D IPNM AT

14 Output and Income IP: M anufacturing (SIC) FRED­M D IPM ANSICS

15 Output and Income IP: Residential Utilities FRED­M D IPB51222s

16 Output and Income IP: Fuels FRED­M D IPFUELS

17 Output and Income Capacity Utilization: M anufacturing FRED­M D CUM FNS

18 Labor market Help­Wanted Index for United States FRED­M D HWI

19 Labor market Ratio  o f Help Wanted/No. Unemployed FRED­M D HWIURATIO

20 Labor market Civilian Labor Force FRED­M D CLF16OV

21 Labor market Civilian Employment FRED­M D CE16OV

22 Labor market Civilian Unemployment Rate FRED­M D UNRATE

23 Labor market Average Duration o f Unemployment (Weeks) FRED­M D UEM PM EAN

24 Labor market Civilians Unemployed ­ Less Than 5 Weeks FRED­M D UEM PLT5

25 Labor market Civilians Unemployed for 5­14 Weeks FRED­M D UEM P5TO14

26 Labor market Civilians Unemployed ­ 15 Weeks & Over FRED­M D UEM P15OV

27 Labor market Civilians Unemployed for 15­26 Weeks FRED­M D UEM P15T26

28 Labor market Civilians Unemployed for 27 Weeks and Over FRED­M D UEM P27OV

29 Labor market Initial Claims FRED­M D CLAIM Sx

30 Labor market All Employees: Total nonfarm FRED­M D PAYEM S

31 Labor market All Employees: Goods­Producing Industries FRED­M D USGOOD

32 Labor market All Employees: M ining and Logging: M ining FRED­M D CES1021000001

33 Labor market All Employees: Construction FRED­M D USCONS

34 Labor market All Employees: M anufacturing FRED­M D M ANEM P

35 Labor market All Employees: Durable goods FRED­M D DM ANEM P

36 Labor market All Employees: Nondurable goods FRED­M D NDM ANEM P

37 Labor market All Employees: Service­Providing Industries FRED­M D SRVPRD

38 Labor market All Employees: Trade, Transportation & Utilities FRED­M D USTPU

39 Labor market All Employees: Wholesale Trade FRED­M D USWTRADE

40 Labor market All Employees: Retail Trade FRED­M D USTRADE

41 Labor market All Employees: Financial Activities FRED­M D USFIRE

42 Labor market All Employees: Government FRED­M D USGOVT

43 Labor market Avg Weekly Hours : Goods­Producing FRED­M D CES0600000007

44 Labor market Avg Weekly Overtime Hours : M anufacturing FRED­M D AWOTM AN

45 Labor market Avg Weekly Hours : M anufacturing FRED­M D AWHM AN

46 Labor market Avg Hourly Earnings : Goods­Producing FRED­M D CES0600000008

47 Labor market Avg Hourly Earnings : Construction FRED­M D CES2000000008

48 Labor market Avg Hourly Earnings : M anufacturing FRED­M D CES3000000008

49 Housing Housing Starts: Total New Privately Owned FRED­M D HOUST

50 Housing Housing Starts, Northeast FRED­M D HOUSTNE

51 Housing Housing Starts, M idwest FRED­M D HOUSTM W

52 Housing Housing Starts, South FRED­M D HOUSTS

53 Housing Housing Starts, West FRED­M D HOUSTW

54 Housing New Private Housing Permits (SAAR) FRED­M D PERM IT

55 Housing New Private Housing Permits, Northeast (SAAR) FRED­M D PERM ITNE

56 Housing New Private Housing Permits, M idwest (SAAR) FRED­M D PERM ITM W

57 Housing New Private Housing Permits, South (SAAR) FRED­M D PERM ITS

58 Housing New Private Housing Permits, West (SAAR) FRED­M D PERM ITW

59 Consumption, orders, and inventoriesReal personal consumption expenditures FRED­M D DPCERA3M 086SBEA

60 Consumption, orders, and inventoriesReal M anu. and Trade Industries Sales FRED­M D CM RM TSPLx

61 Consumption, orders, and inventoriesRetail and Food Services Sales FRED­M D RETAILx

62 Consumption, orders, and inventoriesNew Orders for Consumer Goods FRED­M D ACOGNO

63 Consumption, orders, and inventoriesNew Orders for Durable Goods FRED­M D AM DM NOx

64 Consumption, orders, and inventoriesNew Orders for Nondefense Capital Goods FRED­M D ANDENOx

65 Consumption, orders, and inventoriesUnfilled Orders for Durable Goods FRED­M D AM DM UOx

66 Consumption, orders, and inventoriesTotal Business Inventories FRED­M D BUSINVx

67 Consumption, orders, and inventoriesTotal Business: Inventories to Sales Ratio FRED­M D ISRATIOx

68 Consumption, orders, and inventoriesConsumer Sentiment Index FRED­M D UM CSENTx
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69 M oney and credit M 1 M oney Stock FRED­M D M 1SL

70 M oney and credit M 2 M oney Stock FRED­M D M 2SL

71 M oney and credit Real M 2 M oney Stock FRED­M D M 2REAL

72 M oney and credit M onetary Base FRED­M D BOGM BASE

73 M oney and credit Total Reserves of Depository Institutions FRED­M D TOTRESNS

74 M oney and credit Reserves Of Depository Institutions FRED­M D NONBORRES

75 M oney and credit Commercial and Industrial Loans FRED­M D BUSLOANS

76 M oney and credit Real Estate Loans at A ll Commercial Banks FRED­M D REALLN

77 M oney and credit Total Nonrevo lving Credit FRED­M D NONREVSL

78 M oney and credit Nonrevolving consumer credit to  Personal Income FRED­M D CONSPI

79 M oney and credit M ZM  M oney Stock FRED­M D M ZM SL

80 M oney and credit Consumer M otor Vehicle Loans Outstanding FRED­M D DTCOLNVHFNM

81 M oney and credit Total Consumer Loans and Leases Outstanding FRED­M D DTCTHFNM

82 M oney and credit Securities in Bank Credit at A ll Commercial Banks FRED­M D INVEST

83 Interest and exchange rates Effective Federal Funds Rate FRED­M D FEDFUNDS

84 Interest and exchange rates 3­M onth AA Financial Commercial Paper Rate FRED­M D CP3M x

85 Interest and exchange rates 3­M onth Treasury Bill FRED­M D TB3M S

86 Interest and exchange rates 6­M onth Treasury Bill FRED­M D TB6M S

87 Interest and exchange rates 1­Year Treasury Rate FRED­M D GS1

88 Interest and exchange rates 5­Year Treasury Rate FRED­M D GS5

89 Interest and exchange rates 10­Year Treasury Rate FRED­M D GS10

90 Interest and exchange rates M oody’s Seasoned Aaa Corporate Bond Yield FRED­M D AAA

91 Interest and exchange rates M oody’s Seasoned Baa Corporate Bond Yield FRED­M D BAA

92 Interest and exchange rates 3­M onth Commercial Paper M inus FEDFUNDS FRED­M D COM PAPFFx

93 Interest and exchange rates 3­M onth Treasury C M inus FEDFUNDS FRED­M D TB3SM FFM

94 Interest and exchange rates 6­M onth Treasury C M inus FEDFUNDS FRED­M D TB6SM FFM

95 Interest and exchange rates 1­Year Treasury C M inus FEDFUNDS FRED­M D T1YFFM

96 Interest and exchange rates 5­Year Treasury C M inus FEDFUNDS FRED­M D T5YFFM

97 Interest and exchange rates 10­Year Treasury C M inus FEDFUNDS FRED­M D T10YFFM

98 Interest and exchange rates M oody’s Aaa Corporate Bond M inus FEDFUNDS FRED­M D AAAFFM

99 Interest and exchange rates M oody’s Baa Corporate Bond M inus FEDFUNDS FRED­M D BAAFFM

100 Interest and exchange rates Trade Weighted U.S. Dollar Index FRED­M D TWEXAFEGSM THx

101 Interest and exchange rates Switzerland / U.S. Foreign Exchange Rate FRED­M D EXSZUSx

102 Interest and exchange rates Japan / U.S. Foreign Exchange Rate FRED­M D EXJPUSx

103 Interest and exchange rates U.S. / U.K. Foreign Exchange Rate FRED­M D EXUSUKx

104 Interest and exchange rates Canada / U.S. Foreign Exchange Rate FRED­M D EXCAUSx

105 Prices PPI: Finished Goods FRED­M D WPSFD49207

106 Prices PPI: Finished Consumer Goods FRED­M D WPSFD49502

107 Prices PPI: Intermediate M aterials FRED­M D WPSID61

108 Prices PPI: Crude M aterials FRED­M D WPSID62

109 Prices Crude Oil, spliced WTI and Cushing FRED­M D OILPRICEx

110 Prices PPI: M etals and metal products FRED­M D PPICM M

111 Prices CPI : A ll Items FRED­M D CPIAUCSL

112 Prices CPI : Apparel FRED­M D CPIAPPSL

113 Prices CPI : Transportation FRED­M D CPITRNSL

114 Prices CPI : M edical Care FRED­M D CPIM EDSL

115 Prices CPI : Commodities FRED­M D CUSR0000SAC

116 Prices CPI : Durables FRED­M D CUSR0000SAD

117 Prices CPI : Services FRED­M D CUSR0000SAS

118 Prices CPI : A ll Items Less Food FRED­M D CPIULFSL

119 Prices CPI : A ll items less shelter FRED­M D CUSR0000SA0L2

120 Prices CPI : A ll items less medical care FRED­M D CUSR0000SA0L5

121 Prices Personal Cons. Expend.: Chain Index FRED­M D PCEPI

122 Prices Personal Cons. Exp: Durable goods FRED­M D DDURRG3M 086SBEA

123 Prices Personal Cons. Exp: Nondurable goods FRED­M D DNDGRG3M 086SBEA

124 Prices Personal Cons. Exp: Services FRED­M D DSERRG3M 086SBEA

125 Stock market S&P’s Common Stock Price Index: Composite FRED­M D S&P500

126 Stock market S&P’s Common Stock Price Index: Industrials FRED­M D S&P_indust

127 Stock market S&P’s Composite Common Stock: Dividend Yield FRED­M D S&P_div_yield

128 Stock market S&P’s Composite Common Stock: Price­Earnings Ratio FRED­M D S&P_PE_rat io

129 Stock market CBOE S&P 100 Volatility Index: VXO FRED­M D VXOCLSx

130 Industrial Production Production o f Total Industry in Austria FRED AUTPROINDM ISM EI

131 Industrial Production Production o f Total Industry in Belgium FRED BELPROINDM ISM EI

132 Industrial Production Production o f Total Industry in Brazil FRED BRAPROINDM ISM EI

133 Industrial Production Production o f Total Industry in Canada FRED CANPROINDM ISM EI

134 Industrial Production Production o f Total Industry in Czech Republic FRED CZEPROINDM ISM EI

135 Industrial Production Production o f Total Industry in Germany FRED DEUPROINDM ISM EI

136 Industrial Production Production o f Total Industry in Denmark FRED DNKPROINDM ISM EI

137 Industrial Production Production o f Total Industry in Spain FRED ESPPROINDM ISM EI

138 Industrial Production Production o f Total Industry in Finland FRED FINPROINDM ISM EI

139 Industrial Production Production o f Total Industry in France FRED FRAPROINDM ISM EI

140 Industrial Production Production o f Total Industry in the United Kingdom FRED GBRPROINDM ISM EI
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141 Industrial Production Production o f Total Industry in Greece FRED GRCPROINDM ISM EI

142 Industrial Production Production o f Total Industry in Hungary FRED HUNPROINDM ISM EI

143 Industrial Production Production o f Total Industry in Ireland FRED IRLPROINDM ISM EI

144 Industrial Production Production o f Total Industry in Israel FRED ISRPROINDM ISM EI

145 Industrial Production Production o f Total Industry in Italy FRED ITAPROINDM ISM EI

146 Industrial Production Production o f Total Industry in Japan FRED JPNPROINDM ISM EI

147 Industrial Production Production o f Total Industry in Korea FRED KORPROINDM ISM EI

148 Industrial Production Production o f Total Industry in Netherlands FRED NLDPROINDM ISM EI

149 Industrial Production Production o f Total Industry in Norway FRED NORPROINDM ISM EI

150 Industrial Production Production o f Total Industry in Po land FRED POLPROINDM ISM EI

151 Industrial Production Production o f Total Industry in Portugal FRED PRTPROINDM ISM EI

152 Industrial Production Production o f Total Industry in Slovak Republic FRED SVKPROINDM ISM EI

153 Industrial Production Production o f Total Industry in Sweden FRED SWEPROINDM ISM EI

154 Industrial Production Production o f Total Industry in Turkey FRED TURPROINDM ISM EI

155 Industrial Production in the U.S. Industrial Production: Durable Goods: Iron and steel products FRED IPG3311A2S

156 Industrial Production in the U.S. Industrial Production: Durable Goods: A lumina and aluminum production and processingFRED IPG3313S

157 Industrial Production in the U.S. Industrial Production: Durable Goods: Raw steel FRED IPN3311A2RS

158 Industrial Production in the U.S. Industrial Production: Durable Goods: Automotive products FRED IPB51110S

159 Industrial Production in the U.S. Industrial Production: Durable Goods: Cement and concrete product FRED IPG3273S

160 Industrial Production in the U.S. Industrial Production: Durable manufacturing: Primary metal FRED IPG331S

161 Industrial Production in the U.S. Industrial Production: Durable manufacturing: M achinery FRED IPG333S

162 Industrial Production in the U.S. Industrial Production: Durable manufacturing: Aerospace and miscellaneous transportation equipmentFRED IPG3364T9S

163 Industrial Production in the U.S. Industrial Production: Nondurable manufacturing: Petro leum and coal products FRED IPG324S

164 Industrial Production in the U.S. Industrial Production: Nondurable manufacturing: Chemical FRED IPG325S

165 Industrial Production in the U.S. Industrial Production: Nondurable manufacturing: P lastics and rubber products FRED IPG326S

166 Industrial Production in the U.S. Industrial Production: Nondurable Goods: Petro leum refineries FRED IPG32411S

167 Industrial Production in the U.S. Industrial Production: Nondurable Goods: Pharmaceutical and medicine FRED IPG3254S

168 Industrial Production in the U.S. Industrial Production: Nondurable Goods: P lastics material and resin FRED IPN325211S

169 Industrial Production in the U.S. Industrial Production: Nondurable Goods: Chemical products FRED IPB51213S

170 Industrial Production in the U.S. Industrial Production: Construction supplies FRED IPB54100S

171 Industrial Production in the U.S. Industrial Production: Non­energy, to tal FRED IPX5001ES

172 Industrial Production in the U.S. Industrial Production: Energy M aterials: Energy, to tal FRED IPB50089S

173 Industrial Production in the U.S. Industrial Production: Electric power generation, transmission, and distribution FRED IPG2211S

174 Industrial Production in the U.S. Industrial Production: M ining: Crude o il FRED IPG211111CS

175 Industrial Production in the U.S. Industrial Production: M ining: Crude petro leum and natural gas extraction FRED IPG211111S

176 Industrial Production in the U.S. Industrial Production: M ining: Oil and gas extraction FRED IPG211S

177 Industrial Production in the U.S. Industrial Production: M ining: Copper, nickel, lead, and zinc mining FRED IPG21223S

178 Industrial Production in the U.S. Industrial Production: M ining: Natural gas FRED IPN211111GS

179 Industrial Production in the U.S. Industrial Production: M ining: Coal mining FRED IPN2121S

180 Industrial Production in the U.S. Industrial Production: M ining: Iron ore mining FRED IPN21221S

181 Industrial Production in the U.S. Industrial Production: M ining: Drilling o il and gas wells FRED IPN213111S

182 Economic indicators for the U.S. University o f M ichigan: Consumer Sentiment FRED UM CSENT

183 Economic indicators for the U.S. Leading Index for the United States FRED USSLIND

184 Economic indicators for the U.S. NBER based Recession Indicators for the United States FRED USREC

185 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Brazil

186 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Canada

187 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_France

188 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Ireland

189 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Japan

190 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Korea

191 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_US

192 Economic uncertainty Policy­related economic uncertainty index Economic Policy Uncertainty EPU_Sweden

193 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_ARGENTINA

194 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_BRAZIL

195 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_CHINA

196 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_COLOM BIA

197 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_HONG_KONG

198 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_INDIA

199 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_INDONESIA

200 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_ISRAEL

201 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_KOREA

202 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_M ALAYSIA

203 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_M EXICO

204 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_PHILIPPINES

205 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_RUSSIA

206 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_SAUDI_ARABIA

207 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_SOUTH_AFRICA

208 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_THAILAND

209 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_TURKEY
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210 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_UKRAINE

211 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_VENEZUELA

212 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR

213 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_THREAT

214 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_ACT

215 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_BROAD

216 Economic uncertainty Geopolitical Risk Index of Caldara and Iacoviello Geopolitical Risk GPR_NARROW

217 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Australia OECD CLI_Australia

218 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Austria OECD CLI_Austria

219 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Belgium OECD CLI_Belgium

220 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Brazil OECD CLI_Brazil

221 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Canada OECD CLI_Canada

222 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Chile OECD CLI_Chile

223 Leading Indicator OECD Composite Leading Indicator (CLI) fo r China OECD CLI_China

224 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Denmark OECD CLI_Denmark

225 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Finland OECD CLI_Finland

226 Leading Indicator OECD Composite Leading Indicator (CLI) fo r France OECD CLI_France

227 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Germany OECD CLI_Germany

228 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Greece OECD CLI_Greece

229 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Hungary OECD CLI_Hungary

230 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Ireland OECD CLI_Ireland

231 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Italy OECD CLI_Italy

232 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Japan OECD CLI_Japan

233 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Korea OECD CLI_Korea

234 Leading Indicator OECD Composite Leading Indicator (CLI) fo r M exico OECD CLI_M exico

235 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Netherlands OECD CLI_Netherlands

236 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Norway OECD CLI_Norway

237 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Poland OECD CLI_Poland

238 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Portugal OECD CLI_Portugal

239 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Russia OECD CLI_Russia

240 Leading Indicator OECD Composite Leading Indicator (CLI) fo r South_Africa OECD CLI_South_Africa

241 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Spain OECD CLI_Spain

242 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Sweden OECD CLI_Sweden

243 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Switzerland OECD CLI_Switzerland

244 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Turkey OECD CLI_Turkey

245 Leading Indicator OECD Composite Leading Indicator (CLI) fo r United Kingdom OECD CLI_UK

246 Leading Indicator OECD Composite Leading Indicator (CLI) fo r United States of America OECD CLI_USA

247 Leading Indicator OECD Composite Leading Indicator (CLI) fo r Euro area (19 countries) OECD CLI_Euro_area

248 Leading Indicator OECD Composite Leading Indicator (CLI) fo r B ig four European OECD CLI_Big4_European

249 Leading Indicator OECD Composite Leading Indicator (CLI) fo r G7 OECD CLI_G7

250 Leading Indicator OECD Composite Leading Indicator (CLI) fo r NAFTA OECD CLI_NAFTA

251 Leading Indicator OECD Composite Leading Indicator (CLI) fo r M ajor five Asia OECD CLI_M ajor5_Asia

252 Leading Indicator OECD Composite Leading Indicator (CLI) fo r OECD Europe OECD CLI_OECD_Europe

253 Leading Indicator OECD Composite Leading Indicator (CLI) fo r OECD Total OECD CLI_OECD_Total

254 Leading Indicator OECD Composite Leading Indicator (CLI) fo r OECD M ajor six NM E OECD CLI_OECD_M ajor6_NM E

255 Real business conditions in the U.S. Aruoba­Diebold­Scotti Business Conditions Index Federal Reserve Bank o f Philadelphia ADS_index

256 Quantitative Easing Total Assets (US$ trillions), Federal Reserve Federal Reserve Bank o f St. Louis QE_FED

257 Quantitative Easing Total Assets (US$ trillions), Federal Reserve + European Central Bank + Bank o f Japan Federal Reserve Bank of St. Louis QE_FED_ECB_BOJ

258 Energy Outlook Liquid Fuels Consumption, World (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.PATC_WORLD.M

259 Energy Outlook Liquid Fuels Consumption, OECD (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.PATC_OECD.M

260 Energy Outlook Liquid Fuels Consumption, non­OECD (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.PATC_NON_OECD.M

261 Energy Outlook Crude Oil Production Capacity, OPEC (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.COPC_OPEC.M

262 Energy Outlook Petro leum Product Supply, Total (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.PASUPPLY.M

263 Energy Outlook Crude Oil Production, U.S. (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.COPRPUS.M

264 Energy Outlook Crude Oil and Other Liquids Inventory, U.S. (million barrels) Short­Term Energy Outlook, U.S. EIA STEO.PASC_US.M

265 Energy Outlook Petro leum Net Imports, U.S. (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.PAIM PORT.M

266 Energy Outlook Net Inventory Withdrawals, Crude Oil and Other Liquids, U.S. (million barrels per day) Short­Term Energy Outlook, U.S. EIA STEO.T3_STCHANGE_US.M

267 Energy Outlook Natural Gas Henry Hub Spot Price, U.S. (do llars per thousand cubic feet) Short­Term Energy Outlook, U.S. EIA STEO.NGHHM CF.M

268 Energy Outlook Cost of Coal Delivered to  Electric Generating Plants, U.S. (do llars per million Btu) Short­Term Energy Outlook, U.S. EIA STEO.CLEUDUS.M

269 Energy Outlook Coal Production, U.S. (million short tons) Short­Term Energy Outlook, U.S. EIA STEO.CLPRPUS_TON.M

270 Energy Outlook Coal Consumption, U.S. (million short tons) Short­Term Energy Outlook, U.S. EIA STEO.CLTCPUS_TON.M

271 Energy Outlook Consumption o f Electricity, U.S. (billion kilowatthours) Short­Term Energy Outlook, U.S. EIA STEO.ELCOTWH.M

272 Energy Outlook Raw Steel Production, U.S. (million short tons per day) Short­Term Energy Outlook, U.S. EIA STEO.RSPRPUS.M

273 Energy Outlook Aircraft Utilization, U.S. (revenue ton­miles/day thousands) Short­Term Energy Outlook, U.S. EIA STEO.RM ZZPUS.M

274 Energy Outlook Vehicle M iles Traveled, U.S. (million miles/day) Short­Term Energy Outlook, U.S. EIA STEO.M VVM PUS.M

275 Financial markets Baltic Exchange Dry Index (BDI) Thomson Reuters BALTIC_DRY

276 Financial markets CBOE SPX VOLATILITY VIX Thomson Reuters VIX

277 Financial markets US Dollar index DXY Thomson Reuters US_DOLLAR_INDEX

278 Financial markets M SCI Emerging M arkets U$ Thomson Reuters M SCI_EM

279 Financial markets M SCI World U$ Thomson Reuters M SCI_WORLD

280 Financial markets EURO STOXX 50 Thomson Reuters EURO_STOXX50
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Table 5.1 - List of macroeconomic and financial variables (cont.)

281 Financial markets S&P500 ES ENERGY Thomson Reuters SP500_ENERGY

282 Financial markets S&P GSCI Energy Total Return ­ RETURN IND. (OFCL) Thomson Reuters SP_GSCI_ENERGY

283 Financial markets CRB BLS Spot Index (1967=100) Thomson Reuters CRB

284 Financial markets CRB BLS Spot Index Raw Industrials Thomson Reuters CRB_RAW_IND

285 Financial markets CRB BLS Spot Index M etals Thomson Reuters CRB_M ETALS

286 Financial markets CRB BLS Spot Index Foodstuffs Thomson Reuters CRB_FOOD

287 Financial markets CRB BLS Spot Index Fats & Oils Thomson Reuters CRB_FATS

288 Financial markets CRB BLS Spot Index Livestock Thomson Reuters CRB_LIVESTOCK

289 Financial markets CRB BLS Spot Index Textiles Thomson Reuters CRB_TEXTI

290 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Energy 1967 = 100 Thomson Reuters CCI_ENERGY67

291 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Energy 1977=100 Thomson Reuters CCI_ENERGY77

292 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Industrials Thomson Reuters CCI_IND

293 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Precious M etals Thomson Reuters CCI_PREC_M ETALS

294 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Grains & Oilseed Thomson Reuters CCI_GRAINS

295 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Interest Rates Thomson Reuters CCI_INTEREST

296 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Livestock Index Thomson Reuters CCI_LIVESTOCK

297 Financial markets Thomson Reuters Equal Weight Continuous Commodity Index (CCI) Softs Index Thomson Reuters CCI_SOFT

298 Financial markets Refinitiv Equal Weight CCI Thomson Reuters CCI_REFINITIV

299 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 1 month Thomson Reuters FUTURE_BRENT_M 1

300 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 2 months Thomson Reuters FUTURE_BRENT_M 2

301 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 3 months Thomson Reuters FUTURE_BRENT_M 3

302 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 4 months Thomson Reuters FUTURE_BRENT_M 4

303 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 5 months Thomson Reuters FUTURE_BRENT_M 5

304 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 6 months Thomson Reuters FUTURE_BRENT_M 6

305 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 7 months Thomson Reuters FUTURE_BRENT_M 7

306 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 8 months Thomson Reuters FUTURE_BRENT_M 8

307 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 9 months Thomson Reuters FUTURE_BRENT_M 9

308 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 10 months Thomson Reuters FUTURE_BRENT_M 10

309 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 11 months Thomson Reuters FUTURE_BRENT_M 11

310 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 12 months Thomson Reuters FUTURE_BRENT_M 12

311 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 24 months Thomson Reuters FUTURE_BRENT_M 24

312 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 36 months Thomson Reuters FUTURE_BRENT_M 36

313 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 48 months Thomson Reuters FUTURE_BRENT_M 48

314 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 60 months Thomson Reuters FUTURE_BRENT_M 60

315 Financial markets Futures Brent crude o il, Intercontinental Exchange (ICE), 72 months Thomson Reuters FUTURE_BRENT_M 72
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Appendix 8. Other results - monthly frequency

Figure 8.1 - Root Mean Squared Error (RMSE)

Note: RMSE (vertical axis) computed along the pseudo out-of-sample exercise for each forecast horizon (horizontal axis).
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Figure 8.2 - MSE Decomposition (h = 6, 12)
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Figure 8.3 - MSE Decomposition (h = 18, 24)
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Figure 8.4 - Oil price change and forescasts (h = 1, 6, 12, 24)
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Figure 8.5 - Pseudo out-of-sample forecasts (h = 1, ..., 24)
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Figure 8.6 - Cumulative Square Prediction Error (h = 1)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.7 - Cumulative Square Prediction Error (h = 6)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.8 - Cumulative Square Prediction Error (h = 12)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.9 - Cumulative Square Prediction Error (h = 24)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 8.10 - Number of selected variables (lasso, adalasso, elastic net)

Figure 8.11 - Variable selection over time (h = 1, 6)
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Figure 8.12 - Variable selection over time (h = 12, 24)
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Figure 8.13 - Variable importance (h = 1, 6)
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Figure 8.14 - Variable importance (h = 12, 24)
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Figure 8.15 - Word clouds (h = 24)

Panel (a): elastic net (left) and adalasso (right)

Panel (b): ridge regression (left) and random forest (right)

Panel (c): xgboost
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Figure 8.16 - Fan charts and probability density functions (PDFs)
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Figure 8.17 - Fan charts and probability density functions (PDFs)
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Appendix 9. Other results - quarterly frequency

Figure 9.1 - Root Mean Squared Error (RMSE)

Note: RMSE (vertical axis) computed along the pseudo out-of-sample exercise for each forecast horizon (horizontal axis).
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Figure 9.2 - MSE Decomposition (h = 4, 8)
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Figure 9.3 - MSE Decomposition (h = 14, 20)
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Figure 9.4 - Oil price change and forecasts (h = 1, 4, 8, 20)
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Figure 9.5 - Pseudo out-of-sample forecasts (h = 1, ..., 20)
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Figure 9.6 - Cumulative Square Prediction Error (h = 1)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.7 - Cumulative Square Prediction Error (h = 4)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).

91



Figure 9.8 - Cumulative Square Prediction Error (h = 8)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.9 - Cumulative Square Prediction Error (h = 20)

Notes: Graphs show time series plots of the differences (over time) between the Cumulative

Squared Prediction Error (CSPE, divided by 10,000) of a given model and the CSPE of the

benchmark model (RW). Figures above (below) zero indicate that the benchmark is better (worse).
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Figure 9.10 - Number of selected variables (lasso, adalasso, elastic net)

Figure 9.11 - Variable selection over time (h = 1, 4)
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Figure 9.12 - Variable selection over time (h = 8, 20)
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Figure 9.13 - Variable importance (h = 1, 4)
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Figure 9.14 - Variable importance (h = 8, 20)
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Figure 9.15 - Word clouds (h = 20)

Panel (a): elastic net (left) and adalasso (right)

Panel (b): ridge regression (left) and random forest (right)

Panel (c): xgboost
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Figure 9.16 - Fan charts and probability density functions (PDFs)
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Figure 9.17 - Fan charts and probability density functions (PDFs)
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