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Non-technical Summary 

This paper studies the interaction between commodity prices and global economic 

activity in a setup where a representative cost-minimizing firm chooses optimal inputs as 

derived demands. Our focus is on important globally traded commodities, whose supply 

function is very price inelastic in the short run. Key examples studied here are Oil and major 

metal commodities, such as Aluminum, Copper and Nickel. Our empirical evidence fully 

supports the theoretical results of the derived-demand model. Indeed, this paper shows 

overwhelming evidence that cycles in oil prices are synchronized to those of global industrial 

production. This evidence is stronger regarding the global economy but holds as well for the 

U.S. economy. Our first original contribution is to investigate and find common cycles 

accounting for theory and empirics. 

Our second contribution is to investigate the usefulness of the common-feature VAR-

based approach for forecasting global measures of economic activity - U.S. GDP and OECD's 

GDP. In this sense, commodity prices are employed to help forecasting economic activity, 

relying again on the role commodities play in the derived-demand model. This is important, 

since commodity prices are observed on an almost continuous-time basis, but economic 

activity is observed at a much lower frequency. This way, commodity prices could give early 

signals about future global economic activity. Our empirical evidence in forecasting global 

measures of economic activity emphasizes the importance of conditioning on either oil prices 

or metal-commodity prices, relying on parameter-reduction techniques that favor optimal 

forecasts. Forecasting gains are substantial for U.S. GDP, but results for OECD's GDP are 

disappointing. 

Finally, the third objective of the paper is to forecast oil prices over short horizons 

(monthly data) based on techniques that view the optimal forecast as a common feature, which 

can be identified by using a cross-sectional average of a group of forecasts. The model 

combination approach considers 254 macroeconomic and financial covariates available from 

different databases. From this group, 20 covariates are selected and used on 32,412 different 

models - all predicting oil prices. When these models are combined using optimal techniques, 

they outperform the random-walk model with an out-of-sample R² statistic that can reach up 

to 14%. This is a major improvement vis-a-vis the previous literature. 
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Sumário Não Técnico 

Este artigo estuda a interação entre os preços de commodities e atividade econômica 

global em um arcabouço onde uma firma representativa que minimiza custos escolhe seus 

insumos de forma ótima. Nosso foco está em commodities comercializadas globalmente, cuja 

função de oferta é muito inelástica ao preço no curto prazo. Os principais exemplos estudados 

aqui são petróleo e as principais commodities metálicas, como alumínio, cobre e níquel. Nossa 

evidência empírica apoia inteiramente os resultados teóricos do modelo de demanda derivada. 

De fato, este artigo apresenta evidências contundentes de que os ciclos dos preços do petróleo 

são sincronizados com os da produção industrial global. Essa evidência é mais forte em 

relação à economia global, mas também é válida para a economia dos EUA. A primeira 

contribuição original deste artigo é investigar e encontrar ciclos comuns sob os aspectos 

teórico e empírico. 

Nossa segunda contribuição é investigar a utilidade da abordagem de common features 

baseada em VAR na previsão de medidas globais de atividade econômica - PIB dos EUA e 

PIB da OCDE. Neste sentido, preços de commodities são utilizados para ajudar a prever a 

atividade econômica, contando novamente com o papel que as commodities desempenham no 

modelo de demanda derivada. Isso é importante, uma vez que os preços das commodities são 

observados em uma base quase contínua, enquanto que a atividade econômica é observada 

com uma frequência muito menor. Dessa forma, os preços das commodities podem dar sinais 

antecedentes sobre a atividade econômica global futura. Nossa evidência empírica na previsão 

de medidas globais de atividade econômica enfatiza a importância de condicionar os preços 

do petróleo ou das commodities metálicas, contando com técnicas de redução de parâmetros 

que favoreçam previsões ótimas. Os ganhos de previsão são substanciais para o PIB dos EUA, 

mas os resultados para o PIB da OCDE são decepcionantes. 

Finalmente, o terceiro objetivo do artigo é prever os preços do petróleo em horizontes 

curtos (dados mensais) com base em técnicas que consideram a previsão ótima como uma 

common feature, que pode ser identificada por meio de uma média cross-sectional de um 

grupo de previsões. Tal abordagem de combinação de modelos considera 254 covariáveis 

macroeconômicas e financeiras de diferentes bases de dados. Desse grupo, 20 covariáveis são 

selecionadas e usadas em 32.412 modelos diferentes - todas prevendo os preços do petróleo. 

Quando esses modelos são combinados usando técnicas de otimização, eles superam o modelo 

de passeio aleatório com uma estatística R² fora da amostra que pode chegar a 14%, 

representando uma grande melhoria em relação à literatura anterior. 

4



Commodity Prices and Global Economic
Activity: A Derived-Demand Approach∗

Angelo Mont’Alverne Duarte†

Wagner Piazza Gaglianone‡

Osmani Teixeira de Carvalho Guillén§

João Victor Issler¶

Abstract
In this paper, a derived-demand approach is proposed to explain the positive

correlation and the synchronicity between the growth rates of commodity prices

and of economic activity at the global level. The focus is on important traded

commodities, whose supply function is very price inelastic in the short run, such

as oil and major metal commodities. The paper contributions are as follows.

First, the synchronicity of oil-price and global activity cycles is presented using

the tools of the common-feature literature. Second, it is shown how to improve

forecasts of global activity using commodity prices, noting that one observes

the latter at an almost continuous-time basis, but the former at a much lower

frequency and with considerable delay. Third, the usefulness of optimal forecast

combinations for oil prices is discussed employing a wide array of macroeconomic

and financial variables. The out-of-sample R2 statistic for model combinations

can reach up to about 14%, a major improvement over the previous literature.

Keywords: Commodity prices; Derived-demand model; Common features; Oil

price forecasts.

JEL Classification: C30; C53; E27; E37.

The Working Papers should not be reported as representing the views of the

Banco Central do Brasil. The views expressed in the papers are those of the

author(s) and do not necessarily reflect those of the Banco Central do Brasil.

∗The views expressed in the paper are those of the authors alone and do not necessarily reflect

those of the Banco Central do Brasil or of FGV. We gratefully acknowledge the financial support of

CNPq, FGV, FAPERJ, CAPES, and INCT. This study was financed in part by the Coordenação

de Aperfeiçoamento de Pessoal de Nível Superior —Brasil (CAPES) —Finance Code 001. We thank

Marcia Waleria Machado and Andrea Machado for excellent research assistance.
†Department of Competition and Financial Market Structure, Banco Central do Brasil. E-mail:

angelo.duarte@bcb.gov.br
‡Research Department, Banco Central do Brasil. E-mail: wagner.gaglianone@bcb.gov.br
§Open Market Operations Department, Banco Central do Brasil, and IBMEC/RJ. E-mail:

osmani.guillen@bcb.gov.br
¶Corresponding Author, Graduate School of Economics and Finance, Getulio Vargas Foundation

—FGV EPGE. E-mail: Joao.Issler@fgv.br

5



1 Introduction

The purpose of this paper is to study the interaction between commodity-price changes

and global economic activity measures in a setup where a representative cost-minimizing

firm chooses optimal inputs (commodity quantum) as derived demands. The focus is

on important globally traded commodities, whose supply function is very price inelas-

tic in the short run. Key examples studied in this paper are Oil (Oil derivatives) and

also major metal commodities, such as Aluminum, Copper, and Nickel. The reason for

an inelastic short-run supply function lies on the fact that the production function of

these commodities is very capital intensive and it takes time to build capital (Kydland

and Prescott, 1982). So, as a first approximation, the short-run supply of these com-

modities, which includes inventories, can be treated as given.1 As production of the

global representative firm increases (decreases), there is a contemporaneous increase

(decrease) in the prices of these commodities, since their respective supply does not

respond to such demand increases (decreases). This leads to potential synchronization

between the cycles of commodity prices and those of global economic activity —i.e.,

common cycles.

The econometric tools used in this paper come from the common feature literature,

e.g., Vahid and Engle (1993), Engle and Issler (1995), Issler and Vahid (2001), Hecq

et al. (2006), Issler and Lima (2009), Athanasopoulos et al. (2011), and Gaglianone

and Issler (2019), inter alia. Unobserved common components of a group of economic

series are identified as functions of observables, allowing the consistent estimation

of common trends, common cycles, and of optimal forecasts of economic data. In

a traditional time-series context, trends and cycles can be jointly investigated in a

unified multivariate setting based on vector autoregressive (VAR) models, that could

be estimated either by maximum likelihood or by the generalized method of moments.

Optimal forecasts, on the other hand, are obtained in panel-data framework, where

forecasts of an increasing number of models or of forecast-survey results are optimally

combined as either simple averages or weighted averages, respectively. A key property

of all of these common unobserved components is that they can be removed by linear

combination of the underlying observable series.

The first original contribution of this paper is to test for the synchronization (com-

mon cycles) of oil-price and global economic activity variation by using the VAR-based

framework. The importance of demand factors for commodity prices has been known

at least since the influential work of Deaton and Laroque (1996). For oil prices, recent

work on demand factors include Dvir and Rogoff (2014), Kilian and Lee (2014), and

Aastveit, Bjørnland and Thorsrud (2015). For metal commodities, Jerrett and Cud-

dington (2008) conjectured whether there could be super-cycles in their prices linked

to the impressive economic growth in China since the 1990’s. Issler et al. (2014), on

1An inelastic short-run supply function is not without controversy. See Kilian (2009), Kilian and
Murphy (2012), Baumeister and Hamilton (2019) and Herrera and Rangaraju (2020).
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the other hand, proposed the use of the derived-demand model to explain the syn-

chronization between metal-commodity prices and global economic activity. To the

best of our knowledge, despite the existence of a mature literature for oil prices, this

is the first paper to use modern econometric techniques designed to detect common

cycles to examine the synchronicity between the cycles in oil prices and global business

cycles. Since oil is the major commodity traded in global markets, it is important to

understand and to properly model its dynamic behavior using modern econometric

tools.

The VAR-based econometric setup used in this paper potentially implies a sub-

stantial parameter reduction in these models, leading to effi ciency in estimation of the

endogenous series of the system. From an empirical point-of-view, the application of

these techniques has proven to be useful in different contexts: Issler and Vahid (2001)

find a 25% reduction in out-of-sample mean-squared forecast error (MSFE) for U.S.

macroeconomic aggregates, Vahid and Issler (2002) find a reduction of 20% for the

MSFE of U.S. coincident series, and Athanasopoulos et al. (2011) find a reduction of

47% for the MSFE of Brazilian Inflation.

This paper confirms the usefulness of the common-feature VAR-based approach

to forecast global measures of economic activity —global Industrial Production, U.S.

GDP, and OECD’s GDP. This paper also investigates possible forecast gains in eco-

nomic activity by adding commodity prices to a baseline model, relying on the role

commodity prices play in the derived-demand model. This is a standard use of com-

modity prices within the common-feature methodology. A different approach to this

same issue benefits from the fact that one observes commodity prices on an almost

continuous-time basis, but observe economic activity at a much lower frequency and

with a substantial delay. Given the potential synchronicity of the cycles in economic

activity and in commodity prices, one can employ a mixed-frequency (MIDAS, An-

dreou et al., 2013) framework to take advantage of the early signals (in chronological

time) that commodity prices give for forecasting current economic activity. Notice

that the advantage of the MIDAS approach relies on the fact that commodity prices

are traded daily in global markets, while economic-activity data take time to be re-

leased by offi cial authorities in their respective countries. This is the second original

contribution of this paper.

The third original contribution of this paper is to compute optimal forecast so-

lutions for oil prices, in the context of forecast combinations, where the number of

forecasts, i = 1, 2, · · · , N , and of time-series observations, t = 1, 2, · · · , T , grow with-
out bound; see Issler and Lima (2009). In this paper, the optimal forecast of oil-price

growth rates at a given forecast horizon is the common feature of forecasts made by a

diverse group of econometric models. The natural panel-data structure allows the iden-

tification and estimation of the oil-price optimal forecasts where the econometrician

employs a mean-squared-error risk function. In this context, forecast combinations
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work well because of risk diversification: idiosyncratic forecast errors vanish since the

law-of-large numbers works to eliminate the uncertainty associated with them as the

number of forecasts being combined increases without bounds. Using these techniques,

oil prices are forecasted conditioning on a large group of macroeconomic and financial

predictors available from different databases: Goyal and Welch (2008), FRED-MD

(McCracken and Ng, 2015), EPU (Economic Policy Uncertainty indexes of Baker,

Bloom and Davis, 2015), GPR (Geopolitical Risk indexes of Caldara and Iacoviello,

2018).

The main focus is on the period from 1990 onwards for estimation, testing, and

forecasting, because of its specificities. This period has been well known for an increase

in the trade and financial openness of the global economy, something that has been

labelled by some authors as The Washington Consensus, and by others simply as Glob-

alization. Since 1990, there has been the emergence of important players in industrial

production at the global level, such as China, India, and South Korea, as well as the

emergence of resource-rich countries, that are commodity exporters, such as Brazil,

Indonesia, Russia, and South Africa. Countries in these two groups are connected

by a global supply chain.2 Moreover, the previous decade (1980’s) has witnessed the

appearance of crude oil futures (West Texas Intermediate —WTI), as is known. Oil

was first traded on the New York Mercantile Exchange (NYMEX) on March 30, 1983,

but a consolidated oil market in size and scope of financial products is a more recent

phenomenon dating from the 1990s.

First, the empirical results confirm the importance of a global demand factor for

oil-price variations that are linked to the derived-demand model for oil. From 1990

onwards, Brent-price variations are synchronized with variations of global Industrial

Production and of U.S. Industrial Production at the monthly and quarterly frequen-

cies. At the quarterly frequency, Brent-price variations are also synchronized with

variations of China’s GDP. If one increases the sample period to include pre-1990 data,

synchronization vanishes, which potentially highlights the importance of globalization

to explain this phenomenon.

Second, it is shown that employing a VAR-based system approach consistent with

the derived-demand model helps forecasting either global Industrial Production, U.S.

GDP and OECD GDP. At the quarterly frequency, VAR-based forecasts that impose

the restrictions consistent with the derived demand model for oil or for metal prices

produce a smaller out-of-sample MSFE for U.S. GDP, compared to models that ignore

the link between commodity prices and global economic activity. Results for OECD’s

GDP are also positive in general, although on occasion the opposite is observed. The

2For the record, focusing on a longer time span one does not find here the same evidence of
synchronization found for the period 1990 onwards. This evidence indicates the synchronization of
global output and crude-oil prices is a recent phenomenon linked to economic globalization and to the
appearance of a proper trading market for oil during the 1980’s. Of course, this is just a conjecture
from our part. Further exploration of this topic is beyond the scope of this paper.
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MIDAS approach relying on common cycles between the growth rate of oil prices and

of global measures of economic activity improves predicting U.S. GDP growth rates,

but not OECD’s GDP growth rates.

Finally, the forecast combination approach for Brent-price variations performs best

when compared with commonly used alternatives, like the weighted-average forecast

using the reciprocal of the MSFE as weights, the best model chosen by BIC, and

the random-walk model. In particular, it beats the random-walk model at different

horizons —with a maximum out-of-sample gains of about 14%.

The paper is divided as follows: Section 2 presents a theoretical model that delivers

common cycles among oil prices and industrial output. Section 3 summarizes the

econometric techniques employed here. A complete treatment is presented on the

Online Appendix to this paper. The empirical results are reported in detail in Section

4. Section 5 concludes.

2 Understanding the Short Run Fluctuations of Oil

and Metal Prices

It is argued here there is an important role for demand shocks in explaining the short-

run variation of oil and metal prices. These are important globally traded commodities,

whose supply function is very price inelastic in the short run —zero or close to zero

elasticity. The reason for that lies on the fact that the production function of these

commodities is very capital intensive and it takes time to build capital. The Online

Appendix to this paper has a more complete treatment, based on Issler et al. (2014).

Consider a representative cost-minimizing global industrial firm, which chooses the

optimal quantity of inputs xi, i = 1, 2, · · · , n, all stacked in a vector x = (x1, x2, · · · , xn)′,

when producing output y0. The choice of output y0 can be thought as an optimal de-

cision coming from the firm’s output market. The corresponding prices for inputs

i = 1, 2, · · · , n, stacked in a vector w = (w1, w2, · · · , wn)′, are considered given for the

firm when choosing x. The firm’s cost minimization problem in this context is:

min
x

C(w, x) = w · x s.t. f(x) ≥ y0. (1)

If the supply of commodity i is given in the short run, an increase in y0 will lead to

an increase in wi; see the Online Appendix. This result is completely intuitive: given

concavity of the cost function, if the representative firm wants to increase industrial

production in the short run, it will put an upward pressure on the price of these

commodities, stemming from the fact that it should take more inputs to produce

more, otherwise the firm is not a cost minimizer.

Next, there is a simple theoretical example illustrating this result, where production

follows the well-known Cobb-Douglas production function with constant returns to
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scale:

y = Axα1x
1−α
2 , 0 < α < 1. (2)

The first input (input 1) will represent the input with a short-run fixed supply (oil,

oil derivatives, and metal commodities). The Lagrangian for the cost-minimizing firm

reads as:

L = w1x1 + w2x2 − λ
(
y0 − Axα1x1−α2

)
,

where λ is the Lagrange Multiplier. The first-order conditions are:

w1 = λαA

(
x2
x1

)1−α
, (3)

w2 = λ (1− α)A

(
x2
x1

)−α
, (4)

y0 = Axα1x
1−α
2 . (5)

Using equations (3)-(5), it is straightforward to find the optimal demand for inputs

1 and 2 are respectively:

x∗1 (w1, w2, y0) =
y0
A
w1−α2 wα−11

(
α

1− α

)1−α
,

x∗2 (w1, w2, y0) =
y0
A
wα1w

−α
2

(
1− α
α

)α
.

If one assumes a short-run fixed supply for input 1 (say, xs1), then, its short-run

market equilibrium condition is:

xs1 =
y0
A
w1−α2 wα−11

(
α

1− α

)1−α
. (6)

Taking logs of (6), solving for ln (w1) gives:

ln (w1) =
1

1− α ln (y0)−
1

1− α ln
(
xs1
)
− 1

1− α ln (A) + ln (w2) + ln

(
α

1− α

)
,

where ln
(
xs1
)
and ln (A) are constants, but, ln (w2) depends on ln (y0), through an

equilibrium condition analogous to (6). As long as input 2 supply responds propor-

tionally less than demand to a change in ln (y0), one should have
∂ ln(w2)
∂ ln(y0)

> 0, obtaining

a positive short-run elasticity and the synchronicity of cycles for ln (w1) and ln (y0):

∂ ln (w1)

∂ ln (y0)
=

1

1− α +
∂ ln (w1)

∂ ln (w2)

∂ ln (w2)

∂ ln (y0)
=

1

1− α +
∂ ln (w2)

∂ ln (y0)
> 0.
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3 Econometric Techniques

The VAR- and the GMM-based Approaches

This section presents a summarized version of the econometric techniques employed

in this paper. A more complete treatment is presented in the Online Appendix, which

is based on Issler and Vahid (2001). Assume that yt is a n-vector of I(1) series that

includes (log) oil prices and industrial production and additional relevant series, which

can be well represented by a vector autoregression (VAR) model in levels.

One natural question that arises is how the theoretical model of the last section

interacts with the econometric models employed here. As noted by King, Plosser,

Stock and Watson (1991), in their well-known seminal use of VAR models, “Equation

(5) [Wold Representation, consistent with a VAR] is a reduced-form relation and,

except for purposes of forecasting, is of little inherent interest. What is of interest is

the set of structural relations that leads to (5)...”From our perspective, a VAR model

containing the economic series discussed in the last section is a reduced form, but

theory allows one to use it to test for structural relations —the most relevant for this

paper is the synchronicity of the commodity-price cycles and global economic activity,

but one can also think of others involving long-run relationships (cointegration), and

structural identification using orthogonalization procedures as well.

If the elements of yt cointegrate, the VAR for yt can be written as a vector error-

correction model (VECM). Vahid and Engle (1993) show the VECM representation

will be restricted if there exist white noise independent linear combinations α̃
′
i, stacked

in an s × n matrix α̃′, of the series ∆ yt, i.e., if the elements of ∆ yt share common-

cyclical features. They consider an α̃ matrix normalized as α̃ =

[
Is

α̃∗(n−s)×s

]
and

complete the system by adding the last n− s unconstrained VECM equations:

 Is α̃∗′

0
(n−s)×s

In−s

∆ yt =

 0
s×(np+r)

Γ∗∗1 . . . Γ∗∗p−1 γ
∗




∆ yt−1
...

∆ yt−p+1

α′yt−1

+ vt, (7)

where vt = α̃′εt, α′yt−1 are the error-correction terms, and matrices Γ∗∗1 ,Γ
∗∗
2 , . . . ,Γ

∗∗
p−1 and

γ∗ come from the last n− s unconstrained VECM equations. Note the loading matrix

of ∆ yt is always invertible, so one can recover a restricted reduced-form VECM for

∆ yt by pre-multiplying (7) by its inverse.

Estimation of the system in (7) can be performed by employing full-information

maximum likelihood (FIML) under a known distribution for vt, or by the generalized

method of moments (GMM) if the properties of vt are unknown. For the type of data

considered in this paper, GMM is the preferred method. It exploits the fact that the

errors vt are orthogonal to the regressors in (7), α′yt−1, ∆ yt−1, ∆ yt−2, · · · , ∆ yt−p+1,
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collected in a vector Zt−1:

0 = E [vt ⊗ Zt−1] , (8)

i.e., the orthogonality between all the elements in vt and all the elements in Zt−1. The

test for common cycles is an over-identifying restriction test — the J test proposed

in Hansen (1982) —which has an asymptotic χ2 distribution with degrees of freedom

equal to the number of over-identifying restrictions.

Optimal Forecast Combination

The common-feature approach in Issler and Lima (2009) also offers optimal forecasting

techniques under a mean-squared-error risk function; see the Online Appendix for

a broader treatment. They are appropriate for forecasting a weakly stationary and

ergodic univariate process {yt} using a large number of forecasts that will be combined
to yield an optimal forecast. These forecasts are the result of several econometric

models that need to be produced prior to combining forecasts. Forecasts of yt (change

in log oil prices),3 computed using conditioning sets lagged h periods, are denoted by

fhi,t, i = 1, 2, . . . , N . Therefore, fhi,t are h-step-ahead forecasts and N is the number of

models estimated to forecast yt.

Issler and Lima assume forecasts fhi,t’s are modelled as approximations to the opti-

mal forecast (Et−h(yt)) as follows:

fhi,t = Et−h(yt) + khi + εhi,t, (9)

where khi is the individual model time-invariant bias for h-step-ahead prediction and

εhi,t is the individual model error term in approximating Et−h(yt), where E(εhi,t) = 0

for all i, t, and h. Here, the optimal forecast is a common feature of all individual

forecasts and khi and ε
h
i,t arise because of forecast misspecification. The term khi is

identically distributed (but not independent), i.e., khi ∼ i.d.
(
Bh, σ2

kh

)
.

The feasible bias-corrected average forecast (BCAF) 1
N

∑N
i=1 f

h
i,t− B̂h, where B̂h is

a consistent estimate of Bh, is an optimal forecasting device obeying:

plim
(T,N→∞)seq

(
1

N

N∑
i=1

fhi,t − B̂h

)
= Et−h(yt),

where plim
(T,N→∞)seq

is the probability limit using the sequential asymptotic framework

of Phillips and Moon (1999). Issler and Lima also propose a test for zero bias, i.e.,

H0 : Bh = 0, using the approach in Conley (1999). In case H0 is not rejected in this

test, there is no need to use a bias correction device in forecasting. Therefore, the

optimal forecast will be the simple cross-sectional average of forecasts: 1
N

∑N
i=1 f

h
i,t.

3Forecast-accuracy statistics can be based on log oil prices instead.
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MIDAS Regressions

Following the notation of Andreou et al. (2013), assume the variable of interest is

observed at some low frequency (e.g., real GDP quarterly growth rate), denoted by

Y Q
t , and the goal is to forecast this variable h−quarters ahead, that is Y Q

t+h. The

econometrician has daily observations of the financial predictors X. These are the

growth rates of commodity prices. Denote by XD
m−j,t the jth day counting backward

in quarter t, where m denotes the number of trading days per quarter — assumed

to be constant for the sake of simplicity (e.g., m = 66). Hence, XD
m,t, considering

j = 0, corresponds to the observation of X on the last day of quarter t; see the Online

Appendix for a broader treatment.

The ADL-MIDAS (pQY , q
D
X) model is given by:

Y Q
t+h = µh +

pQY −1∑
j=0

ρhj+1Y
Q
t−j + βh

qDX−1∑
j=0

m−1∑
i=0

ωθ
h

i+j∗mX
D
m−i,t−j + εht+h, (10)

which entails pQY lags of Y
Q
t and qDX lags of X

D
m−i,t. The weighting scheme ω involves

a low-dimensional vector of unknown parameters θ, used to avoid the parameter pro-

liferation implied by the estimation of coeffi cients associated to high frequency lags.

Following Andreou et al., the exponential Almon lag polynomial is adopted here.

To be consistent with the observed synchronicity of the cycles in GDP growth

and on commodity prices represented by the XD
m,t variables, one must impose the

restriction:

ρh1 = ρh2 = · · · = ρh
pQY

= 0, (11)

since lagged GDP growth cannot enter in the white noise linear combination, thus

making εht+h a white-noise process.

This setup in (10) can be extended to include macroeconomic data available at

monthly frequency. Clements and Galvão (2008) introduced the MIDAS regression

with leads, where the notion of leads pertains to the fact that one can use information

between t and t + 1. Suppose one is 2 months into quarter t + 1 (i.e., at the end of

February, May, August or November). This implies one has approximately 44 trading

days (2 months) of daily data.

The ADL-MIDAS (pQY , q
D
X , J

M
X , J

D
X ) regression model with leads (in both monthly

and daily data) is described as follows (see Andreou et al., 2013, equation 5.1):

Y Q
t+h = µh +

pQY −1∑
j=0

ρhj+1Y
Q
t−j +

2∑
j=3−JMX

γhjX
M
3−j,t+1 (12)

+βh

 m−1∑
i=(3−JDX )∗m/3

ωθ
h

i−mX
D
m−i,t+1 +

qDX−1∑
j=0

m−1∑
i=0

ωθ
h

i+j∗mX
D
m−i,t−j

+ εht+h,
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where XD
m−i,t+1 denotes the ith day counting backward in quarter t+ 1, and JDX repre-

sents daily leads, for the daily predictor, in terms of multiples of months (i.e., JDX = 1

and 2). In other words, in the case of JDX = 2, XD
2m/3,t+1 corresponds to 2m/3 = 44

leads (assuming m = 66), while XD
1,t+1 corresponds to 1 lead for the daily predictor.

The definitions of JMX and XM
3−j,t+1, associated to monthly data, are quite similar to

the ones used for daily data. Again, to have a MIDAS model consistent with the

synchronicity of cycles between GDP and commodity prices one must impose (11).

4 Empirical analysis

The focus is on the period from 1990 onwards because of its specificities. This period

has been well known for an increasing trade and financial openness of the global

economy, something that has been labelled by some authors as Globalization. Since

crude oil is a commodity that has a global character and has been traded in financial

markets from the 1980s onwards, but Globalization is a 1990s phenomenon, the focus

on this period makes sense. For the record, focusing on a longer time span one does

not find here the same evidence found for the period 1990 onwards.4

4.1 Data and Empirical Implementation

On a monthly basis, the price of Brent Crude Oil and global industrial production

series were both extracted from the International Financial Statistics (IFS) of the

IMF. At this frequency they are available from 1990:M1 through 2019:M5. Nominal

oil price data were deflated using the producer price index (PPI) for the U.S., which

was extracted from the FRED database of the St. Louis FED.

On a quarterly basis, data for Brent Crude Oil, available from 1990:Q1 through

2019:Q1, were extracted from IFS database. Nominal price data were deflated using

the PPI for the U.S. Metal-price data are also available from the IFS database for the

period from 1990:Q1 through 2019:Q1. Global industrial production at the quarterly

frequency was computed as the average monthly series. The U.S. GDP data is also ob-

tained from the FRED database, kept by the St. Louis FED. The Chinese and Global

GDP data were obtained from the IFS database, from 1990:Q1 through 2019:Q1, and

the OECD GDP data were extracted from the OECD database for the same period.

In the forecasting exercise, using model combination, covariates (predictors) which

are potentially correlated with the price of oil were employed. The start is the list

of covariates in Hong and Yogo (2009, 2012). In addition to this data, out-of-sample

forecasting exercises were conducted to select 20 monthly variables using the adaptive

lasso approach of Zou (2006). These are potential covariates to forecast oil prices.

4Balcilar et al. (2017) find a similar result when they investigate the existence of common trends
and cycles for oil prices and the S&P500 index using a long-span data set. Indeed, they only find a
common cycle for the post-WW II period.
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They came from a pool of 254 contemporaneous variables that are present in dif-

ferent databases: Goyal and Welch (2008), FRED-MD (McCracken and Ng, 2015),

EPU (Economic Policy Uncertainty indexes of Baker, Bloom and Davis, 2015), GPR

(Geopolitical Risk indexes of Caldara and Iacoviello, 2018) and the Thomson Reuters

database. These 254 variables are lagged from one up to twelve months, forming a final

large database containing 3,048 time series, from which those 20 series more frequently

selected by the adaptive lasso were chosen, in an out-of-sample forecasting exercise of

Brent oil price variation.

4.2 Cointegration and Common-Cycle Tests for Oil Prices

Monthly Frequency

Data for the (log) real prices of oil and for (log) U.S. Industrial Production (sea-

sonally adjusted) are available from 1990:01 through 2019:05, whereas data for (log)

Global Industrial Production (seasonally adjusted) are available from 1992:01 through

2019:05. All these series show signs of containing a unit root, which is confirmed for

all of them using the Phillips and Perron (1989) test. Testing for stationarity rejected

the null of stationarity using the Kwiatkowski et al. (1992) —KPSS test, which gives

us confidence to model these series as I (1).

First, this section investigates whether prices for oil cointegrate and/or share com-

mon cycles with U.S. and Global industrial production. Results are presented in Table

1. Regarding cointegration, there is no evidence of a long-run relationship between oil

prices and U.S. and Global Industrial Production, respectively, for the last 29 years.

On the other hand, results for common cycles are very different. Using a GMM ap-

proach, at the 5% significance level, there is evidence of strong-form common-cyclical

features between these two measures of industrial production and oil prices: U.S. and

Global Industrial Production, although results for the U.S. Industrial Production were

borderline, near rejection by the J-Statistic. As a robustness check, this exercise also

experimented with alternative lag-length choices in the VAR-based analysis, but the

results were robust to alternative choices.5 This section also tested for common cy-

cles when the Kilian Index (Kilian, 2009) was used as a measure of global economic

activity. Since this index is already in cyclical form (%, deviations from trend), the

Beveridge and Nelson (1981) cycle is extracted from the (log) of Brent oil prices in

testing for synchronicity. Results are borderline (at 5% significance) for our preferred

specification with two lags, but using a three-lag structure confirms the existence of

5It is adopted here the standard procedure in the literature of inferring the lag lenght of the
VAR using information criteria, test for cointegration, and then, conditional on cointegration, test
for common cycles. As pointed out in Vahid and Issler (2002) and Athanasopoulos et al. (2011),
there are some risks of implementing such strategy without checking whether the errors are indeed
multivariate white noise in a context where short-run restrictions (common cycles) are likely to hold
or where both short- and long-run restrictions (common cycles and cointegration) are likely to hold.
Therefore, diagnostic tests are performed on VAR residuals to be on the safe side.
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common cycles between Brent prices and the Kilian Index.

∆y1,t ∆y2,t α* J­statistics
(1, α*)

Oil US Industrial Production (SF) 4L  ­5.08** 0.039
(2.27) {0.066}

Oil Global Industrial Production (SF) 4L  ­7.07*** 0.026
(1.88) {0.284}

Oil Global Industrial Production (WF) 4L  ­7.36*** 0.027
(1.86) {0.344}

Oil Kilian Index (SF) 2L  ­0.366* 0.022
(0.19) {0.062}

Oil Kilian Index (SF) 3L  ­0.39** 0.026
(0.19) {0.115}

Robust Standard Errors (HAC) are in parentheses and p­values are in braces.
2L, 3L and 4L means a VAR with 2, 3 and 4 lags. SF and WF denote,
respectively, strong­ and weak­form common­cyclical features tests. Testing the
Kilian Index used the Beveridge and Nelson (1981) cycle of (log) Brent price,
not its first difference. The Kilian Index was divided by 100, since it measured
in percentages. *,**, and *** represent significance at the 10%, 5% and 1% levels.

Table 1 ­ Common­Feature Tests (monthly 1991M01­2019M05)

Figure 1 below plots the growth rates of oil prices —labelled ∆ ln
(
pOILt

)
—and the

growth rates of global industrial production — labelled ∆ ln (ipt), both standardized

(zero mean, unit variance). These series show clear signs of serial correlation. But,

at the 5% significance level, the empirical results in Table 1 found that the following

linear combination is white noise (unpredictable)6:

∆ ln
(
pOILt

)
− 7.07
(1.86)

×∆ ln (ipt) +0.013
(0.006)

, (13)

confirming that ∆ ln
(
pOILt

)
and ∆ ln (ipt) are synchronized and that ln

(
pOILt

)
and

ln (ipt) share a common cycle.

Figure 1: Monthly Growth Rates of Brent

Prices and Global Industrial Production

(standardized)

6Equation (13) represents the residual of the first equation in the system (7).
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Quarterly Frequency

On a quarterly frequency, data for (log) oil prices are available from 1990:Q1 through

2019:Q1. Again, the nominal series is deflated by U.S. PPI. This section investigates

the existence of pairwise common features between oil prices and aggregate measures of

(log) output, such as Industrial Production (U.S. and Global), U.S. GDP, and China’s

GDP. All these series show signs of containing a unit root, which is confirmed for all

of them using the Phillips-Perron test and the KPSS test.

There is no cointegration between real oil prices and these output measures. On

short-run relationships, Table 2 presents results of pairwise common-cycle tests be-

tween oil prices and these output measures. Using the J-statistic, at the 5% level,

there is overwhelming evidence of a strong-form common cycle between the instanta-

neous growth rate of oil prices and that of U.S. GDP, U.S. Industrial Production, and

Global Industrial Production. Evidence for China’s GDP is not very robust. Notice

that different choices for the lag length of the VAR make no difference for the exis-

tence of common cycles. Focusing on the significance (strength) of the white-noise

linear combination, as well at the p-value of the J-statistic, there is stronger evidence

of a common cycle for oil prices and Global Industrial Production, and to a lesser

extent for oil prices and U.S. Industrial Production, China’s GDP, and U.S. GDP,

on that order. Tests using the Kilian Index do not show conclusive results, since the

coeffi cient on the index was not significant at usual levels, despite the fact that the

over-identifying-restriction test did not reject the null of orthogonality between errors

and instruments.

SCCF
∆y1,t ∆y2,t α* J­statistic

Oil US Industrial Production (SF) 1L  ­5.67* 0.013
(3.11) {0.213}

Oil US Industrial Production (SF) 2L  ­6.38** 0.023
(2.82) {0.436}

Oil US GDP (SF) 3L ­11.28 0.042
(6.92) {0.422}

Oil US GDP (SF) 4L ­5.40 0.061
(5.99) {0.621}

Oil China GDP (SF) 4L ­2.51 0.041
(2.89) {0.707}

Oil China GDP (WF) 4L  ­8.80** 0.048
(4.06) {0.722}

Oil Global Industrial Production (SF) 2L  ­4.55** 0.027
(1.91) {0.397}

Oil Global Industrial Production (SF) 3L  ­4.45** 0.037
(1.78) {0.549}

Oil Kilian Index (SF) 1L ­0.16 0.003
(0.27) {0.589}

Oil Kilian Index (SF) 2L ­0.31 0.020
(0.23) {0.536}

Robust Standard Errors (HAC) are in parentheses and p­values are in braces.
1L, 2L, 3L and 4L means a VAR with 1, 2, 3 and 4 lags. SF and WF denote,
respectively, strong­ and weak­form common­cyclical features tests. Testing the
Kilian Index used the Beveridge and Nelson (1981) cycle of (log) Brent price,
not its first difference. The Kilian Index was divided by 100, since it measured
in percentages. *,**, and *** represent significance at the 10%, 5% and 1% levels.

Table 2 ­ Common­Feature Tests Quarterly (1990Q01­2019Q01)

As an example of our findings, ∆ ln
(
pOILt

)
and ∆ ln (ipt) (global IP) show clear

signs of serial correlation. However, at the usual 5% or 10% significance levels, the
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empirical results in Table 2 found that the following linear combination is white noise:

∆ ln
(
pOILt

)
− 4.45

(1.784)
×∆ ln (ipt) +0.0146

(0.0167)
. (14)

4.3 Forecasting Global Economic Activity using Commodity

Prices

A large amount of studies investigate the relationship between oil prices and eco-

nomic activity. In general, they point out oil price shocks as recurrent sources of

economic fluctuations, and often suggest that a positive innovation in economic ac-

tivity is connected with an oil price increase; see Ratti and Vespignani (2016) and

Bjørnland, Larsen and Maih (2018). In particular, Narayan et al. (2014) test whether

oil prices predict economic growth, providing empirical evidence of greater predictabil-

ity for developed countries. Herrera, Lagalo and Wada (2015) evaluate the presence

of asymmetries in the relationship between economic activity and oil prices for a set

of OECD countries, containing both oil exporters and oil importers. In turn, Hamil-

ton (1983), Kilian (2009), and Kilian and Vigfusson (2017) investigate the extent to

which oil price shocks explain U.S. recessions. Regarding oil shocks, macroeconomic

fundamentals and monetary policy, Hamilton and Herrera (2004) challenge the view

that monetary policy could be used to eliminate adverse consequences of oil shocks.

This section verifies the usefulness of the common-feature VAR-based approach

for forecasting global measures of economic activity —U.S. GDP, global Industrial

Production (IP), and OECD’s GDP. Commodity prices are employed to help forecast-

ing economic activity, relying again on the synchronicity between the cycles of these

commodities and measures associated with global economic activity.

The proposed forecasting experiment entails the following steps:

1. Build a model only containing real economic activity, such as GDP (U.S., or

OECD’s) and global industrial production. This model can potentially exploit

common trends and common cycles among different economic activity variables,

with no role for commodity prices.

2. Build a model as in (1), augmented with commodity prices (oil or metal prices),

which can additionally exploit the synchronicity of cycles generated by the

derived-demand model.

3. Do a pseudo out-of-sample forecasting for these models separately, comparing

their forecast accuracy, taking the model in (1) as the benchmark.

This section performs two types of experiments. In the first, all data are included

in the same frequency, simply exploiting the parsimony that results in having a model

with short-run restrictions, i.e., equation (7), but augmented with commodity prices.
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The latter is compared with a model that could potentially have short-run restrictions

but that does not include commodity prices. In the second experiment, it is considered

the fact that commodity prices are sampled at a frequency higher than the one GDP

data are sampled: daily versus quarterly. Therefore, exploiting synchronicity at the

monthly frequency one can improve quarterly GDP forecasts by employing a mixed-

frequency MIDAS approach as in Andreou et al. (2013).

The model including only quarterly real U.S. GDP growth rates
(
∆ ln yUSt

)
and

global IP growth rates (∆ ln ipt) (model in (1)) exploits the existence of common cycles

between these two series. The cofeature vector eliminating common serial correlation

is α̃′ = (1, 0.426).

The full-sample quasi-structural model estimates for
(
∆ ln yUSt

)
and (∆ ln ipt) reads

as:  1 0.426
(0.333)

0 1

[ ∆ ln yUSt

∆ ln ipt

]
=

[
0 0

∗ ∗

][
∆ ln yUSt−1

∆ ln ipt−1

]
+ 2nd Lag

with standard errors in parentheses, the stars representing non-zero coeffi cients which

are omitted to save space. The J-test Statistic p-value is 0.3410, not rejecting the null

of orthogonality between errors and instruments. Note, however, that the coeffi cient

of (∆ ln ipt) in the common-cycle combination is not significant at the usual levels.

Issler et al. (2014) show evidence of common cycles between metal prices and global

industrial production. The VECM model including metal-price growth rates (Alu-

minum, ∆ ln pAlt , Copper, ∆ ln pCot , and Tin, ∆ ln pT int ) and their respective common-

cycle restrictions with respect to global industrial production is presented below, omit-

ting less-important parameter estimates. These three metal prices are the ones that

share a common cycle with global industrial production, as documented in Issler et al.

The J-test Statistic p-value for the system is 0.9998, not rejecting the null of orthogo-

nality between errors and instruments. This model is a good example of the parsimony

entailed by the existence of common-cyclical features.

1 0 0 0 −5.640
(0.369)

0 1 0 0 −5.587
(0.789)

0 0 1 0 −4.129
(0.597)

0 0 0 1 −0.232
(0.021)

0 0 0 0 1




∆ ln pAlt

∆ ln pCot

∆ ln pT int

∆ ln yUSt

∆ ln ipt

 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

∗ ∗ ∗ ∗ ∗




∆ ln pAlt−1

∆ ln pCot−1

∆ ln pT int−1

∆ ln yt−1

∆ ln ipt−1



+



0 0

0 0

0 0

0 0

−0.031
(0.003)

0.017
(0.002)


ECt−1︸ ︷︷ ︸
2×1

,
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where ECt−1 is the 2× 1 error-correction term in the VECM.

Regarding the MIDAS approach, this section forecasts the real GDP growth rate

(Y Q
t+h) for the U.S. or the OECD, h−quarters ahead. It is used as a monthly variable

XM
month=i = ∆ ln(global industrial production indexmonth=i), and as daily variables

XD
day=j = 1

15

15∑
k=1

∆ ln(commodity priceday=j−k+1), where the set of commodities is either

[Oil]′ or [Aluminium; Copper; Tin]′. The source of daily data is Thomson Reuters7.

Regarding model (10), the predictors [XD;XM ]′ are considered lagged two months

in respect to the end of the quarter of the observed GDP (Y Q
t ). In model (12), the

predictors [XD;XM ]′ are considered one and two months forwarded, respectively, in

respect to the end of the quarter of the observed GDP (Y Q
t ). In other words, for model

(12), information between periods t and t + 1 is taken into account when considering

leads of one and two months, respectively, for the commodity prices and the global

industrial production index. Therefore, one conditioned on a different information set

of the other models entertained in the experiment.

Next, the results of the forecast exercise devised above for metal prices are pre-

sented. Forecast accuracy is measured using the root-mean-squared error (RMSE) in

forecasting the logarithm of U.S. GDP
(
ln
(
yUSt
))
at different quarterly horizons, up

to one year ahead. Table 3 presents the results of the forecasting experiment com-

paring the two models in (1) and (2) above, as well as with the two versions of the

MIDAS models —ADL-MIDAS and ADL-MIDAS with leads. Overall, one can see the

benefits of using metal prices in the system, especially at the short horizons for the

VAR-based approach, and at all horizons for the ADL-MIDAS with leads, albeit not

always significantly better.

Table 3: Forecasting U.S. GDP

RMSE (×100) with and without Metal Prices

Model/Horizon h = 1 h = 2 h = 3 h = 4

(1) System Without Metal Prices 0.438 0.639 0.809 1.055

(2) System With Metal Prices 0.429 0.594 0.810 1.118

(3) ADL-MIDAS 0.410 0.586 0.750 0.908∗

(4) ADL-MIDAS with leads 0.377∗∗ 0.573 0.698∗ 0.867∗∗∗

Notes: First estimation sample: 1991Q1-2009Q4 (evaluation sample: 2010Q1-2019Q1).

Rolling window estimation. RMSE with (38− h) out-of-sample observations.

Model (1) is the benchmark. ∗,∗∗,∗∗∗ Denote significance at the 10%, 5% and 1%

levels, respectively, using the Giacomini and White (2006) predictive ability test,

indicating that model (i) is better than model (1).

The VECM model including oil-price growth rates (∆ ln pOILt ) and its respective

common-cycle restrictions with respect to global industrial production is presented

7Nominal price data are deflated using the producer price index (PPI) for the U.S., extracted from
the FRED database of the St. Louis FED.
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below. Note that the cofeature white noise linear combination (1, 0,−13.91)′ is rather

different than the one presented in Table 2. The J-test Statistic p-value is 0.2949,

showing no signs of model misspecification for this system.
1 0 −13.91

(5.92)

0 1 0

0 0 1


 ∆ ln pOILt

∆ ln yUSt

∆ ln ipt

 =

 0 0 0

∗ ∗ ∗
∗ ∗ ∗


 ∆ ln pOILt−1

∆ ln yUSt−1

∆ ln ipt−1

+

 0 0 0

∗ ∗ ∗
∗ ∗ ∗


 ∆ ln pOILt−2

∆ ln yUSt−2

∆ ln ipt−2

 .
Next, the results of the forecast exercise devised above for oil prices are shown.

Table 4 presents the results of the forecasting experiment comparing the two models in

(1) and (2) above, as well as with the two versions of the MIDAS models. Including oil

prices in the system improves short-run forecasting economic activity, since it reduces

out-of-sample RMSE, up to two quarters ahead for the VAR-based forecasts. However,

this reduction is not significant using the Giacomini and White (2006) test. Results

for the two MIDAS models show a further improvement in forecast accuracy, which

are significant for all but one horizon.

These forecasting results in Table 4 are in line with the previous literature, since

there is a long tradition of using oil prices to forecast U.S. real GDP. For example,

Ravazzolo and Rothman (2012) investigate Granger-causal relationships between crude

oil prices and U.S. GDP growth and compare a benchmark model without oil against

alternatives including oil. The results indicate a strong rejection of the null hypothesis

of no out-of-sample predictability from oil prices to GDP from the mid-80s through

the Great Recession. In another example, Kilian and Vigfusson (2013) point out the

role of nonlinearities and asymmetries in out-of-sample accuracy of real GDP growth

forecasts using oil prices with focus on iterated forecasts (rather than direct forecasts).

Table 4: Forecasting U.S. GDP

RMSE (×100) with and without Oil Prices

Model/Horizon h = 1 h = 2 h = 3 h = 4

(1) System Without Oil Prices 0.438 0.639 0.809 1.055

(2) System With Oil Prices 0.437 0.625 0.892 1.306

(3) ADL-MIDAS 0.381∗∗ 0.567 0.654∗∗ 0.798∗∗∗

(4) ADL-MIDAS with leads 0.375∗∗ 0.563 0.697∗∗ 0.820∗∗∗

Notes: See Table 3.

The focus now is on forecasting OECD’s GDP. It is hard to find reliable global

measures of economic activity going back to the early 1990s on a quarterly frequency.

The search led us to OECD’s GDP, which covers a wide array of countries in the

developed world, but does not include emerging economies, which may be a problem,

since most global industrial production is currently made in emerging countries. The
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step (1) model described above is: 1 −0.510
(0.078)

0 1

[ ∆ ln yOECDt

∆ ln ipt

]
=

[
0 0

∗ ∗

][
∆ ln yOECDt−1

∆ ln ipt−1

]
,

where ∆ ln yOECDt is the instantaneous growth rate of OECD’s GDP. The J-test Sta-

tistic p-value is 0.4278, not rejecting the null of orthogonality between errors and

instruments. The model in step (2) including Brent oil prices is:
1 −3.054

(1.754)
0

0 1 −1.784
(0.213)

0 0 1


 ∆ ln pOILt

∆ ln ipt

∆ ln yOECDt

 =

 0 0 0

0 0 0

∗ ∗ ∗


 ∆ ln pOILt−1

∆ ln ipt−1

∆ ln yOECDt−1

 ,
which again illustrates the potential effi ciency gains that could be present when a

model in pseudo-structural form is entertained. The J-test Statistic p-value is 0.2646,

showing no signs of misspecification for the proposed structure.

Table 5 presents the results of the forecasting experiment comparing the two VAR-

based models, as well as the two MIDAS models. Including oil prices in the system

improves forecasting OECD GDP up to three quarters ahead. This reduction is not

significant vis-a-vis the basic model at usual levels using the Giacomini and White

(2006) test. The results for the two MIDAS models are disappointing for all horizons.

Table 5: Forecasting OECD’s GDP

RMSE (×100) with and without Oil Prices

Model/Horizon h = 1 h = 2 h = 3 h = 4

(1) System Without Oil Prices 0.229 0.390 0.526 0.641

(2) System With Oil Prices 0.214 0.367 0.515 0.649

(3) ADL-MIDAS 0.283 0.443 0.532 0.680

(4) ADL-MIDAS with leads 0.238 0.496 0.666 0.795

Notes: See Table 3.

The model containing metal prices and OECD’s GDP reads as:

1 0 0 0 −5.537
(0.489)

0 1 0 0 −5.385
(0.819)

0 0 1 0 −4.488
(0.695)

0 0 0 1 −0.470
(0.051)

0 0 0 0 1




∆ ln pAlt

∆ ln pCot

∆ ln pT int

∆ ln yOECDt

∆ ln ipt

 =


0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

∗ ∗ ∗ ∗ ∗




∆ ln pAlt−1

∆ ln pCot−1

∆ ln pT int−1

∆ ln yOECDt−1

∆ ln ipt−1

 ,

where the J-test Statistic p-value is 0.7284, not rejecting the null of orthogonality
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between errors and instruments. Table 6 presents the results of the forecasting experi-

ment comparing these two models and the MIDAS models. Here, using the VAR-based

approach, including metal prices in the system improves forecasting economic activity

for horizons one and two. The MIDAS approach is also disappointing for forecasting

OECD’s GDP.

Table 6: Forecasting OECD’s GDP

RMSE (×100) with and without Metal Prices

Model/Horizon h = 1 h = 2 h = 3 h = 4

(1) System Without Metal Prices 0.229 0.390 0.526 0.641

(2) System With Metal Prices 0.226 0.385 0.540 0.671

(3) ADL-MIDAS 0.272 0.468 0.645 0.738

(4) ADL-MIDAS with leads 0.244 0.504 0.697 0.846

Notes: See Table 3.

4.4 Forecasting Oil Prices using Forecast Combinations

In this section, the target variable in forecasting is the variation of the real price of

Brent Crude Oil. So, results from this section are completely independent from the

results presented in the last section. As explained above, a set of 3,048 covariate time

series are put together coming from a list of contemporaneous 254 variables present in

different databases: Goyal and Welch (2008), FRED-MD (McCracken and Ng, 2015),

EPU (Economic Policy Uncertainty indexes of Baker, Bloom and Davis, 2015), GPR

(Geopolitical Risk indexes of Caldara and Iacoviello, 2018) and also the Thomson

Reuters database. To select useful covariates from that list, out-of-sample forecasting

exercises for Brent oil price variation came up with 20 monthly variables, selected

using the adaptive lasso approach of Zou (2006), shown below in Table 7:

Description Source
United States Federal Funds Effective Rate. Federal Reserve
United States Treasury Constant Maturity 10 Years. Federal Reserve
3­Month Treasury C Minus FEDFUNDS FRED­MD
Industrial Production ­ Total Iindex Federal Reserve
Industrial Production ­ Manufacturing Federal Reserve
S&P500 composite index Reuters
CBOE SPX Volatility VIX CBOE
Real Narrow Effective Exchange Rate for United States. FRED
Primary metals leading index. U.S.G.S.
Primary metals coincident index. U.S.G.S.
CRB BLS Spot Index Reuters
CRB BLS Spot Index Metals Reuters
Geopolitical Risk Index in Ukraine Caldara and Iacoviello
PPI: Metals and metal products FRED­MD
IP: Business Equipment FRED­MD
Production of Total Industry in Hungary FRED
Industrial Production: Dur. Manuf.: Aerosp. and Misc. Transp. Equip.FRED
Industrial Production: Mining: Drilling oil and gas wells FRED
Industrial Production: Durable Goods: Raw steel FRED
Industrial Production: Durable Goods: Iron and steel products FRED

Table 7 ­ Forecasting Covariates

In order to fit well the cross-sectional asymptotic requirement (large N) in the

model-combination approach, one needs to have a large set of diversified forecasts to
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eliminate the combination of idiosyncratic errors. A few classes of different econometric

models are chosen: ARMA and VAR models, all using distinct covariates (predictors),

and distinct functional forms (levels, logs), and distinct stationarity assumptions (sta-

tionarity vs. difference-stationarity) for the target variable and predictors. Overall,

this exercise uses N = 32, 412 models.

The total sample, at the monthly frequency, comprises 341 time-series observations

from 1991M01 until 2019M05. The sample is splitted in three distinct parts: data from

1 to T1 (1991M01 to 2001M01) are used to estimate the coeffi cients of each model,

containing 121 observations; data from T1 + 1 to T2 (2001M02 to 2011M01) are used

to compute the bias, containing 120 observations; and data from T2+1 to T (2011M02

to 2019M05) are used to implement pseudo out-of-sample forecasting, containing 100

observations.

To assess forecast accuracy, an algorithm appropriate for the bias-corrected average

forecast (BCAF) is constructed. For alternative forecast combinations or forecasting

schemes, slight modifications are required; see the Online Appendix for details. Out-

of-sample R2 statistics (percentage) comparing different forecast strategies with the

random-walk model with or without drift are computed. The R2-statistic for one-step

ahead forecasts of the real price of oil zt is:

R2 = 100×

1−

T∑
t=T2+1

(
zt − ẑt|t−1

)2
T∑

t=T2+1

(
zt − ẑBMK

t|t−1

)2
 ,

where ẑt|t−1 is the one-step-ahead forecast of any given forecast strategy and ẑBMK
t|t−1

is the one-step-ahead forecast of the benchmark — the random-walk model with or

without a drift. Positive (negative) values for the R2 statistic mean that the forecast

ẑt|t−1 beats (is beaten by) ẑBMK
t|t−1 .

Table 8, below, presents the result of the zero-bias test of Issler and Lima (2009),

using the similarity of RMSFE across models to measure closeness in the cross section.

The results show that, up to h = 6 months, all estimated biases are statistically nil.

In this case, the optimal forecast in Issler and Lima’s approach is simply the cross-

sectional average forecast across models (32, 412 of them).

Bias t­stat p­value
1 step­ahead ­0.84 ­0.53 0.30
2 step­ahead ­1.62 ­0.53 0.30
3 step­ahead ­2.28 ­0.54 0.29
4 step­ahead ­2.95 ­0.55 0.29
5 step­ahead ­3.55 ­0.55 0.29
6 step­ahead ­4.07 ­0.55 0.29

Table 8: Mean bias significance test (1991M01 ­ 2019M05).

This table presents the results of the zero­bias test in Issler and Lima (2009).

24



Next, the out-of-sample forecast accuracy of different forecast strategies is exam-

ined: the random walk model (with or without drift), which is the benchmark, the

“Best Model”chosen by the Bayesian Information Criterion (BIC) ex-post, the aver-

age of the best five (or ten) models, the average forecast across all models, and the

Bias-Corrected-Average Forecast (BCAF) proposed by Issler and Lima.

Given the result of the zero-bias test above, the optimal forecast should be the

simple (cross-sectional) average forecast. Indeed, looking at the results in Table 9 for

out-of-sample forecast accuracy, this forecast strategy outperforms all other strategies

from the one-month ahead to the six-month ahead horizon. If one takes the random

walk model with drift as the benchmark, the out-of-sample R2 statistics (percentage)

vary from about 7% to about 14%, depending on the horizon.

Horizon BCAF
Weighted
average
(MSE)

Average
forecast

Best model
(BIC)

Average 5
best models

Average 10
best models

1 step­ahead 2.75 2.87 2.50 2.70 2.68 2.67
2 step­ahead 4.52 4.77 4.11 4.43 4.40 4.37
3 step­ahead 5.61 6.00 5.14 5.63 5.60 5.55
4 step­ahead 6.38 6.86 5.84 6.51 6.48 6.39
5 step­ahead 6.93 7.45 6.29 7.17 7.14 7.02
6 step­ahead 7.55 8.03 6.83 7.93 7.90 7.74

R2 (RW w/drift 1­step ahead) ­8.30% ­17.87% 10.06% ­4.33% ­3.34% ­2.67%
R2 (RW w/drift 2­step ahead) ­11.92% ­24.40% 7.58% ­7.17% ­5.99% ­4.68%

R2 (RW w/drift 3­step ahead) ­10.68% ­26.39% 7.04% ­11.49% ­10.33% ­8.25%

R2 (RW w/drift 4­step ahead) ­11.19% ­28.74% 6.83% ­15.75% ­14.59% ­11.60%

R2 (RW w/drift 5­step ahead) ­7.31% ­23.88% 11.72% ­14.89% ­13.82% ­9.89%

R2 (RW w/drift 6­step ahead) ­5.42% ­19.10% 13.81% ­16.27% ­15.34% ­10.72%

R2 (RW w/o drift 1­step ahead) ­10.05% ­19.77% 8.61% ­6.02% ­5.01% ­4.33%
R2 (RW w/o drift 2­step ahead) ­15.26% ­28.11% 4.83% ­10.37% ­9.15% ­7.81%

R2 (RW w/o drift 3­step ahead) ­16.03% ­32.50% 2.54% ­16.88% ­15.66% ­13.48%

R2 (RW w/o drift 4­step ahead) ­19.27% ­38.09% 0.06% ­24.15% ­22.91% ­19.71%

R2 (RW w/o drift 5­step ahead) ­17.52% ­35.67% 3.31% ­25.83% ­24.66% ­20.35%

R2 (RW w/o drift 6­step ahead) ­17.82% ­33.10% 3.67% ­29.94% ­28.90% ­23.74%

Table 9: Out­of­Sample Forecast root­mean­squared­error and Out­of­Sample Forecast R2 (1991M01 ­ 2019M05)

Bold values represents the best forecast. T  =  341 (2019M05), T 1 = 120 (2000M12), T 2 = 240 (2010M12). BCAF: bias­corrected average
forecast; MSE: mean squared error; the best model, the 5 best models, and 10 best models were chosen using the in­sample BIC criterium.

5 Conclusion and Further Research

This paper studies the interaction between commodity-price changes and global eco-

nomic activity in a setup where a representative cost-minimizing firm chooses optimal

inputs (commodity quantum) as derived demands. The focus is on important globally

traded commodities, whose supply function is very price inelastic in the short run.

Key examples studied in this paper are Oil (Oil derivatives) and also major metal

commodities, such as Aluminum, Copper, Nickel.

The empirical evidence here fully supports the theoretical results of the derived-

demand model. Indeed, this paper shows overwhelming evidence that cycles in oil

prices are synchronized to those of global industrial production. This evidence is

stronger regarding the global economy but holds as well for the U.S. economy. To the
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best of our knowledge, this is the first paper to investigate and find common cycles

accounting for theory and empirics. This is the first original contribution of this paper.

The second original contribution is to investigate the usefulness of the common-

feature VAR-based approach for forecasting global measures of economic activity —

U.S. GDP and OECD’s GDP. Here, the interest is reversed. Commodity prices are

employed to help forecasting economic activity, relying again on the role commodities

play in the derived-demand model. This is important, since one observes commodity

prices on an almost continuous-time basis, but economic activity at a much lower

frequency. So, commodity prices could give early signals about future global economic

activity. For the most part, the empirical evidence in forecasting global measures

of economic activity emphasizes the importance of conditioning on either oil prices or

metal-commodity prices, relying on parameter-reduction techniques that favor optimal

forecasts. Forecasting gains are substantial for U.S. GDP, but results for OECD’s GDP

are disappointing.

Finally, the third objective of the paper is to forecast oil prices over short horizons

(monthly data) based on techniques that view the optimal forecast as a common feature

(latent variable), which can be identified by using a cross-sectional average of a diverse

group of forecasts. The model-combination approach considers 254 macroeconomic

and financial covariates available from different databases: Goyal and Welch (2008),

FRED-MD (McCracken and Ng, 2015), EPU (Economic Policy Uncertainty indexes

of Baker, Bloom and Davis, 2015), GPR (Geopolitical Risk indexes of Caldara and

Iacoviello, 2018). From this group, 20 covariates are selected and used on 32,412

different models —all predicting oil prices. When these models are combined using

optimal techniques, they outperform the random-walk model with an out-of-sample

R2 statistic that can reach up to 13.81%. This is a major improvement vis-a-vis the

previous literature.
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A Online Appendix

A.1 The Derived Demand for Commodities with Zero Short-
Run Supply Price Elasticity

It is argued here that there is an important role for demand shocks in explaining
the short-run variation of oil and metal prices. These are important globally traded
commodities, whose supply function is very price inelastic in the short run —zero or
close to zero elasticity. The reason for that lies on the fact that the production function
of these commodities is very capital intensive and it takes time to build capital. So,
the short-run supply of these commodities, which includes inventories, can be treated
as given. Of course, the long-run supply price-elasticity will not be zero or small, so
the results in this section will not be verified as the horizon progresses.
To explain this phenomenon, from a theoretical point-of-view, a representative cost-

minimizing global industrial firm is considered, which chooses the optimal quantity of
inputs xi, i = 1, 2, · · · , n, all stacked in a vector x = (x1, x2, · · · , xn)′, when producing
output y0. The choice of output y0 can be thought as an optimal decision coming from
the firm’s output market. The corresponding prices for inputs i = 1, 2, · · · , n, stacked
in a vector w = (w1, w2, · · · , wn)′, are considered given for the firm when choosing x.
The firm’s cost minimization problem in this context is:

min
x

C(w, x) = w · x s.t. f(x) ≥ y0. (15)

From the first-order (interior) condition of this problem, using Shepard’s Lemma,
the optimal derived demands for all inputs is calculated, labelled x∗i (w, y0):

∂C(w, x∗)

∂wi
= x∗i (w, y0), i = 1, 2, · · · , n. (16)

As argued above, in modelling short-run fluctuations, it is reasonable to assume
that oil or metal supply (labelled here as commodity i) cannot be increased without
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climbing a very steep cost function. Thus, their supply is assumed fixed
(
xsi
)
in the

short run. Thus, the short-run equilibrium condition for inputs (including oil, oil
derivatives, and metal commodities) is:

x∗i (w, y0) = xsi . i = 1, 2, · · · , n. (17)

Ceteris paribus, given the equilibrium condition (17), this section investigates how
changes in output potentially change the price of input i, wi. Differentiate (17) con-
sidering only changes in wi and in industrial production, y0, later solving for dwi

dy0
:

0 =
∂x∗i (w, y0)

∂wi
dwi +

∂x∗i (w, y0)

∂y0
dy0, or,

dwi
dy0

= −
∂x∗i (w,y0)

∂y0
∂x∗i (w,y0)

∂wi

. (18)

It is straightforward to establish unequivocally that dwi
dy0

> 0 since, from theory, one

should have ∂x∗i (w,y0)
∂y0

> 0 and ∂x∗i (w,y0)
∂wi

< 0. This result
(
dwi
dy0

> 0
)
is completely intu-

itive: given concavity of the cost function vis-a-vis input prices
(
∂x∗i (w,y0)

∂wi
= ∂2C(w,x∗)

∂w2i
< 0
)
,

if the representative firm wants to increase industrial production in the short run, it
will put an upward pressure on the price of oil, stemming from the fact that it should
take more inputs to produce more

(
∂x∗i (w,y0)

∂y0
> 0
)
, otherwise the firm is not a cost

minimizer.8

To fix ideas, there is below a simple theoretical example, where production follows
the well-known Cobb-Douglas production function, with constant returns to scale:

y = Axα1x
1−α
2 , 0 < α < 1. (19)

The first input (input 1) will represent the input with a short-run fixed supply (oil, oil
derivatives, and metal commodities), i.e., the commodity whose production is capital
intensive. Input 2 represents an input whose supply responds to price changes in the
short run. Indeed, it can be a mix of all other inputs.
The Lagrangian for the cost-minimizing firm reads as:

L = w1x1 + w2x2 − λ
(
y0 − Axα1x1−α2

)
,

8The short-run analysis (ceteris paribus) omits changes in the price of other inputs. Total differ-
entiation yields:

0 =
∂x∗i (w, y0)

∂wi
dwi +

∑
j 6=i

∂x∗i (w, y0)

∂wj
dwj︸ ︷︷ ︸

assumed = 0 above

+
∂x∗i (w, y0)

∂y0
dy0,

But, the effect of
∑

j 6=i
∂x∗j (w,y0)

∂wj
dwj on the price of oil will be of second order: they will have to

operate through the cross-effects of substitution and/or complementarity.
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where λ is the Lagrange Multiplier. The first-order conditions are:

w1 = λαA

(
x2
x1

)1−α
, (20)

w2 = λ (1− α)A

(
x2
x1

)−α
, (21)

y0 = Axα1x
1−α
2 . (22)

Divide (20) by (21) to obtain x1 = w2
w1

α
1−αx2. Plugging this last result into (19),

and rearranging, gives the optimal demand for input 2:

x∗2 (w1, w2, y0) =
y0
A
wα1w

−α
2

(
1− α
α

)α
.

Symmetrically, one can obtain the optimal demand for input 1:

x∗1 (w1, w2, y0) =
y0
A
w1−α2 wα−11

(
α

1− α

)1−α
.

Now, if one assumes a short-run fixed supply for input 1 (say, xs1), then, the short-
run market equilibrium condition is:

xs1 =
y0
A
w1−α2 wα−11

(
α

1− α

)1−α
. (23)

Taking logs of (23), solving for ln (w1) gives:

ln (w1) =
1

1− α ln (y0)−
1

1− α ln
(
xs1
)
− 1

1− α ln (A) + ln (w2) + ln

(
α

1− α

)
,

where ln
(
xs1
)
and ln (A) are constants, but, ln (w2) depends on ln (y0), through an

equilibrium condition similar to (23). First, if one disregards the effect of y0 changes on
w2, there is a positive elasticity

∂ ln(w1)
∂ ln(y0)

= 1
1−α > 0, related to a derived-demand factor,

generating synchronicity between commodity prices and global industrial production.
However, in principle, one should also consider the effect of changes in ln (y0) on ln (w2).
As long as input 2 supply responds less than proportionally than demand to a change
in ln (y0), one should have

∂ ln(w2)
∂ ln(y0)

> 0. Therefore:

∂ ln (w1)

∂ ln (y0)
=

1

1− α +
∂ ln (w1)

∂ ln (w2)

∂ ln (w2)

∂ ln (y0)

=
1

1− α +
∂ ln (w2)

∂ ln (y0)
> 0,

and a positive short-run elasticity survives, jointly with the synchronicity of cycles for
ln (w1) and ln (y0).

A.2 Joint Short- and Long-Run Restriction for Oil-Price or
for Metal-Price Dynamics using VAR Models

Before discussing the dynamic representation of oil-price or of metal-price data, this
section presents useful definitions of the concepts used to measure the degree of co-
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movement in them. These include long-run comovement (cointegration) and short-run
comovement (common cycles for the growth rate of these prices). Engle and Issler
(1995) and Issler and Vahid (2001) present previous applications of the techniques
discussed in this section. For an in-depth theoretical discussion of these issues see
Engle and Granger (1987) and Vahid and Engle (1993) respectively for cointegration
and common cycles. Theoretical extensions of the standard common-cycle case can be
found in Hecq et al. (2006) and Athanasopoulos et al. (2011).
Assume that yt is a n-vector of I(1) oil price (or log oil price) or of metal prices

(or log metal prices), with the stationary (MA (∞)) Wold representation given by:

∆ yt = C (L) εt, (24)

where C (L) is a matrix polynomial in the lag operator, L, with C (0) = In,
∞∑
j=1

‖Cj‖ <

∞ . The vector εt is a n × 1 a multivariate white noise process. One can rewrite
equation (24) as:

∆ yt = C (1) εt + ∆C∗ (L) εt (25)

where C∗ (L) = C∗0 + C∗1L + C∗2L
2 + · · · , with C∗i =

∑
j>i

−Cj for all i ≥ 0, and, in

particular, C∗0 = In − C (1).
Integrating both sides of equation (25), given an initial condition y0:

yt = C (1)
t−1∑
s=0

εt−s + C∗ (L) εt + y0

= Tt + Ct (26)

Equation (26) is the multivariate version of the Beveridge-Nelson trend-cycle repre-
sentation (Beveridge and Nelson, 1981). Apart from an initial condition y0, the series

yt are represented as sum of a Martingale part Tt = C (1)
t−1∑
s=0

εt−s, which is called the

“trend,”and a stationary and ergodic part Ct = C∗ (L) εt, which is called the “cycle.”

Definition 1. The variables in yt are said to have common trends (or cointegrate) if
there are r linearly independent vectors, r < n, stacked in an r × n matrix α′, with
the following property9:

α′
r×n

C (1) = 0.

Definition 2. The variables in yt are said to have common cycles if there are s linearly
independent vectors, s ≤ n− r, stacked in an s×n matrix α̃′, with the property that:

α̃′
s×n

C∗ (L) = 0.

9This definition could alternatively be expressed in terms of an n× r matrix γ, such that:

C (1) γ = 0.

The Granger-Representation Theorem shows that if the series in yt are cointegrated, α and γ satisfy:

C (1) γ = 0, and,

α′C (1) = 0.
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Thus, cointegration and common cycles represent restrictions on the elements of
C (1) and C∗ (L) respectively.
Now, this section discusses what role these restrictions play on the dynamic au-

toregressive representation of yt. It is assumed that yt is generated by a Vector Au-
toregression (VAR). Note that VARs are the working horses of time-series econometric
analysis. They have been applied extensively for reduced-form and structural-form es-
timation and forecasting, since they fit most macroeconomic and financial data fairly
well:

yt = Γ1yt−1 + . . .+ Γpyt−p + εt, (27)

where the autoregressive matrix polynomial is Φ (L) = I − Γ1L− Γ2L
2 − . . .− ΓpL

p.

If elements of yt cointegrate, then the matrix Φ (1) = I−
p∑
i=1

Γi must have less than

full rank. In this case, Engle and Granger showed that the system (27) can be written
as a Vector Error-Correction model (VECM) as:

∆ yt = Γ∗1 ∆ yt−1 + . . . + Γ∗p−1 ∆ yt−p+1 + γα′ yt−1 + εt (28)

where γ and α are full rank matrices of order n× r, r is the rank of the cointegrating
space, −

(
I −

p∑
i=1

Γi

)
= γα′, and Γ∗j = −

p∑
i=j+1

Γi , j = 1, . . . , p− 1.

For our purposes, testing for cointegration will be used to verify whether oil- or
metal-price data share common trends (or have long-run comovement). As is well
known, oil or metals are an important input in industrial processes, and thus it is
expected that oil or most metal commodities would have their long-run prices linked to
global industrial factors. Testing for common trends among yt will use the maximum-
likelihood approach in Johansen (1991).
A key issue to assure that inference is done properly in this case is to estimate the

lag length of the VAR (27) consistently, i.e., to estimate p consistently. When data have
common cycles as well as common trends, Athanasopoulos et al. (2011) showed that
some popular information criteria do not have an appropriate small-sample behavior,
and that a combination of traditional information criteria and criteria with data-
dependent penalties can estimate the lag length consistently for VARs with common
trends and cycles. An alternative way to infer p is to perform diagnostic testing to
rule out the risk of underestimation of p, which leads to inconsistent estimates for the
parameters in (28).
Vahid and Engle (1993) show that the dynamic representation of yt may be further

restricted if there exist white noise independent linear combinations of the series ∆ yt,
i.e., that the ∆ yt share common cycles. To see this, recall that the cofeature vectors
α̃
′
i, stacked in an s × n matrix α̃′, eliminate all serial correlation in ∆ yt, i.e. lead to
α̃′∆ yt = α̃′εt. Therefore, they should restrict the elements of (28) as follows:

α̃′Γ∗1 = α̃′Γ∗2 = . . . = α̃′Γ∗p−1 = 0, and (29)

α̃′γ = 0. (30)

Hecq et al. (2006) have labelled the joint restrictions (29) and (30) as strong-form
serial-correlation common features (SCCF), whereas they call only imposing restric-
tions (29) as weak-form SCCF. For the latter, notice that one only inherits an un-
predictable linear combination of ∆ yt once one controls for the long-run deviations
α′ yt−1. Hence,

α̃′ [∆ yt − γα′ yt−1] = α̃′εt. (31)
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The discussion of common cycles now continues in the case of strong-form serial-
correlation common features, since the weak-form case can be immediately inferred
from it. As is well known, cofeature vectors are identified only up to an invertible
transformation10. Without loss of generality, consider α̃ to have an s dimensional
identity sub-matrix:

α̃ =

[
Is

α̃∗(n−s)×s

]
Now, α̃′∆ yt = α̃′εt constitute s equations in a system. Completing the system by
adding the unconstrained VECM equations for the remaining n− s elements of ∆ yt,
one obtains,

[
Is α̃∗′

0
(n−s)×s

In−s

]
∆ yt =

[
0

s×(np+r)
Γ∗∗1 . . . Γ∗∗p−1 γ

∗

]
∆ yt−1
...

∆ yt−p+1
α′yt−1

+ vt, (32)

where Γ∗∗i and γ∗ represent the partitions of Γ∗i and γ respectively, corresponding to

the bottom n− s reduced form VECM equations, and vt =

[
Is α̃∗′

0
(n−s)×s

In−s

]
εt.

It is easy to show that (32) parsimoniously encompasses (28). Since[
Is α̃∗′

0
(n−s)×s

In−s

]
is invertible, it is possible to recover (28) from (32). Notice however

that the latter has s · (np+ r)− s · (n− s) fewer parameters.
Assuming that yt share common trends and cycles leading to (32), one tests for

common cycles using a canonical-correlation approach once one determines what is
the lag length of the VAR, i.e., p. The procedure is as follows:

1. Compute the sample squared canonical correlations between {∆ yt}and
{α′yt−1,∆ yt−1,∆ yt−2, · · · ,∆ yt−p+1}, labelled λi, i = 1, · · · , n, where n is the
number of variables in the system.

2. Test whether the first smallest s canonical correlations are jointly zero by com-
puting the test statistic:

−T
s∑
i=1

log (1− λi) ,

which has a limiting χ2 distribution with s (np+ r) − s (n− s) degrees of free-
dom under the null, where r is the number of cointegrating relationships. The
maximum number of zero canonical correlations that can possibly exist is n− r.

3. Suppose that s zero canonical correlations were found in the previous step. Use
these s contemporaneous relationships between the first differences as s pseudo-
structural equations in a system of simultaneous equations. Augment them with
n− s equations from the VECM and estimate the system using full information
maximum likelihood (FIML). The restricted VECM will be the reduced form of
this pseudo-structural system.

10The same is true regarding cointegrating vectors. One is only able to identify a subspace of Rn
of dimension r.
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4. In the case where one has weak-form restrictions, in step 1 above, one com-
putes the sample squared canonical correlations between

{(
∆ y′t, (α

′yt−1)
′)′} and

{α′yt−1,∆ yt−1,∆ yt−2, · · · ,∆ yt−p+1}. The rest of the steps remain identical.

A.3 GMM Based Common-Cycle Tests

One possible drawback of the canonical-correlation approach is that it assumes ho-
moskedastic data, and that may not hold for oil-price data or for metal-price data
(and other macroeconomic and financial data) collected at high frequency. In this
case, a GMM approach is more robust, since inference can be conducted with Het-
eroskedastic and Auto-correlation (HAC) robust estimates of variance-covariance ma-
trices of parameter estimates. Regarding common cycles, the system with n-equations
in (32) can be estimated by GMM. The vector of instruments comprise the series
in {α′yt−1,∆ yt−1,∆ yt−2, · · · ,∆ yt−p+1} which are collected in a vector Zt−1. Indeed,
GMM estimation exploits the orthogonality between all the elements in vt and all the
elements in Zt−1, where vt is defined in equation (32):

E [vt ⊗ Zt−1] = 0. (33)

The test for common cycles is the over-identifying restriction test —the J test —pro-
posed in Hansen (1982). It has an asymptotic χ2 distribution with degrees of freedom
equal to the number of over-identifying restrictions. As usual, over-identifying restric-
tion tests verify whether or not errors are orthogonal to instruments in an instrumental-
variable setup. Thus, it checks whether the exclusions of the elements of Zt−1 in the
first s equations are appropriate. Heuristically, since the cyclical behavior (serial cor-
relation behavior) of the data ∆ yt is captured by Zt−1, this test verifies whether the
linear combinations in these s equations have no serial correlation, i.e., are unpre-
dictable. Therefore, it is a test of common serial correlation or common cycles. If two
series have a common cycle, their impulse response functions are colinear, making their
response to shocks proportional and therefore similar. Here, contrary to the canonical
correlation approach above, one can deal with heteroskedasticity of unknown form
by employing the HAC robust estimates for the variance-covariance matrix of sample
means counterparts of (32)

(
ŜT

)
using the Newey and West (1987) procedure. The

parameters estimated by GMM, stacked in a vector θ, comprise all parameters in α̃∗′

and all parameters in the matrices Γ∗∗1 ,Γ
∗∗
2 , . . . Γ∗∗p−1, and in γ

∗.
If one wants to test for weak-form SCCF, the only additional twist is that now vt

takes the form:

vt =

[
Is α̃∗′

0
(n−s)×s

In−s

]
∆ yt −

[
0 · · · 0 γ1

Γ∗∗1 · · · Γ∗∗p−1 γ2

]
∆ yt−1
...

∆ yt−p+1
α′yt−1

 ,

where γ =

[
γ1
γ2

]
.

A.4 Optimal Forecast Combinations

This section lists the set of assumptions needed to obtain optimal forecast combinations
and discuss some details on how to construct these optimal forecast under mean-
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squared error (MSE) risk function. For an in-depth theoretical discussion of these
issues see Issler and Lima (2009) and the references therein.
One is interested in forecasting yt, stationary and ergodic, using information up

to h periods prior to t, then, under a MSE risk function, the optimal forecast is the
conditional expectation using information available up to t − h: Et−h(yt). Forecasts
of yt, computed using conditioning sets lagged h periods, are denoted by fhi,t, i =
1, 2, . . . , N . Therefore, fhi,t are h-step-ahead forecasts and N is the number of models
estimated to forecast fhi,t.
Hendry and Clements (2004) argue that the fact that the simple forecast average

1
N

∑N
i=1 f

h
i,t usually outperforms individual forecasts f

h
i,t shows our inability to approx-

imate Et−h(yt) reasonably well with individual models. However, since Et−h(yt) is
optimal, this is exactly what these individual models should be doing.
With this motivation, our setup writes the fhi,t’s as approximations to the optimal

forecast as follows:
fhi,t = Et−h(yt) + khi + εhi,t, (34)

where khi is the individual model time-invariant bias for h-step-ahead prediction and
εhi,t is the individual model error term in approximating Et−h(yt), where E(εhi,t) = 0
for all i, t, and h. Here, the optimal forecast is a common feature of all individual
forecasts and khi and ε

h
i,t arise because of forecast misspecification.

One can always decompose the series yt into Et−h(yt) and an unforecastable com-
ponent ζt, such that Et−h(ζt) = 0 in:

yt = Et−h(yt) + ζt. (35)

Combining (34) and (35) yields,

fhi,t = yt − ζt + khi + εhi,t, or,

fhi,t = yt − ηht + khi + εhi,t, where, η
h
t = −ζt. (36)

This yields the well known two-way decomposition, or error-component decomposition,
of the forecast error fhi,t − yt:

fhi,t = yt + µhi,t, i = 1, 2, ..., N and t > T1 (37)

µhi,t = khi + ηht + εhi,t.

By construction, the framework in (36) specifies explicit sources of forecast errors
that are found in both yt and fhi,t; see also the discussion in Palm and Zellner (1992)
and Davies and Lahiri (1995). The term khi is the time-invariant forecast bias of model
i. It captures the long-run effect of forecast-bias of model i. Its source is fhi,t. The term
ηht arises because forecasters do not have future information on yt between t − h + 1
and t. Hence, the source of ηht is yt , and it is an additive aggregate zero-mean shock
affecting equally all forecasts. The term εhi,t captures all the remaining errors affecting
forecasts, such as those of idiosyncratic nature and others that affect some but not all
the forecasts (a group effect). Its source is fhi,t.
From the perspective of combining forecasts, the components khi , ε

h
i,t and η

h
t play

very different roles. If one regards the problem of forecast combination as one aimed
at diversifying risk, i.e., a finance approach, then, on the one hand, the risk associ-
ated with εhi,t can be diversified, while that associated with η

h
t cannot. On the other

hand, in principle, diversifying the risk associated with khi can only be achieved if
a bias-correction term is introduced in the forecast combination, which reinforces its
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usefulness.
The assumptions needed to construct optimal forecast combinations under this

framework are now listed.

Assumption 1 One assumes that ki, εi,t and ηt are independent of each other for all
i and t.

Independence is an algebraically convenient assumption used throughout the liter-
ature on two-way decompositions. At the cost of unnecessary complexity, it could be
relaxed to use orthogonal components, something one avoids here.

Assumption 2 ki is an identically distributed random variable in the cross-sectional
dimension, but not necessarily independent, i.e.,

khi ∼ i.d.(B, σ2kh), (38)

where Bh and σ2
kh
are respectively the mean and variance of khi . In the time-series

dimension, khi has no variation, therefore, it is a fixed parameter.

The idea of dependence is consistent with the fact that forecasters learn from each
other by meeting, discussing, debating, etc. Through their ongoing interactions, they
maintain a current collective understanding of where their target variable is most likely
heading to, and of its upside and downside risks. Given the assumption of identical
distribution for khi , B

h represents the market (or collective) bias. Since the focus
is on combining forecasts, a pure idiosyncratic bias does not matter but a collective
bias does. In principle, one could allow for heterogeneity in the distribution of ki —
means and variances to differ across i. However, that will be a problem in testing the
hypothesis that forecast combinations are biased.
It is desirable to discuss the nature of the term khi , which is related to the question

of why one cannot focus solely on unbiased forecasts, for which khi = 0. The role of khi is
to capture the long-run effect, in the time dimension, of the bias of econometric models
of yt. The model-based forecasts bias results from model misspecification. Here, it
is important to distinguish between in-sample and out-of-sample model fitting. The
fact that, in sample, a model approximates well the data-generating process (DGP)
of yt does not guarantee that it will in out-of-sample forecasting; see the discussion in
Clements and Hendry (2006) and in Hendry and Clements (2004). Notice that bias
correction is a form of intercept correction. Now the discussion is about survey-based
forecasts. In this case, a relevant question to ask is: why would forecasters introduce
bias under a MSE risk function? Laster et al. (1999), Patton and Timmermann (2007),
and Batchelor (2007) list different arguments consistent with forecasters having a non-
quadratic loss function. Following their discussion, one assumes that all forecasters
employ a combination of quadratic loss and a secondary loss function. Bias is simply a
consequence of this secondary loss function and of the intensity in which the forecaster
cares for it. The first example is that of a bank selling an investment fund. In this
case, the bank’s forecast of the fund return may be upward-biased simply because it
may use this forecast as a marketing strategy to attract new clients for that fund.
Although the bank is penalized by deviating from Et−h (yt), it also cares for selling
the shares of its fund. The second example introduces bias when there is a market
for pessimism or optimism in forecasting. Forecasters want to be labeled as optimists
or pessimists in a “branding” strategy to be experts on “worst-” or on “best-case
scenarios,” respectively. Batchelor lists governments as examples of experts on the
latter.
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Assumption 3 The aggregate shock ηht is a stationary and ergodic MA process of
order at most h− 1, with zero mean and variance σ2

ηh
<∞.

Since h is a bounded constant in our setup, ηht is the result of a cumulation of
shocks to yt that occurred between t− h+ 1 and t. Being an MA (·) is a consequence
of the wold representation for yt. If yt is already an MA (·) process, of order smaller
than h−1, then, its order will be the same of that of ηht . Otherwise, the order is h−1.
In any case, it must be stressed that ηht is unpredictable, i.e., that Et−h

(
ηht
)

= 0.

Assumption 4: Let εht =
(
εh1,t, ε

h
2,t, ... ε

h
N,t

)′
be a N × 1 vector stacking the errors εhi,t

associated with all possible forecasts, where E
(
εhi,t
)

= 0 for all i and t. Then,
the vector process

{
εht
}
is assumed to be covariance-stationary and ergodic for

the first and second moments, uniformly on N . Further, defining as ξhi,t =

εhi,t − Et−1
(
εhi,t
)
, the innovation of εhi,t, one assumes that

lim
N→∞

1

N2

N∑
i=1

N∑
j=1

∣∣E (ξhi,tξhj,t)∣∣ = 0. (39)

Because the forecasts are computed h-steps ahead, forecast errors εi,t can be serially
correlated. Assuming that εhi,t is weakly stationary is a way of controlling its time-series
dependence. It does not rule out errors displaying conditional heteroskedasticity, since
the latter can coexist with the assumption of weak stationarity; see Engle (1982).
The techniques discussed in this section are appropriate for forecasting a weakly

stationary and ergodic univariate process {yt} using a large number of forecasts that
will be combined to yield an optimal forecast in the mean-squared error (MSE) sense.
These forecasts are the result of several econometric models that need to be estimated
prior to forecasting11.
Three consecutive distinct time sub-periods are considered, where time is indexed

by t = 1, 2, . . . , T1, . . . , T2, . . . , T . The first sub-period E is labeled the “estimation
sample”, where models are usually fitted to forecast yt subsequently. The number of
observations in it is E = T1 = κ1 · T , comprising (t = 1, 2, . . . , T1). For the other two,
one follows the standard notation in West (1996). The sub-period R (for regression)
is labeled the post-model-estimation or “training sample”, where realizations of yt are
usually confronted with forecasts produced in the estimation sample, and weights and
bias-correction terms are estimated. It has R = T2 − T1 = κ2 · T observations in it,
comprising (t = T1 + 1, . . . , T2). The final sub-period is P (for prediction), where
genuine out- of-sample forecast is entertained. It has P = T −T2 = κ3 ·T observations
in it, comprising (t = T2 + 1, . . . , T ). Notice that 0 < κ1, κ2, κ3 < 1, κ1 + κ2 + κ3 = 1,
and that the number of observations in these three sub-periods keep a fixed proportion
with T - respectively, κ1, κ2 and κ3 - being all O(T ). This is an important ingredient
in our asymptotic results for T →∞.
Issler and Lima (2009) propose a non-parametric estimator of khi , which exploits

the fact that khi represents the fixed effect of a panel of forecasts:

(fhi,t − yt) = khi + ηht + εhi,t, i = 1, 2, ..., N (40)

t = T1 + 1, ..., T2

11In this setting, one can also imagine that some (or all) responses use no formal econometric
model at all, e.g., just the result of an opinion poll on the variable in question using a large number
of individual responses.
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It does not depend on any distributional assumption on khi ∼ i.d.(Bh, σ2
kh

) and it does
not depend on any knowledge of the models used to compute the forecasts fhi,t − yt.
Issler and Lima (2009) propose the following consistent estimators for the compo-

nents khi , B
h, ηht , and ε

h
i,t:

k̂hi =
1

R

T2∑
t=T1+2

fhi,t −
1

R

T2∑
t=T1+2

yt (41)

B̂h =
1

N

N∑
i=1

k̂hi (42)

η̂ht =
1

N

N∑
i=1

fhi,t − B̂h − yt (43)

ε̂hi,t = fhi,t − yt − k̂hi − η̂ht (44)

Now the two most important results from Issler and Lima (2009) are stated, which
asserts that the (feasible) bias-corrected average forecast (BCAF) is an optimal fore-
casting device.

Theorem 1. If Assumptions 1-4 hold, the feasible bias-corrected average forecast∑N
i=1 ωif

h
i,t − B̂h obeys

plim
(T,N→∞)seq

(
1

N

N∑
i=1

fhi,t − B̂h

)
= yt + ηht = E(yt)

and has a mean-squared error as follows:

E

[
plim

(T,N→∞)seq

(
1

N

N∑
i=1

fhi,t − B̂h

)
− yt

]2
= σ2ηh

Therefore it is an optimal forecasting device.

Indeed, there are infinite ways of combining forecasts. The next corollary presents
alternative weighting schemes.

Corollary 1. Consider the sequence of deterministic weights {ωi}Ni=1,such that ωi 6= 0,
ωi = O(N−1) uniformly, with

∑N
i=1 ωi = 1 and limN→∞

∑N
i=1 ωi = 1. Then, under

Assumptions 1-4, an optimal forecasting device is:

E

[
plim

(T,N→∞)seq

(
N∑
i=1

ωif
h
i,t −

N∑
i=1

ωik̂
h
i

)]2
= σ2ηh

Optimal population weights, constructed from the variance-covariance structure of
models with stationary data, will obey the structure in Corollary 1 and cannot perform
better than 1

N
coupled with bias correction. Therefore, there is no forecast-combination

puzzle in the context of populational weights.
Theorem 1 shows that the feasible BCAF is asymptotically equivalent to the op-

timal weighted forecast. Its advantage is that it employs equal weights. As N → ∞,
the number of estimated parameters is kept at unity: B̂h. This is a very attractive fea-
ture of the BCAF compared to devices that combine forecasts using estimated weights.
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Our answer to the curse of dimensionality is parsimony, implied by estimating only one
parameter- B̂h. One additional advantage is that one needs not limit the asymptotic
path of N and T , which is the case of forecasts based on estimated weights.
Finally, there is one interesting case in which one can dispense with estimation in

combining forecasts: when the mean bias is zero, i.e., Bh = 0, there is no need to
estimate Bh and the BCAF is simply equal to 1

N

∑N
i=1 f

h
i,t, the sample average of all

forecasts. This is the ultimate level of parsimony. To be able to test the null that
Bh = 0, Issler and Lima developed a robust t-ratio test that takes into account the
cross-sectional dependence in khi .
To assess forecast accuracy, an algorithm appropriate for the bias-corrected average

forecast (BCAF) is constructed as follows:

1. For each model, estimate the coeffi cients of the regressors using the sub-sample
from 1 to T1.

2. Forecast h-steps ahead the models estimated in step 1 (fhit) from T1 to T2. Each
model should be forecasted h-steps ahead T2 − T1 − h+ 1 times.

3. Calculate the bias associated with each h-step ahead forecasts and each model;
the bias is the average error between the h-steps ahead forecast and the observed
value of the target series (from T1 to T2).

4. Forecast h-steps ahead the same models estimated in step 1 for only T2+h, using
the same coeffi cients estimated in step 1.

5. Store the bias from step 3 and the forecast made in step 4, fhi,T2+h.

6. Update T1 = T1 + 1, T2 = T2 + 1.

7. Go to step 1 until T2 = T.

8. Adjust the forecasts of each model (made from T2 + 1 to T ) by their respective
bias.

9. Combine all these adjusted forecasts using equal weights.

10. Compute the RMSE of the BCAF, considering the series of instantaneous price
variation (first difference of logarithms) of Brent Crude Oil as the target series.

Forecast Combinations for Nested Models

It is important to discuss whether the techniques above are applicable to the situation
where some (or all) of the models combined are nested. The potential problem is that
the innovations from nested models can exhibit high cross-sectional dependence. In
what follows, nested models are introduced into our framework in the following way.
Consider a continuous set of models and split the total number of models N into M
classes (or blocks), each of them containing m nested models, so that N = mM . In
the index of forecasts, i = 1, . . . , N , nested models are grouped contiguously. Hence,
models within each class are nested but models across classes are non-nested. The
number of classes and the number of models within each class are set to be functions
of N , respectively as follows: M = N1−d and m = Nd, where 0 ≤ d ≤ 1. Notice that
this setup considers all the relevant cases: (i) d = 0 corresponds to the case in which
all models are non-nested; (ii) d = 1 corresponds to the case in which all models are
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nested and; (iii) the intermediate case 0 < d < 1 gives rise to N1−d blocks of nested
models, all with size Nd.
For each block of nested models, Assumption 4 may not hold because the inno-

vations from that block can exhibit high cross-sectional dependence. Regarding the
interaction across blocks of nested models, it is natural to impose that the correla-
tion structure of innovations across classes is such that Assumption 4 holds, since one
should expect that the cross-sectional dependence of forecast errors across classes is
weak.
Here, keeping some nested models poses no problem at all, since the mixture of

models will still deliver the optimal forecast. From a practical point of view, the choice
of 0 ≤ d < 1 seems to be superior. Here, one is back to the main theorem in finance
about risk diversification: do not put all your eggs in the same basket, choosing a large
enough number of diversified (classes of) models.

A.5 MIDAS Regressions

This section discusses mixed-frequency regression methods for predicting economic
activity. Daily financial data as well as monthly macroeconomic data is used here
to estimate the mixed data sampling (MIDAS) regression model. The objective is to
highlight the value of daily information and build real-time forecasts of the current
(and future) real GDP growth rates.
A number of articles have documented the advantages of using MIDAS regressions

in terms of improving quarterly macro forecasts with monthly data, or improving
quarterly and monthly macroeconomic predictions with a small set of daily financial
series; see, for instance, Clements and Galvão (2008); Hamilton (2008); Ghysels and
Wright (2009) and Kuzin et al. (2011).
Following the notation of Andreou et al. (2013), assume the variable of interest is

observed at some low frequency (e.g., real GDP quarterly growth rate), denoted by
Y Q
t , and the goal is to forecast this variable h−quarters ahead, that is Y Q

t+h. To do
so, the econometrician has daily observations of the financial predictors X. Denote
by XD

m−j,t the jth day counting backward in quarter t, where m denotes the number
of trading days per quarter —assumed to be constant for the sake of simplicity (e.g.,
m = 66). Hence, XD

m,t, considering j = 0, corresponds to the observation of X on the
last day of quarter t.
The ADL-MIDAS (pQY , q

D
X) model is given by:

Y Q
t+h = µh +

pQY −1∑
j=0

ρhj+1Y
Q
t−j + βh

qDX−1∑
j=0

m−1∑
i=0

ωθ
h

i+j∗mX
D
m−i,t−j + εht+h, (45)

which entails pQY lags of Y
Q
t and qDX lags of X

D
m−i,t. The weighting scheme ω involves

a low-dimensional vector of unknown parameters θ, used to avoid the parameter pro-
liferation implied by the estimation of coeffi cients associated to high frequency lags.
There are many possible parameterizations of the model. Following Andreou et al.
(2013), the exponential Almon lag polynomial is adopted, since this parameterization
yields a parsimonious, yet flexible scheme of data-driven weights. The parameters of
the ADL-MIDAS model in equation (45) are estimated by nonlinear least squares.
First, note that this model can be used to obtain direct (as opposed to iterated)

forecasts for h multiperiods ahead. Also, the ADL-MIDAS generalizes the ADL fore-
casting approach to deal with mixed-frequency data. See Bai et al. (2013) for a good
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discussion about how the MIDAS regression model relates to the traditional Kalman
filter mixed-frequency approach.
The MIDAS model described in equation (45) can be extended to include macro-

economic data available at monthly frequency. Moreover, as new releases of data
become available, one can include useful information between periods t and t+ 1 (e.g.,
due to nonsynchronized publication lags). In this sense, Clements and Galvão (2008)
introduced the MIDAS regression with leads, where the notion of leads pertains to the
fact that one can use information between t and t+ 1. For instance, suppose one is 2
months into quarter t+1 (i.e., at the end of February, May, August or November) and
the goal is to forecast quarterly GDP. This implies one has approximately 44 trading
days (2 months) of daily data.
The ADL-MIDAS (pQY , q

D
X , J

M
X , J

D
X ) regression model with leads (in both monthly

and daily data) is described as follows (see Andreou et al., 2013, equation 5.1):

Y Q
t+h = µh +

pQY −1∑
j=0

ρhj+1Y
Q
t−j +

2∑
j=3−JMX

γhjX
M
3−j,t+1 (46)

+βh

 m−1∑
i=(3−JDX )∗m/3

ωθ
h

i−mX
D
m−i,t+1 +

qDX−1∑
j=0

m−1∑
i=0

ωθ
h

i+j∗mX
D
m−i,t−j

+ εht+h,

where XD
m−i,t+1 denotes the ith day counting backward in quarter t+ 1, and JDX repre-

sents daily leads, for the daily predictor, in terms of multiples of months (i.e., JDX = 1
and 2). In other words, in the case of JDX = 2, XD

2m/3,t+1 corresponds to 2m/3 = 44

leads (assuming m = 66), while XD
1,t+1 corresponds to 1 lead for the daily predictor.

The definitions of JMX and XM
3−j,t+1, associated to monthly data, are quite similar to

the ones used for daily data.
This empirical exercise forecasts the real GDP growth rate (Y Q

t+h), for the U.S. or
the OECD, h−quarters ahead, using the MIDAS approach. To do so, one uses no
lags of the real GDP growth (ρhj+1 = 0) and consider as monthly variable XM

month=i =
∆ ln(global industrial production indexmonth=i), and as daily variables XD

day=j = 1
15

15∑
k=1

∆ ln(commodity priceday=j−k+1), where the set of commodities is either [oil]′ or

[aluminium; copper; tin]′. The source of daily data is Thomson Reuters,12 whereas the
monthly global industrial production series is extracted from the IMF-IFS database.
Regarding model (45), the predictors [XD;XM ]′ are considered lagged two months
in respect to the end of the quarter of the observed GDP (Y Q

t ). In model (46), the
predictors [XD;XM ]′ are considered one and two months forwarded, respectively, in
respect to the end of the quarter of the observed GDP (Y Q

t ). In other words, for model
(46), one takes into account information between periods t and t+ 1 when considering
leads of one and two months, respectively, for the commodity prices and the global
industrial production index.

12Nominal price data is deflated using the producer price index (PPI) for the U.S., extracted from
the FRED database of the St. Louis FED.
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