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Non-technical Summary

At the outset of the recent global financial crisis, spillovers in volatility across the interna-

tional markets resulted in widespread losses. Such episodes have since been observed many

times since. These characteristics of asset prices significantly deviate from log-normality and

display time-varying stochastics, with ample evidence of jumps transmitting from one asset

price or market to others. Traditional diffusion models are not able to capture this behavior,

implying that risk arising from extreme variations and risk spillovers from one asset class or

country to other asset classes or regions would get misevaluated.

We propose a multivariate jump diffusion model with Markovian contagion to capture

these asset price dynamics, where the channel of contagion periodically switches from an

active to an inactive state. We use a dynamic conditional correlation network approach to

identify and estimate the Markovian contagion model. We apply the model to an interna-

tional equity and currency portfolio allocation. The fat tail characteristics captured help

evaluate the extent of model risk, intra-asset class, inter-asset and inter-region contagion.
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Sumário Não Técnico

No ińıcio da recente crise financeira mundial, transmissão de volatilidade entre mercados

resultou em perdas financeiras generalizadas. Tais episódios foram observados várias vezes

desde então. Essas caracteŕısticas de preços de ativos desviam significativamente das pre-

missas de log-normalidade de preços e apresentam caracteŕısticas estocásticas que variam

no domı́nio do tempo, com evidência ampla de saltos sendo transmitidos dos preços de um

ativo ou mercado para outro. Os modelos tradicionais de difusão podem não detectar esse

comportamento, o que implica que risco originado por variações extremas e transmissão de

risco excessivo de uma classe de ativos ou páıs para outras classes ou regiões pode ser mal

estimado.

Este artigo propõe um modelo multivariado de difusão com saltos baseados em contágio

Markoviano para incorporar essas caracteŕısticas da dinâmica de preços de ativo. Nesse

modelo, o canal de contágio muda periodicamente entre o estado ativo e o estado inativo.

Para identificação e estimação do modelo, utilizamos uma abordagem de rede baseada em

correlação condicional dinâmica. O artigo aplica esse modelo no contexto de uma carteira de

ı́ndices de ações e moedas internacionais. As caracteŕısticas de caudas gordas identificadas

auxiliam na avaliação do risco de modelo e da extensão do contágio intra-ativo, inter-ativos

e inter-região.
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Asset prices exhibit significant deviation from log-normality, with time-varying
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1 Introduction

At the outset of the recent global financial crisis, US financial market collapse was accom-

panied by significant hike up in volatility across the globe. Spillovers in volatility across the

international markets resulted in widespread losses. Such episodes have since been observed

many times in the years following the outset of the global financial crisis. This characteristic

of stochastic dynamics of asset prices would be hard to capture using traditional diffusion

models, implying that risk arising from extreme variations and risk spillovers from one asset

class or country to other asset classes or regions would get misevaluated.

It is widely known that equity returns (Ball and Torous, 1983), exchange rates (Jorion,

1988) and interest rates (Das, 2002) depart from the traditional diffusion model assumptions,

exhibiting jumps in their paths. For purposes of portfolio allocation, these asset price jumps

are often assumed to be uncorrelated with each other, thus ignoring their possible interrela-

tion. Stylized facts, however, show that asset price jumps seem to be correlated (Das and

Uppal, 2004) and that jumps in one region tend to increase the probability of jumps in other

regions (Aı̈t-Sahalia et al., 2015). In this paper, we develop a model for correlated jumps

that incorporates spillover risk characteristics of asset price dynamics and comovement.

Although there is some disagreement regarding the precise definition of contagion, its

most accepted key feature is an increase in comovement in asset prices after a shock to an

entity or a set of entities (Forbes and Rigobon, 2002). Some of this escalated comovement

may be explained by known common factors, which is often referred to as interdependence.

Therefore, contagion is often associated with shocks in one asset that affect another asset

in excess of what is explained by observable factors (Bekaert et al., 2005). Contagion and

interdependence are both central to the non-stationary comovement in asset returns. A

unique feature of our model is that the likelihood of contagion is not constant. Instead, the

channel of contagion between assets may take two possible states, active or inactive, modeled

as a Markovian process.

Empirical literature shows that comovement in asset prices is more pronounced during

bear markets (Ang and Chen, 2002; Longin and Solnik, 2001). There is also evidence of

clustering, i.e., increased comovement during high volatility periods (Boyer et al., 2006).
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When these non-stationary features of asset dynamics are ignored, the missing traits of joint

asset return distributions can be a source of significant model risk. A poor choice of the

dependence structure can lead to an inferior estimation of diversification benefits, negatively

impacting portfolio allocation and risk assessment. For instance, attempting to incorporate

comovement using structures, such as, the Gaussian copula, ends up being too optimistic

regarding the diversification effects of portfolios (Kole et al., 2007), thus underestimating

the risk of extreme events (Poon et al., 2004).

Our model accounts for possible non-stationarity in interdependence between asset re-

turns and common factors. We split asset returns into two components, one component that

explains the interdependence with common factors, which is non-diversifiable, and another

that is asset specific, or idiosyncratic. We use a dynamic beta model (Engle, 2014) to iden-

tify the time-varying interdependence between the assets and the factors. Considering the

residuals as the remnant asset price risk after the influence of observable factors is filtered,

comovements between idiosyncratic components can help isolate spillover risk.

Financial markets are highly interconnected with rather complex relationships between

financial instruments. Complex systems are often described in hierarchical form, where

stronger relationships are first filtered, and specific and minor relations surface later in

the process (Simon, 1962). In many practically important areas, a network representation

significantly aids the analysis of large datasets (Huang et al., 2009). Our framework relies

on a minimum spanning tree (MST) representation for most significant, yet minimalist,

identification of connections between asset prices and their temporal evolution. Connections

arising from two idiosyncratic components suggest existence of similarities between two assets

that are only weakly explained by the factors, where the relative and absolute importance

of factors change over time.

The challenge of identifying occurrence of contagion is tackled using a network analysis

approach. We use the decomposed asset returns and the common factors to build a layered

minimum spanning tree (MST) network (De Carvalho and Gupta, 2014). A layered MST

helps extract the most significant idiosyncratic connections that may be recruited for con-

tagion when shocks are experienced by an asset. This topological space relies on a minimal

number of links (or edges) to connect three distinct types of nodes: common factors nodes,
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pure nodes (or asset return nodes) and idiosyncratic nodes. Distance between two nodes is

characterized by a norm transformation of the dynamic conditional correlation (Engle, 2002).

Each node is connected in the minimum spanning tree (MST) through a node it is nearest

to by the chosen distance metric. An asset return node is connected to another asset return

node either through one of the explanatory common factors or through its idiosyncratic node.

Therefore, this network structure helps identify the strongest sources of codependencies be-

tween assets, namely due either to their unique characteristics or a fundamental explanatory

variable.

The MST is allowed to change with time, with the nodes remaining unchanged, while the

links represent the changing strong correlations in node-pairs as idiosyncratic and systematic

connections between asset return nodes. The model uses the dynamic network to characterize

the two possible states for the channel of contagion. Specifically, when two idiosyncratic

nodes are connected in the network, we consider the channel of contagion between them

to be active, otherwise this contagion link is inactive. These two states for the channel

of contagion extend the regime switching literature of non-stationary comovement in asset

prices in a distinct way. Past models have focused on the change in the jump arrival rates

(Eraker, 2004) or in the nature of the copula model (Garcia and Tsafack, 2011).

Regime switching in the channel of contagion is important for our proposed jump diffusion

model, and distinguishes our work from the literature on correlated jumps. For instance,

Das and Uppal (2004) recognize that jumps tend to happen simultaneously, however, they

impose a perfect correlation between jumps, contrary to the possibility that jumps can be

unique to a single asset at least some of the time. This approach potentially overstates

the risk of jumps, thus producing a pessimistic estimate of the diversification benefits of a

portfolio. In another closely related paper, Aı̈t-Sahalia et al. (2015) use a Hawkes process

to describe mutual excitation between assets, where intensity of jumps are time varying and

mutually exciting. In their model, connections between jumps in one asset price and those

in other assets’ prices are always active. Thus, jumps in one asset price always increase the

likelihood of jumps in other assets. In the terminology of our model, the channel of contagion

is always active, regardless of the state of the economy.

These models fit some stylized facts of asset return data. For instance, markets in the

8



same region tend to exhibit jump contagion (Bae et al., 2003). However, Pukthuanthong

and Roll (2015) use modern jump detection measures to study 82 country equity indices

and find that jumps are weakly correlated. They argue that jumps are idiosyncratic, and

that variations of returns reflect global factors. Similarly, other papers show that the US

securities markets explain a large part of jumps in local markets (Asgharian and Nossman,

2011) and most of the sovereign credit risk premium (Longstaff et al., 2011).

In our model, we account for the important role common factors play in capturing inter-

dependence in asset returns. Thereafter, we focus on the residuals for the latent factors that

may be driving comovement (Duffie et al., 2009). The idiosyncratic component of returns is

subject to jumps, as well as spillovers from jumps in other actively connected idiosyncratic

nodes. We argue that the reason for weak correlation in jumps, as found in Pukthuanthong

and Roll (2015), is that the channel of contagion and transmission of jump shocks is not

always active. Instead, the regime switch in the channel of contagion allows us to more

accurately characterize the times when contagion, and not interdependence, is responsible

for increased comovement.

We show the importance of evaluating the persistence of the contagion connection by

analyzing the performance of diffusion-based optimal portfolio weights under three different

assumptions of market conditions. We consider a risk averse US-based investor that maxi-

mizes her utility of terminal wealth. She does so by choosing to invest in two international

equity indices of two different regions, Europe and Japan and, as such, holding exposure

to the corresponding foreign exchange rate risk. Using returns in dollar terms, we estimate

optimal portfolio weights under the pure diffusion model. We then use Monte Carlo sim-

ulations of a plain diffusion-based model, a model with perfect correlated jumps and the

Markovian Contagion model to evaluate the expected utility, the Value-at-Risk and the ex-

pected shortfall of the portfolio. We observe that in the Markovian contagion model, the

intensity of jumps in the residuals is smaller than the intensity of perfectly correlated jumps

in the second model. Although the dispersion of portfolio returns using the Markovian con-

tagion model is similar to that of the diffusion model, the Markovian contagion model based

portfolio return scenarios display higher realizations in the tails.

We find that the choice of an inferior model for determining the optimal portfolio allo-
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cation is likely to result in loss of utility under a more realistic model. Depending on the

specific performance measures chosen, the adverse impact would vary in severity. Under the

Markovian contagion assumption, portfolio performance, measured by expected utility, is

consistently worse than under the diffusion model. A fatter tail of the return distribution

results in larger value at risk (VaR) and expected shortfall values. Markovian contagion

also reduces the expected utility. We also find that in most cases, the portfolio performance

under Markovian contagion is better than the case with perfectly correlated jumps.

We begin with describing the Markovian contagion asset price evolution dynamics in

Section 2. As part of the model, we discuss the identification of the idiosyncratic component

of asset price dynamics and Markov transition matrices for active and inactive states of

idiosyncratic contagion links. Section 3 provides a detailed data and empirical estimation

strategy, followed by studying the impact of Markovian contagion on portfolio diversification

in Section 4. We conclude with some final remarks in Section 5.

2 Markovian Contagion Model

There are multiple definitions of contagion, all of whom involve the increase of comovement

in the market after a shock to one or more assets (Forbes and Rigobon, 2002). The elevated

comovement, however, could arise from interdependence of asset prices on the observable

common factors or from shocks in one asset that is transmitted to other assets in excess of

the explanatory power of the factors (Bekaert et al., 2005). From the development of the

Capital Asset Pricing Model (CAPM) (Sharpe, 1964), factor models have been widely used

to explain and predict asset returns, thus reducing the complexity and the randomness in

the analysis of dependence structure between assets. In order to separate interdependence

from contagion, we decompose asset returns (yi,t =
dYi,t
Yi,t

) into a component explainable by

factors (xt = dXt

Xt
) and an idiosyncratic component (zit =

dZi,t

Zi,t
).

dYit
Yit

= βT
dXt

Xt

+
dZit
Zit

. (1)

For simplicity, we consider that factor returns follow a geometric Brownian motion as follows:

dXt

Xt

= αFdt+ σFdW
F
t , (2)
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where αF is a column vector of drift coefficients for the f factors, σF is a f × f diagonal

matrix of volatility coefficients and W F is a f × 1 vector of independent Wiener processes.

Variation of the residuals in the above decomposition of asset returns could be arising from

temporary increase in correlation between asset returns and common factors due to market

conditions, as documented in Ang and Chen (2002), Longin and Solnik (2001) and Boyer et al.

(2006). To account for this source of variation in residuals, we use a dynamic beta model

based on the conditional correlation of the common factors and the asset returns (Engle,

2014). We assume that asset log-return time series, Ui,t, with U ∈ {X, Y }, is normally

distributed with mean, µUi
, and conditional variance, hUi,t

.

Ui,t =
√
hUi,t

uUi,t
, and uUi,t

∼ N(0, 1), (3)

Therefore,

Ui,t ∼ N(0, hUi,t
). (4)

Conditional variances and covariances are modeled as the following GARCH(1,1) model.

hi,t = ωi + αihi,t−1 + γiUi,t−1, (5)

hij,t = ωij + αijhij,t−1 + γijUij,t−1, (6)

Uij,t−1 = Ui,tUj,t, (7)

wij = 1− αij − γij. (8)

We use the dynamic conditional covariance matrix of factors, Hxx, and the conditional

covariance matrix of common factors and asset returns, Hxy, to estimate the dynamic betas

as follows.

yit = xitβit + zit, (9)

βit = H−1
xx,tHxy,t. (10)

Since there may be latent factors driving asset return comovement (Duffie et al., 2009),

our model accounts for the importance of factors, but our focus henceforth will be on the

residuals. The idiosyncratic component of asset returns is taken to follow a multivariate

Markovian jump diffusion, where jumps in one asset price may cause jumps in other assets’
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prices when the channel of contagion between them is active. Therefore, the idiosyncratic

component of asset returns is subject to jumps and also spillovers from jumps of other assets.

dZt
Zt

= σIdW
I
t + JtdNt, (11)

where σI is a n×n diagonal matrix of volatility coefficients for the idiosyncratic returns, W I

is a n× 1 column vector of independent Wiener processes driving the idiosyncratic returns,

Nt is a n× 1 vector of independent Poisson processes and Jt is a n× n time-varying matrix

that incorporates jumps from each of the assets.

We argue that the weak correlation of jumps reported in Pukthuanthong and Roll (2015)

is because the channel of contagion is not always active. There are periods when a jump

in one asset price does spillover to other assets, and then there are periods when jumps in

one asset are not transmitted to other assets. To capture this contagion characteristic, we

enhance the jump process with a Markov chain to indicate the active and inactive states of

inter-asset contagion. At each point in time, contagion has the same conditional probability

of occurring given the state of the contagion channel in the previous period. Change of

states for the contagion channel allows us to more accurately characterize the times when

contagion, and not interdependence, is responsible for increased comovement.

It is important to highlight that we do not change the jump arrival rate for asset prices,

such as in the models of Bates (2000), Pan (2002) and Eraker (2004). Instead of a regime

switching model that changes the arrival rates of jumps, in our model the likelihood of

contagion changes by regime. Each element of the jump matrix, Jij(t), is defined as a product

of an indicator for asset-pair that is susceptible to contagion, Iij, and a two-state Markov

chain, Vij(t), that switches between inactive or ’0’-state and active or ’1’-state. Transition

rates of the Markov chain are represented in a [2 × 2] transition matrix, Tij, defined for

each asset-pair susceptible to contagion. Finally, Pij, is an independent identically log-

normally distributed jump shock size that transmits from asset j to asset i. Therefore,

log(1 + Pij) ∼ N(µij, δ
2
ij), and combining all the terms, the jump process is constructed as,

Jij(t) = IijVij(t)Pij. (12)

For identification of the contagion network, we use a layered minimum spanning tree

(MST) methodology developed in De Carvalho and Gupta (2014). The estimation of the
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transition matrix for the Markov chain, Vij(t), utilizes a time-varying MST structure. An

MST is progressively built by minimally linking node-pairs characterized by the strongest

link or smallest distance, until all nodes are connected without causing any cycles in the

graph. The distance between nodes is measured by the following norm transformation of the

conditional correlations.

dz(i, j) =
√

1− |ρzizj ,t|, (13)

dyx(i, j) =
√

1− |ρyixj ,t|, (14)

where z subscript refers to idiosyncratic returns, y subscript is for asset return and x repre-

sents the common factors. We identify the dynamic conditional correlations (Engle, 2002)

by representing the conditional covariance matrix as follows:

Ht = Dt
1/2RtD

1/2
t , (15)

where Dt is the diagonal matrix of conditional variances,

Dt =

 hi,t 0

0 hj,t

 , (16)

and Rt is the matrix of conditional correlation,

Rt =

 1 ρij,t

ρij,t 1

 , (17)

where each pair of conditional correlation is estimated as follows.

ρij,t =
hij,t√
hi,thj,t

. (18)

In the layered MST network with three types of nodes, factor nodes, asset return nodes

and idiosyncratic nodes, only the most significant connections between nodes are enabled.

As a result, the MST network of 3n nodes has 3n− 1 links representing the largest absolute

conditional correlations. We fix the asset return nodes to be always connected to their

idiosyncratic return nodes, thereafter two asset return nodes are connected either through a

common factor or through their idiosyncratic return nodes. This is illustrated in Figure 1.

The network identification is complete when all nodes are connected.
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Figure 1: Schematic for the minimum spanning tree connectivity. The asset return nodes are always

connected to their idiosyncratic return nodes.

We are particularly interested in contagion between assets, when there is an increased

comovement between assets that is not explained by the common factors. The above network

construction allows us to define the two distinct regimes for the contagion channel among

assets by considering time-varying changes in the above layered MST network. As the layered

MST network changes with time, when two idiosyncratic nodes are connected, this implies

that this is the shortest link possessing strongest comovement relative to those with any of

the common factors, and therefore the corresponding contagion channel is active. On the

other hand, when the idiosyncratic nodes are disconnected with each other, the contagion

channel is inactive. By observing these temporal changes in idiosyncratic connections, we

estimate the transition probabilities, Tij, of the contagion channel between assets i and j,

Vij(t), as follows.

Tij =

 P (Vij,t = 1|Vij,t−1 = 1) P (Vij,t = 0|Vij,t−1 = 1)

P (Vij,t = 1|Vij,t−1 = 0) P (Vij,t = 0|Vij,t−1 = 0)

 . (19)

We use the contagion channel transition matrices to implement the estimation of the jump

diffusion model parameters. This particular network approach is important as it considers

the active state of the contagion channel, when a jump shock experienced by one asset node is

transmitted to other asset nodes through its active contagion channels. Inactive idiosyncratic

links indicate a weaker linkage, and hence are not recruited for jump shock transmission.

Taking the contagion channel transition matrix estimates into account and for a small value

of ∆t, it is reasonable to assume that in each time interval at most one jump shock occurs for
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an asset, as in Merton (1976). Under this assumption, we re-write Equation (11) in discrete

form as,

Zi,t = Zi,t−1exp

[
− 1

2
σ2
Ii

∆t+ σIi∆Wt

] J∏
j=1

(
1 + Pij,sVij,sIij

)
∆Nj,s. (20)

Although the assumption of one jump per period does not hold for lower frequency data,

it provides a more stable estimation procedure. Since λ∆t is small, a Poisson distribution

with intensity λ can be approximated by the sum of n identically distributed independent

Bernoulli random variables, as in Ball and Torous (1983). Using this approximation, we can

re-write Equation (20) for discrete times, t = k∆t for k = 0, 1, . . . , T , as follows,

log

(
Zi,t
Zi,t−1

)
=

[
− 1

2
σ2
I,i∆t+ σI,i∆Wt

]
+

N∑
j=1

(
1 + Pij,tVij,tIij∆tqj,t

)
, (21)

where

∆Wt ∼ N(0,∆t), (22)

log(1 + Pij,t) ∼ N(µ, δ), (23)

∆qj,t ∼ b(1, λj∆t). (24)

The unconditional density function of the log-returns zi,t = log(Zi,t/Zi,t−1), with param-

eters Ψ = (σi, λj, µij, δij) is the sum of probability of no jumps occurring and the probability

of jumps experienced by any of the assets and its impact on asset i.

p(zi; Ψ) =

(
1−

N∑
j=1

λj

)
φ

[
zi;

(
− 1

2
σ2
I,i∆t

)
;σ2

I,i∆t

]

+
N∑
j=1

λjφ

[
zi;

(
− 1

2
σ2∆t

)
+ µij;σ

2
I,i∆t+ δ2ij

]
VijIij. (25)

However, the information about the channel of contagion is not revealed ex-ante. For this

reason, we identify the Markovian transition density matrix for the contagion channels and

use the conditional density function of zi defined as follows.

p(zi; Ψ|Vij,t−1) =

(
1−

N∑
j=1

λj(1− Iij[P (Vij,t|Vij,t−1) = 1])

)
φ

[
zi;

(
− 1

2
σ2
I,i∆t

)
;σ2

I,i∆t

]
,

+
N∑
j=1

λjφ

[
zi;

(
− 1

2
σ2∆t

)
+ µij;σ

2
I,i∆t+ δ2ij

]
Iij[P (Vij,t|Vij,t−1) = 1]. (26)
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The parameters, Ψ, are obtained by maximizing the log-likelihood function,

`(zi,1, zi,2, ...., zi,T ,Ψ) =
T∑
t=1

log(p(zi,t,Ψ|Vij,t−1)). (27)

Once the parameters, Ψ, are estimated from the above log-likelihood maximization, combin-

ing Equations (11) and (2), the model for asset returns in Equation (1) can be constructed.

We implement the calibration of the model in the next section, with first describing the data

and discussing the empirical analysis.

3 Data and Empirical Estimates

We apply the Markovian contagion model to analyze international portfolio selection. An

investor that allocates her capital in multiple equity markets to construct an internation-

ally diversified portfolio would be concerned with the unfavorable comovement of these as-

sets. However, the diversification benefits of investing in international markets is under

scrutiny (Ang and Bekaert, 2002), because these benefits seem to diminish due to spillover

risks precisely when an investor needs them the most.

We consider a US-based investor who chooses to invest in two international equity in-

dices of two different regions, Europe and Japan. This asset allocation is also exposed to

the corresponding foreign exchange rate risk. We pick the two international equity indices

denominated in USD and the two corresponding foreign exchange rates, to account for the

possibility that the investor would want to hedge the foreign exchange rate risk when in-

vesting in the two foreign equity markets. Additionally, in order to mitigate the adverse

effects of different time zones of the two international equity markets, we use weekly returns.

Therefore, ∆t = 1
52

.

We use data from the Morgan Stanley Capital International (MSCI) equity indices and

foreign exchange rates, from January 1st, 2001 to December 31st, 2015. The foreign ex-

change rates are given in terms of USD necessary to buy one unit of the foreign currency.

Hence, when the USD is relatively stronger, the foreign exchange rate yields negative re-

turns. Descriptive statistics for the data are given in Table 1. We notice that all return time

series display negative skewness and excess kurtosis. We also observe that maximum and
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minimum of returns are many standard deviations from the mean.

Mean Std. Dev Skewness Kurtosis Minimum Maximum

Japanese Stocks 0.0003 0.0264 -0.2661 5.0081 -0.1513 0.1165

European Stocks 0.0008 0.0315 -0.7850 8.6589 -0.2297 0.1357

Dollar/Euro 0.0004 0.0138 -0.2922 4.0184 -0.0587 0.0512

Dollar/Yen 0.0002 0.0140 0.3573 4.4395 -0.0449 0.0787

Table 1: Descriptive statistics of the asset time series included in our study. The data consist of weekly dollar

returns for time series from January 1, 2001 to December 31, 2015 for Japanese Stocks (MSCI Japan Index),

European Stocks (MSCI European Index) and foreign exchange rates given by US Dollar over International

currency.

We choose two relevant common factors for international portfolio allocation, namely US

equity market index and the strength of US Dollar, as these two common factors are known to

affect international equity returns (Bahmani-Oskooee and Sohrabian, 1992). It is reasonable

to assume that US investors investing in international equity will benchmark against indices

from US equity market, such as the S&P 500 index, to help explain comovements in these

asset prices. Movements in international equity markets must be compared against a single

numeraire, hence we include the US Dollar as a factor, proxied by the US Dollar index.

The US Dollar index is calculated by the Intercontinental Exchange, which is available from

Bloomberg Professional. It is calculated by averaging the exchange rates between the USD

and major world currencies supplied by about 500 banks.

Figure 2 shows the nested dynamic beta estimated using an approach similar to Engle

(2014). We notice that the dynamic beta significantly varies with time, particularly for the

equities. Tables 2 and 3 present the descriptive statistics for the dynamic beta estimates,

and compare it with OLS betas. We confirm that, although the OLS beta and the mean

value of dynamic betas are generally close, an OLS beta would fail to accurately capture the

changes in interdependence of asset returns on the common factors over time.
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Figure 2: Figures show the time evolution of the Dynamic beta estimated in Engle (2014) from a two

factor model Yit = α + β1tUSStocks + β2tDollarIndex + zit. The dependent variables are dollar returns

for Japanese Stocks (MSCI Japan Index), European Stocks (MSCI European Index) and foreign exchange

rates given by US Dollar over International currency. The independent variables are US Stock returns (S&P

500 index), and Dollar Strength calculated by the Intercontinental Exchange (DXY ticker available from

Bloomberg Professional).

Mean Std. Dev Minimum Maximum OLS

Japanese Stocks -0.0631 0.0176 -0.1640 -0.0089 -0.0634

European Stocks -0.1249 0.0443 -0.3495 -0.0509 -0.1247

Dollar/Euro -0.0010 0.0027 -0.0087 0.0067 0.0001

Dollar/Yen 0.0275 0.0121 0.0013 0.0814 0.0301

Table 2: Descriptive statistics of the time evolution of the Dynamic beta on US stocks estimated in Engle

(2014) from a two factor model Yit = α + β1tUSStocks + β2tDollarIndex + zit. The dependent variables

are dollar returns for Japanese Stocks (MSCI Japan Index), European Stocks (MSCI European Index) and

foreign exchange rates given by US Dollar over International currency. The independent variables are US

Stock returns (S&P 500 index), and Dollar Strength calculated by the Intercontinental Exchange (DXY

ticker available from Bloomberg Professional).
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Mean Std. Dev Minimum Maximum OLS

Japanese Stocks -0.5056 0.2414 -1.6720 0.2642 -0.5423

European Stocks -1.0714 0.3746 -2.4743 0.2131 -1.2057

Dollar/Euro -1.1658 0.0770 -1.3789 -0.9589 -1.1607

Dollar/Yen -0.5847 0.1732 -1.0276 0.0405 -0.5125

Table 3: Descriptive statistics of the time evolution of the Dynamic beta on Dollar Strength as estimated

in Engle (2014) from a two factor model Yit = α + β1tUSStocks + β2tDollarIndex + zit. The dependent

variables are dollar returns for Japanese Stocks (MSCI Japan Index), European Stocks (MSCI European

Index) and foreign exchange rates given by US Dollar over International currency. The independent variables

are US Stock returns (S&P 500 index), and Dollar Strength calculated by the Intercontinental Exchange

(DXY ticker available from Bloomberg Professional).

We extract the residuals from the dynamic beta models to represent the idiosyncratic

component of the asset returns. Table 4 shows the summary statistics for the idiosyn-

cratic returns. We observe that skewness and excess kurtosis remain, suggesting that the

idiosyncratic returns encompass jumps that occur in excess of the variance explained by the

observable common factors.

Mean Std. Dev Skewness Kurtosis Minimum Maximum

Japanese Stocks -0.0001 0.0138 0.0345 8.1855 -0.0997 0.1032

European Stocks 0.0000 0.0125 -0.1382 7.5187 -0.0841 0.0728

Dollar/Euro 0.0000 0.0062 -0.0626 4.3986 -0.0325 0.0265

Dollar/Yen 0.0000 0.0071 -0.3043 8.0325 -0.0667 0.0549

Table 4: Descriptive statistics of the residual zit as estimated in Engle (2014) from a two factor model

Yit = α + β1tUSStocks + β2tDollarIndex + zit. The dependent variables are dollar returns for Japanese

Stocks (MSCI Japan Index), European Stocks (MSCI European Index) and foreign exchange rates given by

US Dollar over International currency. The independent variables are US Stock returns (S&P 500 index),

and Dollar Strength calculated by the Intercontinental Exchange (DXY ticker available from Bloomberg

Professional).

We use the factors, asset returns and the idiosyncratic returns to construct a layered MST
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network (De Carvalho and Gupta, 2014) based on dynamic conditional correlations (Engle,

2002). The average distance between the nodes of the MST network is seen to decrease with

time, suggesting an increased level of interdependence. The links of the layered MST change

with time, with the idiosyncratic nodes getting periodically connected and disconnected.

Using these networks, we estimate the transition matrices for the Markov chain, Vijt, for

each pair of idiosyncratic nodes i, j. The transition matrix of the Markov chains provides

us the unconditional probability of link existence. We present these probabilities in Table 5.

There is a high probability of connectivity between the equity indices and also between the

currencies, suggesting strong intra-asset links. The likelihood of inter-asset or intra-region

connectivity, however, is quite low.

Asset Japanese Stocks European Stocks Dollar/Euro Dollar/Yen

Japanese Stocks 100.00% 57.40% 4.03% 2.21%

European Stocks 57.40% 100.00% 0.39% 0.91%

Dollar/Euro 4.03% 0.39% 100.00% 40.65%

Dollar/Yen 2.21% 0.91% 40.65% 100.00%

Table 5: Unconditional probability of contagion channel being enabled.

4 Impact of Contagion in Portfolio Performance

We analyze and demonstrate the impact of contagion on the performance of a portfolio

using the Markovian regime switching model developed in this paper. Comovement of finan-

cial time series is known to significantly influence portfolio investment decisions. Portfolio

selection models that fail to capture the asymmetric dependence and regime switching of con-

tagion can result in significant costs or losses for an investor (Chollete et al., 2009). A model

lacking in the appropriate comovement structure of asset prices would lead to suboptimal

portfolios and inaccurate assessment of risk exposures (Kole et al., 2007).

We consider a risk-averse investor that maximizes her utility of terminal wealth, WT , using

the following constant relative risk aversion (CRRA) utility with a risk-aversion parameter,
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γ.

U = E

[
W 1−γ
T

1− γ

]
. (28)

In order to diversify internationally, we assume that the investor chooses to invest in the

European and the Japanese equity markets, or hold cash in domestic currency (USD). Using

returns in dollar terms, we estimate optimal portfolio weights under the pure diffusion model

for asset returns as follows,

ŵ =
1

γ
Σ̂−1R̂. (29)

Table 6 shows the portfolio weights in equities and currencies for different choices for

the risk aversion levels. As expected, the allocation in risky assets is smaller for higher risk

aversion levels. The largest allocation is in the Euro currency and there is a small short

position in the Japanese equities.

Portfolio 1 2 3 4 5 6 7

γ 1.1 1.2 1.15 2 2.5 3 5

Japanese Stocks -0.084 -0.077 -0.062 -0.046 -0.037 -0.031 -0.019

European Stocks 0.580 0.531 0.425 0.319 0.255 0.213 0.128

Dollar/Euro 1.201 1.101 0.881 0.661 0.529 0.440 0.264

Dollar/Yen 0.634 0.581 0.465 0.349 0.279 0.232 0.139

Table 6: Diffusion Model Based Portfolio Weights (ŵ) based on returns (R̂) in dollar terms, covariance

matrix (Σ̂) and risk aversion coefficient (γ).

We evaluate the performance of these assets and portfolios under different market con-

ditions, using Monte Carlos simulation for three different models. The three models incor-

porate asset comovement with different levels of sophistication. These simulations enable us

to evaluate the implications of the choice of asset evolution dynamics for performance of the

portfolios and estimate the impact of mis-specification of asset returns on the performance of

the portfolios. The first model is a plain diffusion model for all assets, with a fixed covariance

structure, given as,

dY

Yt
= αY dt+ σY dWt, (30)
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where Y and αY are column vectors and σ2
Y is the covariance matrix. This model is consistent

with traditional diffusion models in the literature that assume jumps to be uncorrelated, and

hence diversifiable. The parameter estimation for this model’s specification and assets chosen

for this study are shown in Table 7.

×10−3 MSCI Japan Index MSCI European Index Dollar/Euro Dollar/Yen

α 0.691 1.292 0.501 0.269

σ2 0.698 0.454 0.073 0.030

0.454 0.991 0.188 -0.061

0.073 0.188 0.191 0.058

0.030 -0.061 0.058 0.196

Table 7: Diffusion Model Parameters: parameters for the equation dY
Yt

= αY + σY dWt. Variables dY
Yt

are dollar returns for Japanese Stocks (MSCI Japan Index), European Stocks (MSCI European Index) and

foreign exchange rates given by US Dollar over International currency.

The second model we consider is similar to the one developed by Das and Uppal (2004),

where asset returns follow jump diffusion processes with perfectly correlated jumps.

dY

Yit
= αY dt+ σY dWt + (JY − 1)dQ(λ). (31)

In above, in addition to the diffusion parameters of Equation (30), the asset price processes

share a Poisson process, QP̃o(λt), common to all assets to capture the perfectly correlated

jumps. log(JY ) ∼ N(µY , δY ) represents the vector of jump shock sizes. Table 8 shows the

estimates of these parameters using weekly asset return data.
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×10−3
Japanese

Stocks

European

Stocks

US Dollar/

Euro

US Dollar/

Yen

α 0.3422 0.7961 0.4058 0.1714

σ2 0.4574 0.0838 -0.0329 -0.0848

0.0838 0.4179 0.0258 -0.2352

-0.0329 0.0258 0.1442 0.0071

-0.0848 -0.2352 0.0071 0.1400

λ 176.7751 176.7751 176.7751 176.7751

µ -5.3733 -13.4078 -1.8223 0.0163

δ 36.5158 55.3579 16.1455 17.8021

Table 8: Jump Diffusion with Perfectly Correlated Jumps: parameters for the equation dY
Yt

= αY +σY dWt.

Variables dY
Yt

are dollar returns for Japanese Stocks (MSCI Japan Index), European Stocks (MSCI European

Index) and foreign exchange rates given by US Dollar over International currency.

Parameters estimated for this specification point to considerably low diffusive correlation

among assets. However, jumps have a much larger volatility, i.e., when the jumps occur,

they augment the dispersion of the return paths and increase the kurtosis. For instance,

our estimated parameters suggest that the contribution of correlated jumps, λ(σij + δiδj), is

four times larger for the pair of equity indices and seven times larger for the pair of foreign

exchange rates.

It is important to highlight, however, that in Das and Uppal (2004), these perfectly

correlated jump processes are applied to lower frequency data in order to capture systemic

risk. At a lower frequency of observation, jumps are noted to happen less often, as larger

fluctuations at a higher frequency tend to offset one another. Perfectly correlated jumps may

arise from interdependence, or systemically, rather than due to contagion between assets.

As an enhancement for jump characteristics, we consider the case of Markovian contagion

as described in Equation (11). The model allows us to separate the effect of contagion from

interdependence through the common factors, by identifying the correlated jumps in the

idiosyncratic component of asset returns.

We estimate the parameters for the Markovian contagion model for the case under study
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and present the point estimates in Table 9. Parameters µij and δij presented in row i and

column j in the table should be read as the impact of a jump on asset j transmitted to asset

i when the link between them is active. Examining the off-diagonal (covariance) elements of

δ, we notice that when contagion links are active, the spillover risk is larger than individually

disconnected jump risk. Spillovers are also seen to be asymmetric. For instance, jumps in

the currencies seem to be more important to the equity indices than vice-versa.

×10−3 Japanese Stocks European Stocks Euro Yen

σ 23.5973 18.1859 3.4973 10.9918

λ 30.9916 145.1685 141.3558 49.9006

µ

-2.9846 0.3831 6.2488 4.4692

-22.0989 6.2828 12.1399 -5.5802

6.9469 1.1691 -1.1483 -0.3427

14.4502 -5.2510 2.9515 -4.1593

δ

22.9407 27.2708 52.5801 73.5851

42.5410 17.3902 84.5869 86.8295

16.5380 21.1561 3.7369 7.8936

54.5765 48.1131 19.0018 10.7588

Table 9: Parameters for Markovian Contagion Jumps: parameters for the equation dZt

Zt
= σIdW

I
t +(Jt)dNt,

where σI is an n × n diagonal matrix of volatility coefficients for the idiosyncratic returns, W I is an n × 1

column vector of independent Wiener processes driving the idiosyncratic returns, Nt is an n × 1 vector of

independent Poisson processes and Jt is an n× n time-varying matrix that incorporates jumps from each of

the assets. Each element of the jump matrix, Jij(t) = IijVij(t)Pij , is defined as a product of an indicator for

asset-pair that is susceptible to contagion, Iij , and a two-state Markov chain, Vij(t), that switches between

inactive or ‘0’-state and active or ‘1’-state. Pij , is an independent identically log-normally distributed jump

shock size that transmits from asset j to asset i, characterized by log(1+Pij) ∼ N(µij , δ
2
ij). Variables dZ

Zt
are

the idiosyncratic components of dollar returns for Japanese Stocks (MSCI Japan Index), European Stocks

(MSCI European Index) and foreign exchange rates given by US Dollar over International currency.

The parameters of the Markovian contagion model cannot, unfortunately, be directly

compared to the ones of the first two model specifications, as the parameters for the Marko-
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vian contagion model are determined for the residuals of the equity and currency returns.

Nevertheless, we observe that in the Markovian contagion model, the intensity of jumps in

the residuals is smaller than the intensity of perfectly correlated jumps in the second model.

This lends support to our hypothesis that jumps in asset prices don’t always transmit to

other assets, and that the proportion of times when jumps do transmit to multiple assets is

small.

Another important observation is that jumps are neither significantly positive nor signifi-

cantly negative. This suggests that although jumps increase volatility, they do not necessarily

lend a clear direction of asset price movement. We also note that when inter-asset links are

active, the jump transmission has much higher intensity. Lastly, in this model, we incorpo-

rate interdependence in the asset prices, so that each asset price follows a process described

in Equation (1). The parameters of the diffusion model for the evolution of common factors

are reported in Table 10.

×10−3 S&P 500
Dollar

Index

α 19.4110 -0.1100

σ 20.6229 0.1314

Table 10: Diffusion Parameters for Factors: Parameters for the equation dXt

Xt
= αF + σF dW

F
t , where αF

is an f × 1 column vector of drift coefficients and σF is an f × f diagonal matrix of volatility coefficients

and WF is an f × 1 column vector of independent Wiener processes. Factors are S&P 500 index and Dollar

index.

For evaluating the performance of the portfolios in Table 6, we use the long-term βs from

Table 2 and the estimated parameters for the Markovian contagion model of Equation (2),

shown in Table 9. We simulate the model for a duration of one year (50 weeks). Similarly,

we simulate the other two models for asset returns in order to compare the performance of

the portfolios under different model representations of market conditions.

Combining simulated asset price trajectories from the three models with portfolio weights,

we generate scenarios for returns of the portfolios. The dispersion of returns for the per-

fectly correlated jumps model is much larger than for the other two models. Although the
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dispersion of portfolio returns using the Markovian contagion model is similar to that of

the diffusion model, the Markovian contagion model based portfolio return scenarios display

higher realizations in the tails. Therefore, the nature in which the jumps are realized in

the Markovian contagion model captures the fatter tail characteristics of asset or portfolio

returns.

We evaluate the expected utility function for each model corresponding to each of the

portfolios in Table 6. The choice of an inferior model for determining the optimal portfolio

allocation is likely to result in loss of utility under a more realistic model. The utility function

evaluations under different model choices are presented in Table 11. For each portfolio, we

show the expected utility and the standard deviation of the utility function under each

model choice. For all levels of risk aversion, expected utility is seen to deteriorate in the

two advanced models relative to the pure diffusion case. The standard deviation of utility is

also higher for the two advanced models. Thus, portfolio allocations made by the diffusion

model are significantly sub-optimal for cases where correlated jumps may not be ignored.

The manner in which correlated jumps are incorporated in a model is also important. For

the two advanced model specifications, we see that expected utility is larger for the Markovian

contagion model than for perfectly correlated jumps model. However, standard deviation

of utility is also higher for the Markovian contagion model. This suggests that, although

portfolio return scenarios under Markovian contagion are fairly concentrated around the

mean, the heavier tails of the joint distribution increases the standard deviation of utility

function. This observation has two implications. First, a higher standard deviation of utility

function implies that the standard error for expected utility estimates is higher under the

Markovian contagion model. Second, if there is a greater deviation from the diffusion model

in terms of tail risk, performance measures that focus on tail risk must be utilized to evaluate

the Markovian contagion model.
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Expected Utility Standard Deviation Utility

Portfolio γ Diffusion

Perfectly

Correlated

Jumps

Markovian

Contagion
Diffusion

Perfectly

Correlated

Jumps

Markovian

Contagion

1 1.1 -9.9452 -10.0208 -9.9630 0.1803 0.2277 0.2654

2 1.2 -4.9498 -5.0189 -4.9660 0.1650 0.2081 0.2422

3 1.5 -1.9600 -2.0149 -1.9727 0.1315 0.1654 0.1921

4 2 -0.9700 -1.0110 -0.9796 0.0983 0.1233 0.1430

5 2.5 -0.6427 -0.6755 -0.6504 0.0785 0.0983 0.1139

6 3 -0.4801 -0.5073 -0.4864 0.0653 0.0818 0.0946

7 5 -0.2381 -0.2544 -0.2419 0.0391 0.0489 0.0564

Table 11: Evaluation of the expected utility function for each model corresponding to each of the portfolios

in Table 6. For each portfolio, we show the expected utility and the standard deviation of the utility function

under each model choice.

We consider two alternative measures of performance for the portfolios of diversified assets

that focus on portfolio tail risk, namely, value at risk (VaR) and expected shortfall. Value at

risk measures the threshold loss value for a given time horizon that realized losses may exceed

with p probability. We estimate this threshold value, labelled (1 − p)100% confidence level

value at risk, by sorting the terminal wealth values for each portfolio and selecting the p−th

percentile value for corresponding terminal wealth realizations. Table 12 shows the estimated

VaR values for three confidence level choices for a portfolio (γ = 2) under the three model

choices. The portfolio has a much higher VaR value under the Markovian contagion model

compared to the other two models. This is clearly due to the fatter tail of the distribution

under this model choice, which is particularly pronounced in the (1 − 0.005)100% = 99.5%

confidence level VaR as a result of rarer and severe impact of contagion.
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VaR p = 0.5% 1% 5%

Diffusion -0.2029 -0.1832 -0.1229

Perfectly Correlated Jumps -0.2792 -0.2549 -0.1852

Markovian Contagion -0.3000 -0.2685 -0.1870

Table 12: Estimated VaR value using Monte Carlo simulation for three confidence level choices for a

portfolio (γ = 2) under the three model choices.

The expected shortfall measures the expected value of portfolio loss in the worst p%

scenarios of the portfolio return. Table 13 presents the results for the expected shortfall for

different choices of p. These results are consistent with those for value at risk. Expected

shortfall under the Markovian contagion model is larger than that for the diffusion model and

the perfectly correlated jump model. Since expected shortfall is a conditional expectation of

the tail of the portfolio return distribution, for all choices of confidence levels, (1− p)100%,

Markovian contagion model estimates a significantly higher value of this risk measure.

Expected Shortfall 0.05% 1% 5%

Diffusion -0.2292 -0.2105 -0.1599

Perfectly Correlated Jumps -0.3096 -0.2878 -0.2280

Markovian Contagion -0.3330 -0.3079 -0.2374

Table 13: Estimated Expected Shortfall value using Monte Carlo simulation for three confidence level

choices for a portfolio (γ = 2) under the three model choices.

The results of the comparison constructed show that if contagion risk persists in a class

of assets, even if the assets are themselves well-diversified, it can result in adverse impact on

the performance of the portfolio. Depending on the specific performance measures chosen,

the adverse impact would vary in severity. The contagion channel being assumed to be

perpetually active can create a mis-specification of the model with misleading consequences.

While this mis-specification of contagion suggests a greater deterioration in utility, it fails

to comprehend the impact of truly devastating portfolio outcomes. Besides providing more

accurate risk assessment, a dynamic description of activeness of contagion channels provides
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dynamic hedging opportunities that would not be otherwise available in static descriptions

of correlated jumps.

5 Discussion and Conclusion

This paper acknowledges that spillover risks of shocks to asset prices transmitted to other

assets in excess of what is explained by observable common factors is rare, but significant.

We proposed a model of Markovian contagion in asset returns to capture these asset return

dynamics. The model relies on a network filtration to identify when jumps from one asset

get transmitted to other assets. We account for interdependence on the common factors

using a dynamic conditional beta factor model, and specify that contagion occurs only when

conditional correlation between idiosyncratic asset returns is high.

We estimate the parameters of the Markovian contagion model in the context of interna-

tional equity and currency prices. Instead of a persistently active contagion possibility, the

contagion channels are episodic in transmitting shocks only when the channels are active.

We show that in a Markovian contagion model jumps experienced by individual assets are

less frequent, but stronger than a perfectly correlated jump model. We also show that when

contagion occurs, albeit infrequently, the effects are severe without a specific direction.

The model is applied to evaluate the effect of the correlated jumps on portfolio perfor-

mance. Our analysis shows that Markovian contagion model provides more accurate fat tail

characteristics than pure diffusion or perfectly correlated jump models. A pure diffusion

allocation is suboptimal under Markovian contagion, with reduced expected utility and in-

creased standard deviation of utility. On the other hand, value at risk (VaR) and expected

shortfall are significantly larger when assets follow a Markovian contagion model. Failing

to capture fat tails can cause serious model risk, if tail characteristics are important in a

context.

For the international equity and currency assets considered in this paper, we find low

inter-asset and inter-region contagion, but high intra-asset class contagion. We also find

stronger directional contagion from currencies to equities than the reverse. Other application

cases for the Markovian contagion model may reveal other specific characteristics and asset
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dynamics behavior, which would be valuable insights for dynamic portfolio allocation, risk

assessment, as well as developing dynamic hedging strategies.
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