Should Government Smooth Exchange Rate Risk?

Ilan Goldfajn and Marcos Antonio Silveira

September, 2002
Working Paper Series

Edited by:

Research Department (Depep)

(e-mail: workingpaper@bcb.gov.br)

Reproduction permitted only if source is stated as follows: Working Paper Series n. 48.

Authorized by Ilan Goldfajn (Deputy Governor for Monetary Policy).

General Control of Subscription:

Banco Central do Brasil
Demap/Disud/Subip
SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo
70074-900 - Brasília (DF)
Telefone: (61) 414-1392
Fax: (61) 414-3165

Number printed: 450 copies

The views expressed in this work are those of the authors and do not reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.

Banco Central do Brasil Information Bureau

Address: Secre/Surel/Dinfo
Edifício-Sede, 2º subsolo
SBS – Quadra 3, Zona Central
70074-900 Brasília (DF)
Phones: (5561) 414 (...), 2401, 2402, 2403, 2404, 2405, 2406
DDG: 0800 992345
FAX: (5561) 321 9453
Internet: http://www.bcb.gov.br
E-mails: cap.secre@bcb.gov.br
dinfo.secre@bcb.gov.br
Should Government Smooth Exchange Rate Risk?*

Ilan Goldfajn† Marcos Antonio Silveira‡

Abstract

A general equilibrium model is built to explain if there are circumstances in which exchange rate risk smoothing (ERRS) policies may bring a Pareto-improvement for a indebted small open (home) economy. The model shows that this is the case when overpessimistic foreign creditors demand a large spread on the default risk-free world interest rate, whose size can be reduced by ERRS policies and, in addition, market imperfections, such as information asymmetry between foreign investors and domestic debtors, prevent home economy’s residents from internalizing all benefits and costs of the exchange rate risk reallocation into their allocative decisions.

Keywords: Exchange rate risk, Risk smoothing policies
JEL Classification: F30, G28

*We are thankful for helpful comments from Fernando Broner, Maria Cristina Terra, Walter Novaes, an anonymous referee and all participants in 2001 Inter-American Seminar (IASE/NBER - Cambridge, MA, USA).

†Deputy Governor for Economic Policy, Central Bank of Brazil, and PUC-RJ. E-mail address: ilan.goldfajn@bcb.gov.br

‡Pontifical Catholic University of Rio de Janeiro, Department of Economics, Rua Marquês de São Vicente, 225, Rio de Janeiro, Brazil, 22453-900. E-mail address: marcos@econ.puc-rio.br
1 Introduction

In modern times pure floating regimes are a rare phenomena. Governments tend to smooth exchange rate fluctuations to different degrees, some act in a systematic manner, others only in very extreme situations, but all intervene directly or indirectly at some point in time. In some respects, this is counter-intuitive. It is well known that exchange rate is an essential price in open economies. The movements in real exchange rates signal consumers and producers the relative scarcity of tradable goods and guarantee that the current account reacts appropriately to shocks in order to maintain international solvency\(^1\). So the question is why countries do not adopt extreme pure floating? Is there any rational justification to smooth exchange rate risk?

The public budget constraint implies that exchange rate risk smoothing (ERRS) policies amount to a reallocation of the exchange rate risk exposure across the home economy. However, if they are efficient, in the sense that they bring a Pareto-improvement for this economy, why don’t competitive markets signal the correct incentives for private agents to trade their risk exposures efficiently? We show in the paper that, under full information and perfect competitive markets, it is hard to understand the reason for intervention since the risk inherent to any source of uncertainty must be efficiently reallocated across market participants. As a consequence, Pareto-improving interventions are possible only if some market failure prevents private agents from internalizing all social benefits and costs of the risk reallocation into their allocative decisions. This question is mainly relevant for many emerging markets economies with a well developed financial market, for which the non-existence of market mechanisms can not be used as a ground for public intervention.

This paper takes seriously the questions raised above and builds a general equilibrium model to explain how market imperfections, such as information asymmetry between foreign investors and home debtors, along with other conditions, could lead ERRS policies to bring a Pareto-improvement for a small open economy. More specifically, the model shows that this may arise when the home economy is paying a spread over the default risk-free world interest rate - due to the fact that foreign

\(^1\)Without full price flexibility real exchange rate tend to move closely to nominal exchange rates.
investors are overpessimistic about repayment - and in addition this spread falls as a result of ERRS policies. In this case, as a result of the lower debt cost, the home economy must export less to finance its capital account deficit, increasing in this way the supply of tradable goods for the domestic market. Therefore, not only the tradable sector wealth and welfare increase, but also the nontradable sector takes advantage of a higher relative price for its output.

Market imperfections, along with a spread whose size can be shrunk by ERRS policies, are necessary, but not sufficient, conditions for these policies to be Pareto-improving interventions, since they amount to a risk exposure reallocation across home economy's sectors. ERRS policies lead to a Pareto-improvement only if the welfare loss of the sector having its risk exposure increased is lower that the welfare gain provided by the fall in the spread. Alternatively, these policies will not be socially optimal if they do not cause a large enough reduction in the spread to compensate the sector with a higher risk exposure. In particular, if foreign investors are not so pessimistic to demand a spread, there is no scope for Pareto improvement, since the interest rate that debtors pay is already at its lowest level.

In order ERRS policies to affect the contractual interest rate on the tradable sector’s foreign debt, it is essential that both foreign credit demand and supply curves depend on the wealth volatility of the borrowers, which in turn depends to some extent on its exposure to exchange rate shocks. A lower wealth volatility impacts not only on the default probability but also on the willingness to transfer wealth to present. The net effect on the debt cost depends on the relative strength of these effects.

In our model the spread is paid because foreign investors are relatively more pessimistic than home debtors about the ability of the latter to repay. For example, consider the particular case in which debtors have incentive to repay in all states of nature, but foreign investors do not believe that repayment will occur in the worst states and hence they require a spread. In this case, it is easy to see that the higher debt cost necessarily leads to a welfare loss since debtors will repay for sure with or without spread. Therefore, any public intervention capable of reducing this spread, such as ERRS policies, may bring a Pareto-improvement. In this sense, an important
question is whether heterogeneous beliefs about default probability is an empirically relevant assumption, or better, in which circumstances this is more likely to be observed. As suggested by Calvo and Mendoza (2000a,b), this assumption seems to be consistent with the fact of that financial globalization in a context of institutional constraints, such as short-selling restrictions, reduces the incentives for market participants to collect costly country-specific information, so that informational-based herd behavior is more likely to occur in international financial market. This in turn promotes and exacerbates contagion in financial crisis experienced by emerging market economies, in that foreign investors get overpessimistic about economies not fundamentally related to the ones triggering the crisis.

Even in the favorable case for ERRS policies, an important question is still to be answered. Given that home country’s residents could trade privately their risk exposure, why do they fail to internalize the welfare effect of a lower debt cost into their allocative decisions? The model assumes that foreign investors are imperfectly informed about the individual portfolio composition of each debtor. More specifically, only the aggregate exchange rate risk exposure of each home economy’s sector can be directly observed by foreign investors, so that they are not able to monitor the individual risk exposure of each debtor separately. As a result, if an individual debtor decides to buy more hedge against exchange rate shocks, she is not able to take full advantage of the impact of this decision on the spread she pays, since her sector as a whole can free ride on her. In this sense, the benefit in terms of a lower spread provided by a higher hedging position turns out to be a rival and non-excludable ”good”, which allows our model to be identified as a particular case of congestion game. In fact, as debtors do not take into account all social benefits and costs of their decisions, the amount of risk exposure reallocated across sectors in competitive markets is below the socially optimal level. This imperfect information-related market failure is crucial to give rise the allocative inefficiency above discussed and can also be supported by the fact that financial globalization under institutional constraints that limit the use of costly information tend to cause desinformation.

The paper does not conclude that ERRS policies will always be Pareto-efficient.
On the contrary, we show that there are more cases where the opposite result occurs. The purpose is to distinguish the circumstances under which ERRS policies could be socially justifiable. In this sense, we conclude that they are more likely to occur when foreign investors are very pessimistic about the home economy’s performance and hence about its ability to repay. The reason is that, as foreign investors realize a high default probability, they require a large increase in the contractual interest rate in order to provide additional credit to the home economy. Conversely, they offer a large reduction in the spread if the debt is reduced. This means that the foreign credit’s supply curve is little responsive to the contractual interest rate, so that the effect of ERRS policies on this rate turns out to be very strong.

The paper is organized as follows. Section 2 describes the main hypothesis of the model. Section 3 solves the general equilibrium solution. Section 4 derives and interprets the welfare effects of ERRS policies. Section 5 concludes.

2 Description of the Model

This section describes the central aspects of the economy that we model to explain the main issues discussed above.

2.1 World economy Consider a non-monetary, small open economy, which lasts for two periods: $t = 0, 1$. We call this economy and the rest of the world as home country and foreign country respectively, indexed by $j = H, F$. The home country comprises a tradable and a nontradable sector, indexed by $i = T, NT$. Each sector has a very large number of individuals, which are identical in all aspects. Individuals can differ across sectors. Whenever we refer to a sector, we have in mind its representative agent. Foreign country’s residents are risk-neutral, whereas home country’s ones are risk-averse. We assume rational expectations and that home country’s sectors share the same information set. There are no artificial barriers to the international flow of goods and capital. The subscript t indicates that a variable is known at period t.

2.2 Shocks on the home country There is no production. At period t ($t = 0, 1$), the sector T (NT) is endowed with an exogenous amount of a single tradable
(nontradable) good, denoted by $y_t^T(y_t^{NT})$, which can vary across periods. Given the purpose of the paper, the unanticipated shocks introduced into the model must be able to explain, to a large extent, the empirically observed exchange rate volatility. In this sense, as explained in more detail below, the law of one price implies that the shocks impacting on both nominal and real exchange rates have in common the fact that they change the relative supply of tradable goods for the home country. These shocks can have either a domestic origin, such as technological shifts in the tradable sector’s productivity, or an external origin, such as changes in the world price of the commodities or in the flow of foreign direct investment. No matter the origin, the effect of these shocks on the tradable good’s domestic availability and hence on the wealth of both home country’s sectors can be proxied in the model by the effect of shocks to the sector T’s endowment. With this purpose, we assume that y_t^T has an uniform distribution, given by

$$y_t^T \sim U \left[\mu_j - \eta, \mu_j + \eta \right], \mu_j > \eta > 0.$$ \hspace{1cm} (1)

As explained above, this is the relevant source of uncertainty in the economy. For this reason, y_t^{NT} is assumed non-stochastic and strictly positive in both periods. It follows from (1) that $E_{0,j} [y_t^T] = \mu_j$ ($j = H, F$) and $VAR_{0} [y_t^T] = \frac{1}{3} (1 - 2\eta)^2$. The subscript in μ_j allows for heterogeneous beliefs across countries with respect to the sector T’s expected endowment and this fact will imply that the countries may disagree on the sector T’s ability to repay its foreign debt. As shown along the paper, the possibility for $\mu_H > \mu_F$ is of most interest, since this will allow ERRS policies to bring a Pareto-improvement under some circumstances. But which could explain this fact?

As argued by Calvo and Mendoza (2000a,b), financial globalization could reduce the incentives for foreign investors to collect country-specific information. This would occur if institutional constraints such as limits on short positions kept investors from taking full advantage of costly information, while portfolio diversification continued to be an attractive investment strategy even without full information. In the context of this model, this informational friction could explain why

2 As to the external shocks, this occurs because international transference of resources occurs only in tradable goods.

3 Obviously, this results depends on that sovereign securities’ returns are less than perfectly
\(\mu_F < \mu_H \). To see this, suppose the home country rests initially on an equilibrium with \(\mu_H = \mu_F \) and next foreign investors receive a bad sign about its fundamentals. Suppose also that this sign is false and that home country’s residents know this but cannot release credible information for some adverse selection or moral hazard-related reasons. Just as a reference, it is worth considering first what occurs if foreign investors act on their own and pay the cost to know whether the sign is true or not. In this case, their expectations on the sector \(T \)'s productivity do not change, so that \(\mu_F \) gets unaltered. On the other hand, suppose that informational frictions lead at least a significant portion of the foreign investors not to have incentive to collect information on the sign. In this case, they could assign a positive probability to the event of that the sign is true and then revise downwards their expectations. Once the sign is actually false by assumption, this implies that they would become overpessimistic about home country’s fundamentals, so that \(\mu_F < \mu_H \). There are two reasons why this could occur, both related to the destabilizing role of herd behavior in financial markets. The first one is that, as informational frictions do exist, international credit market is likely to be divided into informed and uninformed investors. In addition to use their limited information set, uninformed investors form their expectations by observing the actions of informed investors. However, informed investors are not able to trustfully signal whether their action are induced by correlated.

\[^4 \text{Earlier work on the welfare effects of overoptimism and overpessimism is Svensson and Persson (1983). They build a two-period model very similar to ours, in which (1) agents smooth consumption over time, (2) period-2 income is uncertain and (3) the economy is keynesian at period 1, in the sense that rigidities in prices and wages lead the output to be demand determined. Next, they show that overoptimism on the future income can have a positive net welfare effect because: (1) it has a first order positive welfare as it expands period 1- income and reduces the unemployment and (2) although the expectational error introduces a misallocation of consumption over time, as long as people smooth consumption, this effect is of second order if the economy is only marginally overoptimism. The conclusion is that overoptimism introduces a distortion that ameliorate the allocative inefficiency caused by price rigidities. The same could also be said about overpessimism if there was overemployment at period 1.}

\[^5 \text{Herding occurs when investors are influenced into reversing a planned decision after observing the actions of other investors.}

As noticed along our paper, the contrast and the similarity between the two models are evident. Here, without overpessimism, markets assure allocative efficiency. Therefore, overpessimism causes a distortion that does not compensate the other market failure, so that it leads to a welfare social loss. This in turn is a ground for public intervention. On the other hand, positive welfare effects in both models are unambiguos only when marginal distortions (small increase in } h_0 \text{ and marginal overoptimism is Svensson and Persson model) are put into action to compensate current market failures.}
changes in home country’s fundamentals or by factors relevant only for themselves. In this case, a shock unrelated to home country’s fundamentals could lead informed investors to take an action that would be wrongly interpreted by uninformed investors as a bad signal about home country’s economy. The second reason is also a history of herding, but it assumes that all investors are evenly imperfect informed, although they have different information sets. In this case, suppose that just a small fraction of the market perceives a rumor as enough credible to induce a defensive reaction against home country’s securities. If all other investors bring this action into their information set, this could trigger a domino effect on the larger group, leading it to herd on the smaller one, so that the market a whole would end up revising downwards its expectation on home country’s fundamentals.

2.3 ERRS policies As explained in more detail below, shocks to y^T_1 impact on home country’s relative prices and hence they have a widespread effect on the wealth of all sectors. Therefore, they give rise to a macroeconomic risk to which the wealth and the welfare of both sectors are exposed. With the purpose of smoothing the risk exposure across sectors, the home country’s government transfers $\left| \left(\mu_H - y^T_1 \right) h_0 \right|$ units of the tradable good for the sector T (NT) at $t = 1$ if and only if $\left(\mu_H - y^T_1 \right) h_0$ is positive (negative), where h_0 is a policy parameter determined exogenously by the government. At this same period, the public budget constraint implies that the government must receive this same amount from the other sector. Given the simple structure of the model, ERRS policies consist in setting $h_0 \neq 0$. Obviously,

6For example, an event like Russian default in 1998 could lead the big players in emerging countries securities’ markets to make large margin calls, which could be interpreted by other investors as bad news about the performance of Latin American and East Asian economies, which are not fundamentally related to Russian economy.

7The two reasons suggested above for overpessimism help explain the well documented empirical evidence of that financial globalization exacerbates contagion in financial crisis experienced by emerging market economies in the last past decades. Contagion occurs when an emerging economy, without having its own economic fundamentals substantially changed, is affected adversely by an irrational defensive reaction of international financial market participants to economic turbulences in another emerging economy.

8The two reasons above are examples of information-based herding. However, as explained in Bikhchandani and Sharma (2001), besides being motivated by desinformation, herding also can occur if the compensation scheme of fund managers depends on their performances relative to other similar professionals or to a benchmark, so that imitation is rewarded. In this case, this institutional feature of the asset management business would distort manager’s incentives towards mimicking the market behavior.

9The public budget must be balanced at $t = 1$ because the home country expires in this period.
no policy is implemented when $h_0 = 0$. In section 4, we examine the welfare effects of a marginal change in h_0 around $h_0 = 0^{10}$. This comparative statistics exercise allows us to determine whether or not ERRS policies bring a Pareto-improvement for the home country. The size and the sign of the parameter h_0 summarize all information on the ERRS policy. Compared to $h_0 = 0$, the sector T’s wealth volatility decreases (increases) with a positive (negative) h_0 as this sector receives a positive transference when an adverse shock hits its endowment ($y_T < \mu_H$). Moreover, just the opposite effect occurs with the sector NT’s wealth volatility, since the relative price of this sector’s endowment is positively related to y_T^{11}. Therefore, the sector T’s wealth has its exposure to exchange rate risk decreased (increased) when $h_0 > 0 (< 0)$, while the reverse occurs with the sector NT’s wealth.

Since intervention in the model aims to reallocate exchange rate risk across sectors, we have to explain first how is this risk related to shocks to y_T? From the law of one price, the real exchange rate mirrors the relative price of the tradable good12. As a result, the primary sources of real exchange rate volatility are the shocks to the domestic supply of both tradable and nontradable goods. For the same reason, changes in this rate impact on the real value of assets and liabilities hold by home country’s residents13. In short, shocks to any sector impact on the real exchange rate and this in turn impacts on both sectors’ wealth. Besides, shocks to different sectors have opposite effects on the real exchange rate. Adverse shocks to nontradable good’s supply raise domestic prices without changing nominal exchange rate, causing a real appreciation of the home currency. In the opposite way, adverse shocks to tradables good’s supply raise nominal exchange rate at a rate above the inflation rate, causing a real depreciation of the home currency14. It is important to note that nominal exchange rates change due to differences in inflation rates, while real exchange rates are determined by the relative prices of tradable and nontradable goods.

10Moreover, we just consider ERRS policies such that $|h_0| < \kappa < 1$, where κ is very small. The reason for this is explained in section 4.

11This is because, as long as $h_0 > 0 (< 0)$, the sector NT will transfer (receive) resources to government when its wealth is low due to an adverse shock to y_T^2, which reduces the relative price of its own endowment y_{NT}. In true, the home country’s relative price of the tradable good, in terms of the composite consumption index, is the product of the real exchange rate and the foreign country’s relative price of the tradable good. We assume that the last one is fixed.

12A real depreciation of the home currency increases the real value of the sector T’s endowment, while the opposite occurs with the sector NT’s endowment. In addition, as foreign liabilities are denominated in foreign currency, a higher real exchange rate has adverse effects on both sectors’ wealth.

13This occurs because an adverse shock to the tradable sector has two effects on the home
exchange rate volatility is driven just by shocks to the tradable sector, since shocks to the nontradable sector affect only the nominal aggregate price index. Hence, in the way as described above, intervention in this model is designed just to smooth across sectors the exposure to shocks to the domestic availability of the tradable good, which are the disturbances hitting the nominal exchange rate. Thus, the model works as an adequate framework to examine ERRS policies implemented through a direct intervention in the nominal exchange rate market.

However, if shocks to both sectors impact on the real exchange rate, why does the model focus on the real exchange rate’s volatility driven by shocks to the tradable sector? Why not to analyze the working and the effects of ERRS policies designed to smooth the exposure to shocks to the nontradable sector, which also affect the real exchange rate through changes in the nominal aggregate price index? Two empirical evidences lead us to limit our analysis to shocks to the tradable sector. Firstly, even after floating exchange rate regimes were introduced, policymakers in some emerging economies have continued to intervene directly in the nominal exchange rate markets sporadically. In fact, faced with strong pressures pushing spot exchange rate up, monetary authorities in some of these countries use to provide the market with a long position on a dollar-indexed asset (bond or derivative security)\(^1\). As the government holds the short position, this is clearly a ERRS policy. Is this only fear of floating or there is a welfare argument behind the intervention? As a ground for intervention, it is argued that the high pass-through of these economies makes it essential to avoid the deleterious effects of the excessive nominal exchange rate volatility on the internal and external equilibrium\(^2\). As seen above, since this volatility is driven by shocks to the tradable sector, we have a good reason to focus on this source of risk. Secondly, many of the emerging economies referred above were successful in achieving price stabilization in the recent past, so that real exchange rate swings are

\(^1\) Examples in Latin America are issues of NTN (Notes of the National Treasury) in Brazil and Tesobonos in Mexico.

\(^2\) Excessive in the sense that it is not fully explained by fundamentals.
related basically to nominal exchange rate moves17. Thus, real exchange rate risk in these countries is expected to be determined to large extent by the exposure to shocks to the tradable sector.

Now it is easier to understand why money is not needed into the model. One can wrongly interpret ERRS policies just as a reallocation of the nominal exchange rate risk exposure and therefore feel uncomfortable with a non-monetary approach to this issue. However, which sort of risk is actually smoothed when ERRS policies are implemented by a direct intervention in the nominal exchange rate market? In true, for the reasons cited above, intervention in this model aims to smooth the \textit{part} of the real exchange rate risk induced by shocks to the tradable sector, which are the disturbances that give rise to the nominal exchange rate volatility18.

ERRS policies must not be implemented by a direct intervention in the nominal exchange rate market. As an alternative policy, we could imagine that the home government concede a subsidy to the sector it wishes to protect whenever the wealth of this sector falls in consequence of a shock to the real exchange rate. Of course that the government budget constraint would necessarily force the other sector to bear the increase in public expenses when shocks arise, so that this policy also causes a risk exposure reallocation across sectors. In short, all that is necessary is some kind of public intervention through which the government is able to compensate one of the sectors when a real exchange rate depreciation reduces its wealth. Therefore, the way as we described above the government intervention should be seen only as the result - in terms of transference of resources - of the institutional mechanism set by the government.

We allow for private risk exposure reallocation by introducing a market for hedging into the home country. More specifically, at \(t = 0 \), the sectors can trade among them a forward contract-type security that pays off \((\mu_H - f_0y^T_1) \) units of the tradable good at \(t = 1 \), where \(f_0 \) is the market-determined premium of this contract. Note that this contract requires no disbursement at \(t = 0 \). We denote

17\footnote{Brazil and Chile are notorious examples of inflation targeting experiences in emerging economies.}

18\footnote{Another reason to build a nonmonetary model is that we are just concerned with the welfare effects of exchange rate shocks transmitted through changes in the relative prices of the tradable and the nontradable goods. We do not address, for instance, the welfare effects of these shocks due to higher volatility of the inflation rate, whose analysis does require money.}
by \(q_i^0 \) the sector \(i \)'s hedging position acquired in this market, which can be a long \((q_i^0 > 0) \) one or a short \((q_i^0 < 0) \) one. This means that, given a position equal to \(q_i^0 \), the sector \(i \) will receive (pays) \((\mu_H - f_0y_T^i) q_i^0 \) units of the tradable good at \(t = 1 \) if and only if \((\mu_H - f_0y_T^i) q_i^0 \) is positive (negative). Moreover, the equilibrium level of \(f_0 \) is such that the domestic market for hedging clears, so that \(q_T^0 + q_{NT}^0 = 0 \).

2.4 Competitive international capital market
At \(t = 0 \), the sector \(i \) \((i = T, NT)\) can concede or receive loans from the foreign country, which are promised to be repaid at \(t = 1 \). The sector \(i \)'s net foreign debt at \(t = 0 \), denoted by \(d_i^0 \), is the net amount of loans borrowed by this sector in this period\(^{19}\), which are denominated in tradable goods\(^{20}\). When \(d_i^0 > 0 \) \((d_i^0 < 0)\), we say that the sector \(i \) is a debtor (creditor) of the foreign country. Therefore, the sector \(i \) transfers wealth from \(t = 1 \) to \(t = 0 \) when \(d_i^0 > 0 \), the reverse occurring when \(d_i^0 < 0 \).

The sector \(i \) may have incentive to default when it is a foreign debtor\(^{21}\). The penalties for default (repudiation costs) cause a loss of utility (desutility) given by \(\epsilon^i \geq 0 \).\(^{22}\) As default is possible, the contractual (promised) interest rate on the foreign loans borrowed by the sector \(i \), denoted by \(g_i^0 \), may be higher than the default risk-free world interest rate, denoted by \(r_0 \). Both \(g_i^0 \) and \(r_0 \) are quoted in tradable goods. Moreover, as default probability may differ across sectors\(^{23}\), it is possible that \(g_T^0 \neq g_{NT}^0 \).

As explained in subsection 2.2, informational frictions could weaken the incentives for foreign investors to collect country-specific information. If this claim is valid for information on home country’s fundamentals, which encompasses the

\(^{19}\)When \(d_i^0 < 0 \), the sector \(i \) is a creditor of the foreign country.

\(^{20}\)This assumption amounts to say that foreign debt is denominated mostly in foreign currency, according to the "original sin" argument raised by Eichengreen and Hausmann (1999). To understand this claim, note that, as long as foreign country’s prices are constant, the law of one price implies that the effect of shocks to exchange rate on the real value of a foreign debt denominated in tradable goods is the same as that on a foreign debt denominated in foreign currency.

\(^{21}\)We assume that foreign country’s residents never default when \(d_i^0 < 0 \). However, we can say in advance that this assumption is irrelevant because, given the purpose of the model, we will be interested only in general equilibrium solutions such that the home country’s sectors are indebted with the foreign country.

\(^{22}\)Repudiation costs incurred at \(t = 1 \) can not be derived endogenously in the model because the world economy ends in this period. Therefore, we simply assume that such costs are exogenous. In the model, we assume that \(\epsilon^i \) results from some kind of punishment that reduce the debtor’s welfare without impacting directly on its consumption.

\(^{23}\)For instance, this fact will occur when \(\epsilon^T \neq \epsilon^{NT} \).
relevant macroeconomic and financial aggregate variables, so should be it for the same type of information concerning individual economic units. The idea is that, in general, the more disaggregated the information is, the harder its availability is. In view of this fact, we assume that foreign investors are imperfectly informed on the individual portfolio of each sector i’s debtor, which among other things determines her default probability. More specifically, only the aggregate foreign debt and the aggregate hedging position of each sector can be directly observed by foreign investors. As said, they have imperfect information on the debtors’ individual portfolio, so that they can not monitor directly the size of the hedging position and the size of the foreign liabilities of each debtor. As seen along the paper, this market imperfection-related assumption is crucial to understand both the market structure and allocative inefficiency in this model. In particular, it allows us to explain why private markets could fail to reallocate efficiently the risk exposure across the home country’s sectors, justifying in some circumstances public intervention through ERRS policies.

Although the results regarding these issues be derived and interpreted in more detail below, it is worth giving here some intuition on how market inefficiency arises in the presence of the information asymmetry cited above. As described below, each home country’s individual maximizes her welfare by choosing the composition of her portfolio, which comprises only her foreign debt and her hedging position. Foreign indebtedness allows her to smooth consumption over time, while trading on the domestic hedge market allows her to change her exchange rate risk exposure. However, as seen in subsections 3.3 and 3.4 below, there is an additional welfare effect behind these portfolio choices: the spread paid by an individual borrower on her foreign debt, whose size clearly affects her welfare, depends directly on her default probability and this in turn depends on her portfolio. This occurs because: (1) portfolio composition affects the mean and the volatility of the debtor’s wealth distribution

24 Off-balance accounts as a device to escape from the creditors’ monitoring could justify this assumption as well, mainly in emerging economies lacking a well regulated banking system.

25 The assumption of that individual foreign liabilities can not be monitored is not crucial and it will be made only for sake of simplicity. Without it, the sector i does not take g_0 as given anymore, making the derivation of the equilibrium solution very troublesome.

26 Individuals buying hedge have their risk exposure diminished, which brings a welfare gain as they are risk averse. Individuals selling hedge charge a premium in exchange of a higher risk exposure.
and then the range of states of nature in which default is the optimal decision and (2) competition among risk-neutral foreign investors pushes the contractual interest rate g^i_0 to the level at which the expected rate of return - which falls with a higher default probability - equals to the default-risk free interest rate.

Very important, the effect of the portfolio composition on the spread can be seen as a rival and non-excludable ”good” underlying the portfolio positions, so that this model turns out to be a particular case of congestion game27. It is rival because the \textit{actual} default probability of an individual debtor depends only on her own portfolio, no matter the size of the aggregate positions. Therefore, changes \textit{perceived} by foreign investors in the portfolio of an individual debtor will affect only her spread. In other words, the spread required by creditors from each debtor depends only on the individual portfolio they believe this debtor holds.

It is also non-excludable because the model assumes that foreign investors observe only the aggregate foreign debt and the aggregate hedging position held by each sector and, in addition, they know that all individuals from a same sector are identical. Therefore, if a debtor alone tries to raise the variable X by ΔX, which can be either her foreign debt or her hedging position, foreign investors realize that every debtor in her sector raises X by $\Delta X/N$, where N is the number of individuals in the sector, and then only this amount will be perceived by foreign investors as a rise in her own position. Therefore, although she has actually risen X by ΔX, foreign investors adjust her spread as if she had raised X only by $\Delta X/N$. In addition, since all other debtors in her sector can free ride on her, they also have their spread changed by the same size.

Consequently, in choosing her optimal portfolio, each individual debtor takes into account only the impact of her decisions on her own spread and ignores the additional effect on the spread faced by others. The idea is that once she is not able to take full advantage of the benefits and/or costs of a rise in X, she dismisses part of the social effects of her portfolio choices. If all debtors act in the same way, the market allocation is inefficient. More specifically, private markets lead to foreign

27In congestion games, players use facilities from a common pool and the benefit that a player derives from using the facility depends on the number of users of this facility. In this class of games, decentralized decisions lead to a suboptimal allocation of resources.
overborrowing and insufficient risk reallocation across sectors.

Furthermore, the extent of this market inefficiency increases with N: the lower N, the closer the social and private effects of an individual portfolio choice on spread are. When N is small, $\Delta X/N$ is significant and then the spread each debtor pays will depend to some extent on her individual choices. In this case, each individual has some market power to set her spread. As N increases, the effect of a rise in ΔX on the individual spread falls. In the context of this model, we assume that N is large enough to make $\Delta X/N$ close to zero. Therefore, the portfolio choices of each debtor have no effect on her individual spread, so that she takes the spread as given.

2.5 Consumer behavior Each sector consumes both goods in $t=0,1$. Then, the sector i’s ($i=T, NT$) preferences can be represented by the lifetime utility function

$$\ln\left(c^i_0\right) + \beta E_0 \left[\ln\left(c^i_1\right) - (1 - \delta^i) c^i_f\right], \quad 1 > \beta > 0,$$

$$c^i_t = \left[c(T)^i_t\right]^\theta \left[c(NT)^i_t\right]^{1-\theta}, \quad 0 < \theta < 1,$$

where β is the time-preference factor, θ is a constant that determines the elasticity of substitution between goods. $c(T)^i_t$ and $c(NT)^i_t$ are the consumption levels of the tradable and the nontradable goods respectively, c^i_t is the composite consumption index and δ^i is an indicator function, defined as $\delta^i = 0$ if $d^i_0 > 0$ and the sector i defaults and as $\delta^i = 1$ otherwise.

Each sectors maximizes (2), subject to the intertemporal budget constraint given by

$$c^i_0 = \frac{1}{p_0} \left[p^i_0 y^i_0 + d^i_0\right],$$

$$c^i_1 = \frac{1}{p_1} \left[p^i_1 y^i_1 - (1 + g^i_0) \delta^i d^i_0 - (y^T_1 - \mu_H) b^i_0 - (y^T_1 - f_0 \mu_H) q^i_0\right],$$

where $b^T_0 \equiv h_0$ and $b^NT_0 \equiv -h_0$, whereas p^T_1 and p^NT_1 are the prices of the tradable and the nontradable goods respectively and p_t is the consumption-based aggregate price index. Assuming that the tradable good is the home country’s numeraire, we

28 Actually, this elasticity is equal to $\frac{\theta}{1-\theta}$.
29 Obviously, $\delta^i = 1$ if $d^i_0 \leq 0$.
30 Formally, p_t is defined as

$$p_t = \varphi\left(p^{NT}_t\right)^{1-\theta} \equiv \min_{c(T)^i_t, c(NT)^i_t} p^T_t c(T)^i_t + p^{NT}_t c(NT)^i_t \quad \text{s.a.} \quad c^i_t = 1.$$
have \(p_t^T = 1 \). The first term into the brackets in (4)-(5) is the sector \(i \)'s endowment, measured in tradable goods. The second term is the capital flow with the foreign country\(^{31} \). The third and fourth terms in (5) are, respectively, the transferences for the sector \(i \) in function of the ERRS policy and of its own individual hedging position acquired in the market.

3 General Equilibrium

This section derives the general equilibrium solution for the model. As it was discussed in the earlier section, the main result of the model is related to the effect of ERRS policies on the contractual interest rate paid by the sector \(T \) on its foreign debt. Therefore, we focus only on the cases in which this sector is a foreign debtor at \(t = 0 \). With this purpose in mind, we assume that \(y_T^T = 0 \). Given the logarithmic period utility function in (2), this assumption implies that we will always have \(d_{0T}^T > 0 \) in the general equilibrium solution derived below\(^{32} \).

For sake of simplicity, we also assume that \(\epsilon^T > \epsilon^{NT} = 0 \). The sector \(NT \) has less incentive to repay its debt than the sector \(T \) does. A theoretical justification is that repudiation costs could result mostly from loss or reduction of foreign trade credit, which is the main source of funding to export. Moreover, as its desutility with default is null, the sector \(NT \) has no incentive to repay and hence has no access to the international capital market. Therefore, as seen below, we will have \(d_{0NT}^T = 0 \) in equilibrium. It is important to have in mind that such assumption could be dropped without changing the main results of the paper.

3.1 Equilibrium conditions for home country’s markets

All home country’s markets clear at \(t = 0, 1 \), so that

\[
q_0^T + q_0^{NT} = 0, \quad (6)
\]

\[
y_t^T - x_t = c(T)_t^T + c(T)_t^{NT}, \quad (7)
\]

\[
y_t^{NT} = c(NT)_t^T + c(NT)_t^{NT}, \quad (8)
\]

where \(\varphi = \theta^{-\theta}(1-\theta)^{\theta-1} > 0 \). Note that \(p_t \) is a consumption-based index because it is the minimal expenditure required to get \(c_t^i = 1 \).

\(^{31}\) Obviously, this term in (5) vanishes if the sector \(i \) defaults on its foreign debt \((\delta^i = 0) \).

\(^{32}\) As \(y_T^T = 0 \), the sector \(T \) will have no wealth at \(t = 0 \) if \(d_{0T}^T = 0 \). This is not possible in equilibrium because the marginal utility of consumption goes to infinite when \(c_0^T = 0 \).
where \(x_t \) is the home country’s net aggregate exports, which is given by

\[
x_0 = -\left(d_0^T + d_0^{NT} \right),
\]

\[
x_1 = \left(1 + g_0^T \right) \delta^T d_0^T + \left(1 + g_0^{NT} \right) \delta^{NT} d_0^{NT}.
\]

It follows from (6) that, in equilibrium, the sectors must have an opposite position of same size in the market for hedging. The market equilibrium conditions for the tradable and the nontradable goods are given by (7) and (8) respectively. As the nontradable good is not exportable by definition, the supply of the tradable good for the home country is equal to the endowment of this good less the home country’s net aggregate exports, whereas the supply of the nontradable good is given only by the endowment of this good. The equilibrium conditions for the home country’s balance of payments are given by (9)-(10): net exports must finance the capital account deficits (and also the interests at \(t = 1 \)). Note that the net amount of wealth transferred to the foreign country at \(t = 1 \), given by \(x_1 \), increases with \(g_0^i \) and declines with default \((\delta^i = 0) \) for \(i = T, NT \). Note also that a higher \(d_0^i \) \((i = T, NT) \) causes an increase (decrease) in the tradable good’s supply for the home country at \(t = 0 \) \((t = 1) \).

3.2 Relative Prices

By using pure algebra, it follows from (3)-(10) that relative prices in home country are given by \(^{33}\)

\[
p_{0}^{NT} = \frac{1 - \theta d_0^T + d_0^{NT}}{\theta y_0^{NT}},
\]

\[
p_{1}^{NT} = \frac{1 - \theta y_1^T - (1 + g_0^T) \delta^T d_0^T - (1 + g_0^{NT}) \delta^{NT} d_0^{NT}}{y_1^{NT}},
\]

\[
p_0 = \frac{1}{\theta} \left(\frac{d_0^T + d_0^{NT}}{y_0^{NT}} \right)^{1-\theta},
\]

\[
p_1 = \frac{1}{\theta} \left[\frac{y_1^T - (1 + g_0^T) \delta^T d_0^T - (1 + g_0^{NT}) \delta^{NT} d_0^{NT}}{y_1^{NT}} \right]^{1-\theta}.
\]

Note in (11)-(14) that the relative price of any good is inversely related to the ratio between the supply of this good and the supply of the other one for the home country\(^{34}\). More important is that this result allows us to understand how shocks

\(^{33}\)As explained at the beginning of this section, we will have \(d_0^i \geq 0 \ (i = T, NT) \) in equilibrium. Then, the prices below are always positive.

\(^{34}\)Note that, by assumption, \(p_1^T = 1 \ (t = 0, 1) \).
to \(y_T^T \) impact on the wealth of both sectors at \(t = 1 \). For this, we assume for sake of simplicity that \(h_0 = q_0^T = q_0^{NT} = 0 \). In this case, we can see in (5) that the wealth of both sectors increases with \(y_T^T \). As to the tradable sector, this occurs because the increase in its endowment more than compensates the lower relative price of the tradable good. As to the nontradable sector, its wealth also increase because the relative price of its endowment increases with \(y_T^T \), although it does not receive any endowment of the tradable good. Consequently, both sectors have their wealth exposed to shocks to \(y_T^T \). This explains why ERRS policies (\(h_0 \neq 0 \)) and trading on the domestic hedge market (\(q_0^i \neq 0 \), for \(i = T, NT \)) give rise to a risk exposure reallocation across sectors.

3.3 Default probability First, we derive the sector \(i \)'s default probability in country \(j \)'s belief, denoted by \(\pi^i_j \) \((i = T, NT , j = H, F)\), as a function of all observable variables at \(t = 0 \), which are given by the vector \(z_0 \equiv (d_0^i, q_0^i, f_0^i)_{i=T,NT} \) and the policy parameter \(h_0 \). Although both \(d_0^i \) and \(q_0^i \) refer to portfolio positions of the sector \(i \)'s representative agent, this does not mean that these positions can be directly observed by foreign investors in the individual portfolio of each sector \(i \)'s member. As it was assumed above, they can directly observe only the aggregate net foreign debt and the aggregate hedging position of each sector. However, as foreign investors realize correctly that identical individuals have incentive to take the same decisions, they can infer \(d_0^i \) and \(q_0^i \) indirectly from the aggregate counterparts of these variables.

The sector \(i \) repays its debt whenever the utility gain provided by default, denoted by \(\chi^i \), is smaller or equal to the utility loss due to repudiation costs\(^{37} \), given by \(\epsilon^i \). Therefore, the sector \(i \) defaults if and only if

\[
\chi^i \equiv \ln c_1^i (z_0, \delta^i = 0) - \ln c_1^i (z_0, \delta^i = 1) > \epsilon^i, \tag{15}
\]

where \(c_1^i (z_0, \delta^i) \) follows from (5), while \(z_0 \) and \(\delta^i \) were defined above. As to the nontradable sector, since \(\epsilon^{NT} = 0 \) by assumption, it follows that \(\pi_F^{NT} = \pi_H^{NT} = 1 \)

\(^{35}\)As we will see below, it is possible to have \(\pi_H^T \neq \pi_F^T \) because in (1) we allow for heterogeneous beliefs about the sector \(T \)'s expected endowment.

\(^{36}\)As the international capital market is competitive, foreign creditors take \(q_0^i \) \((i = T, NT)\) as given.

\(^{37}\)These are penalties for default, such as trade sanctions or loss of reputation.
if $d^N_0 > 0$. As to the tradable sector, substituting (5) into (15), we have that this sector defaults if and only if $y_1^T < k$, where\(^{38}\)

$$
k = k \left(d_0^T, g_0^T, q_0^T, f_0, h_0 \right) \equiv \frac{(1 + g_0^T) d_0^T}{(1 - q_0^T - h_0) \left[1 - \exp \left(-\epsilon^T \right) \right]} - \frac{\left(f_0 q_0^T + h_0 \right) \mu_H}{(1 - q_0^T - h_0)}. \tag{16}
$$

Consequently, it follows from (1) that\(^{39}\)

$$
\pi_j^T = \pi_j^T (z_0, h_0) \equiv \Pr_{0,j} \left[y_1^T < k \right] = \frac{k - \mu_j + \eta}{2\eta}, \quad \text{if } \mu_j - \eta < k < \mu_j + \eta, \tag{17}
$$

where $\pi_j^T = 0 (= 1)$ if $k \leq \mu_j - \eta \left(k \geq \mu_j + \eta \right)$.

The figure 1 helps us understand how π_j^T is determined. The upper and lower curves are, respectively, the graphs of the period 1-utility, as a function of y_1^T, when the sector i defaults and when it does not\(^{40}\). Fixed any y_1^T, the utility gain with default, given by χ^i in (15), is the vertical difference between these curves. As the marginal utility of consumption is decreasing, we can see in the figure that χ^i increases with a lower y_1^T. Intuitively, this means that the utility gain with default increases as debtors get less wealthier. Hence, as the utility loss with default, given by θ^i, remains constant, the incentives for default increase with a lower y_1^T. In this sense, note in the figure that, for $y_1^T < k \left(y_1^T > k \right)$, we have $\chi^i > \epsilon^i \left(\chi^i < \epsilon^i \right)$, so that it is optimal for the sector i not to repay (to repay). At $y_1^T = k$, we have $\chi^i = \epsilon^i$ and in this case we assume that debtors do repay. Therefore, we conclude that k, which was defined in (16), is the lowest level of y_1^T at which repayment occurs, so that it can be interpreted as the effective cut-off level of y_1^T for default. Furthermore, as π_j^T is, by definition, the probability that $y_1^T < k$, the expression in (17) follows directly from the distribution of y_1^T in (1). Note also that a higher g_0^T e/or d_0^T shifts the lower curve down, increasing χ^i for all y_1^T. Therefore, given that ϵ^T gets unaltered, default

\(^{38}\)Note that p_1 is cancelled out when we derive (16) from (15). This is possible because each home country’s individual corresponds to a very small fraction of her sector, so that she realizes that her actions, such as default, do not affect the market prices. Moreover, this behavior is anticipated by foreign creditors, so that they also believe that the sector T defaults if and only if $y_1^T < k$.

\(^{39}\)The subscript $j \left(j = H, F \right)$ indicates that the probability below is conditioned on the country j’s belief about sector T’s expected endowment, which is given by μ_j. Note that μ_H is known by foreign country’s investors because, as we can see at the end of subsection 2.3, this parameter is written on the hedge contract traded in the home market. However, as explained in subsection 2.2, this does not imply that the countries have to agree on the sector T’s expected endowment.

\(^{40}\)As we can see in (15), these functions are given, respectively, by $\ln c_i^1 (z_0, \delta^i = 0)$ and $\ln c_i^1 (z_0, \delta^i = 1)$.

21
will now occur only at higher levels of y^T_1, so that k and hence π^T_j increase. The
intuition of this result is very clear: as the utility gain with default increases with
the size of the foreign liabilities, the default probability must also increase. This
comparative statistics helps understand the other results below.

3.4 Foreign credit supply

Now, we derive the equilibrium foreign credit supply for the sector i, denoted by $d^{F,i}_0 \ (i = T, NT)$, as a function of the contractual interest rate g^T_0 and other relevant observable variables\(^4\). The variable $d^{F,i}_0$ is, by definition, the level of d^i_0 that meets the following conditions: (C1) all foreign investors currently lending this amount of credit to the sector i are maximizing profits and (C2) no additional foreign investor has incentive to provide credit to this sector.

As to the sector NT, we saw above that $e^{NT} = 0$ implies that $\pi^{NT}_F = 1$. Therefore, it is trivial that $d^{F,NT}_0 > 0$ is not sustainable in equilibrium: foreign investors never lend to this sector if they expect not to be repaid for sure.

As to the sector T, since foreign investors are risk-neutral, (C1)-(C2) imply that, given (g^T_0, q^T_0, f_0, h_0) with $g^T_0 \geq r_0$, we have that $d^{F,T}_0$ solves the equation

$$k \left(d^{F,T}_0, g^T_0, q^T_0, f_0, h_0 \right) = \nu \stackrel{\text{(18)}}{=} \nu,$$

where the function k is defined in (16) and the constant ν is defined implicitly by the arbitrage condition

$$\Pr_{0,F} \left[y^T_1 \geq \nu \right] (1 + g^T_0) = 1 + r_0.$$

When $g^T_0 < r_0$, we have $d^{F,T}_0 = 0$ because (19) is not met for any positive d^T_0. Note in (18)-(19) that $d^{F,T}_0$ is such that the expected rate of return on the loans borrowed by the sector T equals the default risk-free interest rate.

The condition (19) sets that, in equilibrium, the lowest level of y^T_1 at which repayment occurs must be necessarily equal to ν, which depends solely on g^T_0, r_0 and the parameters of the distribution of y^T_1, as given in (1). Thus, we can properly interpret ν as the required cut-off of y^T_1 for default. As a result, $d^{F,T}_0$ is the level of d^T_0 that makes k, the effective cut-off defined in (16), equal to ν, the required

\(^4\)These are the policy parameter h_0 and other variables in the vector z_0, as defined above in subsection 3.3.
cut-off. Alternatively, $d_{0}^{F,T}$ is the level of d_{0}^{T} that makes π_{F}^{T}, the effective default probability in country’s F belief, as defined in (17), equal to $1 - \frac{1 + r_{0}}{1 + g_{0}^{T}}$, which is the required default probability in country’s F belief, as we can infer from (19).

Substituting (16) into (18), we have that $d_{0}^{F,T}$ can be explicitly defined as

$$
d_{0}^{F,T}(g_{0}^{T}, q_{0}^{T}, f_{0}, h_{0}) = \left[\nu \left(1 - q_{0}^{T} - h_{0} \right) + \mu_{H} \left(f_{0} q_{0}^{T} + h_{0} \right) \right] \frac{1 - \exp \left(-c^{T} \right)}{1 + g_{0}^{T}}, \tag{20}
$$

whereas it follows from (17) and (19) that ν is given by

$$
\nu = \mu_{F} + \eta \left[1 - 2 \frac{1 + r_{0}}{1 + g_{0}^{T}} \right], \quad \text{if } g_{0}^{T} > r_{0}; \tag{21}
$$

$$
\nu = \tau (\mu_{F} - \eta), \quad \text{for any } 0 \leq \tau \leq 1, \quad \text{if } g_{0}^{T} = r_{0}. \tag{22}
$$

An increase in g_{0}^{T} has two opposite effects on $d_{0}^{F,T}$. First, a higher g_{0}^{T} leads foreign investors to make more profits on the loans they will be actually repaid, so that they have incentive to lend more. Second, as it was mentioned above, sector T’s foreign liabilities increase with g_{0}^{T}, pushing π_{F}^{T} up and hence leading foreign investors to curb the supply of loans. As a result, for low levels of g_{0}^{T}, the first effect is dominant, so that the supply curve is increasing in g_{0}^{T}. However, the second effect gets stronger as $d_{0}^{F,T}$ increases with g_{0}^{T}, making the supply curve more inelastic. At a certain level of g_{0}^{T}, the second effect overcomes the first one, so that the supply curve becomes decreasing in g_{0}^{T}.

Given the purpose of the model, it is important to explain how a change in h_{0} impacts on π_{F}^{T} and hence on $d_{0}^{F,T}$. This effect is better illustrated in figure 2, where the upper and lower thin curves are, respectively, the graphs of the period 1-utility function with and without default for the case $h_{0} = 0$, whereas the upper and lower thick curves are, respectively, the graphs of the period 1-utility function with and without default for the case $h_{0} > 0$. Note in this figure that, when compared to $h_{0} = 0$, a positive h_{0} makes the sector T’s wealth increase when $y_{1}^{T} < \mu_{H}$ and decrease when $y_{1}^{T} > \mu_{H}$, leading to a rotation in the period 1-utility curve around $y_{1}^{T} = \mu_{H}$, which gets flatter with $h_{0} > 0$ than with $h_{0} = 0$. This occurs either with default, represented by the rotation from the upper thin curve to the upper thick one, or without default, represented by the rotation from the lower thin curve to the lower

\[^{42}\text{Note below that } g_{0}^{T}, q_{0}^{T} \text{ and } f_{0} \text{ are the only variables in the vector } z_{0}, \text{ as defined above, on which } d_{0}^{F,T} \text{ depend.}\]
thick one. Moreover, as the marginal utility of consumption is decreasing, this effect is stronger without default. This is clear in the figure, where, except for $y^T_1 = \mu_H$, the vertical distance between the two lower curves is larger than that between the upper ones. The intuition behind this result is that default makes debtors wealthier and hence less sensitive to wealth changes caused by ERRS policies. Therefore, the utility gain with default, given by χ^T, decreases (increases) for $y^T_1 < \mu_H$ ($y^T_1 > \mu_H$), so that the effect of a higher h_0 on π^T_F and hence on d^{FT}_0 is ambiguous and depends on whether ν - the required cut-off for default in equilibrium, is higher or lower than μ_H. We have both cases illustrated in figure 2. When $\nu = \nu_{low} < \mu_H$ ($\nu = \nu_{high} > \mu_H$), the utility gain at $y^T_1 = \nu$ decreases (increases) with a higher h_0, pushing k - the effective cut-off for default - and π^T_F down (up). Therefore, since g^T_0 is fixed and π^T_F increases with d^T_0, as seen in the previous subsection, d^{FT}_0 must be higher (lower) in order to bring k and π^T_F back to their required equilibrium levels, given by ν and $1 - \frac{1+g_0}{1+g^T_0}$ respectively.

3.5 Foreign credit demand Given (g^T_0, g^{NT}_0, h_0), the vector $(d^T_0, q^T_0, f_0)_{i=T,NT}$ on which the home country rests in equilibrium, denoted by $(d^{HT}_0, q^{HT}_0, f^H_0)_{i=T,NT}$, meets the following conditions: (C3) both sectors maximize the lifetime utility function in (2)-(3) subject to the intertemporal budget constraint in (4)-(5), (C4) all home country’s markets clear in both periods, namely, the equilibrium conditions in (6)-(10) are satisfied and (C5) period 0-expectations about the relative prices p^{NT}_1 and p_1 are formed rationally\(^{43}\).

In order to meet (C3), the equilibrium solution must satisfy the marginal conditions of optimization with respect to d^T_0 and q^T_0, which are given, respectively, by\(^{44}\)

$$
\frac{1}{p_0 c_0} - (1 + g^T_0) \beta E_{0,H} \left[\frac{1}{p_1 c_1} \right] = 0 \; , \; i = T, NT \; ;
$$

$$
E_{0,H} \left[\frac{y^T_1 - f_0 \mu_H}{p_1} \frac{1}{c_1} \right] = 0 \; , \; i = T, NT.
$$

\(^{43}\)This implies that, in equilibrium, period 0 - expectations about relative prices are conditioned on $(d^T_0, q^T_0, f_0)_{i=T,NT} = (d^{HT}_0, q^{HT}_0, f^H_0)_{i=T,NT}$.

\(^{44}\)The subscript H indicates that the expectation below is conditioned on the home country’s belief about sector T’s endowment, which is given by μ_H. 24
Note that such conditions were derived with g_0^i having been taken as given by sector i’s individuals. As explained in subsection 2.4, this price-taking behavior in turn follows directly from the assumption that foreign investors can observe, for each sector, only the aggregate net foreign debt and the aggregate hedging position. Individual portfolio choices cannot be observed directly. Therefore, as there is a large number of participants in each sector deciding on their actions in a decentralized way, they correctly realize that the impact of their individual choices on the aggregate portfolio of her sector and hence on the contractual interest rate is irrelevant.

In order to meet (C4)-(C5), we must substitute (4)-(5) and (11)-(14) into (23)-(24). As a result, we get an equation system that, together with (6), solves for

$$(d_0^{H,i}, q_0^{H,i}, f_0^H)_{i=T,NT}$$

45. For sake of simplicity, we assume a vector of parameters $\Phi_H \equiv (\beta, \theta, \epsilon^T, \mu_H, \eta)$ with ϵ^T - the desutility with default - so large that, for any g_0^T, the sector T does never have incentive to default in equilibrium, even when y_1^T reaches its lower bound. As we can note from (15)-(17), this means that the home country reaches an equilibrium solution at a vector $(d_0^{H,i}, q_0^{H,i}, f_0^H)_{i=T,NT}$ such that, in its own belief, the utility gain with default is always smaller than the desutility with repudiation costs, namely, $\pi_H^T = 0$ in equilibrium. This assumption can be dropped without changing the main results of the model, which are presented in the next section47. The existence of a vector Φ_H which assures an equilibrium solution with $\pi_H^T = 0$ is proved in the appendix, where we still show that in this case $d_0^{H,T}$ is given by

$$d_0^{H,T}(g_0^T, h_0) = \left[\lambda (\mu_H - \eta) \left(1 - q_0^{H,T} - h_0 \right) + \mu_H \left(f_0^H q_0^{H,T} + h_0 \right) \right] \frac{1 - \exp(-\epsilon^T)}{1 + g_0^T},$$

(25)

such that $\lambda = \lambda(h_0)$, $q_0^{H,T} = q_0^{H,T}(h_0)$ and $f_0^H = f_0^H(h_0)$ are defined as the solution of the equation system (A2) through (A4) in the appendix. We can see in this system that λ, $q_0^{H,T}$ and f_0^H are written just in function of h_0 because they do not depend on g_0^T and g_0^{NT}. This in turn implies that $d_0^{H,T}$ does not depend on g_0^{NT}.

45. More precisely, the home economy is in equilibrium at a vector (d_0^i, q_0^i, f_0) if and only if this vector is a solution for this system. The sufficiency follows from the strict concavity of the lifetime utility in (2).

46. These are the only relevant parameters for the sector T’s problem of portfolio choice. Note that $\mu_F \notin \Phi_H$ as it refers to country F’s beliefs.

47. As it will be clear in the next section, we just need the possibility for heterogeneous beliefs, as given in (1), so that μ_F can be lower than μ_H.

25
in (25). Moreover, it follows from these results that \(d_{0}^{H,T}, q_{0}^{H,T}\) and \(f_{0}^{H}\) are derived independently of the equilibrium solution for \(q_{0}^{NT}\) and \(d_{0}^{NT}\). Therefore, in order to getting \(q_{0}^{H,NT}\) and \(d_{0}^{H,NT}\), it is enough to substitute \(d_{0}^{H,T}, q_{0}^{H,T}\) and \(f_{0}^{H}\) into (6) and into the equation (23) for \(i = NT\) respectively.

It is trivial in (25) that \(d_{0}^{H,T}\) decreases with a higher \(g_{0}^{T}\), the contractual interest rate. More interesting is that \(d_{0}^{H,T}\) also depends on the ERRS policy parameter \(h_{0}\) and on the hedging position \(q_{0}^{H,T}\). This occurs because these variables impact on the period 1-wealth volatility and hence on the incentives that individuals have to smooth consumption over time: they are less encouraged to transfer wealth to present when they feel less confident about period 1-wealth. Therefore, we can conclude that a change in \(h_{0}\) shifts both the foreign credit’s supply and demand curves (as functions of \(g_{0}^{T}\)), given in (20) and (25) respectively. This in turn implies that the effect of a higher or lower \(h_{0}\) on the equilibrium level of \(g_{0}^{T}\) is ambiguous, as it depends on the parameters of the model, which determine ultimately the relative strength of a change in \(h_{0}\) on those curves.

3.6 General equilibrium solution

The general equilibrium solution for the vector of endogenous variables \(z_{0} \equiv (d_{0}^{i}, g_{0}^{i}, q_{0}^{i}, f_{0}^{i})_{i=T,NT}\), denoted by \(\bar{z}_{0} \equiv (\bar{d}_{0}^{i}, \bar{g}_{0}^{i}, \bar{q}_{0}^{i}, \bar{f}_{0}^{i})_{i=T,NT}\), in function of the policy parameter \(h_{0}\) and the vector of structural parameters \(\Phi \equiv (\beta, \theta, \epsilon^{T}, \mu_{H}, \mu_{F}, \eta)\), is defined as

\[
\bar{f}_{0} = \bar{f}_{0}(h_{0}, \Phi) = f_{0}^{H}(h_{0}) ,
\]

\[
\bar{g}_{0}^{i} = \bar{g}_{0}^{i}(h_{0}, \Phi) = q_{0}^{H,i}(h_{0}) , \quad i = T, NT ,
\]

\[
\bar{d}_{0}^{T} = \bar{d}_{0}^{T}(h_{0}, \Phi) = d_{0}^{H,T}(\bar{g}_{0}^{T}, h_{0}) = d_{0}^{F,T}(\bar{g}_{0}^{T}, \bar{q}_{0}^{T}, \bar{f}_{0}, h_{0}) ,
\]

\[
\bar{d}_{0}^{NT} = \bar{d}_{0}^{NT}(h_{0}, \Phi) = d_{0}^{H,NT}(\bar{g}_{0}^{T}, \bar{g}_{0}^{NT}, h_{0}) = 0 ,
\]

where \(\bar{g}_{0}^{i} = \bar{g}_{0}^{i}(h_{0}, \Phi)\) for \(i = T, NT\). Next, we sketch the derivation of \(\bar{z}_{0}\). First, it follows from (20)-(22), (25) and (26)-(28) that\(^{48}\)

\[
\bar{g}_{0}^{T} = \begin{cases}
\frac{2(1 + r_{0})\eta}{\mu_{F} - [\lambda(\mu_{H} - \eta)] - \eta} - 1 , & \text{if } \lambda(\mu_{H} - \eta) - \eta < \mu_{F} < \lambda(\mu_{H} - \eta) + \eta \quad (30) \\
\bar{r}_{0} , & \text{if } \lambda(\mu_{H} - \eta) + \eta \leq \mu_{F} \quad (31)
\end{cases}
\]

\(^{48}\)There is no equilibrium if \(\mu_{F} \leq \lambda(\mu_{H} - \eta) - \eta\). In this case, the credit demand curve relies on the right of the supply curve and there is no intercept between them.
where $\lambda = \lambda (h_0)$ was defined in subsection 3.5. Note that $\bar{g}_0^T > r_0$ in (30)49. Second, substituting \bar{f}_0, \bar{q}_0^T and \bar{g}_0^T, as defined above, into (28), we get \bar{d}_0^T. Third, substituting \bar{g}_0^T into (29), we get \bar{g}_0^{NT}.50 Fourth, it follows from (6) that $\bar{q}_0^T = \bar{q}_0^{NT}$. Finally, the other endogenous variables - exports, prices and consumption - can be derived directly from z_0 through the equations (3)-(5), (7)-(14) and the solution of the optimization problem in footnote 29. Note that all conditions (C1)-(C5) in subsections 3.4 and 3.5 are met when $z_0 = \bar{z}_0$: both the home and foreign countries are in equilibrium. Moreover, conditions (26)-(29) set that the foreign credit market is in equilibrium when $(\bar{g}_0^T, \bar{g}_0^{NT}) = (\bar{g}_0^T, \bar{g}_0^{NT})$.

As shown along the proof of the proposition in the appendix, since $\pi_H^T = 0$ in equilibrium, it follows from (16)-(17) that $\lambda \leq 1$. Moreover, as λ does not depend on μ_F, it follows from (30)-(31) that the term $\lambda (\mu_H - \eta) + \eta$ is the cut-off level of μ_F for a spread to be paid in equilibrium. Note also that $\lambda \leq 1$ implies that a spread is paid if and only if $\mu_F < \lambda (\mu_H - \eta) + \eta \leq \mu_H$.51-i.e., a necessary and sufficient condition for a positive spread is that foreign investors are sufficiently more pessimistic than home debtors about the sector T’s performance and ability to repay. To better understand the case in (30), note that, although the sector T has never incentive to default on a debt amounted to $(1 + r_0^T) d_0^{H,T} (r_0^T, h_0)$,52 foreign investors do not share this view when μ_F is sufficiently lower than μ_H, since in this case they realize that the sector T is not able to repay all this debt in the lowest levels of y_1^T. This in turn implies that $\pi_F^T > 0$ and hence the arbitrage condition in (19) is not observed for $g_0^T = r_0$. Therefore, foreign investors will provide less credit than the amount demanded by the sector T, pushing g_0^T up. Faced with a higher g_0^T, the sector T will demand less credit and foreign investors will be willing to supply more credit. The market equilibrium will only occur at $g_0^T = \bar{g}_0^T$, when condition (28) is met.

49Since $\mu_F < \lambda (\mu_H - \eta) + \eta$ in (30), we have that $2\eta > \mu_F - [\lambda (\mu_H - \eta) - \eta]$. Thus, $\frac{1+\bar{g}_0^T}{1+r_0} > 1$.

50To understand the equilibrium condition in (29), remember that, as seen in subsections 3.3 and 3.4, the assumption of that $\epsilon^{NT} = 0$ implies that $d_{0}^{F, NT} > 0$ is not possible in equilibrium. Therefore, given (\bar{g}_0^T, h_0), we should set \bar{g}_0^{NT} such that $d_{0}^{H, NT} = 0$ in (29). In this case, we can also set $d_{0}^{F, NT} = 0$, since it is optimal for foreign investors to lend nothing when they expected not to be repaid for sure.

51To verify this result, note that $\mu_H > \eta$ in (1).

52According to (25), this is the amount of foreign credit that the sector T wishes to borrow when $\bar{g}_0^T = r_0$.

27
4 Welfare effect of ERRS policies

This section derives and interprets the welfare effects of ERRS policies. As explained in subsection 2.3, such policies in this model amount to set $h_0 \neq 0$. More precisely, we show that ERRS policies may be or not Pareto-improving interventions and that this depends, among other factors, on how much pessimist foreign investors are with respect to the sector T’s ability to repay, i.e., the extent μ_F is below μ_H. We assume that the world economy rests initially on a general equilibrium solution as the one defined in the previous section. Analytical tractability restricts us to examine interventions that consist in small changes of h_0 around 0.

First, we define V^i ($i = T, NT$) as the sector i’s lifetime utility as a function of h_0 and Φ, so that

$$V^i = V^i (h_0; \Phi) \equiv U^i [\bar{z}_0, h_0] ,$$

where $\bar{z}_0 = \bar{z}_0 (h_0)$, as defined in subsection 3.6 above, is the general equilibrium solution for the vector of endogenous variables $z_0 \equiv (d^i_0, g^i_0, q^i_0, f_0)_{i = T, NT}$, while

$$U^i (z_0, h_0) \equiv \ln (c^i_0) + \beta E_0 [\ln (c^i_1)] ,$$

where c^i_t ($i = T, NT$, $t = 0, 1$), written as a function of z_0 and h_0, is determined by (4)-(5) and (11)-(14). More intuitively, the function V^i gives the sector i’s lifetime utility when the world economy rests on a general equilibrium solution for a given h_0 and Φ.

Next, we gauge the optimality of a departure of h_0 from 0. In this aspect, such intervention leads to a Pareto-improvement if and only if $\Delta V^i \equiv V^i (h_0; \Phi) - V^i (0; \Phi) \geq 0$ for $i = T, NT$, with strict inequality for at least one sector. We just analyze small enough changes in h_0 to be well approximated by a first-order Taylor expansion, so that

$$\Delta V^i \approx \frac{\partial V^i (0; \Phi)}{\partial h_0} h_0 , \quad i = T, NT ;$$

$$\frac{\partial V^T (0; \Phi)}{\partial h_0} = K (\Phi) + L (\Phi) ;$$

$$\frac{\partial V^{NT} (0; \Phi)}{\partial h_0} = - \left(\frac{\theta}{1 - \theta} \right) K (\Phi) + L (\Phi) ,$$

28
whereas

\[K(\Phi) \equiv \frac{\partial U^T}{\partial h_0} = -\left(1 - \frac{\theta}{\theta} \right) \frac{\partial U^{NT}}{\partial h_0} = -E_{0,H} \left[\frac{y_1^T - \mu_H}{y_1^T - (1 + g_0^T) d_0^T} \right] > 0 ; \tag{37} \]

\[L(\Phi) \equiv \frac{\partial U^T}{\partial g_0^T} \frac{\partial g_0^T}{\partial h_0} = \frac{\partial U^{NT}}{\partial g_0^T} \frac{\partial g_0^T}{\partial h_0} = \tag{38} \]

and

\[\frac{\partial U^T}{\partial g_0^T} = \frac{\partial U^{NT}}{\partial g_0^T} = -\theta E_{0,H} \left[\frac{d_0^T}{y_1^T - (1 + g_0^T) d_0^T} \right] = -\frac{\theta}{1 + g_0^T} < 0 , \tag{39} \]

where all the derivatives in (37)-(39) are evaluated at \(z_0 = z_0(0) \) and \(h_0 = 0 \).

The first derivative in (37) is the direct effect of a higher \(h_0 \) on the sector \(T \)’s welfare, holding \(g_0^T \) constant: its sign is positive as this sector has its wealth volatility decreased\(^{53}\). Note the opposite sign of this effect on the sector \(NT \)’s welfare. This shows that a change in \(h_0 \) leads to a risk exposure reallocation across home country’s sectors. As one can see in subsection 2.3, the reason for this is that the wealth of both sectors increases with a higher \(y_1^T \) and decreases with a lower \(y_1^T \), so that hedging a sector against shocks to \(y_1^T \) rises necessarily the risk exposure of the other one.

The negative sign of the derivatives in (39) indicates that the welfare of both sectors increases with a fall in \(g_0^T \). The intuition behind this result is that the reduction of the sector \(T \)’s foreign liabilities, caused by a lower level of \(g_0^T \), not only increases the wealth of this sector, but also allows the home country as a whole to export less in order to finance its capital account deficit, increasing thereby the domestic supply of the tradable good. Therefore, the sector \(NT \) also takes advantage of a lower \(g_0^T \) through the increase in the relative price of its endowment.

We still have to examine the expression for \(\frac{\partial g_0^T}{\partial h_0} \) in (38), whose size will determine whether or not a change in \(h_0 \) is a Pareto-improving intervention. For this, we examine in subsections 4.2 and 4.3 below both cases in which the sector \(T \) pays and does not pay a spread on its foreign debt in equilibrium. Before this, however, it is very helpful to examine in subsection 4.1 what would happen if we dropped the assumption of information asymmetry about debtors’ individual portfolios. This result works as a benchmark which helps us explain why ERRS may be efficient when this assumption is introduced\(^{54}\).

\(^{53}\)This can be proved by using the Jensen’s inequality.

\(^{54}\)In focusing only on Pareto-improving interventions along this section, we ignore the whole
4.1 Impossibility for Pareto-improvement with perfect information

Suppose that foreign investors have perfect information about the individual hedging position of all sector T’s debtors. In this case, the contractual interest rate they require from each debtor will depend only on her individual hedging position, which can now be directly monitored. In this case, as the default probability of each debtor depends on her own risk exposure, debtors with different hedging positions will pay different rates. Therefore, when each debtor chooses the size and the sign of her hedging position, she has incentive to take into account the effect of this decision on the cost of her foreign debt. Given the limited structure of the model, this means that no benefit or cost of this decision is ignored by market participants. As a consequence, the risk exposure is efficiently reallocated by private markets, so that ERRS policies will never bring a Pareto improving for the home country. This point is well illustrated when we derive for this case the marginal condition of optimization with issue of “distributional weights”. In practice, however, the implementation of ERRS policies should depend, among other things, on the policymaker’s preferences. This issue can be formally addressed by assuming that the home country’s government maximizes a social welfare function given by $W(V^T, V^{NT})$, which is increasing with respect to the welfare of both sectors. It follows from (32) that we can write this social welfare as a function of the policy parameter h_0, so that $W(h_0; \Phi) = W[V^T(h_0; \Phi), V^{NT}(h_0; \Phi)]$. In this case, we have that ERRS policies $(h \neq 0)$ will be implemented if and only if

$$
\frac{\partial W(h_0; \Phi)}{\partial h_0} = \frac{\partial W}{\partial V^T} \frac{V^T(h_0; \Phi)}{\partial h_0} + \frac{\partial W}{\partial V^{NT}} \frac{V^{NT}(h_0; \Phi)}{\partial h_0} \neq 0 .
$$

In addition, note that the sign of the derivative above will determine which sector must have its risk exposure decreased by intervention.

As a particular case, suppose that $W(V^T, V^{NT}) = \lambda V^T + (1 - \lambda) V^{NT}$, where $\lambda \in (0,1)$ is the weight of the sector T’s welfare in government preferences. So, by substituting (35)-(36) in the derivative above when evaluated at $h_0 = 0$, we have that the condition for ERRS policies is given by

$$
\frac{\partial W(0; \Phi)}{\partial h_0} = \left(\frac{\lambda - \theta}{1 - \theta} \right) K(\Phi) + L(\Phi) = \frac{\lambda}{1 - \theta} K(\Phi) + \frac{\partial V^{NT}(0; \Phi)}{\partial h_0} \neq 0 .
$$

The second equality in the expression above shows that, as long as $K(\Phi)$ and V^{NT} do not depends on λ and $K(\Phi)$ is positive from (37), even if V^{NT} falls with a higher h_0, the derivative above is positive for a sufficiently high level of λ. This example shows that government preferences can be such that intervention takes place even if they do not bring a Pareto-improvement, that is, even when they have opposite effects on the sectors’ welfare.

More generally, the condition for ERRS policies above will depend ultimately on λ and θ. But, could there be some economic interpretation behind the relationship between these two parameters? Just as an suggestion, suppose that all home country’s residents are equally valued by home country’s government, so that λ is the proportion of the home country’s people employed in sector T. Suppose in addition that sector T’s output is produced with labor. Thus, fixed μ_T, the higher λ, the lower the productivity of an individual sector T’s worker. This is because a same level of output is expected from a larger number of workers. Logically, this result implies that ERRS policies would be implemented when sector T’s workers were enough unproductive.
respect to g_0^T, which is given by
\[E_{0,H} \left[\frac{y_1^T - f_0 \mu_H}{p_1} \frac{1}{c_1} \right] + E_{0,H} \left[\left(\frac{\delta^T d_0^T \partial g_0^T}{p_1 \partial q_0} \right) \frac{1}{c_1} \right] = 0 \] (40)

This condition must be met in equilibrium with full information. Note that the second term on the left-hand side of the equation (40) is the marginal welfare change due to the effect of the risk reallocation on the sector T’s contractual interest rate. As it was explained in subsection 3.5, this term does not exist in condition (24) because sector T’s debtors take g_0^T as given when information about their individual portfolios is asymmetric. Based on the condition (40), we can see why ERRS policies are not Pareto-improving interventions under perfect information about individual hedging positions. For this, suppose on the contrary that a small change in h_0 brings a welfare gain for both sectors when the economy is in equilibrium with $h_0 = 0$. In this case, the equilibrium condition (40) could not have been met. The reason is that private markets are expected to provide incentives for trading, without a need for public intervention, if market participants are able to take full advantage of the benefits and costs of an additional risk reallocation, which is given by a change in h_0.

4.2 Equilibrium with $g_0^T = r_0$. This is the case described in (31), in which foreign investors are not so pessimistic about μ_F to require a positive spread. In this case, a marginal change in h_0 has no effect on g_0^T \footnote{We just consider changes in h_0 so small that the inequality $\lambda (\mu_H - \eta) + \eta \leq \mu_F$ still holds after them.}: only d_0^T is affected by the shift induced by ERRS policies on the foreign credit’s supply and demand curves. Therefore, it follows from (38) that $L(\Phi) = 0$ and hence ΔV^T and ΔV^{NT}, given by (34)-(36) respectively, have opposite signs. This means that there is no scope for Pareto-improvement when $\tilde{g}_0^T = r_0$ because g_0^T is already at its lowest possible level. A higher (lower) h_0 will cause a net welfare loss for the nontradable (tradable) sector as it had its risk exposure increased without having been compensated by a fall in g_0^T. This result allows us to conclude that, given the limited structure of the model, a positive spread in equilibrium, which can be shrunk by ERRS policies, is a necessary condition for these policies to be Pareto-improving interventions.
4.3 Equilibrium with $g_0^T > r_0$. This is the case described in (30), in which foreign investors are so pessimistic about μ_F that they require a spread. In this case, we show below that there is a range for μ_F such that a marginal change in h_0 brings a Pareto-improvement for the home country. First, it follows from (30) that

$$
\frac{\partial g_0^T (0; \Phi)}{\partial h_0} = \frac{2 (1 + r_0) \lambda'(0) (\mu_H - \eta)}{(\mu_F - \gamma)^2},
$$

where $\gamma \equiv \lambda(0)(\mu_H - \eta) - \eta$. Next, substituting (30), (39) and (41) into (38) and noting that $\lambda'(0)$ does not depend on μ_F, we have that

$$
\lim_{\mu_F \to \gamma^+} |L(\Phi)| = \lim_{\mu_F \to \gamma^+} \left| \frac{\theta \lambda'(0) (\mu_H - \eta)}{\mu_F - \gamma} \right| = \infty_+.
$$

Since $K(\Phi)$ in (37) is finite and does not depend on μ_F, it follows from (35)-(36) and (42) that there are low enough levels of μ_F to both ΔV^T and ΔV^{NT} in (34) have the same sign. In this case, we can also infer from (34)-(36) and (38)-(39) that ΔV^T and ΔV^{NT} are positive if the change in h_0 has the same sign of $L(\Phi)$ and then the opposite sign of the derivative in (41) - i.e., if the sign of the change in h_0 is such that it causes a reduction in \bar{g}_0^T. Therefore, we prove that ERRS policies may be Pareto-improving interventions. Note, however, that this occurs only under the circumstances that foreign investors are enough overpessimistic, i.e., μ_F must be sufficiently lower than μ_H. In order to understand this result, note first in (30) that g_0^T increases with a lower μ_F: as foreign investors are more pessimistic about sector T’s performance and ability to repay, the supply curve in (20) shifts left, pushing g_0^T up. Moreover, as we saw in subsection 3.4, this curve becomes more inelastic as g_0^T increases. Consequently, as μ_F decreases, a change in h_0, shifting the supply curve, has a stronger impact on g_0^T.

As seen above, Pareto-improvement does not always require a positive change in h_0. As explained in subsection 3.5, this occurs because a change in h_0 has an ambiguous effect on g_0^T, which depends on the relative strength of its impact on the foreign credit’s supply and demand curves (as functions of g_0^T). Therefore, although the optimality of ERRS policies does require a fall in the spread faced by the tradable sector, it is not necessarily this sector that must have its risk exposure

\footnote{Just the limit to right in (42) below is considered because, as seen in (30)-(31), a general equilibrium solution exists only for $\mu_F > \gamma$.}
reduced in order to push g^T_0 down. This is the case only when the derivative in (41) is negative. Otherwise, it is risk exposure of the nontradable sector that must be reduced through a lower h_0.

Once there is a domestic market for hedging in the home country, a very important question is still to be answered: given that home country’s residents can trade privately their risk exposures, why do they fail to internalize the welfare effect of a lower debt cost into their allocative decisions? In other words, why isn’t the effect in (38) incorporated into the marginal conditions of optimization (23)-(24). As explained in subsection 2.4, the model assumes that foreign investors can observe only the aggregate foreign debt and the aggregate hedging position of each home country’s sector. They can not monitor the individual risk exposure and the individual foreign liabilities of each home country’s debtor separately. Therefore, if an individual debtor buys more hedge in the domestic market, she can not prevent her sector as a whole from free riding on her by sharing the shrinking effect on the spread of this change in her portfolio. Moreover, as each sector is composed by a large number of identical individuals, this implies that the impact of a rise in her hedging position on the spread she pays and hence on her welfare is negligible. Consequently, when she chooses the size of this position, she has no incentive to take into account the effect of this decision on the level of g^T_0. The model then turns out to be a particular case of congestion game, so that the amount of risk exposure privately reallocated across sectors is below the socially optimal level. It is necessary to be clear that imperfect information is a necessary assumption for ERRS policies to be efficient. Without it, as explained in subsection 4.1, intervention is pointless because home country’s residents will have incentive to incorporate all benefits and costs of the hedging position acquired in the domestic hedge market into their allocative decisions, so that the risk exposure will be efficiently reallocated across sectors by competitive markets.

It is important to stress that a change in h_0 brings a Pareto-improvement only for a certain range of μ_F. For not sufficiently low levels of μ_F, the fall in g^T_0 is not large enough to bring a welfare gain that fully compensates the welfare loss of the sector having its risk exposure increased. In this case, ERRS policies do not bring
a Pareto-improvement, even if the sector T pays a spread that is affected by ERRS policies and in addition foreign investors have imperfect information about the individual portfolio of home debtors. We can then conclude that spread and imperfect information are necessary, but not sufficient, conditions for Pareto-improvement. As seen above, it is still necessary that ERRS policies cause a large enough fall in the spread. But which determines the extent of this effect? In this model, spread is paid only because foreign investors are overpessimistic and in addition the more pessimist they are, the larger the impact of those policies on the spread. As a result, intervention must not be necessarily efficient whenever there is heterogeneous beliefs about repayment. We also need that foreign investors are sufficiently more pessimistic that home debtors about the ability of the latter to repay. In other words, it is not sufficient to have $\mu_F < \mu_H$. It is also necessary that μ_F be sufficiently lower than μ_H. The conclusion is that, although there are circumstances under which ERRS policies can be efficient, there are much more cases in which this does not occur.

Note that the results above do not lead to the conclusion that heterogeneous beliefs is a necessary condition for ERRS policies to be efficient. This assumption was introduced into this model because it is crucial for the spread to be caused by overpessimism and it is just this fact that allows us to insert the discussion around the optimality of ERRS policies into the literature on imperfect information-related market failures in the world capital markets. As seen in subsection 4.1, although homogeneous beliefs ($\mu_F = \mu_H$) in this model implies that there is no scope for Pareto-improvement, this occurs only because we assume, for simplicity, that repudiation costs are so large that debtors have no incentive to default, so that g_T^T is already in its lowest possible level r_0. Suppose now that beliefs are homogeneous, but both foreign and home countries are equally so pessimistic about repayment that a spread is paid in equilibrium. The optimality of ERRS policies in this case is not addressed by this paper and could be a topic for further research.

Finally, ERRS policies could have costs that must be taken into account by governments gauging their optimality. Besides the bureaucratic costs and others associated to errors in policy evaluation and implementation, distortionary taxation can be borrowed from literature on public debt management as another important
drawback of this kind of intervention57. Other different type of cost has to do with the process through with expectations are formed, since intervention could keep foreign investors from learning over time with their own expectational error58.

Costs associated to ERRS policies leads us to figure out alternative policies to cope with the imperfect information-related market failures in the model. As an example, a public effort could be done to provide timely and credible information59. This strategy could, at least to some extent, attenuate desinformation. First, foreign investors would be better informed about home country’s fundamentals. In this case, it is less likely that herd behavior will lead foreign investors to run away from home country’s securities when this decision is not supported by an actual

57As seen in Bolin (1990b), there are two reasons for this. Firstly, a large part of the government receipts comes from taxes on the labor income, which encourage taxpayers to spend wasteful resources trying to evade or shelter income. This excessive burden of taxation causes a social welfare loss that can be measured in this model in terms of wasted endowment. Secondly, this welfare loss can be enhanced if ERRS policies make public expenditures vulnerable to shocks to y_T^T. To see why this would occur, suppose that the burden of taxation is an increasing and convex function of the tax rate on the labor income. If a complet set of Arrow-Debreu contingent securities existed, the optimal tax rule would be to hold the tax rate constant. However, in a context of incomplete markets, government would be forced to change the tax rate to keep its budget balanced. Therefore, the social welfare loss would rise with the volatility of the public expenditures, which in this model is determined by shocks to y_T^T. If this volatility is enough high, ERRS policies could become unattractive.

58We know that overpessimism in this model occurs when foreign creditors underestimate the expected future sector T’s performance, so that μ_F is pushed down from μ_H. Moreover, we have implicitly assumed that home country’s residents form their expectations correctly. Therefore, as default probability in foreign creditors’ belief rises with a lower μ_F, overpessimism implies that foreign creditors expect default at a frequency higher that the one supported by home country’s fundamentals. In this case, suppose in addition that foreign creditors update their expectations as new information on default arrives and that reliable and timely information on the realization of y_T^T is hard to be collected or provided. Given this context, we compare the cases in that ERRS policies are implemented and are not. If there is no intervention when overpessimism arises, foreign creditors will learn over time that default does not occur so often as they expected and then they will revise their expectations on home country’s fundamentals upwards. Therefore, even with short-term welfare losses, the alternative of no intervention has the long-term benefit of making foreign creditors expectations become less sensitive to false rumors hitting the market. On the other hand, suppose that intervention does occur whenever foreign creditors are overpessimistic and that in addition it is effective to squeeze the spread. Now, the learning process above is impaired as foreign creditors will wrongly conceive that the frequency of default is low just because of the government intervention. In this case, ERRS policies would keep the market from learning on its own expectational errors. Therefore, once ERRS policies are always triggered to avoid short-term distortions caused by overpessimism, this alternative can no more be abandoned, unless the government accepts short-term welfare losses while the learning process cited above is not fully achieved. Consequently, as the alternative of intervention imposes social costs associated to its implementation forever, it could be better for the government, in a long-term perspective, to leave the market works alone.

59This strategy seems to be followed by Mexican government after the peso crisis in 1994. In addition, IMF’s Special Data Dissemination Standard (SDDS) is an effort to enhance the availability and quality of the macroeconomic and financial statistics of the member countries.
deterioration in fundamentals. Second, foreign investors could have access to more disaggregated information and hence be also able to monitor the individual portfolio of each debtor. In this case, market would be efficient to reallocate exchange rate risk, so that intervention would be unnecessary.

5 Conclusion

We know that ERRS policies are not Pareto-improving interventions under full information and perfect competitive markets. Therefore, the model derives under which circumstances these policies may bring a Pareto improvement for a indebted small open economy. There is a need for market imperfections and several other pre-conditions. In the model, the tradable sector pays a spread on its foreign debt because foreign investors are relatively overpessimistic about repayment and in addition they observe only the aggregate exchange rate risk exposure of the tradable and the nontradable sectors. As foreign investors are not able to monitor the risk exposure of a particular debtor, the shrinking effect on the spread of a higher hedging position against exchange rate shocks can be regarded as a rival and non-excludable "good", so that our model is a particular case of congestion game. Consequently, competitive markets lead to a suboptimal reallocation of the exchange rate risk exposure across the home country. Based on Calvo and Mendoza (2000a,b), the imperfect information-related market imperfections on which this model relies could be supported by financial globalization in a context of institutional constraints, which keep foreign investors from taking full advantage of costly information, while diversification continues to be an optimal strategy.

However, Pareto-improvement also requires that the welfare loss of the sector having its wealth volatility increased is lower than the welfare gain provided by a smaller spread. This in turn only takes place when foreign investors are very pessimistic about the home economy’s ability to repay so that the credit supply curve is very little responsive to the contractual interest rate. Otherwise, ERRS policies do not bring a Pareto-improvement, even if spread and market failures do exist.
References

Figures 1 and 2
Appendix

Proposition 1 Consider a vector \(\Phi_H \equiv (\beta, \theta, \epsilon^T, \mu_H, \eta) \) with a sufficiently large \(\epsilon^T \) and a parameter \(h_0 \) close enough to zero. Then, the home country relies in equilibrium on a vector \((d_{i}^{H,i}, q_{i}^{H,i}, f_{0}^{H})_{i=T,NT} \) such that the sector \(T \) has never incentive to default, namely, \(\pi_{T}^{H} = 0 \) in equilibrium.

Proof. For a given \((d_{i}^{0}, q_{0}^{i}, f_{0})_{i=T,NT} \), we define \(x \) as the solution of the equation \((\mu_H - \eta) x = k \), where \(k \), the effective cut-off level of \(y_{1}^{T} \) for default, is given by (16). Substituting (16) into the equation above, we have that

\[
(1 + g_{0}^{T}) d_{0}^{T} = \left[x (\mu_H - \eta) (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0) \right] [1 - \exp (-\epsilon^T)].
\]

Moreover, we know from (1) that, in home country’s belief, the lowest possible level for \(y_{1}^{T} \) is \(\mu_H - \eta \). According to (17), this implies that \(\pi_{T}^{H} = 0 \) if and only if \(x \leq 1 \).

As we saw in subsection 3.5, the home country reaches an equilibrium at a vector \((d_{i}^{0}, q_{0}^{i}, f_{0})_{i=T,NT} \) if and only if this vector meets the marginal conditions (23)-(24), where consumption and relative prices are given, respectively, by (4)-(5) and (11)-(14). Consequently, it follows from the results above that there is an equilibrium solution for the home country with \(\pi_{T}^{H} = 0 \) if and only if there is a vector \((x, q_{0}^{T}, f_{0}) = \left[\lambda (h_0), q_{0}^{H,T} (h_0), f_{0}^{H} (h_0) \right] \), with \(\lambda (h_0) \leq 1 \), that solves the system

\[
E_{0,H} \left[\frac{y_{1}^{T} - f_{0}\mu_H}{y_{1}^{T} (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0) - \left[x (\mu_H - \eta) (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0) \right] [1 - \exp (-\epsilon^T)]} \right] = 0;
\]

\[
E_{0,H} \left[\frac{y_{1}^{T} - f_{0}^{T}\mu_H^{T}}{y_{1}^{T} (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0) - \left[\frac{x (\mu_H - \eta) (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0)}{1 - \frac{q_{0}^{T}}{\theta}} \right] [1 - \exp (-\epsilon^T)]} \right] = 0;
\]

\[
\beta E_{0,H} \left[\frac{1}{x (\mu_H - \eta) (1 - q_{0}^{T} - h_0) + \mu_H (f_{0}q_{0}^{T} + h_0) [1 - \exp (-\epsilon^T)]} \right] = 0,
\]

where \(\theta = \frac{q_{0}^{T}}{\theta} \).
where (A2)-(A4) are derived by substituting (A1) into the equation (23) for \(i = T \) and into the equation (24) for \(i = T, NT \). In particular, when \(h_0 = 0 \), it follows from (A2)-(A4) that there is an equilibrium solution with \(\pi^T_H = 0 \) if and only if there is a vector \((x, q^T_0, f_0) = \left[\lambda(0), q^H_T(0), f^H_T(0) \right] \), with \(\lambda(0) \leq 1 \) and \(q^H_T(0) = 0 \), such that \(\lambda(0) \) and \(f^H_T(0) \) solve the system

\[
E_{0,H} \left[\frac{y_T - f_{0}\mu_H}{y_T - x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]} \right] = \Phi A5
\]

\[
\frac{1}{x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]} - \beta E_{0,H} \left[\frac{1}{y_T - x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]} \right] = \Phi A6
\]

According to section 4, we just examine the welfare properties of ERRS policies that consist in very small changes of \(h_0 \) around 0. Therefore, in order to prove the proposition, it is sufficient to show that, for a large enough \(\epsilon^T \), the equation (A6) is solved for \(x = \lambda(0) \leq 1 \). For this, we define the function \(A(x, \Phi_H) \) as the left-hand side of (A6), so that

\[
A(x; \Phi_H) = \frac{1}{x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]} - \beta \ln \frac{(\mu_H + \eta) - x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]}{(\mu_H - \eta) - x(\mu_H - \eta) [1 - \exp(-\epsilon^T)]}
\]

(A7)

It is trivial to see in (A7) that

\[
\lim_{x \to 0^+} A(x; \Phi_H) = \infty_+ ;
\]

\[
\lim_{x \to \xi^-} A(x; \Phi_H) = \infty_-
\]

where \(\xi \equiv 1/ [1 - \exp(-\epsilon^T)] > 1 \) as \(\epsilon^T > 0 \). Moreover, by using the Leibnitz’s rule, we have that

\[
\frac{\partial A(x; \Phi_H)}{\partial x} < 0.
\]

(A10)

It follows from (A8)-(A10) that the graph of the function \(A(x; \Phi_H) \) intercepts the horizontal axis at an unique point \(x = \lambda(0) \) between 0 and \(\xi \), which hence solves the equation (A6)- i.e., there is an unique \(\lambda(0) \) such that \(A(\lambda(0); \Phi_H) = 0 \). We still have to show that, given \((\beta, \theta, \mu_H, \eta) \), there is a sufficiently large \(\epsilon^T \) that \(\lambda(0) \leq 1 \). For this, it is sufficient to see in (A7) that

\[
\lim_{\epsilon^T \to \infty_+} A(1; \Phi_H) = \infty_-
\]

\(^{60} \)Note that (A6) does not depend on \(f_0 \). After we get \(\lambda(0) \) from (A6), we substitute it into (A5) in order to get \(f^H_T(0) \).
Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

<table>
<thead>
<tr>
<th>N°</th>
<th>Título</th>
<th>Autor</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini, and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td></td>
<td>Monetary Policy and Banking Supervision Functions on the Central Bank</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>5</td>
<td>The Pass-through from Depreciation to Inflation: A Panel Study</td>
<td>Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chanvet</td>
<td>Set/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Set/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>10</td>
<td>Análise do Financiamento Externo a Uma Pequena Economia</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Junior</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil Para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: Uma Abordagem de Função de Produção</td>
<td>Tito Nicias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfouri Muiños</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: A Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfouri Muiños, Paulo Springer de Freitas and Fabio Araújo</td>
<td>Maio/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>Maio/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Kayama and Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>24</td>
<td>Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality</td>
<td>Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini</td>
<td>Ago/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Ago/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the case of Brazil</td>
<td>Marcelo Kfouri Muiños</td>
<td>Ago/2001</td>
</tr>
<tr>
<td>No.</td>
<td>Título</td>
<td>Autor(es)</td>
<td>Data</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouveã</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações Sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nicias Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloistio Araujo and Márcia Leon</td>
<td>Abr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
43 The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
 Benjamin Miranda Tabak and Eduardo José Araújo Lima
 Jun/2002

44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
 Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
 Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
 André Minella
 Ago/2002

46 The Determinants of Bank Interest Spread in Brazil
 Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer e Márcio I. Nakane
 Ago/2002

47 Indicadores Derivados de Agregados Monetários
 Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
 Set/2002