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Non-technical Summary 

The foreign exchange rate market is one of the most important in the global 

financial system nowadays, due to its huge trading volume and great importance to 

economic agents, in particular investors and policymakers.  

Exchange rates allow investors, for instance, to design trading strategies to hedge 

against market risk. They also influence central banks’ decisions on monetary policy, 

since movements of the exchange rate can affect future price dynamics. 

Nonetheless, the potential variety of factors that can influence exchange rates (for 

instance, macroeconomic fundamentals, speculative transactions and currency 

interventions, among others) may bring to this market substantial volatility in periods of 

distress. 

In this paper, we estimate 60 models to forecast the exchange rate volatility in 

Brazil, including some traditional approaches such as GARCH and EGARCH models. 

The main contribution of this study is to employ quantile regression, which is an 

econometric estimation technique, in some of its new formulations to build proxies for 

the exchange rate volatility based on the conditional autoregressive value at risk 

(CAViaR) model of Engle and Manganelli (2004). One of the advantages of the proposed 

framework is to allow for asymmetric dynamics in the distribution of returns of the 

exchange rate. 

In order to analyze the relative forecasting performance of the investigated 

models, we apply the predictive ability test of Giacomini and White (2006). The results 

suggest that forecasts from the asymmetric CAViaR model are better than forecasts from 

great part of the models, thus corroborating the benefits of our proposed setup over 

traditional approaches. 
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Sumário Não Técnico 

O mercado de câmbio é um dos mais importantes no sistema financeiro global 

hoje em dia, devido ao seu enorme volume de negócios e grande importância para os 

agentes econômicos, em particular, investidores e formuladores de políticas públicas. 

As taxas de câmbio permitem aos investidores, por exemplo, elaborar estratégias 

de investimento para se protegerem contra o risco de mercado. Elas também influenciam 

as decisões dos bancos centrais sobre política monetária, uma vez que movimentos das 

taxas de câmbio podem afetar a dinâmica futura de preços ao consumidor. 

No entanto, a grande variedade de fatores que podem influenciar as taxas de 

câmbio (por exemplo, fundamentos macroeconômicos, transações especulativas e 

intervenções monetárias, dentre outras) pode trazer para esse mercado volatilidade 

excessiva em períodos de estresse. 

Neste artigo, estimamos 60 modelos para prever a volatilidade da taxa de câmbio 

no Brasil, incluindo algumas abordagens tradicionais, como os modelos GARCH e 

EGARCH. A principal contribuição deste estudo é utilizar a regressão quantílica, que é 

uma técnica econométrica, em algumas de suas novas formulações, para estimar a 

volatilidade da taxa de câmbio com base no modelo CAViaR de Engle e Manganelli 

(2004). Uma das vantagens da metodologia proposta é permitir dinâmicas assimétricas 

na distribuição dos retornos da taxa de câmbio.  

Para analisar a capacidade preditiva dos modelos investigados, aplicamos o teste 

de Giacomini e White (2006). Os resultados sugerem que as previsões do modelo 

CAViaR assimétrico são melhores do que as previsões da maior parte dos modelos, 

corroborando assim os benefícios da metodologia proposta em relação às abordagens 

tradicionais. 
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1. Introduction

Starting with his work in 1952, Markowitz laid the foundation for a new way of 

analyzing and comparing investments, by developing the mean-variance model: the mean 

is associated with the return and the variance with the risk of the investment. Hence, the 

volatility is calculated as the variance or square root of the variance of the return of the 

asset or portfolio of interest. 

Abdalla (2012) recalled that while volatility is associated with risk, it is not exactly 

the same as risk. In reality, it is a measure of the uncertainty of both positive and negative 

movements in the price of an asset. Nevertheless, this measure has been widely used in 

the literature since the work by Markowitz, including theoretical and empirical 

investigations carried out by financial institutions, regulatory agencies and academics. 

Indeed, its importance is so great that, with the evolution of derivatives markets, various 

instruments have been created so that volatility can be traded through options. 

In respect to exchange rate volatility, an ongoing question naturally arises: Is there 

a precise way to estimate it? Various approaches have been taken in the literature. Some 

researchers have sought to estimate this volatility based on macroeconomic variables and 

make predictions from the relations found with these variables.1 In recent years, volatility 

has been predicted most often based on autoregressive time series models.2 

For instance, Engle & Manganelli (2004) developed a semiparametric model of 

volatility called CAViaR (conditional autoregressive value at risk by regression 

quantiles) based on quantile autoregression. Taylor (2005) applied the CAViaR to a pair 

of symmetric quantiles from the tails of the distribution and predict the exchange rate 

volatility. Huang et al. (2011) adopted the same approach as Taylor, but for all percentiles. 

The method applied here fits under the autoregressive models used for short-term 

prediction. Our objective is to study the exchange rate volatility in Brazil by applying the 

CAViaR technique and to predict the volatility by the quantile regression employed by 

Huang et al. (2011). We also compare it with the GARCH (1,1) and EGARCH (1,1) 

models and the prediction method investigated by Taylor (2005). 

1 Huang et al. (2011) mentioned the comprehensive work of Engel & West (2005), which investigated the 

relation of some economic variables with exchange rate volatility, but did not find evidence of significant 

effects of those variables on this volatility. Bekiros (2014), also inspired by Engel & West (2005), studied 

foreign exchange volatility by considering macroeconomic fundamentals with linear and nonlinear models, 

but did not find a relationship, in particular for short-term forecasting. 
2 Many works can be cited in this area, among them Engle & Bollerslev (1986), Scott & Tucker (1989), 

Beine et al. (2007), Hansen & Lunde (2005) and Abdalla (2012). 
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Although the exchange rate is always a hot media topic in Brazil, be it due to 

external crises or the domestic political scenario, to the best or our knowledge there has 

been no study of the Brazilian exchange rate applying quantile regression and the 

CAViaR technique. Our contribution is to introduce a tool that can shed light on the 

behavior of the conditional distribution of the exchange rate. We not only compared the 

forecasting power of models based on quantile regression with some models of the 

GARCH family, but also examined the behavior of the exchange rate along its distribution 

and its consequent volatility. 

The rest of this paper is structured in four sections. In the second section, we review 

the literature on quantile regression in general, with particular focus on the models used 

in the financial literature to measure volatility. In the third section, we present the 

methodology, and in the fourth, we present and discuss the empirical results. The fifth 

section summarizes the conclusions and makes some suggestions for future research. 

 

 

2. Literature review 

 

The vast literature on exchange rate volatility is divided into various specific 

currents, with two standing out. The first involves modeling the volatility using 

independent variables based on macroeconomic fundamentals, such as inflation or its 

volatility, international trade and aggregate supply. The second involves application of 

autoregressive models.  

The effect of exchange rate variations on fixed capital and financial investments 

has attracted the attention of scholars and investors for decades. Exchange rate volatility 

took on new significance, at least in nominal terms, with the end of the Bretton Woods 

system in 1973 and the decision by most countries to allow their currencies to float. 

However, some theories at the time argued that, with the floating of currencies, the real 

exchange rate, which considers the fluctuation of price-level indexes between countries, 

would be more stable than under the pegged regime. 

This idea was expressed by Flood and Rose (1999), who in their introduction argued 

that it was surprising for exchange rates to be volatile. In this respect, they cited Friedman 

(1953) that argued: “[...] instability of exchange rates is a symptom of instability in the 

underlying economic structure [...] a flexible exchange rate need not to be an unstable 
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exchange rate. If it is, it is primarily because there is underlying instability in the 

economic conditions [...]” (Friedman, 1953, cited in Flood & Rose, 1999, p. F660). 

Although this discussion is outside the scope of this study, it can be seen that even 

before 1973, exchange rate volatility was already a concern of academics and economic 

agents. Hence, a myriad of empirical and theoretical studies have been published 

investigating the variables that can influence and be influenced by fluctuations in the 

foreign exchange market.3 

In turn, the volatility of exchange rates winds up influencing the prices of goods 

between countries and also the level of domestic consumption. In Brazil, for example, the 

export sector constantly lobbies the government to take measures to weaken the currency, 

to make Brazilian products more competitive abroad and imported products less attractive 

to local consumers. But policies in this direction involve complicated tradeoffs, especially 

because a weaker exchange rate increases inflationary pressure.  

In the international arena, Abdalla (2012) studied the exchange rate volatility in 19 

Arab countries and cited various studies relating this volatility with macroeconomic 

fundamentals (inflation, interest rates, GDP), such as Choi & Prasad (1995) and 

Pavasuthipaisit (2010). Exchange rate volatility and its influence on global trade has been 

widely studied, as reflected in Krugman (1986) and Hooper & Kohlhagen (1978), both 

of which demonstrated that the uncertainties associated with the exchange rate increase 

the prices in international trade. Also, Kliatskova (2013) studied whether the level of 

development plays a role in the relation between exchange rate volatility and international 

trade in a sample of countries. 

Other problem caused by high foreign exchange volatility is that it reduces the 

mobility of capital, as demonstrated by Lai et al. (2008). Gonzaga & Terra (1997) 

reported significant effects of exchange rate volatility on inflation. In turn, Hausmann et 

al. (2006) showed that this volatility is higher in developing than in developed countries. 

Another important topic is the connection of the exchange rate with interest rate 

differentials, as studied by Menkhoff et al. (2012), who analyzed the variations in profits 

resulting from the carry trades between currencies. In turn, Huang et al. (2011) advocated 

                                                 
3 The relationship of exchange rate volatility with aggregate supply (Hau, 2002), inflation volatility 

(Gonzaga & Terra, 1997) or business profitability (Baum, Caglayan & Barkoulas, 2001) are some examples 

of investigations of the impact of the exchange rate on macroeconomic variables. 
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the idea that predicting exchange rate volatility can improve the profitability of 

transactions involving exchange rates.4  

As previously mentioned, other strand of the literature studies the exchange rate 

volatility by using time series models. In the autoregressive model proposed by Bollerslev 

(1986), the conditional variance is estimated based on the heteroskedasticity, time 

dependence and a moving average. This class of models, called the GARCH family, 

emerged in response to some stylized facts related to the behavior of the distribution of 

returns of a variable, for example, volatility clustering (Brooks, 2008) or asymmetry 

between positive and negative exchange rate return movements, addressed, e.g., by the 

EGARCH model proposed by Nelson (1991).5  

Using the GARCH (1,1) model, Choudhry (2005) found evidence that the volatility 

both of the nominal and real exchange rates generates significant negative impacts on the 

exports of the United States to Canada and Japan.  

Some of the studies mentioned previously analyzed the relation between the 

exchange rate and/or its volatility and macroeconomic variables, including the application 

of autoregressive models to examine the role of economic fundamentals. Among those 

that have obtained significant results, we can mention Bollerslev (1990), Jorion (1995), 

Andersen & Bollerslev (1998), Brooks & Burke (1998), Yoon & Lee (2008) and Musa et 

al. (2014). The last paper, in particular, applied the multivariate GARCH model to 

analyze the exchange rate of Nigeria’s currency (the Naira) against the currencies of some 

developed countries. 

Forecasting of volatility using the GARCH model can also be seen in Scott & 

Tucker (1989) and Hansen & Lunde (2005). The latter authors compared the GARCH 

(1,1) with various specifications (more than 300) of the GARCH family and evaluated 

the results by six different types of loss functions. 

Huang et al. (2011) and Abdalla (2012), among others, developed the interesting 

idea that foreign exchange volatility, besides being a non-observable variable, is an aspect 

of uncertainty/risk associated with a determined asset, besides being very important. 

                                                 
4 In particular, he noted that trading currencies is different than trading other financial assets. The latter are 

traded more freely between parties, while governments often impose controls on currency trading, seeking 

to stabilize the exchange rate or weaken or strengthen the currency depending on concerns over trade flows 

or inflation. Holmes (2008), for example, reported evidence of the non-stationarity of the real exchange 

rate under the Markov regime-switching framework. 
5 It should be noted, however, that these models are based on assumptions about the distribution and the 

parameters, such as the normal distribution or Student t-distribution. Besides this, the majority of works 

assume that the distribution tends to a constant value with time. Some authors, like Rapach & Strauss 

(2008), have shown that exchange rate series have structural breaks due to external interventions. 
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Specifically, that variable is subject to shocks that are not necessarily random, such as 

monetary shocks and government interventions (as in dirty float regimes, for instance). 

Foreign exchange volatility can be modeled by the GARCH family of models with 

conditional variance, methods that respond well to the stylized facts found during decades 

of empirical studies, such as long-term persistence (when the coefficients  and  are 

near 1 in the GARCH (1,1) model), time dependence, asymmetry and even regime 

change, such as changes in the Markov state.  

However, as observed by several authors mentioned previously, exchange rates can 

be significantly affected by governmental actions, so the structure of the distribution of 

returns of this financial asset can vary substantially in time. In other words, the initial 

assumptions can change during the sample period as a result of government interventions. 

A way to address this problem was developed by Nikolaou (2008), who applied quantile 

regression to analyze real exchange rate quantiles and found an interesting result, namely 

that shocks cause different impacts depending on the magnitude of the shocks, and also 

lead to different dynamics, such as the mean reversion tendency.  

Here we analyze volatility by the autoregressive model, using quantile regression 

to predict exchange rate volatility. Since this model has two stages (the first ascertaining 

the volatility by the CAViaR model, and the second predicting the volatility based on the 

quantiles determined by the CAViaR, using linear regression), after presenting the 

volatility models we provide a brief review of quantile regression and then return to the 

CAViaR model proposed by Engle & Manganelli (2004), before finally turning our 

attention to the models developed by Taylor (2005) and Huang et al. (2011) to forecast 

volatility.   
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3. Methodology 

 

Here we use the method proposed by Taylor (2005), extended as advocated by 

Huang et al. (2011), who presented an alternative form between predicting volatility and 

estimating the quantiles. The method is carried out in two stages. In the first, estimates 

are generated from the distribution of the quantiles of the returns, without making 

assumptions about the characteristics of the distribution function. In this stage, the 

CAViaR method is used. In the second stage, the estimated quantiles can be applied 

directly in the predictions of volatility or by approximating the ratio between quantiles 

and the variance, or by regression models.  

In order to present all the building blocks of the proposed methodology, this section 

is organized into five subsections: (i) exchange rate volatility; (ii) Value-at-Risk (VaR);         

(iii) quantile regression, which is one of the bases for calculating the CAViaR model;         

(iv) description of the CAViaR model, with the equations formulated in Engle & 

Manganelli (2004); and (v) presentation of the method of predicting volatilities proposed 

by Taylor (2005) and Huang et al. (2011).  

 

 

3.1 Exchange rate volatility 

 

In this paper, we work with log returns, implying a continuous rate, as is the practice 

in large part of the literature. Therefore, the variable under analysis is: 

𝑟𝑡 =  𝑙𝑛 (
𝑆𝑡

𝑆𝑡−1
),      (1) 

where 𝑟𝑡 is the continuous rate of return at time t, 𝑆𝑡 is the exchange rate at t, and 𝑆𝑡−1 is 

the exchange rate at t-1. As mentioned before, in analyzing investments according to the 

return and risk, Markowitz (1952) defined volatility (risk measure) as the standard 

deviation, , of the distribution of the calculated returns, according to equation (2). This 

form of calculation is widely used in the financial literature, and is defined by the 

following expression, given a sample with n observations:  

𝜎2 =  
1

𝑛−1
∑ (𝑟𝑡 − 𝑟̅)2𝑛

𝑡=1 ,         (2) 

where  

𝜎 =  √𝜎2 is the volatility 

𝑟𝑡 = return at t 

𝑟̅ = unconditional mean return 
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Brooks (2008) and Hull (2009) mentioned some of the main volatility models 

developed in preceding decades. Among them are the historical volatility, by which 

weights can, if desired, be attributed to the sample periods; and implied volatility, 

calculated based on the option prices of a determined target asset, employing the option 

pricing formula of Black & Scholes (1973), given the price of a determined option and 

the other variables (e.g., maturity and price of the underlying asset, interest rate), among 

others to calculate the volatility projected by the market for the asset covered by the 

option. In this case, just as in the historical volatility model, it is assumed that the 

volatility is constant during the term to maturity, at all the asset’s price levels. An advance 

to these models is provided by the exponential smoothing technique (exponentially 

weighted moving average – EWMA), which can be understood as a special case of the 

weighted average in which the weights decay exponentially, according to the expression 

below: 

𝜎𝑡
2 = 𝜆𝜎𝑡−1

2 + (1 − 𝜆)𝑢𝑡−1
2 .             (3) 

 

The estimate 𝜎𝑡
2 is calculated from the volatility at t-1 (𝜎𝑡−1

2 ) and the new 

information, given by the error 𝑢𝑡−1
2   (difference between the actual and expected returns). 

The coefficient of decay, , determines the weight to be attributed to the more recent 

observations.  

 On the other hand, many papers in the financial literature present empirical results 

showing heteroskedasticity of various assets, meaning their volatility is not constant. A 

series is heteroskedastic when its volatility is variable over time, so that it can present the 

ARCH effect. Engle (1982) proposed the model shown below, to express volatility as 

dependent on past returns: 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 ,             (4) 

where  𝐸(𝑢𝑡 ) = 0 

  𝑢𝑡 = 𝜎𝑡 ∗  𝜀𝑡 

  𝜀𝑡 = 𝑖. 𝑖. 𝑑. (0,1) 

 

The equation above represents the ARCH (1) model, by expressing the dependence 

of volatility only on the error at t-1.  

Bollerslev (1986) developed an autoregressive model that can deal with these 

characteristics of financial time series, besides another characteristic often observed, the 
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clustering of volatility. In this later specification, the variance not only depends on past 

returns, but also depends on past variance. In the equation of the GARCH model below, 

it can be seen that the equation of the conditional variance, for the simplest case, is a 

generalization of the EWMA model, according to the following equation: 

 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2 .           (5) 

 

This expression indicates the so-called GARCH (1,1) model, widely used in the 

literature. One of the variations of the GARCH model is the EGARCH model, developed 

by Nelson (1991), with the aim of reflecting some stylized facts found in studies of 

volatility, such as the asymmetry found in the stock market in general. One specification 

of the EGARCH, among others in the literature, is shown below: 

 

ln(𝜎𝑡
2) = 𝑎 + 𝛽1 ln(𝜎𝑡−1

2 ) + 𝛽2
𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛽3 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
].        (6) 

  

This model has several advantages over the basic GARCH model. For example, in this 

specification the modeling is performed with the log of 𝜎𝑡
2, so even if the estimated 

parameters are negative, 𝜎𝑡
2 will be positive, and there will be no need for a priori 

restriction to positive parameters. Another advantage is the asymmetries found in the 

response to negative and positive returns of volatility. In the EGARCH, if the ratio 

between volatility and return is negative, 𝛽2 will be negative. This often happens when 

calculating exchange rate volatility.  

 Although there are many variants in the GARCH family of models, in most of them 

the parameters are estimated by maximum likelihood, assuming the error term to have 

i.i.d. distribution, with a previously determined distribution. 

 

 

3.2 Value-at-Risk (VaR) 

 

Value-at-Risk is a risk measure widely used by investment firms and financial 

institutions. Its property of expressing risk in a single metric is one of the reasons for its 

popularity. It is defined as the maximum value that can be lost by holding an asset or 

portfolio during a previously established period, given a probability (confidence level). 

In other words, the VaR measure is the estimate of loss from holding an asset or portfolio 

13



    

 

 

 

over a determined period (generally one or ten days), which will only be exceeded with 

a small probability  (generally 1 or 5% - the Basel capital requirement rule is 1%).  

From this definition, it can be seen that the VaR can be considered a “positional 

measure”, i.e., the VaR is in a position such that, given a confidence level , the value at 

risk will be greater than 1- for all other values. This characteristic is similar to the 

quantiles of distributions. For example, for a period of one day, and  (confidence level) 

= 5%, the VaR shows the negative return that will not be exceeded on that day with 

probability of 95%. Mathematically, this is expressed as follows: 

 

𝑃𝑟𝑜𝑏[𝑟𝑡 < −𝑉𝑎𝑅𝑡|𝐼𝑡−1] = 𝛼,        (7) 

 

where I denotes the information set available at time t-1.  

In statistical terms, the confidence level  is the quantile  of the asset’s 

probability density function. The basic VaR metric assumes normality of the asset’s 

distribution function, so with quantile  = 5%, the number of standard deviations () from 

the mean, with 95% confidence, is equal to 1.67. Under the normality hypothesis, the 

VaR would be: 

𝑉𝑎𝑅 =  𝜇 + 𝜂𝜎,              (8) 

 

where  = mean and  volatility. 

According to Engle & Manganelli (2004), by whatever method the VaR is used, 

there is a common structure for the various types of calculation, namely: (1) mark the 

investment portfolio to the market; (2) estimate a distribution of the portfolio’s returns, 

and (3) by applying the volatility found in (2), calculate the portfolio’s VaR. Step (2) is 

what differs the most among the various models. In the case of parametric models, the 

distribution is pre-established, and is generally assumed to be constant over time. But 

semiparametric and nonparametric approaches also exist, such as the quantile regression, 

next described. 

  

14



    

 

 

 

3.3 Quantile regression 

 

The central idea of quantile regression, as formulated by Koenker & Bassett (1978), 

is that if the estimate of the mean can be obtained by minimizing the sum of the squared 

residuals, it is also possible to find an estimate of the median as a solution to minimize 

the sum of the absolute residuals. The authors expanded, then, the concept of minimizing 

the sum of the absolute deviations – with the solution being the median – to other 

quantiles.  

They reported that the estimators calculated by quantile regression are just as 

efficient as those calculated by the least squares method in Gaussian distributions. In turn, 

the parameters calculated by the quantile regression model are more efficient for data 

with non-Gaussian distributions. 

Koenker & Bassett (1978) developed a general formulation, described as follows: 

Given a sequence xt, with t = 1,...,T, denote a sequence of K-vectors of a determined 

matrix. Also suppose that yt, with t = 1,...,T, is a random sample of the process of the 

following regression: ut = yt – xt b, with a distribution function F. The -th quantile of the 

regression, 0 <  < 1, is defined as any solution to the following minimization problem: 

 

min
𝑏∈𝑅𝑘

[∑ 𝜃|𝑦𝑡 − 𝑥𝑡𝑏|𝑡∈{𝑡:𝑦𝑡≥𝑥𝑡𝑏} + ∑ (1 − 𝜃)|𝑦𝑡 − 𝑥𝑡𝑏|𝑡∈{𝑡:𝑦𝑡<𝑥𝑡𝑏} ].     (9) 

 

Finally, the estimated conditional quantile is linear and the conditional linear 

expression utilized for the case of one variable (K=1) is the following: 

 

𝑌𝜃,𝑡 =  𝑏0,𝜃 + 𝑏1,𝜃𝑥𝑡.     (10) 

 

Quantile regression was first widely used to analyze cross-sectional data, but it has 

been spreading to other areas, and is now applied in autoregressive models typical of time 

series, such as the CAViaR model, next described.  
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3.4 Conditional Autoregressive Value at Risk by Quantile Regression (CAViaR) 

 

Stylized facts about volatility indicate its distribution is generally not normal, and 

it can also vary with time. Engle & Manganelli (2004) stated that, since the VaR is related 

to volatility, if the latter presents clustering, so should the VaR. And a statistical way to 

represent this grouping is by establishing an autoregression relation. Besides this, to relax 

the previous hypotheses about the distributions, they used quantile regression, and thus 

proposed the conditional autoregressive value at risk (CAViaR) model. 

This formulation of the VaR, besides not establishing prior properties of the 

distribution, also allows variation in time of the probability density in the error and 

volatility terms. If the probability associated with the VaR is defined as  and rt is a vector 

of the observed returns of a portfolio at time t, the -th quantile (generally 1% or 5%) at 

period t of the portfolio’s return generated at t-1 is denoted by: 

 

𝑄𝑡(𝜃) = 𝑄(𝑟𝑡−1, 𝛽𝜃) ,    (11) 

 

where 𝛽𝜃 is a p-vector of unknown parameters. The generic specification of the CAViaR 

model can be described as follows: 

  

𝑄𝑡(𝜃) = 𝛾𝜃 + ∑ 𝛾𝑖𝑄𝑡−𝑖(𝜃)𝑞
𝑖=1 + ∑ 𝛼𝑖𝑙(𝑟𝑡−𝑖, 𝜑)𝑝

𝑖=1  ,            (12) 

 

where 𝛽′ =  (𝛼′, 𝛾′, 𝜑′) and l are functions of a finite number of lagged values of the 

observations. The autoregressive terms i 𝑄𝑡−𝑖(𝜃) for i = 1,...,q permit smoothing the 

changes in the quantile over time. 

 The term l(rt-i,𝜑) relates Qt(𝜃) with the observable variables belonging to the 

information set, completing the function by the innovations of the market in the context 

of GARCH modeling. 

The method of Engle & Manganelli (2004) directly models a given conditional 

quantile of the return instead of specifying an entire distribution of returns, as occurs, for 

example, in the GARCH model. Furthermore, the CAViaR does not pose time restrictions 

between the quantiles, tying them to the temporal dynamics between two quantiles, as 

happens in parametric models. 
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Engle & Manganelli (2004) presented four different conditional autoregressive 

specifications. The first of them is adaptive and is the simplest specification. In it, the 

VaR increases with the existence of innovation peak (Innov) in the last observation, and 

declines slightly otherwise. 

Adaptive: 

𝑄𝑡(𝜃) = 𝑄𝑡−1(𝜃) + 𝛽1{[1 + exp (G[𝑟𝑡−1 − 𝑄𝑡−1(𝜃)])]−1 − 𝜃}.   (13) 

 

Qt(θ) can be described as the VaRt with confidence level  %, so the notations 

Qt(θ) and VaRt are equivalent in this paper. G is a positive real number. For 𝐺 → ∞ and 

considering that Qt(𝜃) is the  % VaR, equation (13) can be expressed more simply as: 

𝑉𝑎𝑅𝑡 = 𝑉𝑎𝑅𝑡−1 + 𝛽1(𝐼𝑛𝑜𝑣𝑡−1);    𝐼𝑛𝑛𝑜𝑣𝑡 = 𝐼(𝑟𝑡 < −𝑉𝑎𝑅𝑡) − 𝜃     (13a) 

where I(.) is an indicator function and  is the probability of the VaR. The adaptive model 

only considers the rises, but not the returns that are near the VaR. 

 

The second formulation, called the symmetric absolute value model, also considers 

the lagged return value, but now in modulus (absolute value). The parameter of the lagged 

VaR is estimated rather than being restricted to the value 1 as in the adaptive CAViaR. 

Symmetric absolute value: 

 𝑉𝑎𝑅𝑡 = 𝛽0 + 𝛽1𝑉𝑎𝑅𝑡−1 + 𝛽2|𝑟𝑡−1| .      (14) 

 

The third model, called the asymmetric slope model, assumes that the past positive 

and negative returns affect the VaR differently. Its formulation, where (𝑟+) =

max(𝑟, 0);   (𝑟−) = − min(𝑟, 0), is as follows:  

Asymmetric slope model: 

𝑉𝑎𝑅𝑡 = 𝛽0 + 𝛽1𝑉𝑎𝑅𝑡−1 + 𝛽2(𝑟𝑡−1
+) + 𝛽3(𝑟𝑡−1

−) .        (15) 

 

The fourth and last model is called the Indirect GARCH (1,1). In this specification, 

although it is assumed that the tails of the distribution have a different dynamic than the 

distribution as a whole, the GARCH is still applied, expressed as: 

Indirect GARCH (1,1) model: 

𝑉𝑎𝑅𝑡 = 𝑘 (𝛽0 + 𝛽1 (
𝑉𝑎𝑅𝑡−1

𝑘
)

2

+ 𝛽2𝑟𝑡−1
2 )

1/2

 ,   (16) 

where k is usually defined as 1.  
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The vector of parameters  of the CAViaR model is estimated through quantile 

regression technique, as previously discussed, with minimization of the sum of the 

absolute errors weighted by the quantiles and their complements. Füss et al. (2010) 

commented that Koenker & Bassett (1978) showed that the variance of the mean is 

slightly smaller in ordinary linear regression with data having normal distribution, but is 

greater than the variance of the median by least absolute deviations in all other 

distributions. Engle & Manganelli (2004) demonstrated this result mathematically and 

showed that the quantile estimator β̂ is consistent and asymptotically normal. 

It is worthwhile stressing an important aspect of this quantile regression model: 

There is no parametric assumption about the distribution of exchange rate returns,6 so the 

VaR estimates are generated by analyzing the serial dependence of the quantiles along 

the behavior of the returns, strongly reflecting more recent market returns.  

 

3.5 Forecasting exchange rate volatility – Taylor (2005) and Huang et al. (2011) 

 

The next stage of the proposed method is to forecast the volatility from estimated 

quantiles. Taylor (2005) built on a result of Pearson & Tukey (1965), according to which 

the ratio for the interval between symmetric quantiles, Q() and Q(1-), in the tails of the 

distribution, is notably constant for various distributions. Taylor proposed some simple 

approximations of the standard deviation in terms of tail quantiles, namely: 

 

𝜎̂ ≅
𝑄̂(0.99)−𝑄̂(0.01)

4.65
                (17) 

𝜎̂ ≅
𝑄̂(0.975)−𝑄̂(0.025)

3.92
    (18) 

𝜎̂ ≅
𝑄̂(0.95)−𝑄̂(0.05)

3.29
    (19) 

 

The above approximations supply the base to predict the volatility of financial 

returns by quantile estimates, produced by a VaR model, such as the CAViaR employed 

by Taylor (2005) and Huang et al. (2011).  

                                                 
6 Although quantile regression does not assume a parametric distribution, the technique requires various 

regularity conditions (as noted by Engle & Manganelli (2004)) for the stochastic process, such as 

stationarity. 
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Taylor (2005) applied equations (17), (18) and (19) to estimate the forecast 

volatility using 98%, 95% and 90% quantile intervals. As it can be seen in the mentioned 

equations, the numerator is the difference between 𝑄̂(1 − 𝜃) and 𝑄̂(𝜃), which are the 

estimated quantiles for a cumulative probability . The denominators of equations  (17) 

to (19) are based on the central distances between the estimated quantiles under the 

Pearson curves and are slightly different than the distances of the Gaussian distribution: 

4.653 (=2.326×2), 3.92 (=1.96×2) and 3.29 (=1.645×2). Taylor extended the idea, 

proposing a regression model to establish a relation between the quantile intervals and 

the squared volatility, represented by the following function: 

 

𝜎̂𝑡+1
2 = 𝛼1 + 𝛽1(𝑄̂𝑡+1(1 − 𝜃) − 𝑄̂𝑡+1(𝜃))2 ,  (20) 

 

where 𝜎̂𝑡+1
2  is the squared volatility forecast for t+1, and 1 and 1 are the parameters to 

be estimated from the sample data. Taylor (2005) reached the result that the forecast 

estimated by quantile regression exceeds the forecasts carried out by the GARCH and 

moving average models. 

Huang et al. (2011) proposed using percentiles instead of only symmetric pairs. 

Their study used a series of uniform quantile spaces, more precisely the percentiles. He 

indicated that the movements in these quantiles reflect not only the tails, but rather the 

entire distribution. An important argument made by them refers to the question of the 

volatility’s estimate being very conservative when using only quantile estimates based on 

the tails. To avoid this situation, he proposed using regressions in uniform intervals along 

the entire distribution. The new formulation of this setup is the following: 

 

𝜎̂𝑡+1 = 𝛼1 + 𝛽1𝐹 (𝑄̂𝑡+1(𝜃)) ,   (21) 

 

where F(.) represents a given function of the estimated quantiles, Qt+1() is the vector of 

the quantiles {, 2, ..., m} to be estimated at t+1, and   > 0 and m< 1. Huang et al. 

(2011) used  = 0.01. Here we also define  = 0.01. The functions F(.) utilized here were 

the following (for each case, 𝑄̅ is the conditional mean of all the quantile estimates): 
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𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷):   𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄̅)299

𝑚=1 )
1

2⁄
                (22) 

𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣. (𝑊𝑆𝐷):   𝐹 (. ) = (
1

𝑚−1
∑ 𝑊(𝑄(0.05𝑚) − 𝑄̅)299

𝑚=1 )
1

2⁄
          (23) 

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣.  𝑜𝑓 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑆𝐷𝑀):   𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄(0.5))299

𝑚=1 )
1

2⁄
     (24) 

where m is the number of quantiles in which the regression will be calculated.  

In equation (23), the weight parameter W is defined as /25, when <=0.5, and (1-

)/25 otherwise. This assures that the central quantiles will have a greater impact on the 

forecast volatility. To estimate the series 𝜎̂𝑡+1 (i.e., the volatility), we used the squared 

return as a proxy for volatility at t, because its expectation tends to be the volatility for 

the case where the mean of the returns is equal to zero. For that purpose, the mean is 

subtracted from each return and we used the standardized squared return.  

The quantile intervals used were the following symmetric pairs: (1, 99), (5, 95), 

(10, 90) and (25, 75), estimated using the four models proposed for the CAViaR method 

(Engle & Manganelli, 2004), by linear regression according to Taylor (2005) and Huang 

et al. (2011). The interquartile interval [Q(0.75) - Q(0.25)] was included as a measure of 

the dispersion of the samples, and can be a tool for further analysis.  

 

 

Chart 1 - Models used and the respective basic characteristics and assumptions 

 

Model Mathematical Specification  

GARCH 𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2  

EGARCH ln(𝜎𝑡
2) = 𝑎 + 𝛽1 ln(𝜎𝑡−1

2 ) + 𝛽2

𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛽3 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
] 

 

1. Estimate of the 

quantiles by CAViaR. 

 

 

 

 

 

 

 

 

 

 

 

1. Generic CAViaR (estimate of the quantiles) 

𝑄𝑡(𝜃) = 𝛾𝜃 + ∑ 𝛾𝑖𝑄𝑡−𝑖(𝜃)

𝑞

𝑖=1

+ ∑ 𝛼𝑖𝑙(𝑟𝑡−𝑖, 𝜑)

𝑝

𝑖=1

 

- Adaptive model: 

      𝑄𝑡(𝜃) = 𝑄𝑡−1(𝜃) + 𝛽1{[1 + exp (G[𝑟𝑡−1 − 𝑄𝑡−1(𝜃)])]−1 − 𝜃} 
 

- Symmetric absolute value model: 

          𝑉𝑎𝑅𝑡 = 𝛽0 + 𝛽1𝑉𝑎𝑅𝑡−1 + 𝛽2|𝑟𝑡−1| 

 

- Asymmetric slope model: 

 𝑉𝑎𝑅𝑡 = 𝛽0 + 𝛽1𝑉𝑎𝑅𝑡−1 + 𝛽2(𝑟𝑡−1
+) + 𝛽3(𝑟𝑡−1

−) 
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2. Estimation of volatility 

based on the QIs estimated 

by CAViaR (Taylor, 

2005) employing variance 

as a proxy. 

 

 

3. Estimation of volatility 

based on the deviations of 

the quantiles estimated by 

CAViaR (Huang et al., 

2011). 

 

 

 

 

 

 

 

 
 

4. Estimation of volatility 

based on the QIs using 

volatility as a proxy (this 

study).  

 

 

 

5. Estimation of volatility 

based on the squared 

deviations of the quantiles 

estimated by CAViaR, 

using variance as a proxy 

(this study). 

- Indirect GARCH (1,1) model: 

𝑉𝑎𝑅𝑡 = 𝑘 (𝛽0 + 𝛽1 (
𝑉𝑎𝑅𝑡−1

𝑘
)

2

+ 𝛽2𝑟𝑡−1
2 )

1
2⁄

 

 

2. Estimation of volatility by symmetric quantile intervals, 

employing the following equation (estimation of 

volatility based on the tails of the distribution, although 

here we decided to calculate QI Q(0.75-0.25): 

 

𝜎̂𝑡+1
2 = 𝛼1 + 𝛽1(𝑄̂𝑡+1(1 − 𝜃) − 𝑄̂𝑡+1(𝜃))2 

 

3. Estimation of volatility by functions representing the 

deviations, according to the following equations: 

𝜎̂𝑡+1 = 𝛼1 + 𝛽1𝐹 (𝑄̂𝑡+1(𝜃)) 
 

where F(.) takes the form of the following three equations: 

a. 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑆𝐷):       𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄̅)299

𝑚=1 )
1/2

 

 

b. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑊𝑆𝐷): 

     𝐹 (. ) = (
1

𝑚 − 1
∑ 𝑊(𝑄(0.05𝑚) − 𝑄̅)2

99

𝑚=1

)

1/2

        

c. 𝑆𝐷 𝑜𝑓 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑆𝐷𝑀):        𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄(0.5))299

𝑚=1 )
1/2

 

 

4. Estimation of volatility by symmetric quantile intervals, 

using the following equation (estimation of volatility 

based on the tails of the distribution, as well as the QI = 

Q(0.75) – Q(0.25): 

𝜎̂𝑡+1 = 𝛼1 + 𝛽1 (𝑄̂𝑡+1(1 − 𝜃) − 𝑄̂𝑡+1(𝜃)) 

 

5. Estimation of volatility by functions representing the 

deviations, according to the following equations: 

𝜎̂𝑡+1
2 = 𝛼1 + 𝛽1𝐹 (𝑄̂𝑡+1(𝜃)) 

 

where F(.) takes the form of the following three equations: 

a. 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑉𝑎𝑟):                                  𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄̅)299

𝑚=1 ) 

b. 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑊𝑉𝑎𝑅):   𝐹 (. ) = (
1

𝑚−1
∑ 𝑊(𝑄(0.05𝑚) − 𝑄̅)299

𝑚=1 ) 

c. 𝑉𝑎𝑟. 𝑜𝑓 𝑀𝑒𝑑𝑖𝑎𝑛 (𝑉𝑎𝑟𝑀):        𝐹 (. ) = (
1

𝑚−1
∑ (𝑄(0.05𝑚) − 𝑄(0.5))299

𝑚=1 ) 

 Note: QI denotes Quantile Interval. 
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The interval between quantile 75 and quantile 25 contains 50% of the observations. 

This range of values provides the dispersion of the distribution. In a Gaussian distribution, 

the quartiles 25 and 75 are located -0.67448 standard deviation and +0.67448 standard 

deviation from the mean (and median), respectively. It can be stated, then, that the 

interquartile interval (IQI) for a Gaussian distribution is: 

 

𝐼𝑄𝐼 =  𝑄0,75 − 𝑄0,25 = 2 ∗ (0,67448) ∗ 𝜎 = 1,34896 ∗ 𝜎 ,          (25) 

where 

IQI = interquartile interval 

 = volatility (standard deviation) of the distribution of returns  

 

To generalize, for the case of a lognormal distribution, the lognormal quantile 

function can be expressed in the following form: 

 

𝐹−1(𝑝) =  𝑒[𝜇+𝜎Φ−1 (𝑝)], 𝑝 ∈ (0,1) ,           (26) 

 

where  = Gaussian cumulative distribution function, and 𝐹−1(𝑝) is the inverse of the 

lognormal cumulative distribution function (cdf) and can be interpreted as the quantile 

itself. 

Therefore, a relation exists among the mean of the distribution, its standard 

deviation and the quantile. In the case where the shape of the sample distribution is not 

known in advance, the value of the angular coefficient of the standard deviation will no 

longer be 1.34896 and can be estimated by a linear regression between the interquartile 

difference calculated based on the sample and a proxy for volatility, or the observed 

volatility. The quantiles of the distribution are estimated here by the CAViaR method. 

With this, when running the regression specified in this fashion, we expected the 

linear coefficient to be zero and the angular coefficient of the volatility to be statistically 

significant. With respect to the interquartile intervals, we also expected a proportional 

relation, according to the Pearson relation, as expressed in equations 17 to 19. The results 

of these regressions are analyzed in the next topics. 
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4. Empirical results 

 

4.1 Data 

 

Our sample is composed of daily closing quotations of the Brazilian Real (R$) 

versus the U.S. Dollar, the so-called PTAX800 rate, calculated and published by the 

Central Bank of Brazil. The data cover the period from July 6, 2001 to December 30, 

2014 (3,392 working days). The variable utilized is the daily exchange rate return, given 

by expression (1). To estimate the models (rolling window estimation procedure), we 

used the first 3,140 observations; while the period used for the out-of-sample forecasting 

exercise was composed of 252 observations. 

 

 

4.2 Models used and intermediate results 

 

In estimating the volatility and its respective forecast, we used two models: 

GARCH (1,1) as in equation (5), and EGARCH (1,1) as in equation (6). These 

specifications are widely used in the academic literature and by financial market analysts. 

Along with these, we used the models proposed by Taylor (2005) and Huang et al. (2011), 

which estimate the volatility by using the quantiles estimated by the four autoregressive 

equations that compose the CAViaR method developed by Engle & Manganelli (2004). 

We also employed the formulation of Taylor (2005), but in linear form – relating the 

standard deviation and symmetric quantile intervals instead of linear regression. 

 

 

4.3 Considerations on the results obtained by the CAViaR method 

 

In the first step of this work, we estimated the 1% to 99% quantiles by the CAViaR 

method using equations (13) to (16). One of the intermediate results of this first step is 

the estimate calculated by the CAViaR model for the various quantiles. Table 1 below 

presents, for illustrative purposes, the selection of the coefficients estimated for the 1%, 

5%, 10%, 25%, 50%, 75%, 95% and 99% quantiles calculates using equation (15) from 

the CAViaR model with asymmetric slope.7 Figure 1 shows the graphs of the three 

angular coefficients estimated in each of the quantiles reported in Table 1. 

  

                                                 
7 The estimates of the other CAViaR models are not reported here to save space but are available upon 

request. 
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Table 1 – Angular coefficients of the asymmetric CAViaR model 

  Asymmetric 

   

Quantile 1 0.9135 0.3039 0.1682 

p-value 0.0000 0.0000 0.0045 

Quantile 5 0.8899 0.2241 0.1276 

p-value 0.0000 0.0000 0.0007 

Quantile 10 0.8507 0.2216 0.1380 

p-value 0.0000 0.0000 0.0001 

Quantile 25 0.7564 0.1725 0.1453 

p-value 0.0000 0.0000 0.0002 

Quantile 50 -0.3436 -0.0800 0.1040 

p-value 0.0254 0.1567 0.0016 

Quantile 75 0.8057 -0.2250 -0.0467 

p-value 0.0000 0.0000 0.1107 

Quantile 90 0.8085 -0.3717 -0.1050 

p-value 0.0000 0.0000 0.0000 

Quantile 95 0.8112 -0.5123 -0.1338 

p-value 0.0000 0.0000 0.0007 

Quantile 99 0.7755 -0.7613 -0.1288 

p-value 0.0000 0.0000 0.0335 

 

 

Figure 1 – Angular coefficients of the asymmetric CAViaR model 

𝑉𝑎𝑅𝑡 = 𝛽0 + 𝛽1𝑉𝑎𝑅𝑡−1 + 𝛽2(𝑟𝑡−1
+) + 𝛽3(𝑟𝑡−1

−). 

 

(a) Coefficient of the GARCH term                             (b) Coefficient of the ARCH+ term 

   
 

(c)  Coefficient of the ARCH- term 
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First, it should be noted that we are working with a time series of the R$ x US$ 

(Real x Dollar) exchange rate, where a positive variation in the exchange rate, i.e., a 

positive return in this series, meaning a devaluation of the Real (R$), while a negative 

variation corresponds to appreciation of the Real. Therefore, the ARCH+ effect, i.e., a 

positive return in the series, corresponds to depreciation of the exchange rate, which we 

empirically found to increase the volatility of the series. Next, we analyze the behavior 

of the coefficients depicted in Figure 1, according to equation (15). The horizontal axis 

represents the percentiles and the vertical axis the values of the coefficients of each term 

in the equation. The dotted lines delineate the 95% confidence interval. 

The evolution of the coefficient 1 – related to the VaR (GARCH term) lagged by 

one time unit (VaRt-1) along the quantiles – is depicted in Figure 1a. The typical 

agglomeration character of the heteroskedastic behavior can be seen, since the coefficient 

of the autoregressive term is positive. In other words, higher volatility is followed by a 

proportionally greater volatility. Note that the coefficient is smaller than 1, so the 

autoregressive process does not have a unit root, meaning the process is not explosive in 

any quantile. 

With respect to the behavior along the distribution of the VaR, it can be seen that 

in the lower and higher quantiles, the coefficient  presents similar modulus and 

direction, and when shifting to the central quantiles of the distribution, its modulus 

declines, reaching a value near zero for the 50% quantile and becoming non-significant 

there at the 1% level, while all the others show p-value practically equal to zero. In other 

words, it can be said that the VaR at the median follows a white noise pattern, meaning 

prediction is not possible. 

Analysis of that behavior reveals that in the quantiles with lower VaR (greater 

appreciation of the exchange rate), the growth of the lagged volatility tends to add 

volatility, and in reality tends to bring the VaR to more central quantiles, since the VaR 

related to appreciation of the Real rises and shifts to positive returns. In counterpart, in 

the higher quantiles (depreciation of the R$), greater volatility increases the VaR, 

amplifying the value at risk in the direction of devaluation. 

Another aspect that deserves attention is the absolute value of the coefficient 

associated with the GARCH term. That term’s modulus is greater than the corresponding 

absolute values of the coefficients 2 and 3, both associated with the ARCH terms. Here 

the result is in line with the GARCH estimates of the exchange rate variation, whose 
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results show the coefficient associated with the GARCH term near the interval between 

0.75 and 0.90, and the coefficient associated with the ARCH term with value near the 

interval between 0.25 and 0.10, thus meaning the GARCH term has a greater impact on 

exchange rate volatility than do the ARCH+ and ARCH- terms (positive and negative 

returns, respectively). 

With respect to 2, the angular coefficient of the ARCH+ term (which indicates 

depreciation), the graph of the estimated quantiles shows it is not significant (this time at 

10%) in Q(0.5). Regarding its behavior over the distribution of the VaR, the modulus of 

the ARCH+ term makes a positive contribution in the lower quantiles (region of 

appreciation of the domestic currency), bringing the VaR to the more central quantiles of 

the distribution. In turn, when the VaR is in the depreciation region (higher quantiles), 

the coefficient 2 reverses sign, so an increment in the exchange rate tends to shift the 

VaR to more central quantiles, as if the VaR of the exchange rate return were reverting 

to the mean, or more precisely, reverting to the central quantiles. 

Regarding 3, the coefficient associated with the negative return – ARCH- 

(appreciation of the exchange rate) – it presents similar evolution to that of the coefficient 

2, i.e., in the lower quantiles of the VaR (appreciation region), the ARCH- term has a 

positive coefficient, which declines as it approaches the central region of the distribution, 

until reversing sign in the area where the VaR presents higher values (depreciation). 

Therefore, this coefficient acts as a force for reversion of the values to the central region 

of the VaR distribution, since in the region of appreciation of the Real, it has positive 

contribution, diminishing the appreciation or even increasing a slight depreciation, and 

contributes negatively in the depreciation region (VaR in the higher quantiles). 

Finally, another noteworthy aspect is the intensity of the impacts of positive returns 

(depreciation of the Real) and negative ones (appreciation of the Real) on the series. The 

graphs show that depreciation generates a stronger impact on the volatility of the series 

than appreciation. These observations are valuable to shed light on a new way to analyze 

the distribution and the response in the conditional tails of the variables under analysis. 

These findings can help in the formulation/improvement of models related to the 

exchange rate.  
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4.4 Estimation of the proxy for the exchange rate volatility 

 

In adopting the models proposed by Taylor (2005) and Huang et al. (2011), once 

again a series of information exists that can be compared to the theory of statistical 

distributions and that contributes to a better understanding of the exchange rate series 

studied. The comparison here provides a good indication of the relationship between the 

quantiles of the distribution and its volatility. 

It is interesting to note that, by applying quantile intervals, as proposed by Taylor 

(2005), the quantile function is related to the volatility. It should be mentioned that Taylor 

used the variance (volatility squared) and its relation with the square of the interquartile 

difference, while Huang et al. (2011) used the volatility. 

Here we used the specifications of both Taylor (2005) and Huang et al. (2011), but 

added to the former specifications the relation between volatility (square root of the proxy 

for variance) and the linear interquartile difference, and took the regressions of Huang et 

al. (2011) not only for the standard deviation, but also for the variance. The coefficients 

of the regressions shown in Chart 1 and the respective p-values and R2 of the regressions 

are reported in Table 2. 

  

27



    

 

 

 

Table 2 – Regressions of the proxy for volatility with the CAViaR estimates 

Models 1 p-value 1 p-value R2 

SM 1_99 SD 0.0035 0.0948 0.0143 0.0000 0.2830 
SM 5_95 SD 0.0031 0.1375 0.0227 0.0000 0.2858 
SM 10_90_SD 0.0001 0.9955 0.0320 0.0000 0.2841 
SM 25_75_SD 0.0063 0.0015 0.0540 0.0000 0.2888 
SM SD 0.0021 0.3262 0.0789 0.0000 0.2862 
SM WSD 0.0025 0.2229 0.1282 0.0000 0.2876 
SM SDM     0.0021 0.3029 0.0787 0.0000 0.2863 
SM 1_99_Var 0.0017 0.0061 0.0303 0.0000 0.2183 
SM 5_95_Var 0.0018 0.0033 0.0746 0.0000 0.2858 
SM 10_90_Var 0.0015 0.0176 0.1448 0.0000 0.2233 
SM 25_75_Var 0.0024 0.0001 0.4228 0.0000 0.2320 
SM Var 0.0016 0.0073 0.8981 0.0000 0.2256 
SM WSD_squared Var 0.0017 0.0043 2.3609 0.0000 0.2299 
SM SDM_squared Var 0.0017 0.0069 0.8943 0.0000 0.2259 
AS 1_99_SD -0.0073 0.0010 0.0176 0.0000 0.3136 
AS 5_95_SD -0.0011 0.5969 0.0247 0.0000 0.3119 
AS 10_90_SD -0.0021 0.3124 0.0329 0.0000 0.3129 
AS 25_75_SD 0.0021 0.2916 0.0576 0.0000 0.3142 
AS SD -0.0021 0.3002 0.0842 0.0000 0.3142 
AS WSD -0.0012 0.5354 0.1341 0.0000 0.3156 
AS SDM -0.0020 0.3299 0.0838 0.0000 0.3148 
AS 1_99_Var -0.0015 0.0164 0.0499 0.0000 0.2899 
AS 5_95_Var -0.0002 0.6988 0.0996 0.0000 0.2869 
AS 10_90_Var -0.0002 0.6996 0.1721 0.0000 0.2899 
AS 25_75_Var 0.0005 0.3914 0.5351 0.0000 0.2985 
AS Var -0.0003 0.5476 1.1380 0.0000 0.2955 
AS WSD_squared Var -0.0000 0.8914 2.8614 0.0000 0.2986 
AS SDM_squared Var -0.0003 0.5812 1.1253 0.0000 0.2967 
IG 1_99_SD 0.0004 0.8504 0.0335 0.0000 0.2829 
IG 5_95_SD -0.0015 0.5000 0.0015 0.0000 0.2760 
IG 10_90_SD -0.0034 0.1265 0.0680 0.0000 0.2870 
IG 25_75_SD -0.0022 0.3008 0.0033 0.0000 0.2941 
IG SD -0.0018 0.4075 0.0041 0.0000 0.2883 
IG WSD -0.0033 0.1234 0.2151 0.0000 0.2946 
IG SDM -0.0011 0.6101 0.1242 0.0000 0.2903 
IG 1_99_Var 0.0054 0.0000 0.0863 0.0000 0.0548 
IG 5_95_Var 0.0005 0.3875 0.4113 0.0000 0.2178 
IG 10_90_Var 0.0005 0.4166 0.6759 0.0000 0.2367 
IG 25_75_Var 0.0010 0.0759 1.9991 0.0000 0.2609 
IG Var 0.0058 0.0000 1.4396 0.0000 0.0456 
IG WSD_squared Var 0.0005 0.4285 6.7340 0.0000 0.2510 
IG SDM_squared Var 0.0007 0.2408 2.3059 0.0000 0.2425 
AD 1_99_SD 0.0038 0.2369 0.0110 0.0000 0.1231 
AD 5_95_SD 0.0017 0.5066 0.0210 0.0000 0.1957 
AD 10_90_SD -0.0021 0.4523 0.0310 0.0000 0.1832 
AD 25_75_SD -0.0126 0.0001 0.0736 0.0000 0.1880 
AD SD -0.0089 0.0031 0.0795 0.0000 0.1865 
AD WSD -0.0118 0.0001 0.1471 0.0000 0.2078 
AD SDM -0.0100 0.0008 0.0798 0.0000 0.1956 
AD 1_99_Var -0.0005 0.5638 0.0279 0.0000 0.0696 
AD 5_95_Var -0.0007 0.3796 0.0900 0.0000 0.1135 
AD 10_90_Var -0.0009 0.2596 0.1851 0.0000 0.0926 
AD 25_75_Var -0.0029 0.0017 0.9629 0.0000 0.0940 
AD Var -0.0021 0.0152 1.4700 0.0000 0.1014 
AD WSD_squared Var -0.0027 0.0014 3.8136 0.0000 0.1141 
AD SDM_squared Var -0.0025 0.0039 1.1532 0.0000 0.1119 

 
Notes: AD denotes the adaptive CAViaR (eq.13), SM denotes symmetric (eq.14), AS denotes asymmetric (eq.15) 
and IG denotes Indirect GARCH (eq.16). According to Chart 1, SD denotes standard deviation and indicates the 
estimates of the proxy for the volatility using the metrics (quantile deviations) of Huang et al. (2011), WSD denotes 
weighted standard deviation, and SDM standard deviation of median. Var indicates the estimate of the proxy for 
the squared volatility using the metrics (squared quantile deviations) of Taylor (2005).  
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 It can first be observed that all the angular coefficients are significant, at the 1% 

level. With respect to the models used, for the quantiles estimated by the CAViaR 

(whether interquartile intervals or deviations calculated by the quantiles), all of the 

angular coefficients that associate those intervals and deviations with the proxies for 

variance and/or volatility are significant, even at 1%. It is interesting to note that, except 

in a few cases, the linear coefficients of the regressions performed based on the standard 

deviation as the dependent variable are not significant. For example, in the asymmetric 

and indirect GARCH models, the linear coefficient of the models estimated by OLS for 

the interquartile interval - IQI (Q(0.75) –Q(0.25)) is not significant, even at the 10% level. 

In the symmetric model, the linear coefficient is not significant in several cases. In 

other words, in a distribution with zero mean, the relation between volatility and the IQI 

is the coefficient 1/, approximately, an expected situation according to the 

considerations made about equation (25). One more consideration in this respect is that, 

by equation (25), for the cases studied, the value of 1.3489 is the value to be estimated. 

In the regressions carried out, it is given as 1/. In turn, the relation of variance with the 

squared quantile interval (IQ) – the regression proposed by Taylor (2005) – with some 

exceptions, results in significant angular coefficients and linear coefficients. This is 

because: 

 

√𝛼1 + 𝛽1(𝑄̂𝑡+1(1 − 𝜃) − 𝑄̂𝑡+1(𝜃))2  ≠  𝛼1 + 𝛽1(𝑄̂𝑡+1(1 − 𝜃) − 𝑄̂𝑡+1(𝜃))  . (27) 

 

Thus, the relation is not direct and the correction is partly due to the linear 

coefficient. 

 

Table 3 – Estimated coefficients - GARCH (1,1) model 

  p-value  p-value  p-value 

GARCH normal 0.0128 0.0000 0.1737 0.0000 0.8220 0.0000 

GARCH t-Student 0.0001 0.0000 0.1686 0.0000 0.8079 0.0000 

 
Table 3 reports the results of the GARCH (1, 1) models, with the normal and t-

Student distributions, for the sample under analysis. Table 4 presents the results obtained 

when applying the asymmetric GARCH model, also called the EGARCH (1, 1) with the 

same two options: assuming normal or t-Student distribution. 
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Table 4 – Estimated coefficients - EGARCH (1,1) model 

  p-value  p-value  p-value  p-value 

EGARCH normal -0.2344 0.0000 0.2775 0.0000 0.0818 0.0000 0.9676 0.0000 

EGARCH t-Student -0.2368 0.0000 0.2821 0.0000 0.0778 0.0000 0.9705 0.0000 

 

The estimate of the GARCH (1, 1) model based on the observed data resulted in 

coefficients in line with the theory, i.e., both for the normal and t-Student distributions, 

the sum of the coefficients of the GARCH term and ARCH term are near and smaller 

than one. It should be noted that the coefficient of the GARCH has greater weight than 

that of the ARCH term, indicating that the autoregressive term of the volatility has higher 

weight than the market innovation. This behavior can also be seen in the CAViaR models. 

For example, the coefficients of the asymmetric model reported previously in Table 1, 

whose values are associated with the volatility term (GARCH term), have greater 

modulus than the values associated with the returns (ARCH terms). Returning to equation 

(6) for the EGARCH model, it follows that: 

 

 ln(𝜎𝑡
2) = 𝑎 + 𝛽1 ln(𝜎𝑡−1

2 ) + 𝛽2
𝑢𝑡−1

√𝜎𝑡−1
2

+ 𝛽3 [
|𝑢𝑡−1|

√𝜎𝑡−1
2

− √
2

𝜋
]. 

 

The parameter β3 represents the magnitude of the effect of symmetry of the 

innovation on volatility, while the parameter β1 represents the persistence of volatility. If 

β1 is relatively large, the volatility is highly persistent, meaning that the volatility, without 

innovations, decays slowly. The coefficient β2 allows asymmetries. This is possible due 

to the fact that β2 will be negative if the relationship between volatility and returns is 

negative. 

In the case of the stock market, the expectation is for β2 to have a negative sign, 

since negative shocks increase the volatility of a share price or of the entire market index. 

However, the foreign exchange market has a different dynamic. A positive (negative) 

return in the Real x U.S. Dollar market means depreciation (appreciation) of Brazil’s 

currency (Real). A weak (strong) Real generates higher (lower) volatility. Hence, the sign 

is as expected. 
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4.5 Evaluation of the exchange rate volatility forecasts 

 

One of the main reasons for modeling the price of a financial assets or its volatility 

is to forecast these assets’ values. Here, the forecast for t+1 was static.8 According to this 

model, the forecast values are based on observed values contained in the out-of-sample 

series (here 252 observations, from January 2, 2014 to December 30, 2014).  

To assess the precision of a forecast, some measures of the error between the 

observed and predicted values are used. Among them, here we used the following (note 

that in all the formulations 𝑦̂𝑡 is the forecasted value and 𝑦𝑡 is the observed value). 

 

a) RMSE (root mean squared error), given by the following formula: 

RMSE = √∑(𝑦̂𝑡 − 𝑦𝑡)2 /𝑁 ;                       (28) 

 

b) MAE (mean absolute error), according to the following formula: 

MAE = ∑|𝑦̂𝑡 − 𝑦𝑡| /𝑁 ;    (29) 

 

c) Theil coefficient, expressed by the following formula: 

Theil =  
√∑(𝑦̂𝑡−𝑦𝑡)2/𝑁

√∑ 𝑦̂𝑡
2/𝑁+√∑ 𝑦𝑡

2/𝑁

     .                           (30) 

 

Table 5 – Evaluation of the volatility forecasts 

Models RMSE MAE Theil coeff. Models RMSE MAE Theil coeff. 

SM_1_99_SD 0.0503 0.0375 0.3712 IG_10_90_SD 0.0503 0.0374 0.3632 

SM_5_95_SD 0.0504 0.0371 0.3705 IG_25_75_SD 0.0516 0.0385 0.3681 

SM_10_90_SD 0.0504 0.0371 0.3698 IG_SD 0.0503 0.0374 0.3637 

SM_25_75_SD 0.0507 0.0374 0.3706 IG_WSD 0.0507 0.0377 0.3666 

SM_SD 0.0504 0.0372 0.3707 IG_SDM 0.0504 0.0375 0.3639 

SM_WSD 0.0506 0.0373 0.3714 IG_1_99_Var 0.0542 0.0436 0.3439 

SM_SDM 0.0504 0.0372 0.3705 IG_5_95_Var 0.0540 0.0435 0.3431 

SM_1_99_Var 0.0510 0.0387 0.3538 IG_10_90_Var 0.0536 0.0425 0.3451 

SM_5_95_Var 0.1849 0.1778 0.5883 IG_25_75_Var 0.0545 0.0427 0.3538 

SM_10_90_Var 0.0544 0.0434 0.3457 IG_Var 0.0533 0.0421 0.3457 

SM_25_75_Var 0.0513 0.0383 0.3622 IG_WSD_squared 0.0538 0.0425 0.3479 

SM_Var 0.0513 0.0390 0.3529 IG_SDM_squared 0.0532 0.0418 0.3466 

SM_WSD_squared 0.0544 0.0433 0.3466 AD_1_99_SD 0.0515 0.0364 0.4101 

SM_SDM_squared 0.0513 0.0390 0.3531 AD_5_95_SD 0.0503 0.0373 0.3656 

AS_1_99_SD 0.0499 0.0372 0.3535 AD_10_90_SD 0.0507 0.0378 0.3702 

AS_5_95_SD 0.0500 0.0373 0.3535 AD_25_75_SD 0.0510 0.0388 0.3648 

                                                 
8 To be comparable with the predictions carried out with Matlab in the CAViaR model, the forecast was 

for t+1. 
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AS_10_90_SD 0.0501 0.0373 0.3541 AD_SD 0.0506 0.0367 0.3855 

AS_25_75_SD 0.0504 0.0376 0.3553 AD_WSD 0.0505 0.0375 0.3724 

AS_SD 0.0501 0.0374 0.3540 AD_SDM 0.0505 0.0385 0.3851 

AS_WSD 0.0503 0.0375 0.3557 AD_1_99_Var 0.0505 0.0382 0.3591 

AS_SDM 0.0501 0.0374 0.3540 AD_5_95_Var 0.0545 0.0426 0.3482 

AS_1_99_Var 0.0580 0.0472 0.3471 AD_10_90_Var 0.0573 0.0464 0.3519 

AS_5_95_Var 0.0550 0.0438 0.3431 AD_25_75_Var 0.0571 0.0458 0.3550 

AS_10_90_Var 0.0553 0.0441 0.3439 AD_Var 0.0521 0.0400 0.3530 

AS_25_75_Var 0.0541 0.0423 0.3455 AD_WSD_squared 0.0540 0.0420 0.3525 

AS_Var 0.0554 0.0443 0.3442 AD_SDM_squared 0.0521 0.0397 0.3553 

AS_WSD_squared 0.0555 0.0444 0.3443 GARCH normal 0.0531 0.0377 0.4305 

AS_SDM_squared 0.0550 0.0437 0.3448 GARCH t-Student 0.0544 0.0379 0.4593 

IG_1_99_SD 0.0501 0.0372 0.3628 EGARCH normal 0.0531 0.0378 0.4294 

IG_5_95_SD 0.0500 0.0371 0.3627 EGARCH t-Student 0.0544 0.0379 0.4596 

 
Notes: SM denotes symmetric, AS asymmetric, IG indirect GARCH, AD adaptive, SD standard deviation, WSD, weighted 
standard deviation, SDM standard deviation of median. 

 

 

Table 5 presents the values of the prediction error measures for each of the 60 

models estimated. The first aspect to note is the fact that the root mean squared error 

(RMSE) is consistently greater than the mean absolute error (MAE), denoting a certain 

variability in the errors. Since the RMSE penalizes high deviations, if the main interest is 

in the tails, it is necessary to choose models with smaller RMSE. In this case, of all the 

models, the forecast made by the regression of volatility with the quantile interval (Q(0.01) 

– Q(0.99)) estimated based on the asymmetric CAViaR model by the regression of the 

standard deviation was the most precise.  

When considering the mean absolute error, the regression of volatility with the 

quantile interval (Q(0.01) – Q(0.99)) estimated with the adaptive CAViaR model, also by 

regression with the standard deviation, was the most precise model. In turn, when 

considering the Theil coefficient as the criterion, the regression of variance with the 

quantile interval (Q(0.05) – Q(0.95)) estimated by the Indirect GARCH (CAViaR model), 

with regression of the variance, and the asymmetric CAViaR model with the quantile 

interval (Q(0.05) – Q(0.95)) and regression of the variance, were the most precise. 

We should mention that, to enable comparison, it was necessary to recalculate the 

error measures for the regressions with variance as the dependent variable, since their 

dimensions differed from those of the error measures calculated when the dependent 

variable was the standard deviation. We performed an equal adjustment in the GARCH 

and EGARCH models. 
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To test the robustness of the comparison, we applied the Giacomini-White (2006) 

test of conditional predictive ability. While the metrics reported earlier, in Table 5, are 

based on the difference between the real and predicted observations in the period analyzed 

(here 252 days), the Giacomini-White test analyzes the distribution of the errors by testing 

a null hypothesis about the difference between two loss functions (identified as 1 and 2). 

Loss function 1 is the difference between the predicted results of the benchmark model 

and the observed results, while loss function 2 is the difference between the results 

predicted by the model being tested and the observed results. The null hypothesis of the 

Giacomini-White test is therefore: 

 

𝐸(𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 1 − 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 2) = 0   (31) 

 

If loss function 2 is significantly greater, in statistical terms, than loss function 1, 

the null hypothesis is rejected, and in this case the t-statistic will be negative (even for 

calculations using absolute values). In this case, model 1, related to loss function 1, is the 

benchmark model and will be better. If on the other hand, loss function 1 is significantly 

greater than loss function 2, the t-statistic is positive and the model tested is worse than 

the benchmark model. 

Table 6 shows the results of the tests performed for the 59 models, taking the 

asymmetric CAViaR model as the benchmark and using regression by the standard 

deviation for the (1, 99) interquantile difference, called AS_1_99_SD. Table 7 shows the 

results of the Giacomini-White (2006) test, taking the GARCH (1,1) model as the 

benchmark and assuming a normal distribution. In both tables, in the column B/W/NS, B 

means the benchmark model is better than the model in the respective line, W means the 

benchmark model is worse than the model tested, and NS means there is no significant 

difference between the two models (such that H0 is not rejected).  

The results indicate that the forecast of the asymmetric CAViaR model, with 

symmetric quantile interval of (1, 99), was better than (or equal to) 66% of the 59 models 

compared, and worse than 34%. In turn, the GARCH (1,1) model was worse than 71% of 

the 59 other models and better than 13%, while the precision was statistically equal for 

16% of the models.  
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Table 6 – Results of the Giacomini-White test 

(model AS_1_99_SD is the benchmark) 

Models p-value t-stat. B/W/NS Models p-value t-stat. B/W/NS 

SM_1_99_SD 0.0231 5.1623 W IG_10_90_SD 0.0095 6.7210 W 

SM_5_95_SD 0.0496 3.8539 W IG_25_75_SD 0.5982 0.2776 NS 

SM_10_90_SD 0.0260 4.9573 W IG_SD 0.0156 5.8466 W 

SM_25_75_SD 0.2099 1.5720 NS IG_WSD 0.1332 2.2547 NS 

SM_SD 0.0547 3.6920 NS IG_SDM 0.0314 4.6296 W 

SM_WSD 0.1379 2.2010 NS IG_1_99_Var 0.2589 1.2745 NS 

SM_SDM 0.0498 3.8497 W IG_5_95_Var 0.2168 1.5252 NS 

SM_1_99_Var 0.0139 6.0527 W IG_10_90_Var 0.6203 0.2454 NS 

SM_5_95_Var 0.0559 3.6538 NS IG_25_75_Var 0.8241 -0.0493 NS 

SM_10_90_Var 0.0001 17.9691 W IG_Var 0.8006 0.0638 NS 

SM_25_75_Var 0.6953 -0.1533 NS IG_WSD_squared 0.7984 0.0652 NS 

SM_Var 0.0261 4.9474 W IG_SDM_squared 0.9196 0.0101 NS 

SM_WSD_squared 0.0000 18.5731 W AD_1_99_SD 0.0000 -170.0684 B 

SM_SDM_squared 0.0294 4.7464 W AD_5_95_SD 0.0000 17.0076 W 

AS_1_99_SD BENCHMARK AD_10_90_SD 0.0000 25.2098 W 

AS_5_95_SD 0.0000 -16.2690 B AD_25_75_SD 0.0000 -166.8857 B 

AS_10_90_SD 0.3894 -0.7405 NS AD_SD 0.0137 6.0728 W 

AS_25_75_SD 0.2168 -1.5247 NS AD_WSD 0.0000 20.9304 W 

AS_SD 0.1434 -2.1407 NS AD_SDM 0.0213 5.2987 W 

AS_WSD 0.1836 -1.7680 NS AD_1_99_Var 0.0000 61.6199 W 

AS_SDM 0.1393 -2.1847 NS AD_5_95_Var 0.1143 -2.4934 NS 

AS_1_99_Var 0.0000 -16.3153 B AD_10_90_Var 0.4241 -0.6389 NS 

AS_5_95_Var 0.0001 -13.8419 B AD_25_75_Var 0.0295 -4.7351 B 

AS_10_90_Var 0.0005 -11.9098 B AD_Var 0.6585 0.1952 NS 

AS_25_75_Var 0.0001 -14.0366 B AD_WSD_squared 0.1046 -2.6332 NS 

AS_Var 0.0003 -13.0166 B AD_SDM_squared 0.4026 -0.7004 NS 

AS_WSD_squared 0.0005 -11.9476 B GARCH normal 0.0129 -6.1810 B 

AS_SDM_squared 0.0003 -12.9939 B GARCH t-Student 0.0000 -168.9601 B 

IG_1_99_SD 0.0022 9.3574 W EGARCH normal 0.0064 -7.4312 B 

IG_5_95_SD 0.0005 11.8442 W EGARCH t-Student 0.0122 -6.2759 B 

 

Notes: The sign of the t-statistic in this case reflects the precision of the forecast of the compared models. A negative t-statistic with p-

value < 5% indicates the benchmark model is more precise than the tested model, while a positive t-statistic with p-value <5% indicates 

the benchmark model is less precise than the tested model. For p-values > 5%, the difference in the models’ precision is considered to be 

not significant. The column B / W / NS shows if the precision of model in the respective line in comparison to the benchmark is better (B), 

worse (W) or not significantly different (NS). 
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Table 7 – Results of the Giacomini-White test 

(GARCH (1,1) normal is the benchmark) 

Models p-value t-stat. B/W/NS Models p-value t-stat. B/W/NS 

SM_1_99_DP 0.0026 9.0240 W IG_10_90_DP 0.0004 12.2243 W 

SM_5_95_DP 0.0028 8.8741 W IG_25_75_DP 0.0023 9.2408 W 

SM_10_90_DP 0.0022 9.3738 W IG_DP 0.0006 11.7905 W 

SM_25_75_DP 0.0041 8.2095 W IG_WSD 0.0014 10.1029 W 

SM_DP 0.0029 8.8080 W IG_SDM 0.0007 11.4838 W 

SM_WSD 0.0041 8.2193 W IG_1_99_Var 0.0000 93.4756 W 

SM_SDM 0.0028 8.9230 W IG_5_95_Var 0.0000 74.0471 W 

SM_1_99_Var 0.0000 17.3128 W IG_10_90_Var 0.0000 79.7028 W 

SM_5_95_Var 0.0000 17.0250 W IG_25_75_Var 0.0000 21.9948 W 

SM_10_90_Var 0.0000 100.4832 W IG_Var 0.0000 61.7645 W 

SM_25_75_Var 0.0073 7.1814 W IG_WSD_squared 0.0000 69.6904 W 

SM_Var 0.0000 20.3055 W IG_SDM_squared 0.0000 53.5185 W 

SM_WSD_squared 0.0000 104.3669 W AD_1_99_DP 0.0000 -55.6337 B 

SM_SDM_squared 0.0000 19.9849 W AD_5_95_DP 0.0001 14.9322 W 

AS_1_99_DP 0.0129 6.1810 W AD_10_90_DP 0.0000 17.5370 W 

AS_5_95_DP 0.0000 -51.2013 B AD_25_75_DP 0.0000 -52.8897 B 

AS_10_90_DP 0.0121 6.2874 W AD_DP 0.0027 8.970304 W 

AS_25_75_DP 0.0146 5.9536 W AD_WSD 0.0001 15.068630 W 

AS_DP 0.0140 6.0264 W AD_SDM 0.0035 8.521854 W 

AS_WSD 0.0160 5.7959 W AD_1_99_Var 0.0000 33.920960 W 

AS_SDM 0.0142 6.0028 W AD_5_95_Var 0.1834 1.769674 NS 

AS_1_99_Var 0.0010 -10.7200 B AD_10_90_Var 0.0678 3.334533 NS 

AS_5_95_Var 0.0490 -3.8722 B AD_25_75_Var 0.6709 0.180441 NS 

AS_10_90_Var 0.0823 -3.0172 NS AD_Var 0.0031 8.728750 W 

AS_25_75_Var 0.1262 -2.3382 NS AD_WSD_squared 0.1232 2.375133 NS 

AS_Var 0.0375 -4.3268 B AD_SDM_squared 0.0241 5.081819 W 

AS_WSD_squared 0.1037 -2.6461 NS GARCH normal BENCHMARK 

AS_SDM_squared 0.0391 -4.2554 B GARCH t-Student 0.0000 -54.6699 B 

IG_1_99_DP 0.0004 12.5312 W EGARCH normal 0.9904 -0.0001 NS 

IG_5_95_DP 0.0003 12.8718 W EGARCH t-Student 0.6059 0.2661 NS 

 

Notes: The sign of the t-statistic in this case reflects the precision of the forecast of the compared models. A negative t-statistic with p-

value < 5% indicates the benchmark model is more precise than the tested model, while a positive t-statistic with p-value <5% indicates 

the benchmark model is less precise than the tested model. For p-values > 5%, the difference in the models’ precision is considered to be 

not significant. The column B / W / NS shows if the precision of model in the respective line in comparison to the benchmark is better (B), 

worse (W) or not significantly different (NS). 
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5. Conclusion 

 

The volatility of financial assets is of great importance in forecasting returns and 

investment decisions. In particular, the exchange rate volatility plays an important role in 

formulating economic policies. It affects a country’s balance of payments, the general 

level of prices and arbitrage between interest rates of different countries, and is also 

affected by these same factors. The exchange rate and its volatility can be studied with 

focus on parity of interest rates or the real exchange rate, considering the fundamentals 

of the balance of payments. 

As pointed out by Huang et al. (2011), some autoregressive models have been 

proposed and have achieved some success in estimating not only the returns, but also the 

volatility of the exchange rate. According to Hansen & Lude (2005), the GARCH (1,1) 

model is still the best for predicting the volatility of stock returns, but this does not extend 

to volatility of exchange rates. One of the reasons for this (including the Brazilian case) 

is government intervention, such as by currency swap auctions, which can include an 

asymmetry factor, for example in the movement of exchange rates and their consequent 

volatility. 

Our aim is to contribute in this area by introducing a tool that enables more detailed 

analysis on the behavior of the distribution of the exchange rate. We not only compared 

the forecasting power of models based on quantile regression with some models of the 

GARCH family, but also examined the behavior of the exchange rate along its distribution 

and its consequent volatility. The results were enriching. The coefficients of the terms of 

the estimated autoregressive equations revealed variations along the distribution. 

For example, in estimating the quantiles in the asymmetric CAViaR model, we 

observed how the coefficients of positive and negative returns behaved as mechanisms to 

revert the returns to the more central part of the distribution (reverting the volatility to a 

certain level). Calculating the volatility of the 99 quantiles estimated by the VaR model 

and the standard deviations of these quantiles revealed this method was effective, with 

some of the indexes being relatively better for the method considering the semiparametric 

model. With respect to forecasting exchange rate volatility, we took two models as 

benchmarks to apply the Giacomini and White (2006) test of precision. 

The results for Brazil showed that the prediction of the asymmetric CAViaR model, 

with quantile interval of (1, 99), was better than (or equal to) 66% of the 59 compared 

models, and worse than 34%. The other reference model, the GARCH (1,1), was worse 
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than 71% of the other models, better than 13% and statistically equal in forecasting 

precision to 16% of the models. 

A good deal of research has been done in this area, such as the study of cointegrated 

series using quantile regression (Wang, 2012) and the use of GARCH models applying a 

loss function calculated based on the modulus of the deviations in relation to the quantiles 

(Xiao and Koenker, 2009). Applied studies in this area can generate additional 

information about the relationship between the variables, such as the relationship of 

interventions by the central bank and their influence on the more extreme quantiles of the 

distribution of the returns of the exchange rate, or the relationship between the exchange 

rate and macroeconomic variables, testing theories of international finance with this 

additional semiparametric tool.  

Finally, we suggest as topics for future research the comparison between the 

prediction models using a longer horizon, or aggregating structural models that use 

quantile regressions. 
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