
Evaluation of Exchange Rate Point and 
Density Forecasts: an application to Brazil 

Wagner Piazza Gaglianone and Jaqueline Terra Moura Marins 

November, 2016

446



ISSN 1518-3548 
CGC 00.038.166/0001-05 

Working Paper Series Brasília n. 446 November 2016 p. 1-51



Working Paper Series 

Edited by Research Department (Depep) – E-mail: workingpaper@bcb.gov.br 

Editor: Francisco Marcos Rodrigues Figueiredo – E-mail: francisco-marcos.figueiredo@bcb.gov.br 

Co-editor: João Barata Ribeiro Blanco Barroso – E-mail: joao.barroso@bcb.gov.br 

Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br 

Head of Research Department: Eduardo José Araújo Lima – E-mail: eduardo.lima@bcb.gov.br 

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process. 

Reproduction is permitted only if source is stated as follows: Working Paper n. 446. 

Authorized by Carlos Viana de Carvalho, Deputy Governor for Economic Policy. 

General Control of Publications 

Banco Central do Brasil 

Comun/Dipiv/Coivi 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 14º andar 

Caixa Postal 8.670 

70074-900 Brasília – DF – Brazil 

Phones: +55 (61) 3414-3710 and 3414-3565 

Fax: +55 (61) 3414-1898 

E-mail: editor@bcb.gov.br 

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or  
its members. 

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced. 

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco 
Central do Brasil. 

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente. 

Citizen Service Division 

Banco Central do Brasil 

Deati/Diate 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo 

70074-900 Brasília – DF – Brazil 

Toll Free: 0800 9792345 

Fax: +55 (61) 3414-2553 

Internet: <http//www.bcb.gov.br/?CONTACTUS> 



Evaluation of exchange rate point and density
forecasts: an application to Brazil�

Wagner Piazza Gaglianoney

Jaqueline Terra Moura Marinsz

Abstract

The Working Papers should not be reported as representing the views of the Banco

Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily re�ect those of the Banco Central do Brasil.

In this paper, we construct multi-step-ahead point and density forecasts
of the exchange rate, from statistical or economic-driven approaches, using
�nancial or macroeconomic data and using parametric or nonparametric dis-
tributions. We employ a set of statistical tools, from di¤erent strands of the
literature, to identify which models work in practice, in terms of forecast ac-
curacy across di¤erent data frequencies and forecasting horizons. We propose
a novel full-density/local analysis approach to collect the many test results,
and deploy a simple risk based decision rule to rank models. An empirical ex-
ercise with Brazilian daily and monthly data reveals that macro fundamentals
matter when modeling the risk of exchange rate appreciation, whereas models
using survey information or �nancial data are the best way to account for
the depreciation risk. These �ndings have relevance for econometricians, risk
managers or policymakers interested in evaluating the accuracy of competing
exchange rate models.

Keywords: Density forecasts, Exchange rate, Risk, Model selection. 
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1 Introduction

The foreign exchange (FX) rate market is one of the most important in the �nancial

system. According to the report of the Bank for International Settlements (BIS,

2013), trading in foreign exchange markets averaged US$5.3 trillion per day in April

2013.1 Besides its huge trading volume, it also represents the largest asset class

in the world leading to high liquidity.2 Other features of this market are the high

volatility and the potential variety of factors that might a¤ect exchange rates (e.g.

economic fundamentals, speculative transactions and currency interventions, among

many others).

Forecasting exchange rate is of great importance for economic agents, in particu-

lar, for investors and policy makers. Accurate forecasts of FX rates allow investors,

for instance, to design adequate trading strategies and to hedge against market

risk. On the other hand, central banks worldwide closely monitor the daily FX

movements, since they impact future price dynamics and, thus, help setting the ap-

propriate interest rate policy (Groen and Matsumoto, 2004). Besides, it is a useful

information for central bankers to decide for interventions.

In practical terms, however, accurately forecasting the FX rate has proved to be

a nontrivial exercise. The failure of standard economic theory to explain foreign ex-

change rate behavior using key economic fundamentals (such as the money supply,

trade balance and national income) has prevailed in the international economics

literature since the classical papers of Meese and Rogo¤ (1983a,b). The authors

investigated the out-of-sample forecasting performance of standard exchange rate

models during the post-Bretton Woods period and concluded that such models do

not perform better than a naive random walk (RW) forecast.3 Indeed, the macro-

economic theory has proposed several potential predictors of exchange rates (usually

based upon the Purchasing Power Parity (PPP) hypothesis, the Uncovered Interest

Rate (UIP) parity condition and the monetary model). However, the forecasting

1According to the same report, it is up from US$4.0 trillion in April 2010 and US$3.3 trillion in April 2007.
2Nonetheless, in the long run, the attractiveness of carry trade strategies relative to other investments is not

clear. Indeed, there is a large literature that started with Burnside et al. (2006), which suggests that market frictions

greatly reduce the pro�tability of currency speculation strategies.
3The random walk forecast is such that the (log) level of the nominal exchange rate is predicted to remain at

the current (log) level (also known as the �no change� forecast).
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contribution of such approaches has been under question since the highly in�uential

�ndings of Meese and Rogo¤. In this sense, Bacchetta and van Wincoop (2006)

describe the RW paradigm as �...the major weakness of international macroeco-

nomics.�4

Consequently, an extensive literature has studied the forecasting performance

of empirical exchange rate models and several (potential) explanations have been

put forward. Just to mention a few papers: Mark (1995) �nds evidence of greater

predictability of economic exchange rate models at longer horizons, although these

�ndings have been questioned later by Kilian (1999). Kilian and Taylor (2003) argue

that exchange rates can be predicted from economic models after taking into account

the possibility of nonlinear exchange rate dynamics. Cheung et al. (2005) examine

the out-of-sample performance of the interest rate parity, monetary, productivity-

based and behavioral exchange rate models and conclude that (indeed) none of

these models consistently beats the RW forecast at any horizon. The authors argue

that even if a particular macroeconomic "fundamental" has some level of predictive

power for a bilateral exchange rate (at a certain horizon), the same variable may

show no predictive power at di¤erent horizons or for other bilateral exchange rates.

On the other hand, Engel and West (2005) argue that it is not surprising that a

random walk forecast outperforms fundamental-based models under some circum-

stances. The argument is based on the behavior of the exchange rate as an asset

price within a rational expectation present-value (Taylor rule) model, among oth-

ers, with a discount factor near one. Finally, there is a large and growing literature

that aims at explaining currency movements in a cross-sectional rather than in a

time-series framework (e.g. Burnside et al., 2011; Lustig et al., 2011; Menkho¤ et

al., 2012; Verdelhan, 2013). Its main �ndings have been used to address exchange

rate predictability in a broadest sense based on multiple currencies.5

4See Rossi (2013a) for more on Meese and Rogo¤ and a review of the recent literature on exchange rate fore-

casting.
5As complementary lines of research, see also the following papers: Wu (2008) studies the importance of the

order �ows at short horizons, within the "microstructure approach". Engel et al. (2009) based on a panel of exchange

rates argue that in the presence of stationary, but persistent, unobservable fundamentals, long-horizon predictability

prevails in FX rate forecasting. Della-Corte et al. (2009) discuss the forward premium and its promising results in a

portfolio allocation framework. Chen and Tsang (2009) �nd that cross-country yield curves are useful in predicting

exchange rates. Molodtsova and Papell (2009) extend the standard set of exchange rate models by incorporating

Taylor rule fundamentals. More recently, Fratzscher et al. (2012) investigate the scapegoat theory (as an attempt

for explaining the poor performance of traditional models), and Morales-Arias and Moura (2013) explore forecast
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In a distinct but complementary approach, several papers in the late 90s started

investigating the random walk paradigm from a di¤erent view: out-of-sample density

forecasting. For instance, Diebold, Hahn, and Tay (1999) use the RiskMetrics model

to compute half-hour-ahead density forecasts for Deutschmark�dollar and yen�dollar

returns. Christo¤ersen and Mazzotta (2005) construct option-implied density and

interval forecasts for four major exchange rates. Clews et al. (2000) describes a

nonparametric way to forecast risk neutral densities, from the smile interpolation

of option prices. Boero and Marrocu (2004) obtain one-day-ahead density forecasts

for euro nominal e¤ective exchange rate using self-exciting threshold autoregressive

(SETAR) models. Sarno and Valente (2005) use information from the term structure

of forward premia to evaluate the FX rate density forecast performance of a Markov-

switching vector error correction model (MS-VECM). Hong et al. (2007) construct

half-hour-ahead density forecasts for euro-dollar and yen-dollar rates using a set

of univariate time series models that capture fat tails, time-varying volatility and

regime switches.

In general, these previous studies on exchange rate density forecasting use high

frequency data, which are not available for most conventional economic fundamen-

tals. In addition, these studies quite often do not consider multi-step-ahead forecasts

and, generally, assume that conditional densities are analytically constructed (i.e.

based on parametric densities). Wang and Wu (2012) tackle these issues by using

a semiparametric method, applied to a group of exchange rate models, to generate

out-of-sample exchange rate interval forecasts. The authors suggest that economic

fundamentals might provide useful information in (out-of-sample) forecasting FX

rate distributions. Based on forecast intervals for ten OECD exchange rates, the

authors �nd that, in general, FX models generate tighter forecast intervals than the

random walk, given that their intervals cover out-of-sample exchange rate realiza-

tions equally well. Moreover, the results suggest a connection between exchange

rates and fundamentals: economic variables (indeed) contain information useful in

forecasting distributions of exchange rates. In this sense, the Taylor rule model

(Molodtsova and Papell, 2009) performs better than the monetary, PPP and for-

ward premium models, and its advantages are more pronounced at longer horizons.

combination based on panel data and adaptive forecasting.
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In this paper, we also go beyond point forecasting and follow the previous strand

of literature focused on density forecasting. We address the subject by considering

statistical approaches (such as GARCH), economic-driven models, and a �nancial

data setup (treating the exchange rate as an asset price). We employ monthly data,

as well as daily data, that enable us to investigate standard macroeconomic models

for point and density forecast, constructed here from both parametric, nonparamet-

ric and semiparametric setups.

In addition, based on a set of density forecasts, generated for horizons from one

to twelve months (or from one to twenty workdays), we go a step further and ask the

following question: which is the best forecasting model for a given forecast horizon,

and a given part of the conditional distribution of the FX rate? The objective here

is to investigate a set of FX rate models and reveal which are more useful for point

and/or density forecasting.

Moreover, we aim to increase our understanding of the exchange rate dynamics

from a risk-analysis perspective. The main motivation is that macroeconomic fun-

damentals may vary in their predictive content at distinct parts of the distribution of

the FX rate. In other words, our objective here is also to investigate risk measures

of FX rate generated from distinct approaches, which may reveal potential links

between exchange rates and economic fundamentals (or �nancial variables) that a

simple point forecast evaluation might neglect.

This way, our main contribution is to bring together a whole set of statistical

tools, from distinct strands of the literature (e.g. international economics, forecast-

ing and risk management) to investigate the FX rate dynamics, in terms of point

and density forecast, through the lens of competing models. In addition, we also

conduct a local analysis of the competing density forecasts and use a simple decision

rule for model ranking, employed for risk assessment purposes.

Why study the Brazilian case? Besides being one of the largest emerging economies,

the Brazilian currency (Real) experienced a huge depreciation in the recent years,

becoming one of the most volatile currencies among the emerging markets. For in-

stance, among the BRICS countries, the Real depreciated an amount of 97% from

March 2011 to March 2015 (only surpassed by the Russian Rublo, which devalu-
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ated 106% in the same period, by comparing end-of-month �gures).6 This sharp

devaluation of the domestic currency (compared to the U.S. dollar) has severe con-

sequences for the Brazilian macroeconomic environment, for instance, by increasing

the Brazilian in�ation, with direct implications for monetary policy and market

agents�expectations.

This paper is organized as follows: Section 2 presents the point and density fore-

cast models, and the respective estimation schemes, as well as the adopted forecast

evaluation tools. Section 3 presents our empirical exercise to investigate the Brazil-

ian FX rate, based on a set of out-of-sample multi-step-ahead point and density

forecasts. Section 4 concludes.

2 Methodology

2.1 Point and density forecast models

Along this paper, we investigate m = 1; :::; 14 models to construct the point (and

density) forecasts for the nominal exchange rate (st) of the Brazilian Real with

respect to the U.S. dollar (R$/US$).7 The objective here is not to propose the best

model to forecast the FX rate, but rather to evaluate a given set of available models

to forecast the foreign exchange rate, within a range of forecast horizons. Following

the notation of Wang and Wu (2012), a general setup of the (point forecast) model

m takes the form of:

st+h � st = X0
m;t�m;h + "m;t+h (1)

in which st+h�st is the h-periods change of the (log) exchange rate, X0
m;t is a vector

with economic variables used in model m and "m;t+h is the error term. Regarding

multi-period ahead forecasts (h > 1), notice that we follow the "direct forecast"

approach, in contrast to the "recursive (or iterated) forecast" route. See Marcellino,

Stock and Watson (2006)8 for a good discussion on this issue. We next brie�y

6 In the last sample observation (March 2015), the Real devaluated 11.5% compared to the previous month,

which is the highest �gure among the BRICS (the Russian Ruble: -4.6%; the Indian Rupee: 1.3%; the Chinese

Yuan: -0.1%; and the South African Rand: 4.8%).
7The term "model" is used throughout this paper in a broad sense that includes forecasting methods.
8"Iterated" multi-period ahead time series forecasts are made using a one-period ahead model, iterated forward

for the desired number of periods, whereas �direct� forecasts are made using a horizon-speci�c estimated model,
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describe each model:

Model 1 (benchmark) is a standard random walk (RW) model without drift,

coupled with a Gaussian distribution to generate the density forecast; in which

the location of the distribution is the RW point forecast, and the variance of the

distribution is given by the sample variance of past forecast errors.

Model 2 is a forward-looking approach based on �nancial data and the extrac-

tion of information from option prices.9 It consists of two major steps: (i) obtaining

risk-neutral densities (RND) and (ii) transforming these densities into real world

densities (RWD). The RND for an asset price gives the set of probabilities that

investors would attach to the future asset prices in a world in which they were

risk-neutral. But if investors are risk-averse (as they usually are), risk premia will

drive a wedge between the probabilities inferred from options (RND) and the true

probabilities they attach to alternative values of the underlying asset price (RWD).

See Appendix A for further details.

Model 3 is based on an AR(1)-GARCH(1,1)-Student�s t-distribution model,

with Monte Carlo simulation. It is a backward-looking approach, improved by vari-

ance reduction techniques employed over the traditional random sampling simulation

method. After the estimation of di¤erent speci�cations10, the one that better ad-

justed the data was the AR(1)-GARCH(1,1), with "Descriptive Sampling" as the

simulation method. It can be represented as below (h = 1):

�st = �+ ��st�1 + �t (2)

h2t = ! + 
h2t�1 + ��
2
t�1; (3)

where the dependent variable is the multi-period ahead value being forecasted. Which approach is better is an

empirical matter: in theory, iterated forecasts are more e¢ cient if correctly speci�ed, but direct forecasts are more

robust to model misspeci�cation.
9The main idea is that options are contracts giving the right (not the obligation) to buy or sell an asset at a

given point in the future at a price set now (i.e. strike price). Options to buy (call options) are only valuable if there

is a chance that when the option comes to be exercised, the underlying asset will be worth more than the strike

price. Thus, if one considers options to buy a particular asset at a particular point in the future but at di¤erent

strike prices, the prices at which such contracts are trade now provides some information about the market�s view

of the chances that the price of the underlying asset will be above the various strike prices. Therefore, options tell

us something about the probability the market attaches to an asset being within a range of possible prices at some

future date.
10AR(1)-GARCH(1,1) t-Student, random walk with drift and Gaussian white noise, random walk with Gaussian

GARCH and random walk with t-Student GARCH. The sampling simulation methods combined with each one of

these models were Simple Random Sampling, Simple Random Sampling with runs, Latin Hypercube and Descriptive

Sampling.
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where st is the log of the nominal exchange rate, h2t is the conditional variance and

�t is the input variable of the simulation model assumed Student�s t distributed and

descriptive sampled instead of randomly sampled.11

Model 4 is the survey-based median forecast (from the "Focus" market survey,

conducted by the Central Bank of Brazil), with Gaussian distribution based on past

forecast errors. Model 5 is also a forward-looking approach, based on the same

previous survey median forecast, but employing a bias correction device, as proposed

by Capistrán and Timmermann (2009). Models 6-14 are economic-driven models

following Molodtsova and Papell (2009), and Wang and Wu (2012). See Table 1 for

further details.

The density forecast for models 5-14 is �rst constructed by using quantile re-

gression (QR), as proposed by Gaglianone and Lima (2012).12 The idea is to use a

location-scale model to construct density forecasts from the covariate vector X0
m;t,

as it follows:

st+h � st = X0
m;t�m;h +

�
X0
m;t�m;h

�
�t+h (4)

where
�
�t+hjFt

�
� F�;h (0; 1); F�;h (0; 1) is some distribution with mean zero and

unit variance, which depends on h but does not depend on the information set Ft.

X0
m;t 2 Ft is a k � 1 vector of economic variables used in model m, and � and

� are k � 1 vectors of parameters, which include the intercepts �0 and �0. This

class of data-generating process (DGP) is very broad and includes common volatility

processes (e.g. ARCH, stochastic volatility).

Based on the previous model and using standard quantile regression techniques

(see Koenker, 2005), the conditional quantiles of (st+h � st) based on model m, are

given by

Qm;� (st+h � st j Ft) = X0
m;t�m;h(�) (5)

where for a given quantile level � 2 [0; 1], it follows that �m;h(�) is a k� 1 vector of

parameters of the form �i(�) =
�
�i(�) + �i(�)F

�1
�;h (�)

�
; i = 1; :::; k: Given a family

of estimated conditional quantiles Qm;� (�), the conditional density of (st+h � st) can
11For more details about "Descriptive Sampling" and other sampling methods for variance reduction, see Saliby

(1989) and Glasserman (2004).
12The authors generate multi-step-ahead conditional density forecasts for the unemployment rate in the U.S. from

(point) consensus forecasts and quantile regression; which is a setup that do not impose any parametric structure

on the shape of the conditional distributions.
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be estimated by using the Epanechnikov kernel, for instance, which is a weighting

function that determines the shape of the bumps. To guarantee monotonicity of

the conditional quantiles (and the validity of the related conditional distribution),

by avoiding possible crossing of quantiles, some rearrangement procedure (e.g., He,

1997; Chernozhukov et al., 2010) could be further employed.13 See Appendix C for

further details on quantile regression.

Table 1 - Models for the Exchange Rate (st+h)

Model Covariate Vector X 0
m;t Density

1) Random walk (without drift) � Gaussian

2) Option-implied (RND-RWD) � Nonparametric

3) GARCH - Monte Carlo � Student�s t

4) Survey forecast � Gaussian

5) Survey forec. (bias-correct) [1; s
e
t+1jt] QR or Gaussian

6) Taylor rule model [1;�t���t ; y
gap
t �ygap�t ; qt] QR or Gaussian

7) Taylor rule (PPP) [1;�t���t ; y
gap
t �ygap�t ] QR or Gaussian

8) Taylor rule (PPP, smoothing) [1;�t���t ; y
gap
t �ygap�t ; it�1�i�t�1] QR or Gaussian

9) Taylor rule (smoothing) [1;�t���t ; y
gap
t �ygap�t ; qt; it�1�i�t�1] QR or Gaussian

10) Absolute PPP model [1; qt] QR or Gaussian

11) Relative PPP model [1;�qt] QR or Gaussian

12) Monetary model [1; st�((mt�m�
t )� (yt�y�t ))] QR or Gaussian

13) Monetary model (weaker) [1;�st�((�mt��m
�
t )� (�yt��y

�
t ))] QR or Gaussian

14) Forward premium model [1; it�i
�
t ] QR or Gaussian

Notes: Covariate vectors shown for h=1. RND means risk-neutral density, RWD (real world density),

QR (quantile regression). The set+1jt term refers to the median survey forecast of the FX rate at period t+1

formed at period t, and the real exchange rate is de�ned as qt� st+p�t�pt in which pt(p
�
t ) is the (log)

consumer price index in the home (foreign) country. Models 6-14 are based on Molodtsova and

Papell (2009) and Wang and Wu (2012), where �t(�
�
t ) is the CPI in�ation and y

gap
t (y

gap�
t ) is the output

gap in the home (foreign) country, it(i
�
t ) is the short-term interest rate in the home (foreign) country,

and mt(m
�
t ) is the money supply and yt(y

�
t ) is the output in the home (foreign) country.

Finally, models 5-14 are alternatively estimated by OLS, with the respective

regressors shown in Table 1, coupled with a Gaussian distribution to generate the

density forecast. The variance of the distribution is again given by the sample

variance of past point forecast errors. This alternative method to quantile regression

enables us to distinguish between whether it is the economic variables that a¤ect

forecast performance or whether it is how they are modelled.

13He (1997) argues that crossing problem occurs more frequently in multiple-variable regressions. Thus, we should

not expect crossing to be an issue in our empirical exercise due to the reduced number of covariates in models 5-14.
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2.2 Estimation schemes

Rossi (2013b) reviews the empirical evidence on forecasting in the presence of in-

stabilities and concludes that the predictive content of several time series predictors

is unstable over time in macroeconomics, �nance and international �nance. The

author also argues that it is possible to exploit instabilities to improve the out-of-

sample forecasting ability of existing models, for instance, by using methods that

identify historic breaks (and impose them in the estimation) or consider time-varying

parameter models. In this sense, several estimation procedures have been proposed

in the literature to deal with unstable predictive content over time, such as rolling or

recursive estimation schemes, discounted least squares, and exponential smoothing.

Which approach should one use? According to Rossi (2013b): "...rolling estima-

tion is advantageous in the presence of big and recurrent breaks whereas recursive

estimation is advantageous when such breaks are small or non-existent."14

In this paper, we consider both recursive and rolling window estimation schemes

in order to evaluate the predictive content of the competing point and density fore-

cast models.

2.3 Point and density forecast evaluation

The forecast evaluation is conducted in this paper throughout distinct perspectives.

First, we do a standard point forecast evaluation, focused on the forecast perfor-

mance of the conditional mean. To do so, we compute the root mean squared error

(RMSE)15 and check whether it is possible to beat the random walk forecast for a

given forecast horizon, based on the Diebold and Mariano (1995) and West (1996)

tests and on the Giacomini and White (2006) predictive ability test. The directional

change test of Pesaran and Timmermann (1992, 2009) is also conducted in order to

verify whether a given model can correctly predict the directional change of the FX

rate. Second, the density forecast evaluation is conducted along two dimensions:

(i) Full-density analysis, which is a shape evaluation based on the entire esti-

14However, rolling window estimation schemes could perform worse than recursive ones; even in the presence of

breaks. See Pesaran and Timmermann (2005) and Morales-Arias and Moura (2013) for further details on rolling

versus recursive estimation.
15See Gneiting (2011) for a detailed discussion on forecast evaluation and the choice of scoring function.

12



mated density. Following the literature on density forecast evaluation, we inves-

tigate: coverage rates, the density test of Berkowitz (2001), the density test of

Knüppel (2015), the model ranking from the log predictive density scores (LPDS)

and the test of Amisano-Giacomini (2007).

(ii) Local analysis, which evaluates speci�c parts of the densities, that is, the

so-called Value-at-Risk (VaR) measures. To do so, we employ available risk manage-

ment tools for VaR backtesting based on the tests of Kupiec (1995), Christo¤ersen

(1998) and Gaglianone et al. (2011). See Nieto and Ruiz (2016) for a good review

on the backtesting literature.16

3 Empirical exercise

3.1 Data

The exchange rate we investigate in this paper is the Brazilian Real (R$) in respect to

the U.S. dollar (US$), that is, the price of one U.S. dollar in terms of the Brazilian

Real, such that an increase of the exchange rate represents a depreciation of the

Real currency. Figure 1 presents the behavior of the target variable, that is, the

Brazilian FX rate along the considered sample. In the second semester of 2002, the

exchange rate experienced a sharp increase due to (among other factors) the augment

of investors uncertainty regarding the future of economic fundamentals after the

presidential elections in October 2002. The FX rate had gradually appreciated in

the following years up to the global crisis in 2008 and showed a depreciation trend

after the mid-2011 (European crisis).

We employ two data frequencies: monthly and daily. All models (in both fre-

quencies) are estimated by using recursive estimation (increasing sample size) as

well as rolling window estimation17 (with a �xed sample of six years = 72 months

or 1,512 workdays).18

16Further details of such evaluation procedures are presented in Appendix B.
17Each model is initially estimated using the �rst 72 monthly (or 1,512 daily) observations and the one-period-

ahead (up to the 12-months-ahead or 20-days-ahead) point and density forecasts are generated. We, then, drop the

�rst data point, add an additional observation at the end of the sample, re-estimate the models and generate again

out-of-sample forecasts. This process is repeated along the remaining data.
18As discussed in Pesaran and Timmermann (2005), the choice of the window size depends on the nature of

the possible model instability and the timing of the breaks. A large window is preferable if the data generating
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Figure 1 - Exchange rate R$/US$

This way, models are labeled "a" or "b" according to the sample used in estima-

tion ("a" denotes the recursive estimation; "b" means a rolling window estimation).

In the case of models 5-14 estimated with QR, we label them as "a" when using

recursive estimation or "b" when employing rolling window estimation. The models

5-14 estimated with OLS (and Gaussian distribution) are labeled "c" when using

recursive estimation or "d" when employing rolling window estimation.

Monthly frequency

The monthly data ranges from January 2000 through March 2015 (183 observations),

covering the most recent period of �oating exchange rate regime in Brazil, after the

collapse of the �xed FX rate regime in 1999.19

For model estimation purposes (training sample), we use data over the period

January 2000-December 2005 and reserve the remaining data for (pseudo) out-of-

sample forecasting. We construct (point and density) forecasts for horizons h =

1; :::; 12 months. This way, the evaluation sample for h = 1 is January 2006-March

2015 (111 out-of-sample forecasts), whereas for h = 12 we have 100 out-of-sample

forecasts.

process is stationary, but comes at the cost of lower power since there are fewer observations in the evaluation

window. Similarly, a shorter window may be more robust to structural breaks, although it may not provide as

precise estimation as larger windows if the data are stationary.
19The monthly (nominal) exchange rate is given by the sale rate (R$/US$) at the end of each month (Sisbacen

PTAX800). The FX rate data is obtained from the website of the Central Bank of Brazil. For model 2, we use the

BM&F�s reference prices for dollar calls. For models 4-5, we employ survey-based (median) expectations from the

Focus survey organized by the Central Bank of Brazil, which collects daily information on more than 100 institutions,

including commercial banks, asset management �rms, and non-�nancial institutions. For models 6-14, we also use

data from the FRED dataset of the Federal Reserve Bank of St. Louis.
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Daily frequency

The daily data (workdays) ranges from 3 January 2000 to 31 March 2015 (3,977

observations). The estimation sample ranges from 3 January 2000 to 30 December

2005. The (point and density) forecasts are constructed for horizons h = 1; :::; 20

workdays. The out-of-sample evaluation period for h = 1 ranges from 2 January

2006 to 31 March 2015 (2,412 out-of-sample forecasts), whereas for h = 20 we have

2,393 out-of-sample forecasts.

The following series are observed in daily frequency: exchange rate (sale rate

R$/US$), the short-term interest rates Selic and Fed Funds (Brazil and U.S., respec-

tively) and the median survey forecast of the FX rate (for end of monthm formed at

day d). The remaining variables (CPI in�ation, output, output gap, money supply

and real exchange rate), however, are only sampled in lower frequencies (weekly or

monthly).

In particular, when estimating model 2 (options) with daily data, we proceed

in the following way: we daily collect foreign exchange options data from January

2006 to March 2015. If the forecast horizon is lower than the amount of days until

the �rst option maturity, we estimate the RND for that horizon by interpolating the

RND estimated for the �rst maturity with a degenerated probability distribution,

which takes as its only value the last occurred exchange rate. If the forecast horizon

is above the amount of days until the �rst option maturity and below the amount

of days until the second option maturity, we estimate the RND for that horizon by

interpolating the RND estimated for the second maturity with the RND estimated

for the �rst one. Proceeding this way, we have daily estimated RND�s for each fore-

cast horizon considered. All the rest remained the same in respect to the estimation

using monthly data.

Regarding model 3 (GARCH) and daily data, we proceed in a similar way to

the end-of-month data: we also estimate an AR(1)-GARCH(1,1) speci�cation, with

Descriptive Sampling as the variance reduction technique to improve the simulation

process.

In respect to models 4-14, in order to overcome the lack of daily data regarding

macro variables, we consider daily series with available information based on the
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latest observed value. In other words, we take into account the actual release date

of each variable, which varies across variables and usually changes across time. For

example, the value of the CPI in�ation series, in a given day d, contains information

regarding the last available CPI �gure; and such value is repeated over the following

days until the release of the next CPI monthly data. This way, by using daily

data we are able to enlarge the number of observations by roughly 20 times when

compared to monthly data.20

3.2 Point forecasts

We start the model evaluation by investigating the performance of the exchange rate

point forecast across the investigated models. We considered the conditional mean

as the point forecast (in all models, data frequencies and estimation schemes).21

Figure 2 presents the point forecasts of selected models for h = 1; :::; 12 constructed

along the out-of-sample exercise (monthly frequency, recursive estimation).

Figure 2 - Point forecasts of selected models

20Alternatively, one could employ a more sophisticated method, for instance, by casting the daily model in a

state-space approach (e.g. using the Kalman �lter to deal with missing observations) or using a reverse MIDAS

model, which incorporates low frequency information for predicting high frequency variables (see Foroni et al., 2015).
21For instance, in the case of model 6 estimated with quantile regression using recursive estimation (model 6a),

we compute the conditional mean (see Koenker, 2005) as the average of the conditional quantiles estimated at the

grid of quantile levels � = f0:25; 0:30; 0:35; :::; 0:75g. We proceed in the same way for all models.
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Is it possible to beat the random walk? To tackle this question we �rst employ

the Diebold-Mariano-West (DMW) test of equal accuracy in a recursive estimation

scheme (Tables 2a-2b). The null hypothesis assumes equal RMSEs of two compet-

ing models.22 Positive test statistics indicate that model m 6= 1 has a lower RMSE

compared to the benchmark model (random walk).23 We also investigate the DMW

test modi�ed by Harvey et al. (1997), which propose a hypothesis test more suitable

to small samples. The results are similar (not presented here to save space). Re-

garding the rolling window estimation, we employ the Giacomini and White (2006)

predictive ability test.

The monthly results indicate that the only model that exhibits a positive DMW

test statistic is model 4 (for h between 5 and 12 months). In other words, only the

model that embodies survey-based expectations (model 4) is able to present a lower

RMSE compared to the random walk (gray cells on Table 2a).

Table 2a - Tests of equal forecast accuracy (monthly frequency)
Diebold­Mariano­West (1995, 1996): test statistic (p­value)
Model 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 ­2.21 ­1.74 ­1.42 ­1.32 ­1.22 ­0.85 ­0.99 ­1.70 ­2.41 ­1.46 ­1.94 ­1.49 ­2.74

(0.03) (0.09) (0.16) (0.19) (0.23) (0.4) (0.32) (0.09) (0.02) (0.15) (0.06) (0.14) (0.01)

h=2 ­2.59 ­1.66 ­1.18 ­1.36 ­1.14 ­0.65 ­0.76 ­1.54 ­1.78 ­0.30 ­1.62 ­1.70 ­2.37
(0.01) (0.1) (0.24) (0.18) (0.26) (0.51) (0.45) (0.13) (0.08) (0.77) (0.11) (0.09) (0.02)

h=3 ­1.84 ­1.79 ­0.80 ­1.50 ­1.26 ­0.83 ­1.00 ­1.42 ­2.00 ­1.24 ­1.85 ­1.51 ­2.16
(0.07) (0.08) (0.43) (0.14) (0.21) (0.41) (0.32) (0.16) (0.05) (0.22) (0.07) (0.14) (0.03)

h=4 ­3.04 ­1.72 ­0.26 ­1.56 ­1.30 ­0.75 ­0.87 ­1.43 ­2.13 ­1.02 ­2.23 ­1.39 ­1.94
(0) (0.09) (0.8) (0.12) (0.2) (0.45) (0.39) (0.16) (0.04) (0.31) (0.03) (0.17) (0.06)

h=5 1.39 ­1.60 0.40 ­1.44 ­1.12 ­0.64 ­0.76 ­1.23 ­2.00 ­1.08 ­2.46 ­1.42 ­1.67
(0.17) (0.11) (0.69) (0.15) (0.27) (0.52) (0.45) (0.22) (0.05) (0.28) (0.02) (0.16) (0.1)

h=6 1.71 ­1.53 0.82 ­1.21 ­1.11 ­0.71 ­0.82 ­1.19 ­1.86 ­0.85 ­2.53 ­0.82 ­1.52
(0.09) (0.13) (0.41) (0.23) (0.27) (0.48) (0.41) (0.24) (0.07) (0.4) (0.01) (0.41) (0.13)

h=7 2.05 ­1.52 1.00 ­1.14 ­1.33 ­0.81 ­0.97 ­1.43 ­1.76 ­1.39 ­2.24 ­1.43 ­1.52
(0.04) (0.13) (0.32) (0.26) (0.19) (0.42) (0.33) (0.16) (0.08) (0.17) (0.03) (0.16) (0.13)

h=8 2.27 ­1.52 0.99 ­1.08 ­1.24 ­0.91 ­1.15 ­1.61 ­1.53 ­1.30 ­1.88 ­1.19 ­1.49
(0.03) (0.13) (0.32) (0.28) (0.22) (0.36) (0.25) (0.11) (0.13) (0.2) (0.06) (0.24) (0.14)

h=9 2.66 ­1.54 1.20 ­1.14 ­1.34 ­1.03 ­1.29 ­1.91 ­1.46 ­1.21 ­1.63 ­1.17 ­1.47
(0.01) (0.13) (0.23) (0.26) (0.18) (0.3) (0.2) (0.06) (0.15) (0.23) (0.11) (0.24) (0.15)

h=10 2.97 ­1.53 0.93 ­1.10 ­1.42 ­1.01 ­1.23 ­1.71 ­1.38 ­1.28 ­1.45 ­1.09 ­1.39
(0) (0.13) (0.35) (0.28) (0.16) (0.31) (0.22) (0.09) (0.17) (0.2) (0.15) (0.28) (0.17)

h=11 3.53 ­1.52 0.74 ­1.10 ­1.51 ­1.10 ­1.27 ­1.70 ­1.34 ­1.54 ­1.35 ­1.43 ­1.38
(0) (0.13) (0.46) (0.27) (0.13) (0.27) (0.21) (0.09) (0.18) (0.13) (0.18) (0.15) (0.17)

h=12 3.68 ­1.58 0.53 ­1.13 ­1.69 ­1.08 ­1.20 ­1.79 ­1.31 ­1.70 ­1.32 ­2.03 ­1.32
(0) (0.12) (0.6) (0.26) (0.09) (0.28) (0.23) (0.08) (0.19) (0.09) (0.19) (0.05) (0.19)

Notes: Recursive estimation. Table shows the test statistics (and p-values in parentheses). Gray cells

denote positive test statistics (i.e. it means that a model has a lower RMSE in comparison to the RW).

22Tables in the Supplementary Appendix (not presented here to save space, but available upon request) show

the Root Mean Squared Error (RMSE) in all cases.
23The variances entering the test statistics use the Newey-West estimator, with a bandwidth of 0 at the 1-

month horizon and 1.5�horizon in the other cases, following Clark (2011, supplementary appendix) and Clark and
McCracken (2012, p.61). This approach comes from past Monte Carlo assessments of the small-sample properties

of the DM test from the referred authors. Nonetheless, it is worth mentioning that our results for the DM test are

robust to di¤erent ways of computing the variance employed in the test statistic (e.g. using a rectangular kernel

estimator of Hansen (1982), with lag length of h� 1). The rounding o¤ to an integer value is done upwards.
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Table 2b - Tests of equal forecast accuracy (daily frequency)
Diebold­Mariano­West (1995, 1996): test statistic (p­value)
Model 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 ­4.11 ­0.95 ­4.56 ­2.61 ­1.15 ­1.00 ­0.89 ­1.45 ­1.70 ­0.88 ­1.36 ­1.02 ­2.08

(0) (0.34) (0) (0.01) (0.25) (0.32) (0.37) (0.15) (0.09) (0.38) (0.17) (0.31) (0.04)

h=2 ­15.61 ­0.74 ­4.31 ­2.12 ­1.41 ­1.31 ­1.24 ­1.69 ­1.85 ­0.68 ­1.79 ­1.03 ­2.18
(0) (0.46) (0) (0.03) (0.16) (0.19) (0.22) (0.09) (0.07) (0.5) (0.07) (0.3) (0.03)

h=3 ­20.96 ­1.62 ­4.02 ­1.45 ­1.30 ­1.27 ­1.26 ­1.52 ­1.63 ­1.58 ­1.72 ­1.47 ­2.15
(0) (0.11) (0) (0.15) (0.19) (0.2) (0.21) (0.13) (0.1) (0.11) (0.09) (0.14) (0.03)

h=4 ­13.17 ­1.77 ­4.18 ­1.31 ­1.34 ­1.26 ­1.23 ­1.53 ­1.50 ­1.91 ­1.67 ­1.71 ­2.16
(0) (0.08) (0) (0.19) (0.18) (0.21) (0.22) (0.13) (0.13) (0.06) (0.1) (0.09) (0.03)

h=5 ­14.43 ­2.21 ­3.67 ­1.37 ­1.28 ­1.18 ­1.13 ­1.50 ­1.59 ­2.19 ­1.70 ­2.20 ­2.42
(0) (0.03) (0) (0.17) (0.2) (0.24) (0.26) (0.13) (0.11) (0.03) (0.09) (0.03) (0.02)

h=6 ­13.00 ­2.67 ­3.33 ­1.26 ­1.28 ­1.13 ­1.11 ­1.48 ­1.66 ­2.86 ­1.67 ­2.99 ­2.63
(0) (0.01) (0) (0.21) (0.2) (0.26) (0.27) (0.14) (0.1) (0) (0.1) (0) (0.01)

h=7 ­16.80 ­2.36 ­3.36 ­1.12 ­1.23 ­1.10 ­1.07 ­1.43 ­1.73 ­2.25 ­1.73 ­2.35 ­2.77
(0) (0.02) (0) (0.26) (0.22) (0.27) (0.29) (0.15) (0.08) (0.02) (0.08) (0.02) (0.01)

h=8 ­13.54 ­2.15 ­2.87 ­1.01 ­1.21 ­1.09 ­1.04 ­1.41 ­1.73 ­1.88 ­1.72 ­2.18 ­2.76
(0) (0.03) (0) (0.31) (0.23) (0.28) (0.3) (0.16) (0.08) (0.06) (0.09) (0.03) (0.01)

h=9 ­13.30 ­2.04 ­2.46 ­0.76 ­1.23 ­1.09 ­1.06 ­1.44 ­1.65 ­1.79 ­1.66 ­2.11 ­2.78
(0) (0.04) (0.01) (0.45) (0.22) (0.28) (0.29) (0.15) (0.1) (0.07) (0.1) (0.04) (0.01)

h=10 ­12.93 ­2.03 ­2.11 ­0.51 ­1.25 ­1.10 ­1.09 ­1.46 ­1.58 ­1.58 ­1.59 ­1.89 ­2.81
(0) (0.04) (0.03) (0.61) (0.21) (0.27) (0.28) (0.14) (0.11) (0.11) (0.11) (0.06) (0.01)

h=11 ­12.68 ­1.97 ­1.70 ­0.35 ­1.27 ­1.11 ­1.10 ­1.49 ­1.56 ­1.80 ­1.59 ­2.16 ­2.78
(0) (0.05) (0.09) (0.73) (0.2) (0.27) (0.27) (0.14) (0.12) (0.07) (0.11) (0.03) (0.01)

h=12 ­13.16 ­1.93 ­1.42 ­0.18 ­1.25 ­1.11 ­1.09 ­1.46 ­1.58 ­1.89 ­1.58 ­2.43 ­2.84
(0) (0.05) (0.16) (0.86) (0.21) (0.27) (0.28) (0.14) (0.11) (0.06) (0.11) (0.02) (0)

h=13 ­13.51 ­1.85 ­1.12 0.07 ­1.25 ­1.10 ­1.07 ­1.46 ­1.59 ­2.09 ­1.58 ­2.72 ­2.87
(0) (0.06) (0.26) (0.95) (0.21) (0.27) (0.29) (0.14) (0.11) (0.04) (0.12) (0.01) (0)

h=14 ­12.94 ­1.74 ­0.82 0.34 ­1.21 ­1.07 ­1.05 ­1.42 ­1.58 ­2.14 ­1.55 ­2.77 ­2.90
(0) (0.08) (0.41) (0.74) (0.22) (0.29) (0.29) (0.16) (0.11) (0.03) (0.12) (0.01) (0)

h=15 ­13.85 ­1.71 ­0.47 0.61 ­1.18 ­1.03 ­1.02 ­1.39 ­1.58 ­2.11 ­1.54 ­2.65 ­2.93
(0) (0.09) (0.64) (0.55) (0.24) (0.3) (0.31) (0.16) (0.11) (0.04) (0.12) (0.01) (0)

h=16 ­11.95 ­1.64 ­0.14 0.81 ­1.16 ­1.01 ­0.99 ­1.36 ­1.54 ­2.40 ­1.49 ­2.92 ­2.95
(0) (0.1) (0.89) (0.42) (0.25) (0.31) (0.32) (0.17) (0.12) (0.02) (0.14) (0) (0)

h=17 ­10.82 ­1.61 0.19 1.05 ­1.17 ­1.01 ­0.99 ­1.39 ­1.49 ­2.37 ­1.47 ­2.65 ­2.92
(0) (0.11) (0.85) (0.29) (0.24) (0.31) (0.32) (0.16) (0.14) (0.02) (0.14) (0.01) (0)

h=18 ­13.40 ­1.67 0.47 1.23 ­1.16 ­0.98 ­0.97 ­1.38 ­1.49 ­2.46 ­1.47 ­2.87 ­2.89
(0) (0.1) (0.64) (0.22) (0.25) (0.33) (0.33) (0.17) (0.14) (0.01) (0.14) (0) (0)

h=19 ­12.13 ­1.62 0.72 1.47 ­1.16 ­0.98 ­0.97 ­1.39 ­1.48 ­2.25 ­1.48 ­2.67 ­2.87
(0) (0.1) (0.47) (0.14) (0.25) (0.33) (0.33) (0.16) (0.14) (0.02) (0.14) (0.01) (0)

h=20 ­18.56 ­1.57 0.93 1.65 ­1.13 ­0.94 ­0.94 ­1.36 ­1.45 ­2.06 ­1.48 ­2.54 ­2.84
(0) (0.12) (0.35) (0.1) (0.26) (0.35) (0.35) (0.17) (0.15) (0.04) (0.14) (0.01) (0)

Notes: Recursive estimation. Table shows the test statistics (and p-values in parentheses). Gray cells

denote positive test statistics (i.e. it means that a model has a lower RMSE in comparison to the RW).

The results for a rolling window scheme (in the Supplementary Appendix) indi-

cate that models 4, 6, 7 and 9 (for some horizons) show lower RMSE compared to the

random walk, although these mentioned "gains" over the RW are not statistically

signi�cant (at the usual 5% level of signi�cance).24

In respect to daily frequency, Table 2b reveals that, once again, only a few models

(and for longer horizons) exhibit lower RMSEs in comparison to the RW (i.e. model

4 for h > 16 days and model 5 for h > 12 days); although these predictive gains are

not statistically signi�cant (at a 5% level). Nonetheless, model 5c (estimated with

OLS, and coupled with a Gaussian density) is able to statistically beat the random

walk (at a 5% signi�cance level) for horizons h = 15; :::; 20 days (see Table 2.1.4 in

24The outcome is similar for models 5-14 estimated with OLS: models 5, 7, 11 and 13 are able to show lower

RMSEs compared to the RW, in some horizons, for rolling window estimation (but these gains are not statistically

signi�cant at a 5% level). See Table 1.1.3 in Supplementary Appendix.
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the Supplementary Appendix).

These results are in line with a vast literature reporting the practical di¢ culty on

beating the naive random walk forecast in out-of-sample exercises (Mark, 1995).25

Now, we investigate a di¤erent empirical question: Can the competing models

forecast the direction of change for the FX rate? The test of Pesaran and Timmer-

mann (1992, 2009) is designed to answer this question. The results are presented

on Table 3.26

Table 3 - Test of direction of change

Monthly frequency
Pesaran & Timmermann (1992, 2009) direction of change test (p­value)
Model 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 0.02 0.02 0.80 0.72 0.34 0.43 0.19 0.32 0.04 0.68 0.29 0.23 0.04
h=2 0.00 0.12 0.85 0.00 0.29 0.51 0.03 0.29 0.02 0.19 0.04 0.01 0.01
h=3 0.00 0.08 0.46 0.00 0.09 0.43 0.07 0.02 0.08 0.20 0.06 0.90 0.01
h=4 0.07 0.87 0.00 0.01 0.61 0.08 0.00 0.03 0.52 0.11 0.74 0.00
h=5 0.01 0.79 0.00 0.10 0.98 0.28 0.03 0.12 0.25 0.02 0.73 0.00
h=6 0.05 0.75 0.00 0.12 0.75 0.55 0.04 0.16 0.53 0.00 0.78 0.00
h=7 0.00 0.82 0.00 0.15 0.31 0.90 0.06 0.30 0.01 0.00 0.05 0.00
h=8 0.00 0.82 0.00 0.60 0.05 0.36 0.44 0.00 0.22 0.00 0.82 0.00
h=9 0.00 0.88 0.00 0.38 0.14 0.63 0.50 0.00 0.04 0.00 0.15 0.00

h=10 0.00 0.58 0.00 0.10 0.24 0.82 0.32 0.00 0.17 0.00 0.50 0.08
h=11 0.00 0.88 0.00 0.06 0.38 0.91 0.14 0.00 0.02 0.00 0.01 0.01
h=12 0.00 0.73 0.00 0.03 0.55 0.55 0.21 0.00 0.00 0.00 0.00 0.00

Daily frequency
Pesaran & Timmermann (1992, 2009) direction of change test (p­value)
Model 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 0.00 0.81 0.05 0.00 0.00 0.03 0.03 0.00 0.00 0.57 0.00 0.76 0.00
h=2 0.04 0.03 0.82 0.01 0.81 0.65 0.90 0.56 0.00 0.12 0.63 0.02 0.03
h=3 0.68 0.24 0.58 0.00 0.62 0.98 0.97 0.76 0.02 0.05 0.03 0.13 0.00
h=4 0.85 0.73 0.93 0.00 0.42 0.49 0.67 0.94 0.03 0.57 0.09 0.75 0.00
h=5 0.05 0.76 0.86 0.00 0.40 0.55 0.78 0.78 0.09 0.98 0.09 0.48 0.01
h=6 0.42 0.94 0.48 0.00 0.15 0.89 0.70 0.26 0.03 0.28 0.04 0.38 0.01
h=7 0.36 0.91 0.10 0.00 0.05 0.68 0.63 0.08 0.05 0.20 0.03 0.44 0.01
h=8 0.42 0.95 0.01 0.10 0.09 0.83 0.57 0.23 0.01 0.63 0.01 0.12 0.00
h=9 0.04 0.53 0.01 0.07 0.25 0.95 0.96 0.36 0.02 0.09 0.00 0.01 0.00

h=10 0.97 0.46 0.00 0.02 0.19 0.96 0.88 0.14 0.02 0.15 0.01 0.01 0.00
h=11 0.01 0.57 0.00 0.01 0.24 0.91 0.87 0.12 0.02 0.05 0.01 0.35 0.00
h=12 0.54 0.26 0.00 0.02 0.15 0.83 0.93 0.09 0.00 0.01 0.00 0.39 0.00
h=13 0.64 0.32 0.00 0.01 0.10 0.92 0.83 0.11 0.00 0.19 0.00 0.60 0.00
h=14 0.49 0.24 0.00 0.00 0.09 0.76 0.95 0.12 0.02 0.37 0.01 0.53 0.00
h=15 0.11 0.27 0.00 0.00 0.07 0.99 0.71 0.12 0.03 0.24 0.04 0.36 0.00
h=16 0.05 0.29 0.00 0.00 0.08 0.99 0.53 0.05 0.04 0.19 0.05 0.50 0.00
h=17 0.38 0.18 0.00 0.00 0.05 0.90 0.63 0.07 0.04 0.09 0.04 0.31 0.00
h=18 0.29 0.19 0.00 0.00 0.04 0.91 0.62 0.09 0.06 0.08 0.05 0.20 0.00
h=19 0.02 0.20 0.00 0.00 0.04 0.86 0.65 0.12 0.08 0.30 0.07 0.23 0.00
h=20 0.00 0.22 0.00 0.00 0.06 0.60 0.91 0.12 0.07 0.30 0.12 0.15 0.00

Note: Recursive estimation. The null hypothesis assumes that the model has no power in predicting the

directional change of the FX rate. Table shows the p-values (blue cells indicate rejection of the null at a 5% level).

25Notice that given the very high in�ation di¤erential (between Brazil and the U.S.) a random walk with drift

could possibly be even harder to beat.
26The directional forecasts are based on the conditional mean of the density forecast (in all models, data frequen-

cies and estimation schemes).
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In fact, many models are able to predict the correct sign of the FX rate in

the future (see the blue cells on Table 3). In particular, model 2 (�nancial data),

model 3 (GARCH), model 5 (the bias-corrected survey forecast) and several models

based on macro fundamentals (in many horizons) can anticipate the monthly FX

rate directional movement (i.e., increase, decrease or no-change), which is naturally

easier to forecast compared to the magnitude of the exchange rate change h-periods

ahead. This �nding also holds for daily frequency, in which several models can

correctly predict the exchange rate directional change (e.g., models 2 and 5-14,

excepting models 11 and 13, for h = 1 day).

3.3 Density forecasts: Full-density analysis

Density forecast evaluation has become popular in the �elds of time series forecasting

and risk evaluation (Ko and Park, 2013) and related formal testing procedures have

been developed by several studies.27 Here, we estimate all the 14 models, in the

2 estimation schemes, both frequencies, and all considered forecast horizons, for a

grid of 99 quantile levels � , in which � = f0:01; 0:02; :::; 0:99g: We start the full-

density evaluation by presenting in Figure 3, for illustrative purposes, the estimated

conditional Probability Density Functions (PDFs) of the R$/US$ exchange rate at

December 2014, constructed with di¤erent forecast horizons and monthly frequency.

Note from Figure 3 that the variance monotonically increases as long as the fore-

cast horizon augments (i.e. the average variance across the 14 models moves from

0.12 to 0.23, 0.27 and 0.41 for h =1, 3, 6, and 12, respectively). Moreover, note that

the PDFs of models 1, 3 and 4 are symmetric (i.e. models 1 and 4 use a Gaussian

distribution and model 3 employs a Student�s t distribution) whereas the remaining

PDFs clearly exhibit asymmetry and kurtosis (which is due to the nonparametric

technique for extracting RND from option prices in model 2 and the quantile re-

gression technique in models 5-14). On average, the 14 models exhibit a positive

skewness (indicating that the conditional mean is not equal to the conditional me-

dian) and kurtosis above 3 (suggesting leptokurtic distributions, with fatter tails).28

27A good review of various testing methods in density forecasting is provided by Corradi and Swanson (2006).
28The average skewness (across the 14 models) is 0.46, 0.89, 0.97 and 0.73 for h =1, 3, 6, and 12, respectively.

The average kurtosis (across the 14 models) is 4.66, 5.80, 5.66 and 3.69 for h =1, 3, 6, and 12, respectively.
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These empirical �ndings can be related to the exchange rate dynamics observed

in Brazil in the 2000-2015 period (see Figure 1), with several (and long) periods

of gradual FX rate appreciation and a few (and short) periods of sharp currency

depreciation.

Figure 3 - Conditional PDFs of R$/US$ at December 2014

Note: Recursive estimation, monthly frequency, forecast horizons h=1, 3, 6 and 12 months.

Vertical line denotes the actual FX rate at December 2014 (R$2.66/US$).

Regarding coverage rates for the 70% interval band (in the Supplementary Ap-

pendix), besides the relatively good result for several models, in many cases (in

monthly and daily frequencies), the bias-corrected survey density forecast (model 5)

is the only model not rejected at a 5% con�dence level, in all horizons, both sam-

pling schemes, and both density estimations (QR or OLS). On the other hand, the

rolling window estimation scheme, in general, yields slightly more accurate interval

forecasts (i.e., coverage rates closer to the 70% nominal rate) compared to the re-

cursive estimation, in line with the previous �ndings of Clark (2011, p.336).29 As a

29The referred author also argues that: "For a given model, di¤erences in coverage across horizons likely re�ect

a variety of forces, making a single explanation di¢ cult. One force is sampling error. Even if a model were

correctly speci�ed, random variation in a given data sample could cause the empirical coverage rate to di¤er from

the nominal. Sampling error increases with the forecast horizon, due to the overlap of forecast errors for multistep
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robustness check, we also perform the 50% and 90% interval bands, which (overall)

point to similar conclusions.

In respect to the Berkowitz (2001) test, Table 4 suggests that, for h = 1, monthly

frequency, all economic-driven approaches (models 6-14), excepting model 9, present

an adequate density forecast at the usual 5% signi�cance level. For medium-term

horizons (h = 2; 3) there are some models not rejected by the Berkowitz test (e.g.

model 10, in both horizons). For longer horizons (h > 3), with very few exceptions

(e.g. models 6 and 9, in some horizons), there is no predominant model to properly

forecast the FX rate density. A similar result is obtained for rolling window esti-

mation, where economic-driven models, overall, are not rejected by the Berkowitz

test at short horizons (h = 1 to 3 months). Regarding the alternative models 5-14

estimated with OLS, it seems that the Gaussian density, coupled with OLS estima-

tion, does not provide a good density forecast based on the Berkowitz test. On the

other hand, the results for the daily frequency indicate p-values below 0.01 in all

considered cases (and, thus, are not reported).

Table 4 - Berkowitz (2001) density test
Berkowitz test (p­value)
Model 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 0.00 0.00 0.00 0.00 0.03 0.05 0.90 0.06 0.02 0.48 0.65 0.52 0.32 0.18
h=2 0.00 0.00 0.00 0.00 0.04 0.00 0.92 0.00 0.00 0.62 0.05 0.43 0.01 0.48
h=3 0.00 0.00 0.00 0.00 0.00 0.55 0.01 0.00 0.34 0.14 0.00 0.04 0.00 0.01
h=4 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
h=5 0.00 0.00 0.00 0.00 0.00 0.10 0.01 0.13 0.09 0.00 0.00 0.00 0.00 0.00
h=6 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.82 0.00 0.00 0.00 0.00 0.00
h=7 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.14 0.19 0.00 0.00 0.00 0.00 0.00
h=8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00
h=9 0.00 0.00 0.00 0.00 0.00 0.67 0.01 0.00 0.00 0.00 0.01 0.00 0.00 0.00

h=10 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
h=11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00
h=12 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Notes: Table shows p-values from recursive estimation with monthly frequency. The p-values

for recursive estimation with daily frequency are not reported since they are all below the 1%

signi�cance level. Gray cell indicates p-value>0.05.

horizons (e¤ectively reducing the number of independent observations relative to the one-step horizon). Of course,

an increased sampling error across horizons will translate into reduced power to detect departures from accurate

coverage."
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Table 5 - Knüppel (2015) density test

Monthly frequency
Knüppel (2015): test statistic (p­value)
Model 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 19.02 21.74 20.29 13.56 4.98 11.43 3.04 10.13 13.34 4.80 1.11 5.49 1.87 5.49

(0) (0) (0) (0 .01) (0.29) (0 .02) (0.55) (0 .04) (0 .01) (0.31) (0.89) (0.24) (0.76) (0.24)

h=2 16.78 17.01 8.93 12.85 2.95 9.62 4.68 10.36 10.35 4.27 2.00 3.73 1.38 4.54
(0) (0) (0.06) (0 .01) (0.57) (0 .05) (0.32) (0.03) (0.03) (0.37) (0.74) (0.44) (0.85) (0.34)

h=3 14.38 13.76 5.97 10.85 3.59 5.05 2.41 5.72 4.93 5.62 2.67 7.03 3.77 5.83
(0 .01) (0 .01) (0.2) (0 .03) (0.47) (0.28) (0.66) (0.22) (0.29) (0.23) (0.62) (0.13) (0.44) (0.21)

h=4 12.53 5.00 5.29 2.48 7.77 5.88 7.40 6.14 2.22 2.40 3.61 2.47 5.14
(0 .01) (0.29) (0.26) (0.65) (0.1) (0.21) (0.12) (0.19) (0.69) (0.66) (0.46) (0.65) (0.27)

h=5 6.25 6.98 4.48 2.55 8.38 5.39 7.78 7.39 3.38 1.56 4.91 1.59 4.35
(0.18) (0.14) (0.35) (0.64) (0.08) (0.25) (0.1) (0.12) (0.5) (0.82) (0.3) (0.81) (0.36)

h=6 5.27 7.46 4.46 2.87 6.84 3.75 5.98 6.38 1.62 2.22 3.39 2.13 4.03
(0.26) (0.11) (0.35) (0.58) (0.14) (0.44) (0.2) (0.17) (0.81) (0.7) (0.5) (0.71) (0.4)

h=7 5.59 7.89 3.95 3.00 6.80 4.14 7.06 4.81 2.51 1.97 3.84 1.87 4.54
(0.23) (0.1) (0.41) (0.56) (0.15) (0.39) (0.13) (0.31) (0.64) (0.74) (0.43) (0.76) (0.34)

h=8 5.47 7.71 4.20 2.71 7.70 3.59 5.37 5.58 2.45 1.37 3.93 1.35 4.96
(0.24) (0.1) (0.38) (0.61) (0.1) (0.46) (0.25) (0.23) (0.65) (0.85) (0.42) (0.85) (0.29)

h=9 6.12 6.47 4.95 2.95 6.24 6.40 4.97 4.51 2.89 1.87 3.62 2.15 5.16
(0.19) (0.17) (0.29) (0.57) (0.18) (0.17) (0.29) (0.34) (0.58) (0.76) (0.46) (0.71) (0.27)

h=10 3.89 6.10 4.18 3.51 4.59 5.94 4.74 3.81 3.18 2.24 3.57 1.89 4.78
(0.42) (0.19) (0.38) (0.48) (0.33) (0.2) (0.32) (0.43) (0.53) (0.69) (0.47) (0.76) (0.31)

h=11 2.81 6.09 4.83 4.36 3.99 3.40 4.12 4.74 3.61 3.23 4.04 2.76 3.36
(0.59) (0.19) (0.31) (0.36) (0.41) (0.49) (0.39) (0.32) (0.46) (0.52) (0.4) (0.6) (0.5)

h=12 3.88 5.91 5.60 4.44 5.33 3.70 3.92 3.66 4.49 4.05 5.11 4.51 2.98
(0.42) (0.21) (0.23) (0.35) (0.25) (0.45) (0.42) (0.45) (0.34) (0.4) (0.28) (0.34) (0.56)

Daily frequency
Knüppel (2015): test statistic (p­value)
Model 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 114.73 8.23 163.73 19.68 53.95 10.45 9.03 4.84 12.30 35.54 7.95 14.93 10.26 5.74

(0) (0.08) (0) (0) (0) (0.03) (0.06) (0.3) (0.02) (0) (0.09) (0) (0.04) (0.22)

h=2 93.82 8.39 108.30 19.68 46.06 15.69 5.48 4.79 28.11 31.39 5.21 20.04 6.77 12.79
(0) (0.08) (0) (0) (0) (0) (0.24) (0.31) (0) (0) (0.27) (0) (0.15) (0.01)

h=3 80.76 9.89 49.07 19.67 38.75 13.43 2.62 8.56 22.98 27.47 3.83 17.14 4.52 14.99
(0) (0 .04) (0) (0) (0) (0.01) (0.62) (0.07) (0) (0) (0.43) (0) (0.34) (0)

h=4 81.87 13.09 42.23 19.65 37.09 11.91 0.69 8.03 19.68 20.17 4.79 10.25 5.74 12.56
(0) (0.01) (0) (0) (0) (0.02) (0.95) (0.09) (0) (0) (0.31) (0.04) (0.22) (0.01)

h=5 76.88 21.03 40.63 19.64 28.60 8.70 0.48 8.08 13.01 15.05 2.89 7.07 3.40 9.50
(0) (0) (0) (0) (0) (0.07) (0.98) (0.09) (0.01) (0) (0.58) (0.13) (0.49) (0.05)

h=6 75.08 26.62 37.96 19.62 23.67 8.40 0.94 7.10 11.36 14.16 3.79 6.68 4.60 8.20
(0) (0) (0) (0) (0) (0.08) (0.92) (0.13) (0.02) (0.01) (0.43) (0.15) (0.33) (0.08)

h=7 75.54 7.47 35.77 19.59 20.68 8.95 1.49 7.71 12.20 13.18 5.64 6.27 6.43 7.60
(0) (0.11) (0) (0) (0) (0.06) (0.83) (0.1) (0.02) (0.01) (0.23) (0.18) (0.17) (0.11)

h=8 70.96 12.17 31.71 19.56 20.57 7.91 1.54 7.64 10.80 10.48 6.51 5.08 7.35 7.96
(0) (0 .02) (0) (0) (0) (0.1) (0.82) (0.11) (0.03) (0.03) (0.16) (0.28) (0.12) (0.09)

h=9 69.36 17.18 29.37 19.52 20.05 7.69 1.04 7.98 9.69 8.71 6.63 5.64 8.17 8.56
(0) (0) (0) (0) (0) (0.1) (0.9) (0.09) (0.05) (0.07) (0.16) (0.23) (0.09) (0.07)

h=10 63.31 16.98 21.86 19.51 20.88 7.29 0.65 8.68 10.15 9.21 6.03 6.92 7.47 8.90
(0) (0) (0) (0) (0) (0.12) (0.96) (0.07) (0.04) (0.06) (0.2) (0.14) (0.11) (0.06)

h=11 60.97 26.61 20.21 19.49 22.79 8.12 0.49 8.93 11.06 9.26 5.61 7.44 6.81 8.18
(0) (0) (0) (0) (0) (0.09) (0.97) (0.06) (0.03) (0.05) (0.23) (0.11) (0.15) (0.09)

h=12 57.19 29.93 18.08 19.58 22.26 8.54 0.43 9.35 11.03 8.94 5.29 7.17 6.47 8.22
(0) (0) (0) (0) (0) (0.07) (0.98) (0.05) (0.03) (0.06) (0.26) (0.13) (0.17) (0.08)

h=13 53.82 14.62 16.08 19.56 25.00 9.61 0.67 9.08 12.98 8.93 5.81 6.86 7.11 7.58
(0) (0.01) (0) (0) (0) (0.05) (0.96) (0.06) (0.01) (0.06) (0.21) (0.14) (0.13) (0.11)

h=14 53.07 14.03 15.89 19.56 26.29 10.86 0.92 9.51 13.87 9.66 4.54 7.07 5.58 7.55
(0) (0.01) (0) (0) (0) (0.03) (0.92) (0.05) (0.01) (0.05) (0.34) (0.13) (0.23) (0.11)

h=15 50.96 9.94 13.95 19.55 25.49 10.05 0.52 9.31 13.29 9.40 4.39 7.28 5.32 6.87
(0) (0 .04) (0.01) (0) (0) (0.04) (0.97) (0.05) (0.01) (0.05) (0.36) (0.12) (0.26) (0.14)

h=16 48.28 8.96 13.26 19.53 24.37 9.70 0.45 7.77 13.86 9.27 4.22 7.24 5.45 5.89
(0) (0.06) (0.01) (0) (0) (0.05) (0.98) (0.1) (0.01) (0.05) (0.38) (0.12) (0.24) (0.21)

h=17 47.56 10.77 13.03 19.54 25.10 9.00 0.37 7.72 13.44 9.17 3.64 7.40 4.50 6.52
(0) (0 .03) (0.01) (0) (0) (0.06) (0.98) (0.1) (0.01) (0.06) (0.46) (0.12) (0.34) (0.16)

h=18 47.95 11.28 12.53 19.49 23.41 8.81 0.30 7.59 12.31 9.79 3.46 7.07 4.24 7.10
(0) (0 .02) (0.01) (0) (0) (0.07) (0.99) (0.11) (0.02) (0.04) (0.48) (0.13) (0.37) (0.13)

h=19 45.64 13.94 12.87 19.49 20.92 7.73 0.39 7.16 11.66 8.72 3.00 6.48 3.69 6.88
(0) (0.01) (0.01) (0) (0) (0.1) (0.98) (0.13) (0.02) (0.07) (0.56) (0.17) (0.45) (0.14)

h=20 45.17 12.35 14.62 19.46 20.17 8.69 0.49 7.59 12.91 8.39 2.73 6.79 3.19 7.68
(0) (0.01) (0.01) (0) (0) (0.07) (0.97) (0.11) (0.01) (0.08) (0.6) (0.15) (0.53) (0.1)

Note: Recursive estimation. Null hypothesis assumes correct calibration of the density forecast. Tables show the

test statistic (and p-values in parentheses). We employ the �rst four raw moments to build the test statistic.

Bold values highlight rejection of the test at a 5% signi�cance level.
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Regarding the Knüppel (2015) test, Table 5 reveals that no model is rejected

for h > 4 months. In addition, models 5, 7 and 10-14 indeed are not rejected in

any horizon (a similar result holds for rolling window estimation). The results for

daily frequency show a slightly di¤erent picture, where only models 7 and 11 are

not rejected (at 5% level) in any horizon.

Table 6 - Ranking of density models according to the LPDS

Monthly frequency
Rank of models based on LPDS
Model 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 7 13 2 10 1 12 6 8 14 11 3 9 4 5
h=2 6 11 4 8 3 13 5 12 14 10 1 9 2 7
h=3 5 10 4 6 3 13 9 12 14 11 2 8 1 7
h=4 4 50 3 6 5 13 9 11 12 8 1 10 2 7
h=5 4 50 5 6 3 13 7 9 12 10 2 11 1 8
h=6 4 50 6 5 3 12 7 9 13 11 2 10 1 8
h=7 4 50 7 5 3 12 6 10 13 9 2 11 1 8
h=8 3 50 10 4 5 11 6 8 9 12 2 13 1 7
h=9 4 50 10 3 8 11 6 7 9 12 2 13 1 5

h=10 5 50 12 4 8 11 1 7 9 10 3 13 2 6
h=11 6 50 11 2 5 12 1 8 10 9 4 13 3 7
h=12 5 50 13 1 2 12 6 9 11 7 3 10 4 8

Daily frequency
Rank of models based on LPDS
Model 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
h=1 12 14 7 13 1 11 5 6 10 8 3 9 4 2
h=2 12 14 1 13 2 10 6 7 11 9 3 8 4 5
h=3 12 14 1 13 2 11 5 7 10 9 3 8 4 6
h=4 12 14 1 13 2 10 6 7 11 8 3 9 4 5
h=5 12 14 1 13 2 11 5 7 10 8 3 9 4 6
h=6 12 14 2 13 1 10 6 7 11 9 3 8 4 5
h=7 12 14 4 13 1 10 6 8 11 9 2 7 3 5
h=8 12 14 5 13 1 10 6 7 11 9 2 8 3 4
h=9 12 14 4 13 3 10 6 9 11 8 2 7 1 5

h=10 12 14 4 13 3 11 6 9 10 8 1 7 2 5
h=11 10 14 4 13 3 12 6 9 11 8 1 7 2 5
h=12 10 14 5 13 3 11 6 9 12 7 1 8 2 4
h=13 10 14 6 13 3 11 5 9 12 7 1 8 2 4
h=14 11 14 6 13 3 10 4 7 12 9 1 8 2 5
h=15 10 14 6 13 3 11 4 7 12 9 1 8 2 5
h=16 7 14 6 13 3 12 5 8 11 9 1 10 2 4
h=17 7 14 6 13 1 11 4 8 12 9 2 10 3 5
h=18 8 14 6 12 1 11 5 9 13 7 3 10 2 4
h=19 7 14 6 11 1 12 5 10 13 9 2 8 3 4
h=20 6 14 7 9 1 12 5 11 13 8 3 10 2 4

Note: Recursive estimation. The best three models according to the LPDS rank ordering

(i.e. higher LPDS �gures) are highlighted in yellow for each horizon.

On the other hand, the LPDS ranking shown on Table 6 indicates, in general,

model 5 (at short to medium horizons) and models 11 and 13 (almost all horizons)

as the best-ranked models at monthly frequency. The results from rolling window

(in the Supplementary Appendix) point out to models 1 and 4 (excepting some short

horizons) as the best ones in the LPDS sense, whereas the OLS-Gaussian density

estimation seems to improve the LPDS of models 6-9, for many horizons, vis-à-vis

models 5 and 10-14. The daily frequency indicates a similar outcome, with models
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5 and 11 in the Top3-ranking, for all horizons, followed by models 3 and 13, which

also entered the best-three group of models for several horizons.

Now, we turn to an interesting empirical question, by investigating the RW

paradigm from a density forecast perspective: Is it possible to beat the RW den-

sity forecast? To answer this question, we use the Amisano-Giacomini (2007) test,

which compares the log score distance between two competing models. Because the

theoretical setup of the test proposed by Amisano and Giacomini requires estimates

with rolling samples of data, we only apply the test to the models estimated with

the rolling window scheme.30

The null hypothesis assumes equal LPDS between model 1 (RW) and model

m 6= 1. A negative test statistic indicates a higher LPDS of model m in comparison

to the RW approach (i.e. model m is better than the RW, in the LPDS sense). In

Table 7, the negative �gures are highlighted in gray, whereas the green cells indicate

negative values which are also statistically signi�cant (at a 5% signi�cant level);

that is, green values indicate those cases where the density forecast has a LPDS

statistically higher when compared to the random walk-based density forecast.

In the monthly frequency, note that the random walk density approach is over-

whelmed in several cases (i.e. negative test statistics on Table 7, highlighted in gray).

Models 3, 4, 7, 11 and 14 showed a relatively superior performance in respect to the

RW in some horizons, although the LPDS di¤erence (in all cases) is not statistically

signi�cant at the usual 5% signi�cance level.31 Regarding the daily frequency, the

green cells depicted on Table 7 indicate the many cases which statistically defeat

the random walk density forecast (e.g. all models, excepting models 2 and 4, for

horizons up to 6 days; and model 11 for h = 1; :::; 18 days). Table 8 summarizes the

results of the full-density analysis by presenting the recommended models based on

recursive estimation.32

30We use the unweighted version of the Amisano-Giacomini (2007) test since, among others, Diks et al. (2011)

noted that the weighted version of the test is improper, meaning that it can assign a higher average score to an

incorrect density forecast than to the true conditional density, which is undesirable.
31The di¢ culty of the competing density forecasts to outperform the random walk approach on monthly frequency

should not be a surprise given the probable low power of the considered evaluation methods due to a relatively short

sample size (around 100 out-of-sample observations) to perform forecast comparison. In contrast, empirical exercises

usually reported in the empirical �nance literature (e.g. using daily returns) are based on sample sizes of thousands

of observations.
32A given model is only presented on Table 8 if it is recommended by a given evaluation test/procedure.
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Table 7 - Amisano-Giacomini (2007) test applied to average LPDS

Monthly frequency - rolling window
Amisano­Giacomini (2007): test statistic (p­value)
Model 2b 3b 4b 5b 6b 7b 8b 9b 5b 11b 12b 13b 14b
h=1 0.18 ­0.05 0.01 0.04 0.09 ­0.03 0.07 0.20 0.13 ­0.01 0.02 0.03 ­0.05

(0.01) (0.48) (0.88) (0.68) (0.2) (0.73) (0.47) (0.03) (0.12) (0.9) (0.82) (0.77) (0.41)

h=2 0.20 0.03 0.04 0.14 0.25 0.05 0.25 0.45 0.14 0.13 0.19 0.17 0.10
(0) (0.67) (0.01) (0.32) (0.07) (0.59) (0.08) (0.01) (0.21) (0.37) (0.09) (0.26) (0.34)

h=3 0.10 0.10 0.02 0.01 0.20 ­0.03 0.20 0.55 0.15 ­0.03 0.19 0.01 0.19
(0.2) (0.43) (0.33) (0.91) (0.06) (0.57) (0.23) (0) (0.29) (0.76) (0.12) (0.9) (0.18)

h=4 0.94 0.15 0.01 0.02 0.34 0.15 0.33 0.44 0.30 0.19 0.39 0.17 0.36
(0.01) (0.35) (0.5) (0.86) (0.01) (0.17) (0.04) (0) (0.11) (0.27) (0.05) (0.23) (0.09)

h=5 ­0.01 0.20 ­0.01 0.03 0.49 0.01 0.33 0.51 0.31 0.02 0.52 0.04 0.37
(0.93) (0.31) (0.75) (0.84) (0.01) (0.91) (0.14) (0.01) (0.1) (0.88) (0.01) (0.73) (0.06)

h=6 ­0.03 0.26 0.01 0.05 0.26 0.04 0.31 0.37 0.38 0.09 0.61 0.16 0.45
(0.79) (0.22) (0.57) (0.66) (0) (0.56) (0.01) (0.01) (0.13) (0.48) (0.02) (0.27) (0.04)

h=7 ­0.09 0.27 ­0.03 0.00 0.30 0.05 0.50 0.37 0.44 0.04 0.63 0.10 0.36
(0.43) (0.18) (0.46) (0.97) (0.01) (0.69) (0.07) (0.05) (0.11) (0.75) (0.03) (0.52) (0.14)

h=8 ­0.11 0.32 ­0.04 0.06 0.19 0.16 0.41 0.33 0.47 0.05 0.67 0.05 0.52
(0.33) (0.14) (0.41) (0.67) (0.1) (0.36) (0.02) (0.08) (0.14) (0.69) (0.02) (0.67) (0.07)

h=9 ­0.12 0.66 ­0.04 0.18 0.22 0.27 0.48 0.14 0.51 0.30 0.70 0.33 0.48
(0.26) (0.06) (0.35) (0.29) (0.04) (0.28) (0.06) (0.23) (0.13) (0.17) (0.03) (0.2) (0.1)

h=10 ­0.13 0.99 ­0.04 0.07 0.18 0.30 0.52 0.08 0.54 0.17 0.83 0.15 0.51
(0.22) (0.03) (0.35) (0.56) (0.05) (0.3) (0.06) (0.4) (0.13) (0.27) (0.04) (0.3) (0.08)

h=11 ­0.14 1.26 ­0.05 0.04 0.35 0.26 0.57 0.17 0.51 0.12 0.65 0.22 0.57
(0.19) (0.02) (0.29) (0.77) (0.08) (0.35) (0.04) (0.04) (0.17) (0.39) (0.08) (0.19) (0.05)

h=12 ­0.12 1.45 ­0.02 0.10 0.36 0.14 0.60 0.29 0.53 0.09 0.79 0.14 0.54
(0.22) (0.01) (0.23) (0.52) (0.07) (0.14) (0.02) (0.03) (0.15) (0.3) (0.08) (0.26) (0.02)

Daily frequency - rolling window
Amisano­Giacomini (2007): test statistic (p­value)
Model 2b 3b 4b 5b 6b 7b 8b 9b 10b 11b 12b 13b 14b
h=1 1.84 ­0.07 0.63 ­0.10 ­0.09 ­0.10 ­0.11 ­0.10 ­0.10 ­0.11 ­0.10 ­0.12 ­0.13

(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

h=2 2.20 ­0.13 0.46 ­0.11 ­0.10 ­0.11 ­0.10 ­0.10 ­0.09 ­0.11 ­0.10 ­0.11 ­0.11
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

h=3 2.90 ­0.13 0.37 ­0.10 ­0.08 ­0.10 ­0.09 ­0.10 ­0.09 ­0.11 ­0.10 ­0.11 ­0.11
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

h=4 1.72 ­0.11 0.31 ­0.09 ­0.08 ­0.09 ­0.09 ­0.09 ­0.08 ­0.11 ­0.09 ­0.10 ­0.10
(0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0)

h=5 1.54 ­0.11 0.25 ­0.11 ­0.08 ­0.10 ­0.09 ­0.08 ­0.09 ­0.12 ­0.07 ­0.12 ­0.11
(0) (0) (0) (0) (0.01) (0) (0) (0.01) (0) (0) (0.01) (0) (0)

h=6 1.55 ­0.09 0.22 ­0.09 ­0.06 ­0.07 ­0.08 ­0.07 ­0.07 ­0.10 ­0.07 ­0.10 ­0.10
(0) (0) (0) (0) (0.03) (0.01) (0.01) (0.03) (0.01) (0) (0.01) (0) (0)

h=7 1.77 ­0.07 0.19 ­0.09 ­0.05 ­0.06 ­0.07 ­0.06 ­0.07 ­0.09 ­0.07 ­0.10 ­0.10
(0) (0.01) (0) (0) (0.11) (0.07) (0.06) (0.11) (0.01) (0) (0.03) (0) (0)

h=8 1.54 ­0.06 0.17 ­0.08 ­0.04 ­0.06 ­0.06 ­0.05 ­0.05 ­0.09 ­0.06 ­0.09 ­0.09
(0) (0.03) (0) (0) (0.25) (0.1) (0.1) (0.14) (0.09) (0) (0.05) (0) (0)

h=9 1.45 ­0.04 0.15 ­0.08 ­0.03 ­0.05 ­0.05 ­0.03 ­0.04 ­0.08 ­0.04 ­0.08 ­0.08
(0) (0.12) (0) (0) (0.49) (0.15) (0.22) (0.45) (0.13) (0) (0.18) (0) (0.01)

h=10 1.34 ­0.03 0.13 ­0.07 ­0.03 ­0.05 ­0.05 ­0.03 ­0.04 ­0.08 ­0.05 ­0.08 ­0.07
(0) (0.23) (0) (0) (0.36) (0.15) (0.15) (0.44) (0.15) (0) (0.13) (0) (0.01)

h=11 1.32 ­0.02 0.11 ­0.07 ­0.01 ­0.04 ­0.03 ­0.01 ­0.02 ­0.07 ­0.03 ­0.08 ­0.06
(0) (0.53) (0) (0.01) (0.74) (0.24) (0.45) (0.88) (0.47) (0) (0.44) (0) (0.04)

h=12 1.43 ­0.01 0.09 ­0.06 ­0.02 ­0.03 ­0.03 0.01 ­0.03 ­0.08 ­0.03 ­0.08 ­0.06
(0) (0.75) (0.02) (0.04) (0.65) (0.46) (0.5) (0.83) (0.41) (0) (0.32) (0) (0.04)

h=13 1.38 0.00 0.07 ­0.06 ­0.01 ­0.02 ­0.01 0.03 ­0.03 ­0.07 ­0.02 ­0.07 ­0.06
(0) (0.95) (0.07) (0.07) (0.87) (0.58) (0.77) (0.59) (0.37) (0) (0.67) (0) (0.05)

h=14 1.40 0.00 0.05 ­0.07 0.02 ­0.02 0.00 0.04 ­0.02 ­0.07 ­0.01 ­0.07 ­0.06
(0) (0.99) (0.23) (0.06) (0.73) (0.64) (0.93) (0.47) (0.61) (0.01) (0.79) (0.01) (0.12)

h=15 1.16 0.01 0.02 ­0.06 0.00 ­0.02 0.00 0.05 ­0.02 ­0.08 ­0.01 ­0.08 ­0.07
(0) (0.79) (0.63) (0.14) (0.92) (0.7) (0.93) (0.42) (0.62) (0) (0.75) (0) (0.07)

h=16 1.22 0.02 0.00 ­0.07 0.02 ­0.01 0.01 0.07 ­0.02 ­0.08 ­0.01 ­0.08 ­0.06
(0) (0.67) (1) (0.16) (0.74) (0.88) (0.93) (0.27) (0.73) (0.02) (0.83) (0.02) (0.15)

h=17 1.31 0.04 ­0.01 ­0.07 0.05 0.01 0.03 0.11 0.00 ­0.07 ­0.01 ­0.07 ­0.06
(0) (0.41) (0.83) (0.21) (0.37) (0.8) (0.61) (0.12) (0.98) (0.04) (0.89) (0.06) (0.22)

h=18 1.32 0.03 ­0.04 ­0.08 0.05 0.00 0.04 0.11 0.00 ­0.07 ­0.01 ­0.08 ­0.07
(0) (0.44) (0.51) (0.2) (0.41) (0.94) (0.6) (0.14) (0.97) (0.04) (0.89) (0.04) (0.15)

h=19 1.47 0.04 ­0.05 ­0.08 0.06 0.01 0.04 0.12 0.00 ­0.07 0.00 ­0.08 ­0.06
(0) (0.38) (0.39) (0.2) (0.35) (0.82) (0.58) (0.12) (0.98) (0.07) (0.94) (0.06) (0.19)

h=20 1.43 0.05 ­0.06 ­0.08 0.05 0.02 0.05 0.13 0.01 ­0.07 0.00 ­0.08 ­0.06
(0) (0.27) (0.3) (0.24) (0.4) (0.75) (0.48) (0.12) (0.85) (0.08) (0.95) (0.06) (0.21)

Note: Null hypothesis of zero average di¤erence in LPDS between model 1 (benchmark) and modelm 6= 1.

Similar to Clark (2011), the p-values are computed by regressions of di¤erences in log scores (time series)

on a constant, using the Newey-West estimator of the variance of the regression constant (with a bandwidth

of 0 at the 1-month horizon and 1.5�horizon for other cases). Gray cells denote that modelm is better than

the RW in the LPDS sense. Green cells indicatem is statistically better (at a 5% level) than the RW.
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Table 8 - Selected models - Full-density analysis

Monthly frequency
Horizon (months) Coverage rate LPDS Knüppel test Berkowitz test

1 5,7,10,11,12,13,14 3,5,11 5,7,10,11,12,13,14 6,7,8,10,11,12,13,14

2 3,5,7,11,13 5,11,13 3,5,7,10,11,12,13,14 7,10,11,12,14

3 3,5,7,11,12,13 5,11,13 3,5,6,7,8,9,10,11,12,13,14 6,9,10

6 5,7,10,11,12,13,14 5,11,13 1,3,4,5,6,7,8,9,10,11,12,13,14 9

9 5,6,7,8,9,10,11,12,14 4,11,13 1,3,4,5,6,7,8,9,10,11,12,13,14 6

12 5,6,7,8,9,10,12,14 4,5,11 1,3,4,5,6,7,8,9,10,11,12,13,14 -

Daily frequency
Horizon (days) Coverage rate LPDS Knüppel test AG test

1 7,11,13 5,11,14 2,7,8,11,14 3,5,6,7,8,9,10,11,12,13,14

2 11,13 3,5,11 2,7,8,11,13 3,5,6,7,8,9,10,11,12,13,14

3 2,7,11,13 3,5,11 7,8,11,13 3,5,6,7,8,9,10,11,12,13,14

5 3,7,11,13 3,5,11 6,7,8,11,12,13 3,5,6,7,8,9,10,11,12,13,14

10 3,7,11,13 5,11,13 6,7,8,10,11,12,13,14 5,11,13,14

20 7,11,13 5,11,13 6,7,8,10,11,12,13,14 -

Notes: Column 2 shows the models that presented a p-value above 0.05 in the coverage rate analysis.

Column of LPDS shows the best 3 models according to the LPDS ranking. Columns of Knüppel and

Berkowitz exhibit models not rejected (p-value>5%) in the respective tests. Column of AG test

presents the models that statistically beat the RW density forecast (at a 5% signi�cance level) in the

Amisano-Giacomini (2007) test. No model is selected in the AG test at monthly frequency as well as

in the Berkowitz (2001) test at daily frequency.

By comparing the results based on PITs (i.e. Berkowitz, 2001; and Knüppel,

2015) and the LPDS ranking shown on Table 8, note that the Top3 forecasts ac-

cording to the LPDS ranking also belong to the set of density forecasts recommended

by the Knüppel test (i.e. p-value>5%) for all cases with monthly frequency (except-

ing model 3, for h = 1); and often belong to the set of forecasts with good coverage

rates (70% interval band). However, besides model 11 (for h = 1; 2), the mapping

between the results on the LPDS and the Berkowitz test is less clear when compared

to the one from Knüppel test; probably due to the fact that the former test is origi-

nally designed to test densities only for h = 1, whereas the latter test is constructed

to properly deal with h � 1 forecast horizons.33 Regarding daily frequency, the

direct link between �rst-ranked LPDS forecasts and well-calibrated PITs (or good

coverage rates) seems to be weaker compared to the results from monthly frequency.

On the other hand, also note from Table 8 the non-trivial amount of models

(for several horizons at daily frequency) able to generate statistically better density

33 In theory, we expect densities with higher LPDS to be better calibrated (according to the PITs); although in

�nite samples (for misspeci�ed densities) the rankings can be distorted. Moreover, a well-calibrated density should

be preferred by all loss functions (see Diebold et al., 1998) and indeed ranked �rst in any local evaluation too.

27



forecasts compared to the random walk approach (in AG test); which does not

happen at monthly frequency.

3.4 Density forecasts: Local analysis

Now, we investigate the predictive accuracy of the density models under a local

analysis approach. The idea is to check the performance of distinct parts of the

conditional distribution, estimated through di¤erent approaches. A given model to

generate the whole conditional density of the variable of interest might produce, for

instance, an "adequate" risk measure for the left tail of the distribution (i.e., at

low percentiles) but, at the same time, can generate "poor" risk measures at the

central part (or at the right tail) of the distribution. For this reason, we next analyze

the density models through the lens of their respective performance along a grid of

selected quantile levels � = f0:1; 0:2; :::; 0:9g; in order to cover the key parts of the

conditional distribution.34

A percentile of the conditional distribution, called here simply as a "conditional

quantile", can also be viewed as a Value-at-Risk (VaR) measure (see Christo¤ersen

et al., 2001). As pointed out by Wang and Wu (2012), the VaR is a prevalent risk

management tool used by investors. It is essentially a one-sided forecast interval

measuring downside risks. For this reason, the forecast evaluation of the selected

"slices" of the distribution can naturally be conducted by using the many statistical

tests available in the risk management literature, also known as "backtests" (see

Jorion (2007) and Crouhy et al. (2001) for a good review). In this paper, we employ

four procedures to conduct the local analysis: Local Forecast Coverage Rate, Kupiec

(1995) test, Christo¤ersen (1998) test, and VQR test (see Appendix B3 for more

details); although many more tests are currently available in the literature.35 The

results are shown on Table 9 (for h = 1, recursive estimation, monthly frequency).36

34 It is worth mentioning that an analysis at extreme quantile levels (e.g., � = 0:995) is possible within our
framework, although it would require a much higher number of observations in order to generate signi�cant model

estimates.
35Such as the nonparametric test of Crnkovic and Drachman (1997), the duration approach of Christo¤ersen and

Pelletier (2004), the CAViaR setup of Engle and Manganelli (2004) and the Ljung-Box type-test of Berkowitz et al.

(2008), among many others.
36See the Supplementary Appendix for further results on monthly frequency and all results based on daily

frequency.
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Table 9 - Local coverage rates and backtests for selected percentiles

Monthly frequency, recursive estimation, h=1
Forecast coverage rates:  %  of actual outcomes below the nominal quantile level (tau)

h=1
tau 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
0.1 0.01 0.01 0.01 0.00 0.06 0.18 0.14 0.20 0.18 0.12 0.09 0.12 0.09 0.16
0.2 0.05 0.02 0.11 0.03 0.14 0.28 0.22 0.24 0.24 0.22 0.20 0.18 0.20 0.24
0.3 0.12 0.03 0.23 0.06 0.22 0.32 0.29 0.31 0.32 0.31 0.30 0.29 0.30 0.31
0.4 0.28 0.03 0.33 0.26 0.32 0.42 0.37 0.44 0.40 0.39 0.38 0.38 0.41 0.41
0.5 0.57 0.04 0.50 0.51 0.43 0.50 0.47 0.50 0.50 0.49 0.47 0.49 0.47 0.50
0.6 0.73 0.11 0.65 0.72 0.52 0.58 0.59 0.60 0.58 0.60 0.60 0.62 0.62 0.62
0.7 0.79 0.35 0.71 0.81 0.64 0.66 0.66 0.66 0.66 0.68 0.71 0.68 0.70 0.70
0.8 0.87 0.71 0.84 0.90 0.73 0.73 0.76 0.75 0.71 0.77 0.78 0.77 0.77 0.78
0.9 0.94 0.95 0.92 0.95 0.91 0.85 0.86 0.87 0.85 0.84 0.89 0.86 0.89 0.87

Kupiec (1995) test
h=1
tau 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
0.1 0.00 0.00 0.00 0.00 0.17 0.01 0.14 0.00 0.01 0.56 0.72 0.56 0.72 0.04
0.2 0.00 0.00 0.01 0.00 0.07 0.05 0.67 0.27 0.27 0.67 0.96 0.60 0.96 0.27
0.3 0.00 0.00 0.12 0.00 0.05 0.58 0.79 0.88 0.58 0.88 0.95 0.79 0.95 0.88
0.4 0.01 0.00 0.15 0.00 0.06 0.62 0.51 0.38 0.94 0.79 0.64 0.64 0.91 0.76
0.5 0.15 0.00 0.92 0.78 0.15 0.92 0.51 0.92 0.92 0.78 0.51 0.78 0.51 0.92
0.6 0.00 0.00 0.29 0.01 0.10 0.62 0.91 0.94 0.62 0.94 0.94 0.64 0.64 0.64
0.7 0.03 0.00 0.79 0.01 0.17 0.34 0.34 0.34 0.34 0.73 0.79 0.58 0.95 0.95
0.8 0.04 0.03 0.31 0.00 0.07 0.07 0.27 0.18 0.03 0.38 0.67 0.38 0.38 0.67
0.9 0.17 0.08 0.49 0.03 0.72 0.08 0.24 0.38 0.08 0.04 0.78 0.14 0.78 0.38

Christoffersen (1998) test
h=1
tau 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
0.1 0.00 0.00 0.00 0.00 0.14 0.02 0.06 0.00 0.02 0.39 0.16 0.77 0.59 0.05
0.2 0.00 0.00 0.03 0.00 0.20 0.11 0.91 0.52 0.52 0.73 0.98 0.80 0.93 0.38
0.3 0.00 0.00 0.25 0.00 0.14 0.73 0.90 0.77 0.73 0.81 0.61 0.56 0.61 0.54
0.4 0.02 0.00 0.21 0.00 0.17 0.63 0.60 0.45 0.60 0.95 0.23 0.84 0.33 0.72
0.5 0.29 0.00 0.69 0.01 0.32 0.80 0.78 0.80 0.80 0.77 0.78 0.77 0.17 0.36
0.6 0.01 0.00 0.44 0.00 0.09 0.63 0.55 0.82 0.63 0.85 0.97 0.90 0.63 0.84
0.7 0.04 0.00 0.43 0.00 0.33 0.63 0.63 0.63 0.63 0.86 0.43 0.73 0.61 0.61
0.8 0.07 0.08 0.47 0.00 0.04 0.14 0.25 0.37 0.06 0.09 0.29 0.09 0.22 0.11
0.9 0.00 0.13 0.18 0.00 0.12 0.20 0.50 0.66 0.21 0.10 0.32 0.16 0.32 0.41

VQR (2011) test
h=1
tau 1a 2a 3a 4a 5a 6a 7a 8a 9a 10a 11a 12a 13a 14a
0.1 0.00 0.00 0.00 0.00 0.01 0.03 0.55 0.06 0.01 0.17 0.10 0.28 0.10 0.04
0.2 0.00 0.00 0.06 0.00 0.14 0.45 0.50 0.32 0.18 0.62 0.88 0.40 0.53 0.42
0.3 0.00 0.00 0.51 0.00 0.19 0.55 0.44 0.58 0.56 0.74 0.98 0.78 0.92 0.80
0.4 0.20 0.00 0.64 0.25 0.39 0.51 0.49 0.64 0.79 0.94 0.89 0.91 0.83 0.99
0.5 0.63 0.00 0.93 0.33 0.48 0.67 0.69 0.60 0.75 0.98 0.98 0.97 0.95 0.97
0.6 0.00 0.00 0.78 0.04 0.57 0.83 0.74 0.69 0.82 0.83 0.99 0.86 0.93 0.93
0.7 0.00 0.00 0.60 0.00 0.13 0.28 0.19 0.23 0.20 0.64 0.54 0.65 0.42 0.66
0.8 0.01 0.13 0.72 0.00 0.25 0.17 0.23 0.11 0.28 0.34 0.99 0.46 0.95 0.93
0.9 0.04 0.54 0.45 0.00 0.92 0.13 0.31 0.40 0.23 0.33 0.26 0.43 0.23 0.50

p­value for each model

Model

p­value for each model

p­value for each model

A rejection of a given model for a selected horizon and a percentile of the dis-

tribution suggests the need for local improvement on the density model (in order

to eliminate, for instance, a wrong coverage rate, a clustering behavior or even a

poor time-dynamics). We next summarize the local analysis in terms of the three

considered backtests (Kupiec, Christo¤ersen and VQR).

In this sense, we aggregate the results in respect to the lower quantiles � =

f0:1; 0:2; 0:3g or higher quantiles � = f0:7; 0:8; 0:9g. The results are shown on Table
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10, where a given model is only shown at a given cell (e.g. monthly frequency, h = 1)

if it has a p-value>5% in all 9 possible cases (i.e. 3 percentiles x 3 tests). Indeed, at

monthly frequency and h = 1 only a few models are not rejected (at the same time)

in the three statistical tests (and in the three selected percentiles). For h > 1 not

a single model would be selected. This way, for h > 1 the adopted criteria to select

models is weakened as long as the forecast horizon increases. Regarding the daily

frequency, we only use the VQR test to select models, since the other two considered

backtests reject all models (in all cases) at a 5% signi�cance level.

Table 10 - Selected Models - Local Analysis

Monthly frequency

Horizon (months) Selection Criteria Lower Quantiles
(� = 0:1; 0:2; 0:3)

Higher Quantiles
(� = 0:7; 0:8; 0:9)

1 Kupiec, Christo¤ersen, VQR 7,10,11,12,13 3,6,7,8,11,12,13,14

2 Kupiec, VQR 7,11,13 3,11,13,14

3 Kupiec 7,13 1,3,5,11,13,14

6 Kupiec 3,7 1,10,11,13,14

9 Kupiec 14 7,9,10,11,13,14

12 Kupiec 7,8,14 6,7,8,12

Daily frequency

Horizon (days) Selection Criteria Lower Quantiles
(� = 0:1; 0:2; 0:3)

Higher Quantiles
(� = 0:7; 0:8; 0:9)

1 VQR 6,7 -

2 VQR 6,9 11

3 VQR 7 3

5 VQR 7 -

10 VQR - 11,13

20 VQR 10 11,14

Note: Recursive estimation results. A model is selected at monthly frequency only if it is

recommended (i.e. p-value>5%) by a given criteria (1, 2 or 3 backtests); and at daily

frequency only if it shows a p-value>5% in the VQR test (on at least two quantile levels,

out of the three considered levels for each tail).

Note that the models more suitable to forecast quantiles related to the lower

part of the exchange rate distribution (focused on the appreciation of the domestic

currency vis-à-vis the U.S. dollar) might not serve to properly account for the other

tail of the distribution (especially, at the daily frequency).

By comparing Tables 8 and 10 (that is, the full-density analysis with the local

analysis), one can clearly note which models work in practice, in terms of forecasting

accuracy, and for which purpose, data frequency and/or forecast horizon.
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A closer look at those tables reveal that, indeed, some models recommended

by the local analysis also exhibit a good performance according to the full-density

investigation. For instance, at monthly frequency and h = 1, among the many

models indicated by Table 10, in the local analysis (at both lower and higher quantile

levels), note models 11 and 13, which also belong to Table 8, due to their well-

calibrated densities, according to the coverage rate, LPDS ranking (model 11 only),

and Knüppel and Berkowitz tests. For the longest horizon at monthly frequency

(h = 12), note models 7 and 8, which belong to Table 10 in both tails (lower and

higher quantiles) and are also recommended by Table 8, according to the coverage

rate and Knüppel criteria.

At daily frequency, one can also identify a few models that produce good density

forecasts from both full-density and local analysis points-of-view. For example,

in all horizons (excepting h = 20), all models indicated by Table 10, at lower or

higher quantile levels, also belong to the AG test�s column on Table 8, at respective

horizons. In particular, model 7, which is indicated to properly forecast the lower

quantiles in the local analysis (Table 10, for h = 1; 3 and 5 days) is also recommended

on Table 8, at respective horizons, according to the coverage rate, and the AG

and Knüppel tests. In respect to the higher quantiles, the local analysis at daily

frequency suggests, for instance, model 11 for h = 2; 10 and 20 days; whereas this

same model shows a well-calibrated density according to the coverage rate, LPDS

ranking, Knüppel test and AG test (excepting h = 20).

On the other hand, based on the set of results obtained from both full-density

and the local analysis, we are also able to distinguish between whether it is the

economic variables that a¤ect forecast performance or how they are modelled. In

this sense, by comparing the forecast performance of models 5-14 estimated with QR

versus OLS, at daily frequency, it seems that the QR approach is quite often more

indicated; whereas, at monthly frequency, the OLS estimation (in several cases) is

the best one.37

37For example, at daily frequency, the QR-based models produce more well-calibrated forecasts (compared to the

OLS ones) according to the following criteria: Giacomini-White (2006) test (for shorter horizons), FX rate direction

of change test (in general), coverage rates (70% interval band), Knüppel (20015) test, Amisano-Giacomini (2007)

test, and in the local analysis (for both lower and higher quantile levels). OLS is recommended at daily frequency

(instead of QR) only in the following cases: Diebold-Mariano (1995) test, Giacomini-White (2006) test (only model

5, for longer horizons) and the FX rate direction of change test (for rolling window and longer horizons). In respect
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3.5 Model ranking from risk analysis

According to Crouhy et al. (2001), backtests provide a key check of model accuracy

and robustness, by considering ex-ante risk measure forecasts and comparing it to ex-

post realized outcomes. In other words, the backtesting procedures (used in previous

section) are designed to test whether a particular forecasting approach provides an

accurate conditional quantile (i.e. VaR) forecast. However, instead of only checking

the performance of a single model, one might be interested in discriminating among

competing models and deciding which of them is best for risk analysis purposes (see

Nieto and Ruiz, 2016).

With this goal, Lopez (1999) proposes the selection of the forecast procedure

that minimizes the loss L(m) =
T+PP
t=T+1

Lm;t, with

Lm;t =

8<: f(st;V aRm;�;t) if st < V aRm;�;t

g(st;V aRm;�;t) if st � V aRm;�;t
(6)

where t = T+1; :::; T+P describes the out-of-sample forecast evaluation period, the

index (m) stands for forecasting model m of the target variable st, � is the quantile

level of interest and f and g are functions such that f(x; y) � g(x; y). The idea is

to measure the conditional coverage distance of a VaR from its nominal benchmark.

According to the author, a single numerical score could re�ect regulatory concerns

and provide a measure of relative performance to compare competing VaR models

across time and institutions.

Nonetheless, the loss functions proposed by Lopez (1999) are not able to distin-

guish properly between the true data generating process and alternative models for

forecasting the VaR (e.g. as consistent-scoring functions; see Gneiting and Raftery

(2007) and Gneiting (2011) for further details).

In this sense, we adopt here the following predictive quantile loss function pro-

to the monthly frequency, the OLS approach seems to be more suitable, in general, for estimation of models 5-14.

For instance, OLS produces lower RMSEs compared to the QR-based forecasts (and, thus, OLS shows a better

performance, compared to QR, according to DM and GW tests vis-à-vis the random walk forecast). OLS is also

better according to the coverage rates, the AG test, and along the local analysis at higher quantile levels (results for

lower quantiles indicate a relatively similar performance between OLS and QR). Nonetheless, the FX rate direction

of change test, based on recursive estimation, is more favorable to the QR-based point forecasts. In addition, the

QR-based density forecasts, at monthly frequency, generate more well-calibrated PITs, compared to OLS, according

to the tests of Berkowitz and Knüppel.
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posed by Giacomini and Komunjer (2005):

Lm;t =
�
� � 1st<V aRm;�;t

�
[st � V aRm;�;t] (7)

where V aRm;�;t = Qm;� (st j Ft�h) is the conditional quantile of st at quantile level

� (conditioned on the information set Ft�h). This simple decision rule for model

selection, based on the loss of Giacomini and Komunjer (2005), allows us to rank

the competing models according to risk events of interest (e.g. what is the best

model to forecast the exchange rate at a given quantile of the FX rate conditional

distribution?)

Note that the adopted decision rule for model selection does not require knowl-

edge of the underlying density model or, if the model is known, it does not restrict

attention to a speci�c estimation procedure, since it only relies on the conditional

quantile forecasts over a selected quantile level � .

By establishing � = 0:1 we are able to rank the forecasting models according

to their ability of providing good value-at-risk measures (or conditional quantiles)

related to the left tail of the conditional distribution of the R$/US$ exchange rate

(that is, to properly account for the valuation risk of the R$ currency in respect to

the US$). In the same way, we also set � = 0:9 to investigate the best models to

account for the devaluation risk of the FX rate. Table 11 shows the model rankings

for both tails, monthly and daily frequencies, and recursive estimation.

Firstly, note that fundamentals matter for the risk of FX rate valuation. The

Top5 group of models that produce better forecasts at � = 0:1 (i.e. left tail of the

FX rate distribution) belongs to the economic-driven set of models 6-14, in both

frequencies. The Taylor rule with interest rate smoothing (model 9) is the best one

at monthly frequency, whereas the absolute PPP model (model 10) is the best one

at daily frequency.

On the other hand, the Top5 best models to deal with devaluation risk, at the

right tail of the FX rate distribution (i.e. � = 0:9), come from the set of models 1-5,

also in both frequencies. Indeed, the best VaR forecast of FX rate devaluation is the

survey-based forecast (model 4) at monthly frequency, whereas the �nancial-data

(option-implied) model 2 is the best one at daily frequency.
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Table 11 - Model Ranking for Risk Assessment (h = 1)

Model Devaluation (M) Devaluation (D) Valuation (M) Valuation (D)

1) Random walk (without drift) 3 4 12 11

2) Option-implied (RND-RWD) 2 1 14 14

3) GARCH - Monte Carlo 4 3 11 12

4) Survey forecast 1 2 13 13

5) Survey forec. (bias-correct) 5 5 10 10

6) Taylor rule model 13 11 2 4

7) Taylor rule (PPP) 10 7 7 8

8) Taylor rule (PPP, smoothing) 8 9 4 6

9) Taylor rule (smoothing) 12 10 1 3

10) Absolute PPP model 14 14 3 1

11) Relative PPP model 6 8 8 7

12) Monetary model 11 13 6 5

13) Monetary model (weaker) 7 6 9 9

14) Forward premium model 9 12 5 2

Notes: (M) means monthly frequency and (D) denotes daily frequency. The devaluation risk refers to � = 0:9
whereas valuation refers to � = 0:1. The Giacomini-Komunjer (2005) predictive quantile loss function is adopted.

Also note that the best models from the risk analysis exercise often does not

belong to the set of models previously recommended in the Local Analysis, as pre-

sented on Table 10. This results is probably because the Local Analysis considers

a range of quantile levels (with di¤erent backtesting results from distinct quantile

levels), whereas the risk analysis is focused on a single (and extreme) quantile of

interest.

Moreover, the models that produced the best point forecasts (based on RMSE

and, thus, focused on the central part of the FX rate conditional distribution) are

not necessarily the same that showed the best forecasting performance for risk as-

sessment purposes. This empirical �nding can be attributed, for instance, to an

asymmetric response of the exchange rate in respect to the macroeconomic funda-

mentals.

Finally, it is worth mentioning that tail risk in Brazil can also be a¤ected by

o¢ cial interventions in the FX market, which are not properly captured by any of

the investigated models here. In this case, a di¤erent setup with intra-day data,

beyond the scope of this paper, could be further explored (see Kohlscheen and

Andrade, 2013).38

38The authors investigate o¢ cial interventions in the Brazilian FX market (i.e. currency swap auctions, which

are focused on providing hedge to economic agents, liquidity to domestic FX market and reducing excessive market

volatility) based on high-frequency data.
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3.6 Recursive estimation versus rolling window

A careful investigation of the tables presented in the Supplementary Appendix re-

veals mixed results regarding recursive estimation and rolling window estimation

schemes. On the monthly frequency, in general, the rolling window estimation

scheme seems to produce slightly better (point and density) forecasts compared to

the recursive estimation. For instance, rolling window generates more forecasts with

lower RMSEs compared to the random walk; more density forecasts with adequate

70% coverage rates (and not rejected at the Berkowitz (2001)�s test); and more con-

ditional quantiles recommended in the local analysis on the left tail of the FX rate

distribution (i.e. lower quantile levels). In contrast, recursive estimation produces

slightly more forecasts able to correctly predict the FX rate direction of change

based on the Pesaran and Timmermann (1992, 2009)�s test; and more value-at-risk

measures to properly deal with FX rate upside risks (i.e. at higher quantile levels).

The Knüppel (2015) test shows similar outcomes for both estimation schemes.

On the other hand, the forecast comparison at the daily frequency seems to be

slightly more favorable to the recursive estimation, for example, which generates

more forecasts with lower RMSEs compared to the random walk (among the models

5-14 estimated with OLS), more forecasts that correctly predict the FX rate direction

of change and more density forecasts not rejected in the Knüppel test. In turn, the

rolling window (at daily frequency) produces more forecasts with lower RMSEs

compared to the random walk (among the models 5-14 estimated with QR), more

density forecasts with adequate 70% coverage rates and more adequate VaRs for the

FX rate upside risk (i.e. higher quantile levels).

These empirical �ndings (recursive estimation for daily data; and rolling scheme

for monthly data) point out to possibly few (or none) structural breaks in the FX

rate dynamics on a daily basis but, at the same time, to some probable breaks on a

monthly basis.39 This outcome is in line with the fact that statistical relationships

among macro variables, including the FX rate, potentially change over time, which

is most likely to happen under a lower frequency and longer time span.

39Of course a formal investigation of structural breaks in the FX rate dynamics (beyond the scope of this paper)

would require adequate statistical tests, instead of a simple forecast comparison of di¤erent sampling estimation

schemes, as discussed here.
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4 Conclusion

This article has examined several models of the Brazilian foreign exchange rate

(R$/US$) through the lens of forecast evaluation tools. We follow a strand of lit-

erature that goes beyond the conditional mean analysis and focus on the density

forecast of the FX rate.

Our contribution is, thus, to provide a toolkit to evaluate available FX rate

models according to its point and density forecast performance; bridging the gap

between distinct strands of the literature on international economics, forecasting and

�nancial risk analysis. In this paper, we put together distinct techniques to construct

FX rate models, for instance, based on statistical or economic-driven approaches;

using �nancial data information as well as macroeconomic variables; and employing

parametric (e.g. Gaussian, t-Student) or nonparametric distributions or quantile

regression techniques.

In order to evaluate such forecasts, we use standard point forecast evaluation

tools; and propose a full-density/local analysis approach, which can reveal the suit-

able models for a determined forecasting goal. Finally, we employ a simple decision

rule for model selection, which allows one to rank models according to di¤erent risk

events of interest. Such a tool can be useful for econometricians, risk managers or

policy makers interested in evaluating competing models and selecting those that

historically provide more accurate predictions of risk events.

Overall, the results for Brazil point out that no single model properly accounts

for the entire density in all forecast horizons, at least at conventional levels of sig-

ni�cance. In fact, the choice of a density forecast model for the FX rate depends on

the part of the conditional distribution of interest as well as on the forecast horizon.

The reason is that some models are more prone to produce good forecasts at high (or

low) percentiles of the FX rate density, which is in line with an asymmetric response

of covariates (e.g. macro fundamentals) in respect to the exchange rate conditional

distribution. In other words, a given macroeconomic fundamental, for instance,

which might be useless to explain the conditional mean exchange rate dynamics

(as widely reported in the literature), might be adequate to explain the upside (or

downside) risk of FX rate at a particular horizon. By focusing on the accuracy of
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density models in predicting the likelihood of a sharp valuation/devaluation event,

we are also able to select models to be used for risk management purposes.

What are the lessons from the empirical investigation of the Brazilian FX rate

that could be potentially used to other currencies? The results for the FX rate point

forecast in Brazil corroborate previous �ndings of the literature, such as the di¢ culty

on beating the random walk forecast at monthly frequency, although the random

walk paradigm can statistically be broken, in some cases, at daily frequency40; fun-

damental relationships (e.g. parity conditions) hold better in the long-run (Mark,

1995); economic-fundamental-based exchange rate models perform better than the

random walk in predicting tighter forecast intervals, especially at monthly frequency

and long horizons (Wang and Wu, 2012); correct FX rate �direction prediction�is

found in many cases and appears to cluster at longer horizons (Cheung, Chinn and

Pascual, 2005); option data-implied forecasts provide relatively accurate forecasts

at monthly frequency and short horizons (Christo¤ersen and Mazzotta, 2005).

Regarding density forecasts, we compile a set of empirical �ndings (stylized facts)

- that are not present in the existing literature - which may provide some guidance to

academics, policy makers and market practitioners who are interested in forecasting

the full density of exchange rate returns. The majority of models showed an adequate

coverage rate in many horizons and both frequencies. Nonetheless, the density

forecasts only survive the PIT-based test of Berkowitz (2001) at monthly frequency

for short horizons (e.g. the economic-driven and the bias-corrected survey forecasts),

with a very few exceptions at longer horizons (and no model survived the test

at daily frequency). The test of Knüppel (2015) also based on PITs and using

raw moments allows us to discriminate the competing density forecasts along the

considered horizons and both frequencies. On the other hand, the density forecast

comparison based on the test of Amisano and Giacomini (2007) reveals that the

random walk approach is overwhelmed in several cases (at a 5% signi�cant level,

daily frequency, for several models and horizons).

In respect to the local analysis, we �nd that those models more suitable to

forecast quantiles related to the lower part of the exchange rate distribution (focused

40 Indeed, it is well documented in the literature of density forecasts that statistical and �nancial models can beat

the random walk in forecasting exchange rates at higher frequencies (e.g. intra-day data). See Diebold, Hahn, and

Tay (1999), Christo¤ersen and Mazzotta (2005) and Sarno and Valente (2005).
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on the appreciation of the domestic currency vis-à-vis the U.S. dollar) might not

serve to properly account for the other tail of the distribution. Nonetheless, some

models recommended by the local analysis also exhibit a good performance according

to the full-density investigation.

By ranking the competing models based on risk analysis, we �nd that models that

produced the best point forecasts (based on RMSE and, thus, focused on the cen-

tral part of the FX rate conditional distribution) are not necessarily the same that

showed the best forecasting performance for risk assessment. In addition, macro

fundamentals matter for valuation risk of the FX rate, in both frequencies (e.g.

the Taylor rule with interest rate smoothing is the best one at monthly frequency,

whereas the absolute PPP model is the best one at daily frequency). In contrast, re-

garding devaluation risk, the best models are the survey-based at monthly frequency

and the �nancial data model (options) at daily frequency.

On the other hand, taking into account all the evaluation procedures used in

this paper, and by comparing the forecast performance of economic-driven models

estimated with QR versus OLS, at daily frequency, it seems that the QR approach

(quite often) is more indicated; whereas at monthly frequency the OLS estimation

(in several cases) is the best one.

In respect to the adopted estimation scheme, we �nd that, in general, the rolling

window estimation scheme at monthly frequency seems to produce slightly better

point and density forecasts compared to the recursive estimation, whereas the fore-

cast comparison at the daily frequency seems to be slightly more favorable to the

recursive estimation. These �ndings point out to probably few (or none) structural

breaks in the FX rate dynamics on a daily basis, but to possible breaks on a monthly

basis.

Possible extensions of this research include: (i) other covariates to explain FX

dynamics in the long-run (e.g., commodity price index, as suggested by Kohlscheen,

2013); (ii) additional density models (e.g., GARCH-in-mean); (iii) density forecast

combination (Hall and Mitchell, 2007; Jore et al., 2010; Kascha and Ravazzolo, 2010;

Gaglianone and Lima, 2014); (iv) risk assessment based on alternative risk measures

(Artzner et al., 1999); or (v) microstructure approach based on intra-day data.
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Appendix

A - Additional details on model 2

The �rst step follows Shimko (1993) which proposes a nonparametric technique
for extracting RND from option prices based on the construction of an implied
volatility curve for the option via interpolation of its strike prices (smile volatility
curve). Shimko�s method was developed for stock option prices and we adapted it
for exchange rates, by using the Black Model for pricing future price options (Black,
1976).41 Breeden and Litzenberger (1978) derived an explicit relationship between
the risk-neutral density of an asset and the price of the option on that asset, as
follows:

@2Ct
@K2

t

= e�rtTf(st); (8)

in which Ct is the (call) option price of an underlying asset st, Kt is the respective
exercise (strike) price of the referred option, rt is the risk-free interest rate, T denotes
the number of days to maturity, and f(st) is the risk-neutral probability density

41 If the underlying asset of the future contract is the exchange rate, the Black Model becomes equivalent to the

Garman-Kohlagen Model for pricing exchange rate options.
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(RND) of the underlying asset st. Shimko obtained the densities from this formula by
interpolating the calculated implicit volatilities for the same maturity and di¤erent
exercise prices. To do so, one must generate an entire continuum of values for the
relation of the option price versus its exercise price, given that only a few points of
this curve are indeed known.42

The second step follows Vincent-Humphreys and Noss (2012). Instead of the
commonly used method of applying utility-function transformations to the RND,
these authors propose an empirical and less restrictive methodology by using a Beta
distribution function to calibrate the di¤erence between RND and RWD. According
to the authors, although the Beta distribution is parsimonious, as it depends on
only two parameters, it nests many simple forms of transformation, such as mean
shift, mean-preserving changes in variance and changes involving mean, variance
and skewness.

B - Further details on forecast evaluation

B1 - Point forecast

Diebold and Mariano (1995) propose a test for non-nested models comparison
that allows for a wide variety of forecast accuracy measures and relies on assumptions
made directly on the forecast error loss di¤erential (e.g. the loss di¤erential be
covariance stationary). Let L(et) be the loss function associated with forecast error
et. For example, a quadratic loss would be L(et) = (et)2. The time-t loss di¤erential
between forecasts 1 and 2 is then d12t = L(e1t) � L(e2t): The null hypothesis of
equal predictive accuracy corresponds to E(d12t) = 0, in which the DM test statistic
asymptotically converges to a standard normal distribution:

DM =
d12b�d12 d! N(0; 1) (9)

where d12 = T�1
PT

t=1 d12t is the sample mean loss di¤erential and b�d12 is a consis-
tent estimate of the standard deviation of d12. West (1996) allows for estimation
uncertainty within this setup (non-nested models only) and provides conditions for
the t-type statistics be asymptotically distributed as N(0; 1).

Giacomini and White (2006) propose a framework for out-of-sample pre-
dictive ability testing and forecast selection (nested or non-nested models). The
GW asymptotics provide a way of testing whether forecasts are equally accurate,
in which coe¢ cients include parameter estimation error, but applies only under a
rolling window estimation scheme. Besides, the null hypothesis of the GW test is
conditional on the forecasts (constructed using estimated parameters), rather than
unconditional. Suppose one wants to compare the accuracy of two competing fore-
casts ft (�1) and gt (�2) for the h-step ahead variable Yt+h using a loss function

42 In this sense, Shimko proposes a quadratic interpolation of the implied volatilities associated with each existing

exercise price. From this new curve of implied volatilities, the continuum of values for the option price is obtained,

allowing the calculation of second derivatives and, thus, the respective densities. In this paper, risk neutral densities

for future exchange rates were generated only for one, two and three months ahead (h = 1; 2; 3), due to the low
liquidity of exchange rate-based options (and the lack of available data) for longer maturities.
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Lt+h(�). The null hypothesis of the previous test (DMW) is the following

DMW Ho : E [Lt+h (Yt+h; ft (��1))� Lt+h (Yt+h; gt (��2))] = 0; (10)

where ��1 and �
�
2 are population values. The DMW null is a statement about the

forecasting models (i.e. the two models are equally accurate on average). According
to Giacomini and White (2006), a key feature of West�s (1996) test of Ho is the
recognition and accommodation of the fact that, although Ho concerns population
values, the actual forecasts that appear in the test statistic depend on estimated
parameters. The central idea of the GW test is to consider a null hypothesis that
di¤ers from the DMW test in two aspects: (i) the losses depend on estimates b�1t andb�2t, rather than on their probability limits; and (ii) the expectation is conditional
on some information set Ft.

GW Ho : E
h
Lt+h

�
Yt+h; ft

�b�1t��� Lt+h �Yt+h; gt �b�2t�� j Fti = 0: (11)

Now, the focus on parameter estimates makes the null a statement about the
forecasting methods, which includes the models as well as the estimation procedures
and the possible choices of estimation window (since two forecasts may use di¤erent
estimation windows).

Pesaran and Timmermann (1992) develop a non-parametric procedure for
testing the accuracy of forecasts when the focus is on the correct prediction of the
direction of change in the variable of interest. Let I(A) be an indicator function
that takes the value of unity if A > 0 and zero otherwise. Suppose one is interested
in testing whether a binary variable xt = I(Xt) is related to another binary variable
yt = I(Yt) using a sample of observations (y1; x1) ; :::; (yT ; xT ) : Now, let bP be the
so-called hit rate (i.e. the proportion of periods where Yt and Xt fall in the same
category, that is, have the same sign), while bP� is the hit rate expected under the
null hypothesis of independence between xt and yt. The PT test statistic is given
by

PT =
bP � bP�hbV ( bP )� bV ( bP�)i1=2 ; (12)

where bP = T�1
PT

t=1 I(YtXt); bP� = yx + (1 � y)(1 � x); bV ( bP ) = T�1 bP�(1 � bP�);bV ( bP�) = T�1 (2y � 1)2 x(1�x) +T�1 (2x� 1)2 y(1� y) +4T�2yx(1� y)(1�x); y =
T�1

PT
t=1 yt; x = T

�1PT
t=1 xt. Under the null hypothesis of independence between

xt and yt (i.e. xt has no power in predicting yt), the PT statistic is asymptotically
distributed as a standard normal distribution. Since this setup only covers the
case without serial dependence (e.g. h = 1), Pesaran and Timmermann (2009)
extended it, among others, to allow for such dependencies by using an OLS regression
of yt on xt and an intercept.
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B2 - Full-density forecast

Coverage rates
According to Clark (2011, p.336): "In light of central bank interest in uncertainty

surrounding forecasts, con�dence intervals, and fan charts, a natural starting point
for forecast density evaluation is interval forecasts - that is, coverage rates." In this
sense, a necessary (but not su¢ cient) condition for a "good" density model is to
produce a conditional density with an adequate coverage rate.43 The objective here
is to check whether the model departures from a given nominal coverage rate (e.g.
70%) appear to be statistically meaningful. In practice, one needs to compute the
frequency of observations of Yt+h that have fallen inside the forecast interval. In our
case, we adopt the 70% interval band, which leads to a forecast interval based on
the conditional quantiles Qm;� (Yt+h j Ft) of model m, ranging from quantile level
� = 0:15 to � = 0:85. Then, a simple statistical test veri�es the equality between
the frequency of observations that have fallen in the forecast interval (nominal cov-
erage) and the true coverage. The main drawback is that coverage rates ignore time
dependence and cluster behavior.

Probability Integral Transform (PIT)
The coverage rates although providing an initial approach to analyze density

models can be viewed as unconditional tests, since they ignore potential cluster
behavior (along the sample size) of a given percentile of the estimated density and,
thus, do not take into account time dependence. We next investigate the density
forecast models based on a broader measure of density calibration: the probability
integral transform (PIT). The PIT of the realization of the variable with respect to
the density forecast is given by

zt+h =
Yt+hR
�1

bft+h;t(u)du � bFt+h;t(Yt+h); (13)

where bFt+h;t(Yt+h) is the probability of the variable of interest not exceeding the
observed value Yt+h, and bft+h;t is the density forecast of a given model m with
forecast horizon h. The main idea is that, under correct model speci�cation for
h = 1, the PIT yields independent and uniformly distributed random variable. In
this case, when the forecast density bft+1;t equals the true density, it follows that
zt+1 � i:i:d: U(0; 1), where U(0; 1) is the uniform distribution over the interval
(0; 1). However, in the case of h > 1, one should no longer expect well-calibrated
densities to deliver i:i:d: PITs, due to the serial correlation44 of the corresponding
probability integral transforms.

Berkowitz (2001) develops tests to evaluate the conditional density based on
the normality of the normalized forecast errors that have better power than tests

43Coverage rates reveal the di¤erence between the probability that realizations fall into the forecasted intervals

and the respective nominal coverage.
44 It is well known that optimal (i.e. MSE loss function) h-step ahead point forecasts lead to forecast errors

following a moving-average (MA) process of order h � 1. According to Clements (2005, p.7): "When the forecast
horizon, h, exceeds the frequency at which forecasts are made ... forecasts will overlap in the sense of being made
before the realization paired to the previous forecast is known." See also Knüppel (2015) for further details.
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based on the uniformity of the PITs. The normalized forecast error is de�ned asezt+1 � ��1(zt+1), where zt+1 denotes the PIT of a 1-step ahead forecast error and
��1 is the inverse of the standard normal distribution. Under the null, it follows
that ezt+1 � i:i:d: N(0; 1):45 See Clements (2004), Jore et al. (2010) and Clark (2011)
for further details.

Knüppel (2015) proposes a testing approach based on raw moments designed
to handle multi-step-ahead densities and the overlapping nature of the PITs. Un-
der the null hypothesis, there is correct calibration of the forecast density vis-à-
vis the true density; in the sense that the true density shows statistically the
same moments compared to the ones from the forecast density. Let the vari-
able of interest be denoted by xt and ut be the respective PIT computed from
the density forecast of interest. Denote the transformed PIT by yt = H(ut),
where (for example) H(ut) = ��1 (ut) would yield standard normally distributed
variables yt. Also let the r-th raw moment of yt be denoted as mr = E (yrt )
and de�ne the vector bDr1;r2;:::;rN = [bmr1 �mr1 ; bmr2 �mr2 ; :::; bmrN �mrN ]

0 as the
di¤erence between the N empirical raw moments of interest (bmr1 ; bmr2 ; :::; bmrN ),
where r1 < r2 < ::: < rN , and the corresponding expected raw moments of
yt, where bmri = T�1

PT
t=1 y

ri
t for i = 1; 2; :::; N: The test statistic is given byb�r1;r2;:::;rN = T bD0

r1;r2;:::;rN
b
�1r1;r2;:::;rN bDr1;r2;:::;rN , where b
r1;r2;:::;rN is the long-run co-

variance matrix of the vector series dt = [y
r1
t �mr1 ; y

r2
t �mr2 ; :::; y

rN
t �mrN ]

0. As-
suming the Central Limit Theorem (CLT) holds for dt, the test statistic b�r1;r2;:::;rN
asymptotically converges to a �2(N) distribution under the null.

Log Predictive Density Score (LPDS)
Another useful indicator of the calibration of density forecasts is given by the log

predictive density score (LPDS). This approach allows one to rank the investigated
models, for each forecast horizon, according to their log-scores. The LPDS of model
m and forecast horizon h is de�ned in the following way:

LPDSm;h = T
�1

TX
t=1

ln
� bfmt+h;t (Yt+h)� (14)

where bfmt+h;t is the density of the variable of interest estimated from model m and
based on the information set available at period t. The referred density is evaluated
at the observed value Yt+h and (log) averaged along the out-of-sample observations.
A higher score implies a better model (see Adolfson et al., 2005).

Amisano and Giacomini (2007) propose a test for comparing the out-of-
sample accuracy of competing density forecasts.46 The authors restrict attention
to the logarithmic scoring rule (LPDS) and propose an out-of-sample �weighted
likelihood ratio�test that compares weighted averages of the scores for the competing
forecasts.
45For h=1 the test statistic (jointly) assumes independence and standard normality for ezt+1 and (under the null)

it converges to a �2(3) distribution. For h>1, one can adopt a modi�ed version of the test (see Jore et al., 2010)
using a two degrees-of-freedom variant (without a test for independence).
46The test is valid under general conditions (i.e. forecasts can be based on nested or non-nested parametric

models or produced by semiparametric, non-parametric or Bayesian estimation techniques).
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For a given weight function w(�) and two conditional density forecasts f and g
for Yt+1, let WLRm;t+1 � w(Y stt+1)

�
ln
� bfm;t (Yt+1)�� ln (bgm;t (Yt+1))�, where Y stt+1 =�

Yt+1 � b�m;t� =b�m;t is the realization of the variable at time t+1, standardized using
estimates of the unconditional mean and standard deviation of Yt, b�m;t and b�m;t,
computed on the same sample on which the density forecasts are estimated (where
m is �nite and denotes the most recent observations).
The AG null hypothesis is Ho : E (WLRm;t+1) = 0. Similar to the GW test, the

AG�s null hypothesis depends on parameter estimates (rather than on population
values). The AG test is also applicable to h � 1 but (as in GW) models must be
estimated with a rolling window estimation scheme. The test statistic is given by
tm;n =

WLRm;nb�n=pn , where WLRm;n = n�1
PT�1

t=mWLRm;t+1 and b�2n is a heteroskedas-
ticity and autocorrelation consistent (HAC) estimator of the asymptotic variance
�2n = var

�p
nWLRm;n

�
. Under the null hypothesis, the test statistic asymptoti-

cally converges to a standard normal distribution.

B3 - Local-density analysis

Local Forecast Coverage Rate: LFCRm;h;� of model m and horizon h at quan-
tile level � . Similar to the coverage rate, we now compute (for all out-of-sample
observations) the percentage of outcomes below a given nominal quantile level � .
Ideally, the empirical LFCRm;h;� should be as close as possible to one minus the
nominal level � .

\LFCRm;h;� = T�1
TX
t=1

Ht+h (15)

whereHt+h =

(
1 ; if Yt+h > bQm;� (Yt+h j Ft)
0 ; if Yt+h � bQm;� (Yt+h j Ft) . The statistical signi�cance of LFCRm;h;��

(1� �) is checked via the Kupiec (1995) backtest.

Kupiec (1995): It is a nonparametric test (also known as the unconditional
coverage test) based on the proportion of violations Ht+h, in which the null hypoth-
esis assumes that:

Ho : E(Ht+h) = (1� �) (16)

The probability of observing N violations, in which Yt+h > bQm;� (Yt+h j Ft), over
a sample size of T is driven by a Binomial distribution. This way, the null can be
tested through a standard likelihood ratio (LR) test of the form:

LRuc = 2 ln

0B@
�
\LFCRm;h;�

�N
(1� \LFCRm;h;� )T�N

(1� �)N(�)T�N

1CA ; (17)

which follows (under the null) a �2(1).

Christo¤ersen (1998): The unconditional coverage test does not provide any
information about the temporal dependence of observed violations. In this sense,
Christo¤ersen (1998) extends the previous test to incorporate an evaluation of time
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independence of the referred violations. To do so, de�ne Tij as the number of days
in which a state j occurred in one day, while it was at state i the previous day. The
test statistic also depends on �i, which is de�ned as the probability of observing
a violation, conditional on state i the previous day. The author assumes that the
Ht+h stochastic process follows a �rst order Markov sequence. This way, under the
null hypothesis of independence it follows that � = �0 = �1 = (T01 + T11)=T , and
the complementary test statistic can be constructed, as it follows.

LRind = 2 ln

�
(1� �0)T00�T010 (1� �1)T10�T111
(1� �)(T00+T10)�(T01+T11)

�
: (18)

The conditional coverage test of Christo¤ersen (1998) has the following joint
statistic of unconditional coverage and independence: LRcc = LRuc + LRind. The
joint test statistic LRcc is asymptotically distributed as �2(2).

Value-at-Risk test based on Quantile Regression (VQR test): The previ-
ous test has a restrictive feature, since it only takes into account the autocorrelation
of order 1 in the violation sequence. Moreover, it clearly ignores the magnitude of
violations

���Yt+h� bQm;� (Yt+h j Ft)��� when comparing the observed �gures of Yt+h with
the estimated conditional quantile bQm;� (Yt+h j Ft). To overcome these features,
Gaglianone et al. (2011) propose the VQR test to evaluate the predictive perfor-
mance of the estimated Value-at-Risk measure Vt+h � bQm;� (Yt+h j Ft). The VQR
test is simply a Wald test based on the following quantile regression:

Q�

�
Yt+h j eFt� = �0(�) + �1 (�)Vt+h ; � 2 (0; 1) (19)

Under the null hypothesis that Vt+h is indeed the � -level conditional quantile of

Yt+h, it follows that Vt+h = Q�
�
Yt+h j eFt�, which can be veri�ed through the joint

coe¢ cient test: Ho : �0(�) = 0 and �1 (�) = 1:

C - Further details on quantile regression

Let fyt+hg be some stationary univariate time series and assume one is interested in
forecasting yt+h given the information available at time t; Ft. We denote the con-
ditional distribution of yt+h given Ft as Ft+h;t, and the conditional density as ft+h;t.
Assume the data generating process (DGP) with conditional mean and variance
dynamics is de�ned as47

yt+h = X 0
t+h;t�+

�
X 0
t+h;t


�
�t+h; (20)�

�t+hjFt
�
� i:i:d: F�;h (0; 1) ,

where F�;h (0; 1) is some distribution with mean zero and unit variance, which de-
pends on h but does not depend on Ft, Xt+h;t 2 Ft is a k�1 vector of covariates that
can be predicted using information available at time t, and � and 
 are k�1 vectors
47This class of DGPs is very broad and includes most common volatility processes (e.g. ARCH and stochastic

volatility). The important thing to notice is that no parametric structure is placed on F�;h and that covariates
a¤ect here the location as well as the scale of the distribution.
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of parameters.48 For simplicity (and to avoid the curse-of-dimensionality problem)
assume that X 0

t+h;t = (1; xt). Thus, it follows that � = (�0; �1)
0 and 
 = (
0; 
1)

0.
Based on this DGP, one can identify a family of conditional quantiles Q� (yt+h j Ft),
� 2 (0; 1); as follows:

Q� (yt+h j Ft) = �0(�) + �1(�)xt (21)

where �0(�) = (�0 + 
0
h) ; �1(�) = (�1 + 
1
h) and 
h = F�1�;h(�) for � 2 (0; 1).
Equation (21) says that we can identify the conditional quantiles of yt+h through a
quantile regression of yt+h on the single covariate xt and an intercept. The quantile
regression estimation49 within this setup involves the solution to the problem

min
f�2R2g

TX
t=1

�� (yt+h � �0 � �1xt) , (22)

where �� is de�ned as in Koenker and Basset (1978) by �� (u) =
�

�u; u � 0
(� � 1)u; u < 0 .

Thus, conditional on xt and estimated parameters b�, one can compute forecasts for
the conditional quantiles. For instance, the forecast for the conditional median50 is
given by bQ�=0:5 (yt+h j Ft) = b�0(0:5)+b�1(0:5)xt: Finally, given a family of estimated
conditional quantiles bQ� (yt+h j Ft) ; for a grid of k quantile levels � 2 [� 1; � 2; :::; � k]0,
it is straightforward to estimate the conditional density forecast through the formula
(see Koenker, 2005):

bft+h;t = (� i � � i�1)bQ� i (yt+h j Ft)� bQ� i�1 (yt+h j Ft) :
The conditional densities can alternatively be estimated (for instance) by using

the Epanechnikov kernel, which is a weighting function that determines the shape of
the bumps. The latter approach is often preferred (especially in short sample sizes)
because it generates smoother densities.

48See Gaglianone and Lima (2014) for further details.
49The quantile regression method is robust in distributional assumptions, a property that is inherited from

the robustness of the ordinary sample quantiles. In addition, it is not the magnitude of the dependent variable

that matters in quantile regression, but its position relative to the estimated hyperplane. As a result, the estimated

coe¢ cients are less sensitive to outlier observations than, for example, the standard OLS estimator. This superiority

over OLS estimator is, in fact, common to any M-estimator.
50According to Koenker (2005, p.302), integrating the conditional quantile function Q� (yt+h j Ft) over the

entire domain � 2 (0; 1) yields the mean of yt+h conditional on Ft. In practice, one can compute the conditional
mean as the average of bQ� (yt+h j Ft) over a grid of quantile levels � .
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