
 

 

Modeling Financial Networks: 
a feedback approach 

Thiago Christiano Silva, Michel Alexandre da Silva 
and Benjamin Miranda Tabak 

May, 2016 

438



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 
 
 
 
 

ISSN 1518-3548 
CGC 00.038.166/0001-05 

Working Paper Series Brasília n. 438 May 2016 p. 1-75 



 

 

Working Paper Series 
 
 
 
 
Edited by Research Department (Depep) – E-mail: workingpaper@bcb.gov.br 
 
Editor: Francisco Marcos Rodrigues Figueiredo – E-mail: francisco-marcos.figueiredo@bcb.gov.br 
 
Co-editor: João Barata Ribeiro Blanco Barroso – E-mail: joao.barroso@bcb.gov.br 
 
Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br 
 
Head of Research Department: Eduardo José Araújo Lima – E-mail: eduardo.lima@bcb.gov.br 
 
The Banco Central do Brasil Working Papers are all evaluated in double blind referee process. 
 
Reproduction is permitted only if source is stated as follows: Working Paper n. 438. 
 
Authorized by Altamir Lopes, Deputy Governor for Economic Policy. 
 
 
 
General Control of Publications 
 
Banco Central do Brasil 

Comun/Dipiv/Coivi 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 14º andar 

Caixa Postal 8.670 

70074-900 Brasília – DF – Brazil 

Phones: +55 (61) 3414-3710 and 3414-3565 

Fax: +55 (61) 3414-1898 

E-mail: editor@bcb.gov.br 

 
 
 
The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or  
its members. 
 
Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced. 
 
 
As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco 
Central do Brasil. 
 
Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente. 
 
 
 
Citizen Service Division 
 
Banco Central do Brasil 

Deati/Diate 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo 

70074-900 Brasília – DF – Brazil 

Toll Free: 0800 9792345 

Fax: +55 (61) 3414-2553 

Internet: <http//www.bcb.gov.br/?CONTACTUS> 

 



Modeling Financial Networks: a feedback approach

Thiago Christiano Silva*

Michel Alexandre da Silva**

Benjamin Miranda Tabak***

Abstract

The Working Papers should not be reported as representing the views of the Banco Central
do Brasil. The views expressed in the papers are those of the authors and do not necessarily

reflect those of the Banco Central do Brasil.

We study cascade of failures in multilayer financial networks incorporating con-
tagion feedback effects among different economic agents. We develop a flexible
framework that allows for the evaluation of systemic risk in financial networks and
demonstrate that the model converges to a unique fixed point. We design a financial
accelerator engine to model the feedback effect between the real and the financial
sectors of the economy by using contagion transmission channels such as loan de-
faults, bank credit crunches, deposit withdrawals, and deposit defaults. We illustrate
the model using data on Brazilian bank-bank and bank-firm loans. We show that
the contagion feedback effect—which accounts for second and higher-order rounds
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significant. This finding suggests that models that were developed up to date may be
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1 Introduction

One of the main lessons that can be drawn from the financial crisis of 2008–2009
is that we live in an interconnected world in which financial shocks can trigger large dis-
ruptions in the economic environment (Allen and Gale [2004]; Gai et al. [2011]). Modern
financial networks are intrinsically complex as economic agents are entangled in a diver-
sity of markets through nontrivial financial operations, which in turn intercommunicate
via contagion transmission channels. The financial sector plays a very special role in
the propagation of contagion through a variety of transmission channels. For instance, a
shock to the economy can affect the financial sector, which can then feedback into the
real economy amplifying its initial effects.

According to the International Monetary Fund, the Financial Stability Board, and
the G20 (IMF et al. [2009]), there are three key criteria that are helpful in identifying the
systemic importance of markets and financial institutions to the stability of the financial
system: size, substitutability, and interconnectedness.1 Therefore, understanding how the
intercommunication or feedback mechanisms that exist among transmission channels and
how they impair the financial and real sectors of the economy is critically important when
assessing financial stability and systemic risk. Though of great practical importance to
policymakers and the scientific community, the literature is silent in providing general
frameworks to model feedback mechanisms in multiple contagion transmission channels.

To date, there are several papers that deal with the nature and causes of systemic
risk in single contagion channels, normally in interbank networks. The speed that shocks
propagate in financial networks has intimate relation to their topological characteristics
(Silva and Zhao (2012a,b)). Allen and Gale (2000) and Freixas et al. (2000) were pioneers
in showing how interconnectedness of financial institutions influences the resilience of
the interbank market. They argue that more densely interconnected structures are more
robust than incomplete or sparse topologies. In contrast, Blume et al. (2013) model the
interbank contagion as an epidemic process and find that the likelihood of a systemic
collapse increases as the number of bank counterparties grows.

In a paper that unifies these conflicting views, Acemoglu et al. (2015b) show that
financial contagion exhibits a form of phase transition. In this respect, more densely con-
nected financial networks enhance financial stability as long as the magnitude of negative
shocks is sufficiently small. However, beyond a certain critical point, dense interconnec-
tions serve as a mechanism that favors propagation of shocks, leading to more fragile
financial systems. Acemoglu et al. (2015a) build on that idea and propose a general eco-

1Size refers to the volume of financial services provided by the individual component of the financial
system. Substitutability measures the extent to which other components of the system can provide the
same services in the event of a failure. Finally, interconnectedness accounts for the linkages with other
components of the system and how shocks transmit between different markets or financial institutions.
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nomic framework that explains the network topology as an amplifying driver of small-
magnitude shocks. In a similar paper, Elliott et al. (2014) study cascades of failures in
financial networks and find that the effects of increasing dependence on counterparties
(integration) and more counterparties per organization (diversification) have different and
nonmonotonic effects on the extent of financial contagion.

Related to this literature, we develop a general framework to estimate systemic
risk that accounts for feedback effects that arise between different contagion transmission
channels. To the best of our knowledge, this is the first work that recognizes and quantifies
the importance of feedback effects in contagion models.2 We show that these feedback
effects are economically significant using micro-level supervisory data on the Brazilian
financial and real sectors. We show that the framework is flexible and has strong theoret-
ical properties, such as the existence of a unique fixed point regardless of the magnitude
of initial shocks.

We represent the systemic risk framework as a nonlinear dynamical system whose
evolution is coupled to a multilayer financial network. In this network, economic agents
of the same nature compose the same network layer, while economic agents of different
types reside in distinct network layers.

Economic agents from different network layers intercommunicate through financial
operations. The establishment of these financial operations potentially creates contagion
transmission channels between different network layers. In terms of contagion, the liter-
ature so far has designed stress tests that essentially evaluate how shocks in one financial
layer influence the economic agents’ conditions in other layers. However, these models
do not take into account the feedback mechanism that naturally arises between economic
agents in different financial layers. In these models, shocks propagate from one layer,
normally the one that receives the initial shock of interest, to other layers. Once there,
these shocks never go back to the initial layer nor propagate between different layers in
a real feedback mechanism. In this work, we propose a framework in which shocks can
propagate through different financial layers via feedback mechanisms. To the best of our
knowledge, this is the first work that provides a systematic and extensible way to model
feedback mechanisms between economic agents that lie in a multilayer financial network.

To illustrate, we model bidirectional contagion transmission channels between banks
and firms. In this respect, we consider two financial layers: the financial and the real sec-
tor layers, whose economic agents we represent by banks and firms, respectively. While
the first layer models the interbank lending between banks, the second layer expresses

2Battiston et al. (2016) highlight that concepts of feedback, networks, and contagion have recently
entered the financial and regulatory lexicon, but are in their early stages. Our work also contributes to this
direction as we propose a general model that not only realizes a dynamical contagion process in financial
networks but also deals with the important issue of modeling the impact feedback mechanism between
economic agents.
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the credit lines that firms establish between their peers.3 In addition, banks finance or
provide loans to firms that in turn use these resources to fund their projects. Similarly,
firms maintain deposits in custody of banks that in turn direct them toward their financial
services.

The interconnections between banks and firms potentially give rise to two major
contagion transmission channels: 1) contagion from banks to firms and 2) contagion from
firms to banks. In this situation, the feedback mechanism we model relates closely to the
financial accelerator idea, which has been extensively studied from the macroeconomic
viewpoint (Bernanke [1983]; Bernanke and Gertler [1989]; Bernanke et al. [1996]; Kiy-
otaki and Moore [1997]; Krishnamurthy [2010]). In this way, this work also contributes
to the contagion and network literatures by providing an implementation of the financial
accelerator model in financial networks.

We can rationalize the financial accelerator concept by focusing on the principal-
agent problem that arises in credit markets. Borrowing and lending in credit markets is
costly (agency costs) due to imperfect and asymmetric information between lenders (prin-
cipals) and borrowers (agents). Principals cannot access the information on investment
opportunities (project returns), characteristics (creditworthiness) nor actions (risk-taking
behavior) of the agents costlessly. These agency costs characterize three conditions that
give rise to a financial accelerator:

• External finance (debt) is more costly than internal finance (equity).

• The premium on external finance varies inversely with the borrower’s net worth,
which signals ability to repay.

• A fall in borrower’s net worth reduces the base for internal finance and raises the
need for external finance at the same time raising its cost.

The idea of a financial accelerator originates from the fact that the borrower am-
plifies an initial negative shock by further decreasing its investment and production ac-
tivities. We model the financial accelerator in networks using the concept of financial
stress through reductions on the capacity of economic agents to absorb losses rather than
their payment ability. The motivation comes from the fact that financial stress enables us
to quantify how far from insolvency economic agents are. Thus, it gives us a sense of
a continuum between solvency and insolvency. In contrast, payment ability is a binary
measure: either or not the economic agent can repay certain liability. Therefore, we lose

3Though contagion analysis in the financial sector is long studied by the literature, only now researches
are recognizing the importance of the real sector in amplifying shocks in the financial system (di Giovanni
et al. [2014]).
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the notion of how far from insolvency the economic agents are.4

In our financial accelerator model, when firms cannot fulfill their obligations to the
banks they have borrowed from, they generate stress in a bank or a set of banks due
to assets write-offs that are absorbed by their capital buffers. The reduction on banks’
capital buffers potentially places upper bounds on bank assets and thereby on bank lending
on account of regulatory capital constraints. Thus, the increase in the stress levels of
banks feedbacks to the real economy through a credit crunch, which then exacerbates
the initial shock on firms. Closing the amplifying cycle, firms are further stressed due to
the credit availability constraints imposed by banks, leading them into reduced levels of
investment and consumption. This negative effect on firms’ production levels causes a
potential decrease in profit, which is then transmitted back to banks in the form of loan
defaults and deposit withdrawals.

Two conditions are necessary for such amplified effects of our financial accelerator
model to hold: the inability of banks to fully insulate their supply of lending in response
to such shocks and borrowers to be dependent on banks for credit. The first one normally
applies because of banks’ finite capital buffers and regulatory capital constraints. The
second one also holds because firms often have incentives to establish loan operations
with banks in detriment to other economic agents due to better contractual conditions.

The credit crunch imposed by banks affect firms in different ways. Firms that are
largely dependent on bank financing are more prone to contagion coming from the finan-
cial sector. For instance, Holmstrom and Tirole (1997) and Iyer et al. (2014) conduct
a study on bank dependency of European firms and find that credit crunches hit small,
collateral-poor firms the hardest. Larger firms are less affected as they can either rene-
gotiate their loans or go directly to the commercial paper or bond markets. We account
for this heterogeneity in our model by setting a firm-level upper limit for firms’ stress
levels that depends on their proportions of internal and external financing. The larger the
proportion of internal financing that firms receive—such as of shareholders, bondholders,
or past profits—the more insulated they are from suffering stress due to shocks coming
from the bank contagion channel.

We evaluate the systemic risk of economic agents to the financial system by first
applying an initial stress scenario on one or more economic agents. We then verify the
additional stress that they cause in all of the network layers. Economic agents that inflict
larger additional stress levels on the system are declared to be systemically important.

4To exemplify, suppose a financial institution suffers a loss amounting to 95% of its capital buffer. In
the Eisenberg and Noe (2001)’s algorithm that models default cascades using the payment ability approach,
the financial institution is still solvent and does not propagate any losses to its direct neighbors. In contrast,
when we employ the concept of financial stress, the bank is considered as almost insolvent and therefore
it propagates losses by honoring only 5% of its liabilities towards its neighbors. We observe that measures
that use financial stress compute potential rather than real losses. Potential losses in turn can fully or
proportionally materialize or even do not occur at all.
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We proxy the economic agents’ stress levels by the amount of available capital buffer
they have to face additional losses. Therefore, stress levels indicate how close economic
agents are from insolvency.

To evaluate how stress levels of economic agents evolve, we propose a nonlinear
dynamical system that works in general multilayer networks with feedback mechanisms
between network layers. The stress propagation process respects the network topology
that is delineated by inter- and intra-layer financial operations between economic agents.
In the dynamical process, we propagate stress differentials rather than stress levels to
avoid double counting. Essentially, once an economic agent suffers an increase in its
stress levels, it only propagates forward the stress increment to its direct neighbors. In
turn, these direct neighbors absorb losses using their capital buffers to the extent of their
vulnerability to the economic agent that has diffused financial stress. Thus, neighbors that
are more exposed have larger increments in their stress levels. We recursively apply this
local propagation rule until we obtain convergence of all of the economic agents’ stress
levels.

We show that the dynamical system has two phases that we term the transient and
persistent phases. The transient phase is marked with the presence of defaults of economic
agents. We show that defaults naturally drive the dynamical system in less unstable dy-
namics. When the dynamical system eventually achieves stability, the system enters the
persistent phase in which no more defaults occur.

Using intuitive concepts of network theory and general topology maps, we show that
our model converges to a unique fixed point, under mild conditions, once it reaches the
persistent phase. We first demonstrate the results for the two-layered network composed
of banks and firms with the built-in financial accelerator feedback engine. Then, we
generalize the proof of unique fixed point to multilayer networks with arbitrary number
of layers and feedback rules.

In addition, we show that, when we have a single network layer composed of banks
as economic agents, and hence with no feedback, our general framework reduces to the
well-known DebtRank procedure originally proposed by Battiston et al. (2012b) and fur-
ther enhanced by Bardoscia et al. (2015) to account for vulnerability cycles and multiple
routes.

We study the model’s effectiveness using Brazilian accounting and supervisory data
to build the financial and real sector networks. We employ a unique database from the
Central Bank of Brazil that contains detailed information on all loans made from banks
to firms and between banks. We aggregate loans to the firms by economic sectors. We
then simulate shocks on specific economic segments, which allows us to evaluate which
sectors contribute more to systemic risk.

We study those sectors that are more risky for banks. We find that, though the oil
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and gas sector takes by far the highest amounts of loans from banks, firms of that sector
are not the riskiest to banks in our analyzed period. In contrast, the metal extracting and
processing, tertiary, and food and beverage sectors take the lead as the riskiest sectors to
banks, even though banks are less exposed to firms of these sectors. We attribute this
finding to the “network effect” in which the network topology can either attenuate or
amplify shocks and thus plays a major role in contagion processes.

We also analyze the sensitiveness of bank control types to sector riskiness and find
that domestic private banks are the most susceptible banks to receiving shocks from firms
of any economic sector. In contrast, we show that government-owned banks present a
tendency of becoming more resilient to shocks coming from firms in the real sector and
that foreign private banks display an oscillating pattern in their susceptibility for receiving
impacts.

We investigate the factors that determine sector riskiness to banks using an empir-
ical panel-data estimation process. We find that sector riskiness is positively related to
the amount of loans that banks provide to that specific sector. In addition, we find em-
pirical evidence to support the claim that more diversified portfolios of banks contribute
to higher sector riskiness levels. In this line of research, Stomper (2004) and Acharya
et al. (2006) show that portfolio concentration brings benefits to banks in view of secto-
rial expertise, less competition with other banks, and lower monitoring costs. In this way,
portfolio concentration may bring positive consequences to financial stability while also
being beneficial to banks in terms of cost.5 We also find that sector riskiness increases as
firms of that sector connect to banks that are sources of stress diffusion, which is a mea-
sure that directly relates to the network topology. Therefore, sharing the same conclusions
of Acemoglu et al. (2015b) and Elliott et al. (2014), we also find that network structure
plays a crucial role in establishing systemic risk levels in financial networks.

We also study the role of the feedback mechanism in amplifying systemic risk in
the Brazilian bank-bank and bank-firm networks. In this respect, we elaborate on coun-
terfactual scenarios in which we compute systemic risk levels of banks and firms with
and without the feedback mechanism. We show that the second and higher-order rounds
of stress propagation that occur solely due to the feedback between layers are economi-
cally and statistically significant. We find that systemic risk levels of banks are increased
to values that are up to 266% higher than the version without feedback. This observation
suggests that models that were developed up to date are severely underestimating systemic
risk, as they do not take stress feedback between contagion channels into account.

5We should note that the corporate finance literature on portfolio management is controversial in this
matter. For instance, Diamond (1984) and Ramakrishnan and Thakor (1984) defend that banks should
diversify their portfolios among different dimensions (e.g., sectors or geographic regions). The gains of
this strategy would come in the form of reduction of financial intermediation costs and less vulnerability to
economic downturns. Another evidence is of the “single counterparty exposure limits” policy that Basel III
preconizes (BCBS [2014b]), which is an incentive to diversification over concentration.
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The remainder of the paper is organized as follows. In Section 2, we discuss the
methodology and detail the feedback-based systemic risk model in multilayer networks.
We show that, given an initial shock scenario, there always exists a fixed point equilibrium
and that it is unique. Section 3 presents results using interbank and firm data from Brazil
and discusses the empirical relevance of the model that we develop. Finally, Section 4
concludes the paper.

2 Methodology

In this section, we discuss the underpinnings of the systemic risk model. In this
respect, we provide an elegant framework that relies on a mathematical apparatus to es-
timate systemic risk while accounting for the existence of heterogenous economic agents
and multiple contagion transmission channels. While relegated by the contagion litera-
ture, we are the first paper to recognize, quantify, and model the relevance of the feedback
effect in a stress contagion process. We show evidences corroborating the fact that the
feedback mechanism is economically significant in real-world data.

We start by describing how the model fits into a two-layered financial network that
corresponds to the real and financial sectors. We design a financial accelerator engine in
networks to account for the feedback mechanism between the potential contagion chan-
nels interlinking the financial and real sector networks. Then, we take a step further and
generalize the model by providing an abstract framework of systemic risk evaluation using
multiple contagion transmission channels and arbitrary feedback rules among economic
agents. In both cases, we also demonstrate that our model converges to a unique fixed
point, irrespective to the initial conditions.

2.1 Systemic risk estimation using stress feedback between the finan-
cial and real sector networks

We focus here on the contagion model in the real and financial sectors while ac-
counting for the feedback effects between them. We first present the intuition behind the
heart of the model. Then, we explore its mathematical particularities and finally demon-
strate its theoretical properties.

2.2 Intuition of the model

The multilayer financial network layer comprises the financial and real sector lay-
ers. The financial sector layer represents the interbank borrowing and lending relation-
ships among banks and the real sector layer denotes credit lines and accounts payable to
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suppliers that firms establish among their peers. We term these links as intralayer links,
because the economic agents of both endpoints live in the same layer. Connecting these
two layers, there is the bank-firm network that is necessarily a bivariate graph. We de-
nominate these special links as interlayer links, which act as a contagion transmission
channel among firms and banks. In addition, we term the network as bivariate because
there are two sub-groups of vertices, namely the firms and banks, such that no firm is
connected to other firms and no bank is connected to other banks. That is, we do not see
links between a bank to a bank and a firm to a firm in bivariate networks. To contrast,
note that the bank-bank and firm-firm networks are necessarily univariate since there is a
single type of economic agent in these layers.

Figure 1 exhibits a two-layered financial network, in which banks are located at the
upper layer and firms are placed at the bottom layer. Links in the bank layer indicate an
exposure from one bank to another. For instance, bank 1 is exposed to 3 due to a lending
operation. To simplify our example, we consider that the firm layer has no links, i.e., firms
do not lend nor borrow between themselves. Firms borrow from banks to finance their
projects and hence increase their profit levels. In the figure, for example, bank 1 is exposed
to firm A due to a lending operation. In the theoretical model, we also address deposits
that firms hold in custody of banks. However, for didactic purposes in this example, we
also assume firms do not have deposits in the interbank system.

The financial accelerator feedback mechanism works in-between layers, i.e., the
bank-firm network. Firms can stress banks through loan defaults and banks can also stress
firms through credit restrictions.6 Concurrently, banks can also stress other banks through
the interbank (bank-bank) network. Since the network topology in the firm-firm network
is empty, firms cannot directly stress each other. They can, however, indirectly affect
each other through the financial accelerator mechanism. Figure 2 portrays a schematic
of this process that explicitly shows the bidirectional feedback mechanism exerted by the
financial accelerator in the bank-firm network. The network topology of this schematic is
identical to that of Fig. 1 but now we stand out the interlayer feedback mechanism.

We now explain the mechanics of the feedback effect when computing the stress of
banks and firms. Suppose a shock occurs in one of the firms in Fig. 2. To exemplify, say
that firm A defaults. Due to the default, firm A may not honor in full its liabilities towards
its creditors, which we represent by banks 1 and 2 in Fig. 2. Upon not receiving the due
payments, these two banks become distressed as well. The increase in the stress levels of
banks 1 and 2 in turn causes two direct undesirable effects:

• First, in relation to the financial sector, banks 1 and 2 propagate financial stress

6Had firms deposits in custody of banks in this example, firms would also stress banks through deposits
withdrawals and banks would stress firms through defaults on these deposits. We account for these features
in the theoretical model.
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Bank  
layer 

Firm 
layer 

Bank-firm 
layer 

Figure 1: A multilayer financial network with two layers: bank (circle) and firm (square) layers. Banks
interconnect in the interbank market through borrowing and lending relationships. For didactic purposes
in this example, we consider that the interfirm network is an empty graph, meaning that firms do not hold
financial operations with each other. We also assume firms hold no deposits in custody of banks. We repre-
sent intralayer links with continuous arrowed lines and interlayer links that engine the financial accelerator
with dashed arrowed lines.

through the interbank network via potential interbank loan defaults. Upon receiving
this impact, creditors of banks 1 and 2 also become distressed due to this contagion.
Particularly in Fig. 2, we see that bank 3 gets impacted on account of the lending
operation it has against the distressed bank 2. In addition, beside the financial stress
it receives from firm A, bank 1 additionally receive another impact that originates
due to its exposure to bank 2.

• Second, in relation to the real sector, banks 1 and 2 are less willing to provide
further loans to other firms because of their increased financial distress as a result of
assets write-offs due to the default of firm A. Consequently, they naturally restrain
more and more credit to firms and banks in the market, mainly to those with low
creditworthiness. This behavior in turn causes the financial stress to travel back to
the real sector, in a real stress feedback mechanism. For instance in Fig. 2, firm B

becomes becomes distressed on account of the reduced bank financing it receives
that results from the credit crunch performed by bank 2.7

7Though firm A also receives stress feedback coming from banks, it is already in default and hence it
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Figure 2: Schematic of the two-way feedback mechanism for stress between the bivariate network composed
of banks and firms and the univariate network composed of banks (interbank network). Squares denote firms
and circles represent banks. Arrows symbolize pairwise exposures.

The aforementioned consequences are only the direct ones. When firm B becomes
distressed, it receives lower funding availability from banks, which in turn may have some
impact on its revenues due to lower production levels. Consequently, the stress level
of firm B increases, causing that effect to bounce back to bank 2 through loan defaults.
Moreover, due to the stress that bank 3 receives in the interbank network, it affects firms C

and D and also the neighboring banks in the interbank market. Thus, the shock again goes
to the financial sector. This feedback/feedforward mechanism goes on until the contagion
transmission system converges.

2.3 Model definition

We now define the mathematical underpinnings of the model we propose to estimate
systemic risk in the real and financial sectors. We design a financial accelerator engine in
a network environment that serves to feedback financial stress between economic agents.
We represent the problem as a nonlinear dynamical system, whose evolution depends on
the structure of the underlying two-layered financial network. Given an initial condition
for the financial system, which we translate as the initial shock scenario, we are interest

does not propagate any further stress.
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in the attained stress levels of firms and banks after the convergence of the dynamical
system. These stress levels together proxy how harmful to the financial system that initial
shock scenario would be.

We denote the financial stress levels of firms and banks at time t as fk(t) ∈ [0,1] and
hi(t) ∈ [0,1], respectively. The stress level numerically conveys the notion of how close
one economic agent is to insolvency. When fk(t) = 1 or hi(t) = 1, firms or banks default
because potential losses completely deplete their available resources. When fk(t) = 0 or
hi(t) = 0, firms or banks are undistressed because their loss absorbing capabilities are
intact. In-between values lead to partial stress of bank i or firm k.

We update the stress levels of firms and banks in the dynamical system, which is
coupled to the two-layered financial network structure, as follows:

hi(t) = min

(
1,hi(t−1)+ ∑

j∈B
V(bank−bank)

i j ∆h j(t−1)+ ∑
u∈F

V(bank−firm)
iu ∆fu(t−1)

)
, (1)

fk(t) = min

(
1, fk(t−1)+ ∑

u∈F
V(firm−firm)

ku ∆fu(t−1)+ ∑
j∈B

V(firm−bank)
k j ∆h j(t−1)

)
, (2)

∀i ∈B and k ∈F , in which B and F are the sets of banks and firms in the financial
system. Note we accumulate over time the stress levels of economic agents. In the current
iteration, banks and firms receive stress differentials ∆h(t−1) = h(t−1)−h(t−2) and
∆f(t−1)= f(t−1)−f(t−2), respectively, from those neighbors to which they are directly
exposed. To circumvent the problem of stress double-counting in the diffusion process,
the stress propagation relies on differentials or innovations rather than full stress levels.
Financial stress can also impact economic agents that do not maintain direct exposures
to each other through vulnerability routes in the network. In any case, we modulate
these stress differentials in accordance with banks’ or firms’ sensitiveness to their direct
neighborhoods.

The vulnerability matrix V(bank−bank) models the stress absorbing sensitiveness of
pairs of banks. For instance, V(bank−bank)

i j represents the sensitiveness of bank i toward
bank j in case the latter propagates stress. The larger is the sensitiveness, the larger the
susceptibility of stress absorption of bank i toward bank j is. The same reasoning applies
for the vulnerability matrices V(bank−firm), V(firm−firm), and V(firm−bank) that account for
the sensitiveness among banks to firms, firms to firms, and firms to banks, respectively.
These four vulnerability matrices tie the dynamical system evolution to the structure of
the two-layered financial network. We define each of these four vulnerability matrices in
the following paragraphs.

We start by introducing the vulnerability matrices that work within a network layer.
We define the vulnerability matrix of the bank-bank network V(bank−bank) ∈ B×B as
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follows:

V(bank−bank)
i j =

A(bank−bank)
i j

ei
, (3)

∀i, j ∈B and V(bank−bank)
i j ∈ [0,1]. The entry A(bank−bank)

i j denotes the exposure of credi-
tor bank i toward the debtor bank j in the interbank network and ei indicates the available
resources or loss absorbing capability of bank i. All else equal, the vulnerability between
bank i to j increases as the corresponding value of the lending operation increases. This
is consistent with the fact that banks become more susceptible to shocks or market vari-
ations of those counterparties to which they heavily maintain investments. We take the
ratio of the lending operation value to the loss absorbing capability of the creditor bank
to transform the exposure into a relative measure of how representative that lending op-
eration is to the current loss absorbing capability of the bank. As we are dealing with
potential losses, Equation (3) models the fact that more distressed banks are more prone
of defaulting on their interbank liabilities and hence of disseminating financial stress to
their exposed neighbors.

We define the vulnerability matrix of the firm-firm network V(firm−firm) ∈F ×F

as follows:

V(firm−firm)
ku =

A(firm−firm)
ku

ek
, (4)

∀k,u ∈F and V(firm−firm)
ku ∈ [0,1]. The term A(firm−firm)

ku denotes the amount of money
creditor firm k ∈ F lends to the debtor firm u ∈ F . In addition, ek indicates readily
available resources of firm k that can be used to absorb losses. Again, all else equal,
the stress sensitiveness of the creditor firm increases as the exposure to the debtor firm
increases. From the economic viewpoint, Equation (4) accounts for the observation that
more distressed firms are more likely to default on their interfirm liabilities and thus to
generate financial stress in the financial system.

Now we present the interlayer vulnerability matrices that link economic agents of
different natures. We define the vulnerability matrix of banks to firms V(bank−firm) ∈
B×F essentially as a sum of two terms:

V(bank−firm)
iu = V(bank−firm)

iu (AS)+V(bank−firm)
iu (LS), (5)

∀i∈B, u∈F , and V(bank−firm)
iu ∈ [0,1]. The terms V(bank−firm)

iu (AS) and V(bank−firm)
iu (LS)
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represent the vulnerability of bank i to firm u that arises in light of potential exposures
that can impact the asset- and liability-side of bank i’s balance sheet, respectively, due to
stress propagation from firm u.

We use potential loan defaults as the contagion transmission mechanism that firms
in the real sector can impact the asset-side of banks’ balance sheets. We model such
behavior using the following mathematical expression:

V(bank−firm)
iu (AS) =

A(bank−firm)
iu

ei
, (6)

in which V(bank−firm)
iu (AS) ∈ [0,1]. The entry A(bank−firm)

iu indicates the loan value of bank
i to firm u. Note that the more bank i is exposed to firm u, the more sensitive it is to shocks
coming from that firm. In our dynamical system, Equation (6) accounts for the fact that
more distressed firms are more likely to default on their obligations, such as bank loans.

We employ potential deposit withdrawals as the contagion diffusion mechanism that
firms can primarily impact the liability-side of banks’ balance sheets. These withdrawals
cause a reduction in the available resources that banks would otherwise use to absorb
losses. We model this behavior using the following expression:

V(bank−firm)
iu (LS) =

Dui

ei
, (7)

in which V(bank−firm)
iu (LS) ∈ [0,1]. The term Dui characterizes the deposit amounts that

firm u has in custody of bank i. Again, note that bank i is more exposed to firm u the more
it holds deposits from that firm. In our dynamical system, Equation (7) models the fact
that firms are likely to withdraw more of their deposits the more they are distressed. By
doing so, firms replenish their liquid positions while banks get even more distressed due
to firms’ deposit withdrawals.

Similarly, the vulnerability matrix of firms to banks V(firm−bank) ∈F×B comprises
two complementary terms:

V(firm−bank)
k j = V(firm−bank)

k j (AS)+V(firm−bank)
k j (LS), (8)

∀k∈F , j ∈B, and V(firm−bank)
k j ∈ [0,1]. The terms V(firm−bank)

k j (AS) and V(firm−bank)
k j (LS)

indicate the vulnerability of firm k to bank j in its asset- and liability-side, respectively,
which can materialize on account of shocks starting from that bank.

We consider potential deposit defaults as the contagion engine that banks in the
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financial sector can shock the asset-side of firms’ balance sheets. We account for this
characteristic using the following expression:

V(firm−bank)
k j (AS) =

Dk j

ek
, (9)

in which V(firm−bank)
k j (AS) ∈ [0,1]. Again, the terms Dk j and ek denote deposits from firm

k in custody of bank j and the firm k’s available resources to withstand losses, respectively.
Equation (9) models the fact that more distressed banks are more likely to default on their
deposit obligations toward the real sector.

We use potential credit crunches of banks on firms to model the way banks in the
financial sector stress the liability-side of firms’ balance sheets. We devise this behavior
using the following expression:

V(firm−bank)
k j (LS) =

A(bank−firm)
jk

ek

=
A(bank−firm)

jk

e(external)
k + e(internal)

k

, (10)

∀k ∈ F , j ∈ B, and V(firm−bank)
k j (LS) ∈ [0,1]. We now decompose firm k’s available

resources ek to better understand the impact of bank loans on firms. We consider that
it encompasses the terms e(external)

k and e(internal)
k , which are proxies for the total exter-

nal and internal financing, respectively, of firm k. By the accounting principle, together
they represent the firms’ total assets. In relation to internal financing, firms can finance
themselves from shareholders, as they can issue equities, or from past profits. The last
financing source tends to be scarce in times of stress, which makes firms more reliant on
bank credit. Bonds and bank loans are examples of external financing sources.

We can decompose firms’ total financing in bank loans and other financing sources.
The contagion transmission channel from firms to banks also acts in the amount of bank
loans firms receive. We can compute the total bank loans that firms gather from banks di-
rectly from the multilayer network using the measurement called in-strength s(in)k ,8 whose
expression is:

s(in)k = ∑
j∈B

A(bank−firm)
jk . (11)

8The terminology in-strength is borrowed from the complex network literature. Confer Silva and Zhao
(2016) for a thorough review on complex network measures.
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In this way, we can rewrite (10) as:

V(firm−bank)
k j =

A(bank−firm)
jk

s(in)k + e(other)
k

, (12)

in which e(other)
k = e(external)

k + e(internal)
k − s(in)k represents all of resource origins that firm

k receives other than bank loans. Equation (12) models the fact that banks will restrain
credit lines to firms the more they are distressed. Consequently, firms are expected to
become even more distressed.

The more one firm relies on a specific bank to get financed, the more it will get dis-
tressed when that bank gets distressed as well. However, we modulate the stress increase
of firms according to how dependent they are in terms of getting financed by banks. If
firm k strongly depends on bank financing, then e(other)

k is small in relation to s(in)k . Ac-
cording to (12), the sensitiveness terms V(firm−bank)

k j , j ∈B, tend to be large. Therefore,
firm k becomes largely susceptible to stress coming from the bank transmission channel.
In contrast, if firm k does not depend much on bank financing, then e(other)

k is large in
relation to s(in)k . Therefore, in view of (12), firm k becomes more resilient against stress
level increments coming from banks.

To better see the relation that the amount of bank loan and other sources of financing
plays in the contagion process, suppose e(other)

k = s(in)k . In this situation, firm k is financed
half from financial institutions and the other half from external agents. In light of (2),
that firm cannot default solely due to bank contagion. The contribution of this contagion
channel to firm k’s stress level would be at most fk(t) = 0.5. Now if e(other)

k = 0, then firm
k can default due to bank contagion and therefore its maximum stress level is fk(t) = 1.
In the other extreme, if e(other)

k � s(in)k , then firm k is sterilized from bank contagion, in a
way that its maximum attainable stress level is fk(t)≈ 0.

The dynamical system in (1) and (2) models the stress propagation procedure in
the real and financial sector networks using multiple contagion transmission channels and
feedback effects between economic agents. We model the feedback effect using the idea
behind the financial accelerator concept. To see that, suppose a bank becomes distressed
due to an external shock from the network. According to the dynamics of the model, both
firms and banks that have exposures toward that bank absorb that impact. Once they ab-
sorb the impact, they become more distressed and further propagate the stress differential
back to that same bank. This back-and-forth stress dissemination process is in line with
the idea of the financial accelerator, in which borrowers amplify an initial negative shock
by further decreasing its investment and production activities. Consequently, they amplify
that negative shock and transmit it back to the economic agent that originally propagated
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it.
Programmatically, we run the dynamical system that represents this financial sys-

tem until both stress levels of banks and firms converge. Note that the dynamical system
requires an initial shock in order to process the stress propagation. The initial shock can
be arbitrary: an idiosyncratic shock on banks or firms, a sectorial shock due to adverse
conditions on the economy, or generalized shocks on banks due to monetary policy con-
ducted by the policy maker.

Given an initial shock, we set the initial stress conditions of banks, h(0), and of
firms, f(0), accordingly. Suppose also that h(t) = f(t) = 0,∀t < 0. The economic agents
that receive shocks begin the dynamical process with positive stress levels. Say that the
dynamical system converges for a sufficiently large number of steps tconverge� 1.9 Then,
the systemic risk of an initial shock scenario is given by the additional stress that shock
causes on the multilayer financial network as follows:

SR(h(0), f(0)) = SR(financial)(h(0))+SR(real)(f(0)), (13)

in which SR(financial) and SR(real) stand for the systemic risk caused on the financial and
real sector due to shocks h(0) and f(0), respectively. In this application, we represent
these sectors as the banks and firms, respectively. We compute these measures as follows:

SR(financial)(h(0)) = ∑
j∈B

(
h j(tconverge)−h j(0)

)
ν j, (14)

SR(real)(f(0)) = ∑
u∈F

(
fu(tconverge)− fu(0)

)
νu, (15)

in which ν j and νu denote the economic values of bank i and firm u, respectively. Observe
that we remove the stress caused by the initial shock scenario h(0) and f(0). In this way,
we only account for the additional stress that an initial shock scenario inflicts on the
system.

2.3.1 Theoretical analysis

In the next propositions, we analyze the dynamical behavior and the theoretical
properties of the feedback-based contagion model in the real and financial sectors.

We first transform the model, whose evolution is coupled to the two-layered network
that encompasses economic agents from the real and financial sectors, to a standard format

9We show in the next section that the model always converges to a unique fixed point. Then, we can
assume that tconverge < ∞ with no loss of generality.
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of state-space dynamical system. This step is useful as it facilitates the understanding of
convergence issues of the system.

Proposition 1. The systemic risk framework with B = |B| banks and F = |F | firms,

whose behavior is determined by (1) and (2), can be cast into a state-space system:

∆s(t) = min(1,V∆s(t−1)), (16)

in which ∆s(t) ∈ [0,1]B+F is the state of the dynamical system and represents iteration-

wise stress level differentials or increments of economic agents that occur at iteration t.

Mathematically,

∆s(t) = s(t)− s(t−1), (17)

in which s(t) = [h(t) f(t)]T is a column vector with B+F entries that compounds the

stress levels of banks and firms stacked in that order and T is the transpose operator.

We construct the update matrix of the feedback-based systemic risk model V as:

V =

(
V(bank−bank) V(bank−firm)

V(firm−bank) V(firm−firm)

)
, (18)

in which V(bank−bank) ∈B×B, V(bank−firm) ∈B×F , V(firm−bank) ∈F×B, and V(firm−firm) ∈
F ×F . In this way, the update matrix V has dimensions of (B+F)× (B+F).

Remark 1. Monotonically non-decreasing property of stress levels: the trajectory of

∆s(t) is non-decreasing in light of the accumulative non-negative increments ∆h(t) and

∆f(t). That is, ∆s(t + k) ≥ ∆s(t),∀k ∈ {1,2, . . .}. This inequality holds because every

entry of the update matrix V and the initial condition ∆s(0) are non-negative. Hence,

inner joins between V and ∆s cannot yield negative values.

Proposition 1 describes a mathematical setup that is inspired by the financial accel-
erator model. To date, most of the research on systemic risk has neglected the feedback
between the real and financial sectors. Our model incorporates this feature that is relevant
to effectively capture how micro events, such as idiosyncratic shocks on economic agents,
can unfold into macro events, such as systemic risk buildup.

Remark 2. Monotonically non-decreasing property of stress levels: the trajectory of

∆s(t) is non-decreasing in light of the accumulative non-negative increments ∆h(t) and

∆ f (t). That is, ∆s(t + k) ≥ ∆s(t),∀k ∈ {1,2, . . .}. This inequality holds because every
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entry of the update matrix S and the initial condition ∆s(0) are non-negative. Hence,

inner joins between S and X cannot yield negative values.

Remark 3. Stability of the system: the min(.) operator in (16) guarantees the stability

of the dynamical system. For instance, if we remove the min(.) operator, then the system

becomes unstable once an entry of X(0) becomes greater or equal to one. To exemplify,

consider that Xi(t)≥ 1 and that the i-th column of S is full of ones. In this situation, there

would be no dampening of the i-th column of S anymore. Using this fact with the non-

decreasing behavior of X(0) results in unboundedness of X(0) and hence unstableness of

the dynamical system.

The update matrix V is time-invariant, meaning that its spectrum is constant over
time. However, as banks or firms default, the stress diffusion potentiality of the system
is reduced, since there are fewer active players. In this way, the system drives itself to a
more stable dynamics. In mathematical terms, the spectrum of matrix V tends to decrease
over time. For the purposes of stability analysis, we can make V time-variant in a way to
have better estimates of its true potential spectrum over time. The next lemma provides
a possible rearrangement of V that alters its spectrum while maintaining identical the
behavior of the dynamical system.

Lemma 1. The dynamical system in (16) can be rewritten as:

∆s(t) = min(1,V(t)∆s(t−1)), (19)

i.e., V(t) is now a time-varying matrix whose entries are given by:

Vi j(t) =

Vi j(t−1), if i has not defaulted up to time t−1.

0, otherwise.
(20)

Proof. Suppose the ith economic agent defaults at time t. Due to the upper limit of 1, the
stress differentials of i are stacked at zero in the subsequent iterations, i.e., ∆si(t + k) =

0,∀k ∈N+.10

To prevent increases of economic agent i’s stress levels in subsequent iterations,
we can zero the ith row of the update matrix V as Equation (20) shows. Applying this
modification, the inner products between the ith row of V(t + k) and ∆s(t + k), ∀k ∈N+,
always result in zero. Therefore, ∆si(t + k) = 0 and hence economic agent i does not
propagate further stress once in default. �

10Another way to see this is by noting that the curve of si is non-decreasing due to Remark 2. Once i
reaches the upper limit of 1, it never leaves that stress level.
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We introduce the following theorem that is useful to bound the spectrum of a square
matrix.

Theorem 1. Geršgorin (1931)’s Circle Theorem: Every eigenvalue λ of an N-dimensional

square matrix S satisfies:

|λ −Sii| ≤∑
j 6=i

∣∣Si j
∣∣, (21)

∀i ∈ {1,2, . . . ,N}.

Remark 4. Geršgorin (1931)’s theorem gives estimates to bound the spectrum of a square

matrix. In special, it asserts that the eigenvalues of S must be inside in one or more, pos-

sibly overlapping N circles centered at the main diagonal elements Sii, ∀i ∈ {1,2, . . . ,N},
each of which with radius given by the sum of the elements of the respective i-th row,

except for the main diagonal element.

We now link Lemma 1 and Theorem 1 to delineate the phases through which the
systemic risk framework passes as the contagion diffusion process between economic
agents evolves.

Proposition 2. The systemic risk framework passes through two distinct phases:

1. Transient phase: marked by the presence of defaults, V(t) evolves to less desta-

bilizing conditions as defaults emerge in the financial system. This phase always

terminates and may or may not be present in the dynamics.

2. Persistent phase: marked by the absence of defaults, V(t) is necessarily stable.

This phase is always present.

Proof. We divide the proof into two parts: definition of the transient and the persistent
phases.

As defaults occur in the transient phase, some economic agents’ stress levels keep
increasing until they top at 1 because of the min(.) operator. Say that the economic agent
i defaults at time tdefault. Thus, the spectrum of V(tdefault + k),∀k ∈ N+, reduces due to
Lemma 1. If other defaults occur at later iterations, the spectrum V once again diminishes
until the spectrum of V eventually reaches the stability zone, in which the magnitude of
its largest eigenvalue becomes less than one. When no more defaults occur, the persistent
phase begins and V(t) becomes stable from that moment onwards.

We can apply Geršgorin (1931)’s circle theorem to get a very clear intuition of the
spectrum update process. We apply this theorem on the transpose of V with no loss of
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generality, since eigenvalues of a matrix are equal to its transpose. We first note that the
elements of the main diagonal of VT must be zero, because economic agents cannot be
vulnerable to themselves. Therefore, the estimates of the eigenvalues of VT are centered
at circles in the origin of the plane. These circles have different radii according to the
partial row sums of VT . Each partial row sum, which excludes the element in its main
diagonal, represents an upper bound for the spectrum of VT . For stability and asymptotic
analyses, we can only keep the largest estimate of the spectrum.

Figure 3 portrays a typical trajectory of the spectrum of VT . As defaults occur, the
spectrum of VT reduces leading to a more stabilizing financial system. Eventually, the
system enters the persistent phase in which VT is necessarily stable. Once it enters this
area, its spectrum no longer changes and, as we will see, the dynamical process converges.

𝐼𝑚 𝜆max   

𝑅𝑒 𝜆max   
𝟎 𝟏 

𝟏 

1. Unstable initial 
spectrum 
 

2. First defaults 
 

3. Unstable spectrum 
after first defaults 
 

4. Second defaults 
 

5. Stable spectrum 
after second 
defaults 
 

#1 

#2 
#3 

#5 
#4 

Unit circle  
(stability border) 

Figure 3: Evolution of the estimated spectrum of VT (t) as defaults of economic agents occur. In the
schematic, the orange-shaded area denotes the stability zone, which is within the unit circle. The red
spectra denote transient phases, while the green spectrum represents the persistent phase. The y- and the
x-axis indicate the imaginary and real part of the largest partial (excluding the main diagonal element) row
sum of VT (t). As defaults occur, the spectrum reduces until it necessarily reaches the stability zone. At that
point, it stays there until convergence to a unique fixed point.

Observe also that the transient phase is not required in this process: if V is stable
upfront, then the dynamical process immediately enters the persistent phase. �

As economic agents default, Proposition 2 reveals that there are less potential con-
tagion sources, allowing the financial system to drive itself to less unstable states. The
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feedback effect slows down the convergence to equilibrium, but does not affect the asymp-
totic features of the model. We still need to prove that there is unique fixed point in the
contagion process. Before showing that, the following Lemma provides an important
characteristic of the dynamical system while it is in the persistent phase.

Lemma 2. Once the system enters the persistent state, the update rule of the dynamical

system becomes a contraction mapping g : [0,1]B+F 7→ [0,1]B+F , in which g is a vectorial

function that maps stress levels from t−1 to t.

Proof. According to Proposition 2, the persistent phase is marked by the absence of de-
faults. In this way, we can remove the min(.) operator from the update rule of the dy-
namical system, because stress levels never reach 1. Using this observation in (19), we
get:

∆s(t) = Vstable∆s(t−1), (22)

in which Vstable represents the stable update matrix V in the persistent phase. As no
defaults occur in the phase, the matrix is time-invariant and therefore its spectrum does
not change. In this way, we can omit the time index with no loss of generality. In addition,
the dynamical system becomes linear.

Given an initial condition ∆s(0), we can explicitly compute ∆s(t) in terms of ∆s(0)
as:

∆s(t) = Vt
stable∆s(0). (23)

Noting that matrix Vstable possesses eigenvalues inside the unit circle, then Equation
(23) represents a contraction mapping that is performed by the stable update matrix Vstable

on the states ∆s(t). �

We also present Banach (1922)’s fixed-point theorem, also known as the contrac-
tion mapping theorem or contraction mapping principle, which is an important tool in the
theory of metric spaces. It provides an elegant way to guarantee the existence and unique-
ness of fixed points in contraction maps defined in metric spaces, while also providing a
constructive method to find those fixed points.

Theorem 2. Banach (1922)’s fixed-point theorem: Let (X ,d) be a non-empty complete

metric space with a contraction mapping g : X 7→X with distance metric d. Then g

admits a unique fixed-point x∗ ∈X , i.e., g(x∗) = x∗. Furthermore, x∗ can be found as

follows: start with an arbitrary element x0 in X and define a sequence {xn} by xn =

g(xn−1), then xn→ x∗.
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We now show the main result of the theoretical analysis: the convergence of the
contagion process to a unique fixed point.

Proposition 3. Irrespective to the initial conditions, the feedback-based systemic risk in

multilayer networks has a unique fixed-point s∗:

s∗ = (I−Vstable)
−1

ε, (24)

in which Vstable and ε denote the update matrix and stress levels of economic agents,

respectively, when the dynamical system enters the persistent phase.

Proof. To show the existence of the fixed point, we show that the systemic risk dynami-
cal system enjoys the pre-requisites of the Banach (1922)’s fixed-point theorem. First, the
metric space of the map is a continuous line segment in the space B+F , i.e., [0,1]B+F .
Clearly, it is a traditional non-empty complete metric space with a well-defined Euclidean
distance metric. In addition, the stable update matrix Vstable in (23) represents a contrac-
tion map due to Lemma 2. Putting together these facts and invoking Banach (1922)’s
theorem, we conclude that the dynamical system must have a unique fixed point.

We now algebraically evaluate that fixed point s∗. If ε represents the stress levels of
economic agents when the dynamical system enters the persistent phase, then:

s(t) = Vstables(t−1)+ ε, (25)

∀t > 0 and s(0) = 0. As Equation (25) has a fixed point s∗, then s(t) = s(t−1) = s∗ and
therefore:

s∗ = Vstables∗+ ε

⇒ (I−Vstable)s∗ = ε, (26)

in which I is the identity matrix. But Vstable is stable and hence the inverse of (I−Vstable)

exists and corresponds to a convergent geometric series.
The update matrix Vstable has the main diagonal full of zeroes. In this way, the

main diagonal of (I−Vstable) corresponds to a vector of ones and thus it has full rank.
Consequently, (I−Vstable) is invertible. Therefore, we can compute the equilibrium stress
level of the system as:
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s∗ = (I−Vstable)
−1

ε, (27)

which retrieves (24) and the proof is complete.
�

The existence of a unique fixed point brings several interesting characteristics for
the model. For instance, supervisory authorities can identify those financial institutions
that are more fragile given a feasible and relevant initial shock scenario and therefore take
proactive actions. This result is important for the development of financial regulation.

2.4 Systemic risk estimation using stress feedback among general
multilayer financial networks

In this section, we provide the general form of framework for multilayer financial
networks with arbitrary number of layers and feedback rules. We also show that the
well-known DebtRank methodology is a special case of our model when there is a single
network layer with no feedback.

2.4.1 Model definition

2.5 Model definition

The following proposition casts the general form of the dynamical system into a
standard state-space format.

Proposition 4. Say that there are L > 0 layers in a multilayer network. Suppose there are

Ni > 0 vertices in the ith layer, i ∈ {1, . . . ,L}. The general formulation of the feedback-

based systemic risk in multilayer networks can be cast into the following dynamical sys-

tem:

∆s(t) = min(1,V∆s(t−1)), (28)

in which the state ∆s(t) ∈ [0,1]N1+N2+...+NL is given by:
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∆s(t) =


∆s1(t)

∆s2(t)
...

∆sL(t)

=


s1(t)− s1(t−1)
s2(t)− s2(t−1)

...

sL(t)− sL(t−1)

 , (29)

in which si(t) is a vector with dimensions Ni× 1 that symbolizes the stress levels of the

economic agents placed at the ith layer, i ∈ {1, . . . ,L}. Thus, ∆s(t) is a column vector

with N1 +N2 + . . .+NL entries.

The update matrix of the system, V, is:

V =


V(1→1) V(1→2) . . . V(1→L)

V(2→1) V(2→2) . . . V(2→L)

...
... . . . ...

V(L→1) V(L→2) . . . V(L→L)

 , (30)

in which V(i→ j) is a matrix with dimensions Ni×N j that represents a suitable vulnera-

bility matrix that propagates stress from layer i to layer j, i, j ∈ {1, . . . ,L}. If i = j, then

the vulnerability matrix propagates intralayer stress. Otherwise, it propagates interlayer

stress. Note that V has dimensions (N1 +N2 + . . .+NL)× (N1 +N2 + . . .+NL).

The main challenge in the feedback-based systemic risk for multilayer networks is
in defining the vulnerability matrices of the dynamical process. The vulnerability matrices
that model the stress diffusion inside a layer, such as V(bank−bank) in (1) and V(firm−firm) in
(2), follow the same construction pattern, which reduces their design complexity. How-
ever, vulnerability matrices that model the stress diffusion process between layers in a
bidirectional manner, such as V(bank−firm) in (1) and V(firm−bank) in (2), are difficult to
design.

Remark 5. We can design flexible feedback mechanisms between layers. Suppose we

want:

• a bidirectional feedback between layers i and j, then we design V(i→ j) and V( j→i),

such that V(i→ j) 6= V( j→i) in the general case.

• a unidirectional “feedback” from layers i to j, then we design V(i→ j) and set

V( j→i) = 0. The classical contagion models in the literature fall in this category.

• no feedback between layers i and j, then we set V(i→ j) = V( j→i) = 0.
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2.5.1 Theoretical analysis

Proposition 5. Suppose that the system achieves convergence after a sufficiently large

number of iterations tconverge� 1. We compute the systemic risk or additional stress due

to an initial shock scenario s(0) as:

SR(s(0)) =
L

∑
l=1

tconverge

∑
t=1

(∆sl(t))
T

νl, (31)

in which sl(t) and νl indicate the column vectors that carry the stress levels and the

economic importance, respectively, of the Nl economic agents in the lth layer.

Proof. We start by using the additional stress formula that our systemic risk methodology
computes:

SR(s(0)) =
L

∑
l=1

(sl(T )− sl(0))
T

νl, (32)

We can evaluate sl(t), t ∈ {0,1, . . . , tconverge} from the dynamical system as follows:

sl(t) = sl(0)+
tconverge

∑
k=1

∆sl(k), (33)

in which ∆sl(k) = sl(k)− sl(k−1), as Equation (29) shows.
Substituting (33) into (32), we get:

SR(s(0)) =
L

∑
l=1

(
sl(0)+

tconverge

∑
t=1

∆sl(t)− sl(0)

)T

νl,

=
L

∑
l=1

tconverge

∑
t=1

(∆sl(t))
T

νl, (34)

which retrieves (31) and the proof is complete. �

Proposition 6. The dynamical system in Proposition 4 always converges to a unique fixed

point, irrespective to the initial conditions.

Proof. The mathematical apparatus used to prove the existence and uniqueness of the
fixed point for a two-layered network can be extended to the general case by simply
changing the state ∆s(t) and update matrix V to those as defined in (29) and (30). �
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2.5.2 DebtRank is a special case of the proposed model

DebtRank is a well-known measurement that also evaluates additional stress inside
a financial network.11 In the next proposition, we show that the current state-of-the-art
DebtRank formulation (Bardoscia et al. [2015]) is a special case of our general feedback-
based systemic risk measure in multilayer networks when there is a single network layer
(and hence with no feedback).

Proposition 7. The feedback-based systemic risk model reduces to Bardoscia et al. (2015)’s

DebtRank formulation when there is a single network layer composed of banks.

Proof. Since the computation of the systemic risk of Bardoscia et al. (2015)’s DebtRank
also use additional stress, we only need to check whether the stress levels of their pro-
cedure match ours. We can do that by verifying the update matrices of both dynamical
processes.

By comparing Bardoscia et al. (2015)’s update rule with our general formulation
in Proposition 4, it is clear that the update matrices of both processes coincide when
there is a single layer composed of banks. In this case, the update matrix reduces to
V = V(bank−bank). �

3 Application: Brazilian bank-firm and bank-bank net-
works

In this section, we apply our feedback-based systemic risk model for the Brazilian
bank-firm and bank-bank networks. We compare our systemic risk estimates against other
stress network measures, such as the DebtRank by Battiston et al. (2012b) and the differ-
ential DebtRank by Bardoscia et al. (2015), that work in the univariate interbank network.
We compare our method to the DebtRank formulations to elucidate the major role that the
bank-firm contagion transmission channel plays in the overall stress diffusion process. In
this regard, we show that systemic risk estimates largely increase when we incorporate the
real sector contagion channel in addition to the classical interbank channel. We also study
which economic sectors are more risky for banks by designing sectorial initial shock sce-
narios. Furthermore, we investigate the factors that increase or decrease sector riskiness
to banks. Finally, we show how important the contribution of the feedback mechanism

11The literature provides more than one definition of DebtRank, each of which with improvements over
the previous versions. The first version of DebtRank is due to Battiston et al. (2012b). This methodology
can greatly underestimate the stress in the financial system, as it blocks second- and high-order rounds of
impact diffusion coming from network cycles. Bardoscia et al. (2015) deal with this problem by introducing
a modified version of the DebtRank, in which banks are allowed to recursively diffuse stress increments and
not their current stress levels at each iteration. This is the current state-of-the-art DebtRank methodology.
We focus on comparing our methodology to Bardoscia et al. (2015)’s DebtRank version.
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(financial accelerator) is to estimating systemic risk. For that, we compare systemic risk
levels achieved by economic agents when we disable and enable the feedback mecha-
nism. We show that the financial accelerator plays a major role in increasing the overall
systemic risk.

3.1 Data

In this work, we use unique Brazilian databases with supervisory and accounting
data.12 We extract quarterly information from March 2012 through June 2015. In the next
sections, we discuss how we build the bank-bank (interbank) and bank-firm networks.
Due to data unavailability, we consider the network topology of the firm-firm network as
an empty graph and do not account for deposits that firms hold in custody of banks.

3.1.1 Bank-bank (interbank) network

Following de Souza et al. (2015), we consider banks’ loss absorbing capabilities
as the parcel of the total capital (Tier 1 + Tier 2) that exceeds 8% of their risk-weighted
assets. In Brazil, the capital requirement is 13% or 15% for specific types of credit unions
and 11% for other financial institutions, including banks. Most financial institutions hold
positive capital buffers (their regulatory capital exceeds the requirement). Financial insti-
tutions that are not compliant with this requirement are warned by the Supervision and
must present a plan to recover compliance in a given period. If the plan is not credible or
not feasible, the Authority intervenes. We set 8% RWA as a reference for the computation
of capital buffers as we assume that if a financial institution holds less than what is rec-
ommended by the Basel Committee on Banking Supervision, i.e., 8% of its RWA, it will
take longer to raise its capital to an adequate level and will likely suffer an intervention.

Although exposures among financial institutions may be related to operations in
the credit, capital and foreign exchange markets, here we focus solely on unsecured
debt operations of equal seniority in the money market. The money market comprises
financial operations on private securities that are registered by the Cetip:13 interfinancial
deposits, debentures and repurchase agreements collateralized by debentures issued by

12The collection and manipulation of the data were conducted exclusively by the staff of the Central
Bank of Brazil.

13Cetip is a depositary of mainly private fixed income, state and city public securities and other securities
representing National Treasury debts. As a central securities depositary, Cetip processes the issue, redemp-
tion and custody of securities, as well as, when applicable, the payment of interest and other events related
to them. The institutions eligible to participate in Cetip include commercial banks, multiple banks, sav-
ings banks, investment banks, development banks, brokerage companies, securities distribution companies,
goods and future contracts brokerage companies, leasing companies, institutional investors, non-financial
companies (including investment funds and private pension companies) and foreign investors.
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leasing companies of the same financial conglomerate.14 In this work, we term the last
financial instrument as “repo issued by the borrower financial conglomerate.”

We use exposures among financial conglomerates and individual financial institu-
tions that do not belong to a conglomerate. Intra-conglomerate exposures are not consid-
ered. In our sample, we only account for commercial banks, investment banks, savings
banks and development banks. We classify banks according to their sizes using a simpli-
fied version of the size categories defined by the Central Bank of Brazil in the Financial
Stability Report published in the second semester of 2012 (see BCB (2012)), as follows:15

1) we group together the micro, small, and medium banks into the “non-large” category,
and 2) the official large category is maintained as is in our simplified version. Therefore,
instead of four segments representing the bank sizes, we only employ two.

For each pairwise exposure between financial conglomerates or individual institu-
tions, we remove the share that is guaranteed by the Brazilian Credit Guarantee Fund
(FGC).16 All of the financial instruments that we are using are covered by the FGC. Un-
til May 2013, the FGC guarantees up to R$70 thousand for each deposit holder against
each registered institution. After that date, due to Resolution 4222 published by the Na-
tional Monetary Council, that amount increased to R$250 thousand. Say that the liability
of the financial institution p to q at time t is Lpq(t). Then we adjust that liability to
max

[
0,Lpq(t)−FGC(t)

]
, in which:

FGC(t) =

70,000, if t < May/2013,

250,000, otherwise.
(35)

In order to compute our feedback-based systemic risk measure in multilayer net-
work and also the DebtRank in its different formulations, we need a proxy for the banks’
economic values. For that end, we gauge the economic value of the i-th bank, νi, by the
share of its liabilities to the total liabilities in the network, that is:

14Recall that repurchase agreements are technically secured operations. However, since the borrower
in this type of repo guarantees the operation using collateral of a leasing company of the same financial
conglomerate, the collateral bears the same credit risk of the borrower financial conglomerate. Thus, in
practical terms, the financial operation turns out to be unsecured.

15The Financial Stability Report ranks financial institutions according to their positions in a descending
list ordered by their total assets. The Report builds a cumulative distribution function (CDF) on the these
total assets and classifies them depending on the region that they fall in the CDF. It considers as large
financial institutions that fall in the 0% to 75% region. Similarly, medium-sized financial institutions fall in
the 75% to 90% category, small-sized, in the 90% to 99% mark, and those above are micro-sized.

16The Credit Guarantee Fund, whose legal establishment is authorized by the Resolution 2197 emitted
by the National Monetary Council, is a private institution responsible for the protection of checking/saving
account holders and investors against registered financial institutions in case of intervention, liquidation or
bankruptcy.
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νi =
∑ j∈B A(bank−bank)

ji

∑ j,p∈B A(bank−bank)
jp

(36)

∀i∈B. In this way, νi ∈ [0,1] and ∑ j∈B ν j = 1. Consequently, our systemic risk measure
and DebtRank assumes values in the interval [0,1]. We can convert these indices to po-
tential losses by simply multiplying them to the total liabilities in the network. Our option
for the economic value proxy contrasts with that of Battiston et al. (2012b), who define
the relative economic value of the i-th bank as its share of assets to the total assets in the
network. However, we use the liabilities share because, once a banks default, the losses
that other members in the network have correspond to the liabilities of that defaulted bank
towards them.

3.1.2 Bank-firm network

In order to build up the bank-firm network, we first adopt a criterion to set the
sample of firms. We only employ companies whose shares are traded at the Brazilian
stock exchange (BOVESPA)17 as of September 29th, 2015. Following de Castro Miranda
and Tabak (2013), we choose such sample delimitation so that we are able to extract from
Economatica a rich set of information, such as registration data, financial statements, and
financial indicators, from these firms. We use a slight variation of the sector classification
that Economatica employs. Table 1 reports the original economic sectors of Economatica.
For the sake of clarity, we group some of these sectors so that our results can be better
interpreted. Table 2 shows the macrosectors that we build on the top of the economic
sectors of Economatica. In this clustering process, we only join sectors that have relative
low feedback-based systemic risk levels, in a way that our results are not compromised.
In addition, we remove the single firm representing the funds sector in Table 1 due to data
inconsistency. In this process, we end up with 12 sectors.

For each of these firms registered at Economatica, we compute the loans from each
financial institution in the interbank market to each firm from March 2012 through June
2015 on a quarterly basis. We extract these data from the Central Bank of Brazil’s Credit
Risk Bureau System (SCR)18. Again we consider just loans from financial conglomerates

17BOVESPA (São Paulo Stock Exchange), the main Brazilian stock exchange, manages the organized
securities and derivatives markets, providing registration, clearing and settlement services, acting as central
counterpart. The Exchange offers a wide range of products and services such as spot FX, equities and fixed-
income securities trading, as well as trading in derivatives contracts based among other things on equities,
financial securities, indices, rates, commodities and currencies. It lists companies and other issuers, is a
securities depository, has a securities lending service and licenses software.

18SCR is a very thorough data set which records every single credit operation within the Brazilian
financial system worth R$1,000 or above. It brings, on each operation, data as financial institution and
client identification, amount, type of loan, interest rate and risk classification.
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Table 1: Firm composition by sectors.

Economic sector Number of firms

Electric Power 45
Finance and Insurance 37

Primary and Fabricated Metal 22
Transportation Service 20

Other 99
Agriculture and Fisheries 5

Textile 25
Food and Beverage 17

Construction 22
Trade 19

Industrial Machine 5
Electric Electron 7
Vehicle and Parts 16

Chemical 11
Telecommunication 12

Mining 6
Oil and Gas 8

Pulp and Paper 5
Nonmetallic Mineral 4

Software and Data 5
Funds 1

Total 391

Table 2: Definition of macrosectors in terms of Economatica sectors.

Macrosector Sector Economatica Number of firms

Industrial Machines and Goods

Electric Electron

53Industrial Machine
Textile

Vehicle and Parts

Metal Extraction and Processing
Mining

32Nonmetallic Mineral
Primary and Fabricated Metal

Technology Software and Data 17Telecommunication

Tertiary Sector
Finance and Insurance

76Trade
Transportation Service

or independent financial institutions that do not belong to a conglomerate.
Combining the Economatica and SCR data sets, we calculate the total loans to asset

ratio to each firm in a given quarter. This information is a proxy for how important
financial institutions are in financing firms, i.e., a measure of the bank dependency of
firms. Figure 4 depicts the bank dependency for each sector. Overall, we see that firms
in our sample are not strongly dependent on bank financing, as this dependency for all
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sectors remains below the 25% mark. However, in addition to being small, we must
observe that our sample is compound only by companies with shares traded at the stock
market. Thus, those firms that cannot rely on this source of funding—and, hence, that are
more bank dependent—are not being considered.

Nonetheless, in relative terms, we see that firms in the agriculture and fisheries sec-
tor are the most dependent on bank financing. Followed by that, we also verify that firms
in the metal extraction and processing, pulp and paper, and food and beverage sectors
are also relatively dependent on bank financing. Contrasting to that, firms in the construc-
tion, electric power, and technology sectors are practically independent of bank financing.
Thus, firms in these sectors obtain financing mainly from other sources, such as of share-
holders, bondholders, or past profits. Sectors with low bank dependency are less prone to
bank stress and hence are more sterilized against shocks in the interbank market.
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Figure 4: Bank dependency of the economic sectors. We illustrate the evolution of these sectors on a
quarterly basis according to the data gathered in Economatica.

In order to compute our feedback-based systemic risk in multilayer networks and
DebtRank of firms, we need a proxy for their economic value. We define the economic
value of a firm k, νk, as its total assets over the total assets of all of the firms in our sample,
i.e.,
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νk =
TAk

∑u∈F TAu
, (37)

∀k ∈F . TAk stands for the total assets of firm k. In this way, νk ∈ [0,1] and ∑u∈F νu =

1. Again, we can transform the results in potential losses by simply multiplying our
coefficients by the total assets of firms.

3.2 How contributive is the real sector to the financial sector in terms
of systemic risk?

In this section, we evaluate the additional stress that firms and banks incur when
we default one bank at a time. We are interested in understanding the role that the real
sector plays in increasing systemic risk to the financial sector. Therefore, we compare
how our feedback-based systemic risk measure, which incorporates contagion channels
of the financial and the real sectors, against different DebtRank formulations, which only
account for the financial sector. We attribute the systemic risk level gap between these
approaches to the real sector. With regard to DebtRank, we use its original version by
Battiston et al. (2012b) and the improved version by Bardoscia et al. (2015) that we term
as differential DebtRank, which considers network cycles and multiple routes.

Figures 5a and 5b portray the average original and differential DebtRank, respec-
tively. Figure 5c shows the average feedback-based systemic risk measure when we ac-
count for both the bank and firm contagion channels. We discriminate the results by bank
sizes. One first perceptive characteristic is that large banks assume the largest systemic
risk levels for the three approaches throughout the entire studied period. This fact hap-
pens because they are more interconnected and intermediate more financial operations
by virtue of being members of the network core.19 Using the DebtRank methodology,
similar empirical studies using data from other countries also report a positive relation-
ship between bank size and systemic risk (Aoyama et al. (2013); Battiston et al. (2013,
2012a)). However, size does not play such a key role in determining bank’s systemic
risk. Nonlinear relationships and different systemic risk levels for banks of same size
suggest that size is not the sole determinant of systemic risk. Interconnectedness within
the financial sector and with the real sector plays a very important role.

Comparing the results of the three approaches, we first see that the original Deb-
tRank serves as lower bound for the differential DebtRank,20 which in turn establishes

19Silva et al. (2016) shows that the Brazilian interbank network has a core-periphery structure in which
the network core is mostly composed of large banks.

20The differential DebtRank is an extension of the original DebtRank that accounts for cycles and mul-
tiple routes in the vulnerability network. Therefore, it cannot be smaller than the original DebtRank by
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(a) Original DebtRank (bank-bank)
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(b) Differential DebtRank (bank-bank)
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(c) Feedback-based systemic risk measure (bank-bank and bank-firm)

Figure 5: Comparison of the original and differential DebtRank methodologies and the feedback-based
systemic risk measure with a financial accelerator engine between banks and firms. The initial stress
scenarios consist in defaulting a single bank at a time. Each point in the trajectories correspond to average
values discriminated by bank sizes.

a lower bound for our feedback-based systemic risk measure. We plot in Figs. 6a and
6b the relative increase of the average differential DebtRank and our feedback-based sys-
temic risk measure of large and non-large banks, respectively, in relation to the original
DebtRank formulation. We verify that the differential DebtRank assumes values that are
barely 20% higher in 2012 than those of the original DebtRank. After 2012, it keeps
oscillating around the [3,6]% mark. Applying a right-sided Wilcoxon signed rank test
on the differences of the differential and the original DebtRank for large and non-large
institutions, we reject the null hypothesis that the medians of the two curves are identical
at the 1% significance level.21

We now turn our attention to the results of our feedback-based systemic risk mea-

construction.
21For robustness, we also apply a right-sided paired-sample t-test and we also reject the null hypothesis

that the means of the two curves are identical at the 1% significance level.
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Figure 6: Relative increase of the average differential DebtRank and the feedback-based systemic risk
values to the average original DebtRank formulation. The initial shock scenarios are identical to those of
Fig. 5.

sure that uses the financial accelerator engine to incorporate bank and firm contagion
channels. Looking again at Figs. 6a and 6b, we see the feedback-based systemic risk
measures supplies estimates for the additional stress that reach up to 500% of the origi-
nal DebtRank value for large banks in June 2012. The average underestimation for large
banks in the entire sample period in relation to the original DebtRank is 266.66% and for
non-large banks is 52.82%. We see that the underestimation of the original and differen-
tial DebtRank formulations is more significant for large banks than for non-large banks.
This is because large banks are strongly connected to several firms, which are financed
by these banks. Each of these firms is also connected to a small quantity of other banks.
When we default a large bank, all of these firms get distressed as a consequence of the
credit reduction of that distressed bank. Due to the financial accelerator engine, that effect
bounces back to the interbank network through banks connected to those newly distressed
firms. These new distressed banks now propagate stress to the interbank lending network
and also to other connected firms through further credit reductions. In contrast, non-large
banks often are connected to a limited number of firms. Thus, the feedback effect on
non-large banks is reduced to a large extent.

The large observed differences in the feedback-based systemic risk measure, which
uses more than one contagion channel, and the DebtRank formulations, which employ a
single contagion channel, corroborate Glasserman and Young (2015)’s view on the under-
estimation of systemic risk when we consider only single contagion channels. They show
that it is relatively difficult to generate contagion solely through spillover losses using
only univariate networks, such as the interbank or payments networks in isolation. They
argue that additional channels, aside from pure spillover effects, are needed to generate
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substantial losses from contagion. Here, we verify that, by adding a new contagion chan-
nel through the bivariate bank-firm network that intercommunicates with the bank-bank
network through bidirectional feedback mechanisms, the additional stress can largely in-
crease. Thus, it is essential to consider other contagion channels if we really want to
conduct robust risk analysis in financial networks.

3.3 Which sectors are more risky for financial institutions?

In this section, we analyze how different sectors inflict less or more distress in the
financial system directly through the bivariate bank-firm network and indirectly through
the bank-bank network. Those sectors that cause more distress in the financial system are
considered to be more risky for financial institutions to maintain active financial opera-
tions.

3.3.1 Global view

In this section, we assume sectorial defaults as initial shock scenarios, i.e., the de-
fault of all firms of the same sector. We now focus on our feedback-based systemic risk
measure because the original and differential DebtRank version cannot accommodate for
more than one single contagion channels. The terms “feedback-based systemic risk of
banks” and “sector riskiness” are employed interchangeably in this and the following
sections.

Figure 7 shows the average sector riskiness to banks when we default each of the
economic sectors at a time (see Tables 1 and 2). We see that the most harmful sectors for
banking institutions significantly change over years. In this way, we rank each of these
sectors according to their average yearly positions and report the results in Table 3.

We see that the metal extraction and processing sector stays as the most risky sector
for banks in years 2012, 2014, and 2015. In 2013, the most risky sector turns out to
be the tertiary sector. Consistently, the food and beverage sector remains at the second
position throughout the analyzed period. The tertiary sectors also figures as one of the top
3 most risky sectors for financial institutions. The oil and gas and pulp and paper sectors
seem to lose riskiness from 2012 to 2015, while the construction sector assumes more
risky positions in that same period. On the other extreme, we see that the technology,
agriculture and fisheries, and electric power are the least risky sectors to banks, in that
order, from 2012 and 2015.

The number of firms in a sector is not a factor that determines the riskiness of that
sector to the financial system. For instance, we see the two most risky sectors, metal
extraction and processing and food and beverage sectors, have only 32 and 17 firms, re-
spectively. In turn, the tertiary sector has 76 firms and remains mostly in the third position.
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Figure 7: Sector riskiness to banks (feedback-based systemic risk measure for banks) when we default all
of the firms of the same sector.

In addition, the “other” sector has 99 firms and still occupies modest rank positions in Ta-
ble 3. The same occurs with the industrial machines and goods (53 firms) and electric
power (45 firms).

Another point we tackle in the next sections is that sector riskiness is not necessarily
associated to the total loans firms of the same sector receive from banks. This observa-
tion implies that the bank-bank and bank-firm networks may attenuate or amplify shocks
in different ways, depending on the current network topology. Thus, understanding the
“network effect” due to the bank-bank and bank-firm topologies is of utter importance if
one wants to really understand the factors that increase riskiness in a financial system. We
elaborate more on that in Section 3.4.

3.3.2 Bank sensitiveness to the real sector segregated by bank control types

Now we analyze how risky sectors are to banks by decomposing the bank feedback-
based systemic risk due to sector defaults in terms of bank control types: government-
owned, domestic private, or foreign private.22

Figures 8a and 8b depict the sector riskiness of large and non-large government-
owned banks, respectively. We can see that large government-owned banks contribute

22Foreign private banks include those in which there is foreign control or participation.
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Table 3: Sector ranking of how harmful sectors are in terms of contributing to systemic risk in the Brazilian
financial system. We provide sector rankings per each year.

Rank Year 2012 Year 2013 Year 2014 Year 2015

1 Metal Extraction & Processing Tertiary Sector Metal Extraction & Processing Metal Extraction & Processing
2 Food & Beverage Food & Beverage Food & Beverage Food & Beverage
3 Oil & Gas Metal Extraction & Processing Tertiary Sector Tertiary Sector
4 Tertiary Sector Pulp & Paper Construction Construction
5 Pulp & Paper Chemical Oil & Gas Oil & Gas
6 Other Other Other Electric Power
7 Construction Industrial Machines & Goods Pulp & Paper Chemical
8 Chemical Oil & Gas Chemical Other
9 Industrial Machines & Goods Construction Industrial Machines & Goods Industrial Machines & Goods
10 Electric Power Electric Power Electric Power Pulp & Paper
11 Agriculture & Fisheries Agriculture & Fisheries Agriculture & Fisheries Agriculture & Fisheries
12 Technology Technology Technology Technology

more to increasing the overall sector riskiness, specially in 2012. After that year, large and
non-large government-owned banks present similar feedback-based systemic risk values.
We also see that the metal extraction and processing sector is one of the riskiest sectors
for both large and non-large government-owned banks. In contrast, the oil and gas sector
is riskier for large than for non-large government-owned banks, suggesting that firms of
the oil and gas sector take more loans from large government-owned banks. The food and
beverage sector is also moderately risky for both large and non-large government-owned
banks. Firms of the chemical sectors are risky for both large and non-large government-
owned banks in 2012. After that period, however, the chemical sector riskiness for large
government-owned bank decreases, while it increases for non-large government-owned
banks. This fact suggests that firms of the chemical sectors seem to migrate their creditors
to non-large government-owned banks, thus concentrating more their financing portfolios.
Firms of the tertiary sectors are not risky for government-owned banks, meaning that these
banks do not have large exposures to these firms.

Figures 9a and 9b display the sector riskiness of large and non-large domestic pri-
vate banks, respectively. The picture here contrasts with that of government-owned banks:
non-large domestic private banks contribute more to increasing sector riskiness than large
domestic private banks. In general, we see that the most risky sector for non-large do-
mestic private banks changes over the analyzed period: in 2012, it is the pulp and paper
sector; in 2013, the chemical sector; in 2013, the construction sector; and in 2014, the
tertiary sector. Nonetheless, the tertiary sector consistently remains as the second most
risky sector for non-large domestic private banks from 2012 to 2014. The metal extraction
and processing sector also presents moderate risk for these kinds of banks in the analyzed
period. In contrast, for large domestic private banks, the food and beverage sector stands
as the most risky sector from 2012 to 2015. Though with small risk levels in 2012 and
2013, the oil and gas sector becomes a risky sector to large domestic private banks from
2014 onwards. This fact suggests that these banks increased their loans to these firms in
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(a) Large government-owned banks
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(b) Non-large government-owned banks

Figure 8: Sector riskiness to government-owned banks discriminated by size when we take as initial shock
scenario the default of all of firms of a same sector.

those years. The tertiary sector again stands as a risky sector for large domestic private
banks.

Figures 10a and 10b display the sector riskiness of large and non-large foreign pri-
vate banks, respectively. We see that non-large foreign private banks contribute more to
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(a) Large domestic private banks
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(b) Non-large domestic private banks

Figure 9: Sector riskiness to domestic private banks discriminated by size when we take as initial shock
scenario the default of all of firms of a same sector.

increasing sector riskiness than large banks of the same control type. In addition, we see
that both large and non-large banks in this control category are mainly exposed to the food
and beverage sector. The tertiary sector is the second most risky sector for foreign private
banks, followed by the metal extraction and processing sector.
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(a) Large foreign private banks
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(b) Non-large foreign private banks

Figure 10: Sector riskiness to foreign private banks discriminated by size when we take as initial shock
scenario the default of all of firms of a same sector.

We can also decompose the average sector riskiness to banks in terms of bank con-
trol types. In this way, we get a picture of which kind of bank control type is more
susceptible to shocks coming from different economic sectors. That is, banks that incor-
porate more sector riskiness fractions are more susceptible to impacts coming from the
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bank-firm channel. Figure 11 depicts the average fraction of sector riskiness for each bank
control type in the analyzed period. We construct this graph as follows: 1) evaluate the
average feedback-based systemic risk measure (sector riskiness) per each bank control
type due to the default of each of the sectors; 2) normalize each of the three computed
series.

Inspecting Fig. 11, we see that domestic private banks are the financial institutions
that are the most susceptible to shocks coming from any of the economic sectors, with
an exception for the second semester of 2012 in which government-owned banks turn out
to be more susceptible to those external impacts. After 2013, we see that government-
owned banks become more resilient against shocks coming from financed firms in any of
the sectors. Foreign private banks show an oscillating pattern in their susceptibility for
impacts coming from any of the sectors, with maximal relative susceptibility occurring in
June 2013.
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Figure 11: Banks’ susceptibility or sensitiveness of receiving impacts from the real sector discriminated
by bank control types. The larger the fraction, the more susceptible, on average, is one bank control type

in receiving shocks of the real economy.
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3.4 What factors increase or decrease sector riskiness to banks?

In the following sections, we define the components that we use to explain sector
riskiness to banks. We also discuss the intuition behind choosing these components, as
well as the expected results.

Likewise the previous section, we also term sector riskiness to banks as the feedback-
based systemic risk of banks evaluated from the default of all firms of a same sector (initial
shock).

3.4.1 Total loans of banks to sectors

One natural assumption of determinants that explain sector riskiness to banks relates
to the total amount of loans firms take from banks. That is, the more financial resources
from banks a sector uses, the more exposed banks are to that sector. Hence, that sector is
expected to be riskier for creditor banks should an external shock hit that sector. In this
respect, we can formulate the following hypothesis:

Hypothesis 1. Sector riskiness to banks is positively related to the total amounts of loans

banks provide to the sector.

Figures 12a and 12b portray the total amount of loans and the average loan value
from banks to each of the economic sectors. Though with only eight firms, we can see
that the oil and gas sector takes massive amounts of loans from banks, in a way that
the average loan value of the sector is large. Likewise, firms that encompass the metal
extraction and processing sector receive large amounts of loans. The average value of
these loans, however, is small as they are roughly dispersed among the 32 firms in that
sector. The same reasoning applies for the food and beverage sector and the tertiary sector:
they receive large amounts of loans that are dispersed through the large number of firms
in those sectors. The pulp and paper sector exhibits large average loan values due to the
small number of firms in the sample.

For clarity, Table 4 reports the rank positions of sectors per year using now the total
loans that sectors take from banks. We build the rank using the data from Fig. 12a. We
first see that the oil and gas sector receives by far the largest amounts of bank financing
in the period, except in 2013, period in which bank loans to the metal extraction and
processing sector are the majority. Besides that, the metal extraction and processing sector
also consistently receives large bank financing in other years, thus maintaining the second
position. Food and beverage and the tertiary sectors stay at the third and fourth positions.
The pulp and paper seem to receive less and less loans from banks in the analyzed period.
In contrast, the electric power sector receives an increasing amount of loans in the same
period.
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(a) Total loans
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(b) Average loan value

Figure 12: Total and average loan values from banks to each of the economic sectors from March 2012 to
June 2015.

To get a picture of the relation between sector riskiness and total loans that sectors
receive from banks, Figure 13 supplies a scatter plot of these two quantities. When build-
ing this figure, we flat out the time dimension of sector total loans and sector riskiness. We
also give a linear fit using as penalty the squared distances of points (OLS) just to give a
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Table 4: Sector ranking of the total amount of loans sectors take from banking institutions. We provide
sector rankings per each year.

Rank Year 2012 Year 2013 Year 2014 Year 2015

1 Oil & Gas Metal Extraction & Processing Oil & Gas Oil & Gas
2 Metal Extraction & Processing Oil & Gas Metal Extraction & Processing Metal Extraction & Processing
3 Food & Beverage Food & Beverage Food & Beverage Food & Beverage
4 Tertiary Sector Tertiary Sector Tertiary Sector Tertiary Sector
5 Pulp & Paper Other Pulp & Paper Electric Power
6 Other Industrial Machines & Goods Electric Power Other
7 Industrial Machines & Goods Construction Other Industrial Machines & Goods
8 Electric Power Pulp & Paper Industrial Machines & Goods Pulp & Paper
9 Chemical Electric Power Construction Construction
10 Construction Chemical Chemical Chemical
11 Technology Agriculture & Fisheries Agriculture & Fisheries Agriculture & Fisheries
12 Agriculture & Fisheries Technology Technology Technology

sense of the global relationship between these two quantities when we do not account for
sector heterogeneities. We get a correlation coefficient of 0.45, revealing that the riskiness
of the sector is somewhat correlated with the total loans that sector receives from banks.
Nonetheless, the oil and gas sector is not the most risky sector even though it receives
massive amounts of loans from banks. This observation suggests that the bank-bank or
the bank-firm networks seem to smooth the impact of firms of this sector. We elaborate
more on that in the next sections.

3.4.2 Financing portfolio concentration of firms and loan portfolio concentration
of banks

Several countries possess a set of rules limiting banks’ pairwise exposures to a sin-
gle borrower, which is an argument in favor of the necessity of portfolio diversification.
In Basel III, for instance, large pairwise regulation has been developed as a tool for limit-
ing the maximum loss a bank could face in the event of a sudden counterparty failure to
a level that does not endanger the bank’s solvency (BCBS (2014b)). Basel III motivates
the introduction of such regulation by historic terms.23 In contrast, there are many banks
that decide to specialize their loans activities to sectors in which they enjoy comparative
advantage. In addition, maintaining few active financial operations reduces monitoring
costs.

Theoretical models are also not consensual on the effects of portfolio concentra-
tion on bank performance. One strand of the literature (Diamond (1984); Ramakrishnan
and Thakor (1984)) posits that banks should diversify their portfolio among different di-
mensions (e.g., sectors or geographic regions). The gains of this strategy would come in
the form of reduction of financial intermediation costs and less vulnerability to economic
downturns. On the other hand, studies grounded on the corporate finance paradigm defend

23Throughout history, there have been instances of banks failing due to concentrated exposures to indi-
vidual counterparties. For instance, we can cite the UK crisis in 1984 and the Korean crisis in 1990.
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Figure 13: Scatter plot of total loans of banks to firms vs. sector riskiness. We also plot a linear fit for
the data in the black continuous line whose equation is SR = 0.055+0.004Loan, in which SR denotes the
sector riskiness and Loan is the total loans that banks provide to a specific sector.

that portfolio concentration may bring benefits to banks, as sectorial expertise (Acharya
et al. (2006); Stomper (2004)) and less competition with other banks (Winton (1999)).
Similarly, empirical studies report mixed results on the relationship between portfolio
diversification and bank performance.24

The aforementioned approaches explain the phenomenon of portfolio diversification
or concentration as a consequence of banks’ decisions to maximize profit or minimize
costs, while controlling for the assumed risks. Here, we are interested in understanding
how portfolio diversification or concentration of banks and firms affects sector riskiness.
In this spectrum, we argue that the more concentrated the financing portfolio of firms
and the loan portfolio of banks are, the harder the stress propagation in the network will
be. Consequently, sector riskiness becomes lower. That reasoning has its roots on the
following peculiar observations on the Brazilian bank-bank and bank-firm networks:

1. The bank dependency of firms (debt to total assets ratio of firms) is small in our
sample. In this way, firms do not become overly stressed due to stress coming from

24Tabak et al. (2011) present a comprehensive review on these empirical studies.
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banks. Consequently, the contagion transmission channel in the “firms to banks”
direction is small.

2. The vulnerability of banks to firms is often small. Though banks can run into a
default, the reduced pairwise vulnerability between banks and firms attenuates the
stress that is propagated to sectors. In this way, the contagion transmission channel
in the “banks to firms” direction is small.

3. The pairwise vulnerability between banks is highly heterogeneous. In this way, we
have large and small pairwise vulnerabilities in the interbank vulnerability network.

In essence, the intuition is that, the fewer banks get stressed, the smaller the prop-
agation of stress in the interbank market (the stress propagation that really contributes to
financial stress) will be. From a sector viewpoint, firms must connect to fewer banks as
possible. From a bank viewpoint, banks must connect to fewer firms as possible, because
fewer banks will be then stressed by those firms in a second round of stress propagation.

In light of these arguments, we formulate the following hypotheses:

Hypothesis 2. Sector riskiness to banks decreases as the financing portfolio of firms be-

comes more concentrated.

Hypothesis 3. Sector riskiness to banks decreases as the loan portfolio of banks becomes

more concentrated.

We can capture the concentrations of the financing portfolio of firms and the loan
portfolio of banks in a specific sector by using the Herfindahl–Hirschman Index (HHI).25

While the first perspective gives us a sense of how firms diversify (or concentrate) their
financing over different banks in the interbank market, the second perspective extracts
how banks diversify (or concentrate) their loans with respect to sectors that are external
to the interbank market.

The concentration measure HHI(u) is an individual-level index that we compute for
each firm or each bank in our sample. Mathematically, we evaluate HHI(u) as follows:

HHI(u) = ∑
g

p2(u,g), (38)

in which p(u,g) is the relative proportion or share of u on g, whose expression we discuss
in the next paragraphs. The index g may run over two different sets:

25HHI assumes values in-between 0 and 1. When HHI = 1, there is perfect concentration on a single
counterparty. As HHI assumes smaller values, economic agents become more diversified.
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1. the set of banks B if we are evaluating the concentration of the financing portfolio
of firm u ∈F ; or

2. the set of sectors S in case we are calculating the concentration of loan portfolio
of bank u ∈B towards sectors.

We first discuss how to evaluate the concentration of financing portfolio of firms.
In this case, p(u,g) = p(finance)(u,g) denotes the relative financing share that firm u ∈F

receives from bank g ∈B, i.e.:

p(finance)(u,g) =
A(bank−firm)

gu

∑p∈B A(bank−firm)
pu

. (39)

We can then calculate the average financing concentration of firms in a sector s∈S

as:

HHI(finance)(s) =
1
|Fs| ∑

k∈Fs

HHI(k), (40)

in which Fs denotes the set of firms in sector s ∈S .
We now discuss how to evaluate the loan portfolio concentration of banks towards

sectors. First, we need to aggregate the bank-firm network A(bank−firm) into a bank-sector
network A(bank−sector). For that, we simply sum up the exposures banks have to firms
of the same sector. Mathematically, we map m : B×F 7→B×S , in which m is the
function that sums up exposures of banks to firms of the same sector.

Let p(u,g) = p(loan)(u,g) account for the relative loan share that bank u ∈B pro-
vides to sector g ∈S . We express this as:

p(loan)(u,g) =
A(bank−sector)

ug

∑s∈S A(bank−sector)
us

. (41)

To compose the average loan portfolio concentration of banks to sector s ∈S , we
take a weighted convex linear combination of the concentration indices of banks that
maintain connections with firms of sector s:

HHI(loan)(s) =
1

T L(s) ∑
j∈B

A(bank−sector)
js HHI( j), (42)
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in which T L(s) characterizes the total loan that sector s receives from banks. Observe
that we give more weight to those banks that provide more loans to sector s. Note that
Equation (42) does not account for concentration indices of banks that do not have loan
operations with sector s. To see that, consider that bank j does not have loan operations
towards sector s, then A(bank−sector)

js = 0.
Figure 14a displays the average financing portfolio concentration of firms of the

same sector, while Table 5 reports the respective sector rankings. We see that the financ-
ing of the technology sector is highly concentrated in very few banks, namely large banks.
In some cases, it achieves an average HHI of more than 90%, suggesting roughly that a
single large bank is financing the entire sector. Followed by that, we also see that the
tertiary, electric power, oil and gas sectors are also highly concentrated in few financ-
ing banks. On the other extreme, we verify that the agriculture and fisheries and food
and beverage sectors are the most diversified sectors using the firms in our sample. The
pulp and paper and industrial machines and goods sectors also show diversified financing
portfolios.

Table 5: Sector ranking of the financing portfolio concentration of firms. We provide sector rankings per
each year.

Rank Year 2012 Year 2013 Year 2014 Year 2015

1 Technology Technology Technology Technology
2 Tertiary Sector Electric Power Electric Power Electric Power
3 Electric Power Tertiary Sector Oil & Gas Other
4 Oil & Gas Oil & Gas Other Oil & Gas
5 Other Other Tertiary Sector Tertiary Sector
6 Chemical Construction Construction Construction
7 Construction Chemical Chemical Metal Extraction & Processing
8 Metal Extraction & Processing Metal Extraction & Processing Metal Extraction & Processing Chemical
9 Food & Beverage Industrial Machines & Goods Industrial Machines & Goods Pulp & Paper
10 Pulp & Paper Food & Beverage Pulp & Paper Industrial Machines & Goods
11 Industrial Machines & Goods Pulp & Paper Food & Beverage Agriculture & Fisheries
12 Agriculture & Fisheries Agriculture & Fisheries Agriculture & Fisheries Food & Beverage

In the other perspective, Figure 14b exhibits the average loan portfolio concentra-
tion of banks towards sectors and Table 6 reports the sector rankings. We can check that
banks that maintain operations with firms of the oil and gas sector usually have more con-
centrated loan portfolios than other banks. We see a contrast point in the food and bever-
age sector: while the financing portfolio concentration of firms of that sector is somewhat
diversified, the loan portfolio concentration of banks that provide loans to that sector is
relatively more concentrated. Opposed to the highly concentrated financing portfolio of
firms in the technology sector, banks that provide loans to that sector are the most diver-
sified in our sample. In this way, while technological firms rely on few banks to finance
themselves, these banks do not specialize in only financing this kind of sector.

Figures 15a and 15b supply scatter plots of the sector riskiness against the average
financing portfolio concentration of sector firm, HHI(finance), and the average loan portfo-
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(a) Average financing portfolio concentration of sector firms
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(b) Average loan portfolio concentration of banks towards sectors

Figure 14: Herfindahl-Hirschman Index (HHI) using two perspectives: 1) concentration of financing firms
receive from banks and 2) concentration of loans banks provide to sectors.

lio concentration of banks towards sectors, HHI(loan), respectively. Again, we flat out the
time dimension to get a rough picture of the dependency of these two quantities. We get
small correlation coefficients: −0.09 for Fig. 15a and 0.23 for Fig. 15b. Recall that by
assuming flatted out time series of the feedback-based systemic risk measure and the con-
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Table 6: Sector ranking of the loan portfolio concentration of banks towards sectors. We provide sector
rankings per each year.

Rank Year 2012 Year 2013 Year 2014 Year 2015

1 Food & Beverage Oil & Gas Food & Beverage Food & Beverage
2 Oil & Gas Food & Beverage Oil & Gas Chemical
3 Chemical Agriculture & Fisheries Chemical Agriculture & Fisheries
4 Agriculture & Fisheries Tertiary Sector Tertiary Sector Oil & Gas
5 Construction Pulp & Paper Construction Technology
6 Tertiary Sector Chemical Agriculture & Fisheries Tertiary Sector
7 Electric Power Construction Pulp & Paper Construction
8 Metal Extraction & Processing Metal Extraction & Processing Metal Extraction & Processing Pulp & Paper
9 Other Electric Power Other Metal Extraction & Processing

10 Pulp & Paper Other Industrial Machines & Goods Electric Power
11 Industrial Machines & Goods Industrial Machines & Goods Electric Power Other
12 Technology Technology Technology Industrial Machines & Goods

centration indices, we lose the time dependency of time series and assume homogeneity
of sectors. Nonetheless, this simplification gives us a gist as to how these two quantities
relate to each other.

3.4.3 Banks’ propensity to diffuse financial stress

Another fundamental element that increases sector riskiness to banks relates to the
type of bank firms connect to in terms of sources of stress diffusion. We argue that firms
that connect to banks that are strong stress diffusers contribute more to systemic risk in
the financial sector.

To exemplify, consider an arbitrary bank i ∈ B. If its neighbors are vulnerable
to i, the default or an increase in the distress position of bank i is largely absorbed by
these neighboring banks due to their high stress sensitivity, possibly leading them into
bankruptcy. From this perspective, our systemic risk measure increases as it relates posi-
tively to the bank stress levels. Thus, sectors become riskier the more their corresponding
firms connect to banks that are sources of stress diffusion. In view of that, we formulate
the following hypothesis:

Hypothesis 4. Sector riskiness increases as the firms of that sector connect to banks that

are sources of stress diffusion.

A suitable proxy to evaluate how strong a bank is as a source of stress diffusion is the
network measurement called impact diffusion influence. In essence, the impact diffusion
influence is a vertex-level measure that estimates the potential influence exercised by a
bank on diffusing impacts throughout the financial network. We formally define and
explore this network measurement in detail in Appendix A.

We now discuss how to compute the average impact diffusion influence of banks
that connect to a specific sector s ∈S . For that end, we take a weighted convex linear
combination of the impact diffusion influence indices of banks that maintain connections
with firms of sector s:
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(a) Sector riskiness vs. average financing portfolio concentration of sector firms
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(b) Sector riskiness vs. average loan portfolio concentration of banks towards sectors

Figure 15: Scatter plot of HHI(finance) and HHI(loan) vs. sector riskiness. We also plot a linear fit for
the data in the two black continuous lines appearing in each figure, whose equations are SR = 0.152−
0.087HHI(finance) and SR = −0.051+ 0.630HHI(loan), respectively. The dependent variable SR stands for
sector riskiness.

Ī(s) =
1

T L(s) ∑
j∈B

A(bank−sector)
js I( j), (43)
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in which Ī(s) symbolizes the average impact diffusion influence of banks that connect to
firms of sector s, I( j) represents the impact diffusion influence of bank j ∈B, and T L(s)

characterizes the total loan amounts that sector s receives from banks.
Silva et al. (2015) investigate the Brazilian bank-bank network with respect to the

banks’ impact diffusion influence. They show that large banking institutions have large
impact diffusion influence. In contrast, non-large banking institutions have strong het-
erogeneity in terms of the impact diffusion influence. Silva et al. (2015) reveal that there
is a small subset of non-large banks whose impact diffusion influence surpasses that of
large banks. Nonetheless, the majority of these banking institutions has smaller impact
diffusion influence in relation to large institutions.
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Figure 16: Average weighted impact diffusion influence of banks that connect to firms of a same sector.

Figure 16 depicts the weighted average impact diffusion influence of banks con-
nected to the economic sectors. We compute that measure using (43). We also report in
Table 7 the average sector ranking with respect to the weighted average impact diffusion
influence indices.

We see that firms of the oil and gas sector maintain financing operations mostly with
banks that have small impact diffusion influence. That is, banks that are exposed to the
oil and sector often are not the main sources of stress diffusion in the interbank market.
In our sample, this is one of the possible factors that the oil and sector is not the riskiest
sector of the economy: even though the oil and gas sector takes massive amounts of loans
from banks, these banks are not the main players in diffusing stress in the network. Thus,
sectors that take the largest amounts of loans are not necessarily the riskiest sectors in the
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Table 7: Sector ranking of the average impact diffusion influence of banks that connect to firms of a same
sector. We provide sector rankings per each year.

Rank Year 2012 Year 2013 Year 2014 Year 2015

1 Other Other Tertiary Sector Electric Power
2 Agriculture & Fisheries Technology Industrial Machines & Goods Tertiary Sector
3 Tertiary Sector Tertiary Sector Other Chemical
4 Industrial Machines & Goods Industrial Machines & Goods Food & Beverage Industrial Machines & Goods
5 Construction Electric Power Construction Metal Extraction & Processing
6 Food & Beverage Construction Technology Food & Beverage
7 Metal Extraction & Processing Food & Beverage Electric Power Construction
8 Electric Power Oil & Gas Metal Extraction & Processing Other
9 Oil & Gas Chemical Oil & Gas Agriculture & Fisheries
10 Chemical Metal Extraction & Processing Agriculture & Fisheries Pulp & Paper
11 Technology Agriculture & Fisheries Chemical Technology
12 Pulp & Paper Pulp & Paper Pulp & Paper Oil & Gas

economy. In fact, though the total loans perspective is important, it is not a sufficient nor
necessary condition to increased sector riskiness. We also must look at other dimensions,
such as the risk dimension: if exposed banks to that sector are strong sources of stress
propagation, then the corresponding firms of that sector can trigger large potential losses
in the interbank market through these stress diffusers should an external shock hit them.

In contrast, firms of the tertiary, construction, food and beverage, and metal ex-
traction and processing sectors connect to banks, on average, with large impact diffusion
influence. According to our data, recall from Table 3 that the metal extraction and pro-
cessing and tertiary sectors are placed among the top 2 riskiest sectors to banks. This ob-
servation suggests that large impact diffusion influence values are associated to increased
sector riskiness.

Figure 17 exhibits the scatter plot of the sector riskiness to banks against the average
weighted impact diffusion influence. Likewise before, we flat out the time dimension to
get a rough picture of the dependency of these two quantities. We get correlation coeffi-
cients of 0.43 for Fig. 17. The positive angular coefficient in the linear fit corroborates our
hypothesis about the positive relation between sector riskiness and the impact diffusion
influence.

3.4.4 Econometric model

In this section, we define the empirical specification that we employ to identify and
assess the determinant factors that cause sector riskiness to banks. Our analysis takes
into account results of both the bank-bank and bank-firm contagion channels through the
financial accelerator engine. We use the following static panel:26

26We first try to fit in a linear dynamic panel-data estimation put forward by Arellano and Bover (1995)
and Blundell and Bond (1998), using instruments to account for possible endogeneity among the regressors.
However, we consistently get estimates for the autoregressive coefficients that are statistically insignificant.
Thus, we opt to use a static panel.

56



0 2 4 6 8 10 12
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Impact diffusion influence

Se
ct

or
 ri

sk
in

es
s

Agriculture and Fisheries
Food and Beverage
Construction
Electric Power
Other
Pulp and Paper
Oil and Gas
Chemical
Metal Extraction and Processing
Industrial Machines and Goods
Tertiary Sector
Technology

Figure 17: Scatter plot of the impact diffusion influence (IDI) vs. sector riskiness. We also plot a linear fit
for the data in the black continuous line, whose equation is SR = 0.080+0.005IDI. The dependent variable
SR stands for sector riskiness.

Yit = β
′
0Xit +β

′
1Cit +β

′
2Dt +υi + εit (44)

in which ′ is the transpose operator. We define the terms in (44) as follows:

• Yit is the sector riskiness of sector i at time t. Recall that we proxy sector i’s riskiness
as the feedback-based systemic risk measure of banks when we assume as initial
shock the default of all firms of sector i.

• Xit is the feature vector of sector i at time t. We load up this vector with the deter-
minants that we are interested in studying. They are:

– Total loans of banks to sectors.

– Average financing portfolio concentration of firms of a sector.

– Average weighted loan portfolio concentration of banks towards firms of the
sector.

– Average weighted impact diffusion influence of banks.

• β0 is the vector of estimates with respect to the feature vector Xit . We are interested
in the sign, magnitude, and the statistical significance of these estimates.
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• Cit is a set of controls that we use in our econometric analysis. We control for:

– The average leverage of banks that connect to firms of sector i at time t.

– The average bank dependency (or debt to total assets) of firms of sector i at
time t.

• β1 is the estimates for the controls in Cit .

• Dt is a vector of time dummies that we use to absorb time effects in the estimations.

• β2 is the estimates for Dt .

• υi represents the non-observable individual factors of sector i.

• εi,t is the error term that, by hypothesis, is identically and independently distributed
with zero mean and constant variance σ2

ε , i.e., εi,t ∼ IID(0,σ2
ε ).

The terms υi and Dt account for the sector and time fixed effects in the model.
Our strategy is design model specifications in which we vary between the presence or
absence of these fixed effects. In addition, we first start off with the simple linear panel-
data estimation through multiple OLS regression, in which we do not account for possible
endogeneity in the regressors. Afterwards, we supply robustness tests using a linear panel-
data estimation through the Generalized Method of Moments (GMM) with instrumental
variables (IV), in which we deal with potential endogeneity problems. In summary, we
find that the results of the OLS and GMM/IV are very similar.

We also apply a log transformation on all of the independent and dependent vari-
ables in the econometric model. In this way, we can interpret the estimates in terms
of elasticity. In addition, we report robust standard errors to account for possible het-
eroskedasticity problems. To verify to what extent the regressors are correlated, which
can lead to increased standard errors in the econometric model, we report in Table 8 their
pairwise cross-correlation. Overall, the pairwise cross-correlation is small, reaching a
maximum of 0.37 between total loans and bank financing portfolio.

3.4.5 Discussion of the results

Table 9 reports the estimates for our panel regressions using plain OLS. Note that
the coefficients seem to maintain their sign and statistical significance among different
specifications when we gradually add sector and/or time fixed effects.

We control for the average bank leverage and the average firms’ bank dependency
(or firms’ debt to assets) in our regressions. We employ them as proxies for bank and
firm individual riskiness. By absorbing the effects of individual riskiness of banks and
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Table 8: Cross-correlation between the regressors we employ in our analysis.

Total Firm Bank Impact Bank Bank

loans HHI HHI Diffusion leverage dependency

Total loans 1.00

Firm HHI 0.06 1.00

Bank HHI 0.37 -0.22 1.00

Impact diffusion -0.01 0.07 -0.04 1.00

Bank leverage -0.15 -0.17 -0.09 0.21 1.00

Bank dependency 0.09 -0.16 0.23 -0.15 0.02 1.00

firms in these controls, we are able to better estimate the role of the network topology in
explaining sector riskiness to banks.

Our results reveal that the average bank leverage yields positive and statistically
significant coefficients in all four specifications. In this way, sectors that connect to banks
that are highly leveraged tend to show higher riskiness levels to the banking sector. We
also see that the firms’ bank dependency relates positively to sector riskiness, but the
significance is not as robust as the coefficients of the average bank leverage. Thus, sectors
with firms that have high levels of debt tend to be more riskier to the banking sector.

We see that the coefficient representing the average total loans sectors receive from
banks is positive and statistically significant throughout the four specifications. In this
way, sectors that hold larger loan volumes tend to be more risky to exposed banks. This
empirical evidence supports our Hypothesis 1.

The portfolio concentration of banks and firms is negatively related to sector risk-
iness to banks. Our estimates show that the financing portfolio concentration of firms is
more robust than the average loan concentration of banks when explaining sector riski-
ness. The results indicate that the more diversified banks or firms are (or less concen-
trated), the higher the sector riskiness is to exposed banks. This finding may be related
to the propagation speed of contagion. If banks or firms engage in several financial op-
erations, then an initial shock has greater chances of disseminating through the network
through the large direct neighborhood of these banks or firms. Once the direct neighbor-
hood is hit, another round of contagion may occur in case these banks or firms are not
able to absorb the incoming losses. Therefore, shocks can survive more easily in the net-
work by effectively “visiting” several potential banks or firms. This observation gives us
evidences in favor of Hypothesis 2 and 3.

We also see a positive and statistically significant coefficient for the average diffu-
sion power of banks. In this way, sectors that connect to banks that have more propensity
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Table 9: Panel regressions with OLS on the relative importance of network topology and bank and
firm characteristics in determining sector riskiness.

Independent variable Model 1 Model 2 Model 3 Model 4

Dependent variable: sector riskiness

Feature vector variables

Total loansit 0.670*** 0.638*** 0.638*** 0.638***

(0.085) (0.084) (0.087) (0.084)

Firm HHIit -0.141*** -0.143*** -0.143*** -0.143***

(0.049) (0.046) (0.047) (0.045)

Bank HHIit -0.171 -0.235** -0.235** -0.235**

(0.132) (0.108) (0.113) (0.108)

Bank impact diffusionit 0.881*** 0.887*** 0.890*** 0.890***

(0.015) (0.009) (0.010) (0.009)

Control variables

Bank leverageit 0.117*** 0.085*** 0.085*** 0.085***

(0.010) (0.007) (0.008) (0.007)

Bank dependencyit 0.213* 0.255 0.241 0.247***

(0.118) (0.183) (0.210) (0.096)

Sector fixed effects NO YES NO YES

Time fixed effects NO NO YES YES

Observations 168 168 168 168

R2 0.480 0.618 0.482 0.627

Wald 0.000 0.000 0.000 0.000

We report the p-value for the Wald test (F-test). Standard errors are in parentheses. *** , ** , * stand for 1, 5 and 10
percent significance levels respectively. We omit the constant term in the table.

to diffuse stress inside the network are more risky to the banking sector. In this way,
network topology plays a crucial role in deciding for the riskiest sectors in the economy.
Therefore, we find empirical evidence in favor of Hypothesis 4.

3.4.6 Robustness tests

For robustness, we now employ the GMM for linear static panel-data estimation
with fixed effects. Now we account for the presence of potential endogeneity problems,
which can arise when there is correlation between the explanatory variables and the error
term. Endogeneity can occur as a result of measurement error, regression with autocorre-
lated errors, simultaneity and omitted variables. A common cause of endogeneity is a loop
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of causality between the independent and dependent variables of a model, often termed
mutual causality. We address the endogeneity problem by instrumenting the potential
endogenous regressors using lagged independent variables. We consider as potentially
endogenous all of the regressors in the feature vector Xit .

To check the validity of our estimates due to the introduction of instrumental vari-
ables, we perform two statistical tests: 1) test of overidentifying restrictions of all instru-
ments and 2) test of underidentification of the GMM system.

To test for the validity of the overidentifying restrictions of the GMM system, we
use the Hansen J test of overidentification. The joint null hypothesis is that the instru-
ments are valid instruments, i.e., uncorrelated with the error term, and that the excluded
instruments are correctly excluded from the estimated equation. A rejection casts doubt
on the validity of the instruments. The Hansen J statistic is consistent in the presence of
heteroskedasticity and autocorrelation. In our analysis, we must not be able to reject this
test so as to have valid instruments.

To test for the underidentification of the GMM system, we use the Kleibergen-Paap
rank LM statistic. This statistical test is essentially the test of the rank of a matrix: under
the null hypothesis that the equation is underidentified, the matrix is not full column rank.
Note that we must reject the null hypothesis in order to have identification of our system.

Table 10 reports the estimates for our panel estimation using GMM/IV. Observe
that the number of observations is smaller than that in Table 9 because we lose some
observations due to instrumentalization through lagged variables.

3.5 How relevant is the stress feedback effect between the real and
financial sectors?

One of the main contributions of this paper is to provide a systematic way of mod-
eling the feedback from firms to banks and vice versa using an instance of the financial
accelerator. Note that the bidirectional nature of the feedback is the characteristic that
permits second- and high-order rounds of stress propagation. If the shock transmission
were established unidirectionally, then shocks from one network to another would never
bounce back to the first due to the incommunicability. For instance, de Castro Miranda
and Tabak (2013) design stress scenarios by considering how shocks in firms propagate
to the interbank market in an unidirectional way (“firm to bank” channel). That is, once
the initial firm shock passes to the interbank market, it never comes back to firms. In this
section, we show that the “bank to firm” channel, which to the best of our knowledge has
never been considered in the literature, plays an important role in the contagion process,
as it can greatly increase the sector riskiness to banks. In this way, it is of utter importance
to consider feedback mechanisms between different contagion channels when designing
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Table 10: Robustness test. Panel regressions using GMM with instrumental variables on the relative
importance of network topology and bank and firm characteristics in determining sector riskiness.

Independent variable Model 1 Model 2 Model 3 Model 4

Dependent variable: sector riskiness

Feature vector variables

Total loansit 0.690*** 0.524*** 0.670*** 0.613***

(0.076) (0.061) (0.070) (0.071)

Firm HHIit -0.223*** -0.116** -0.238*** -0.270***

(0.084) (0.059) (0.077) (0.083)

Bank HHIit -0.202 -0.347* -0.061 -0.233**

(0.223) (0.183) (0.206) (0.104)

Bank impact diffusionit 0.790*** 0.864*** 0.891*** 0.891***

(0.031) (0.040) (0.033) (0.031)

Control variables

Bank leverageit 0.123*** 0.074*** 0.099*** 0.076***

(0.017) (0.013) (0.016) (0.014)

Bank dependencyit 0.303 0.001 0.367** 0.365

(0.185) (0.167) (0.170) (0.252)

Sector fixed effects NO YES NO YES

Time fixed effects NO NO YES YES

Observations 140 140 140 140

R2 0.474 0.485 0.477 0.501

Wald 0.000 0.000 0.000 0.000

Hansen J 0.130 0.164 0.228 0.198

Kleibergen-Paap rank LM 0.004 0.002 0.001 0.000

We report the p-value for the Wald, Hansen J, and Kleibergen-Paap tests. Standard errors are in parentheses. *** , ** , *
stand for 1, 5 and 10 percent significance levels respectively. We omit the constant term in the table.

robust risk analysis tools.
To analyze how large that multiplicative factor can be when we incorporate the

feedback mechanism, we choose a time point in which the sector riskiness in the Brazilian
network is large. Inspecting Fig. 7, we opt to use June 2014 as a reference date to conduct
our investigation.

Our methodology to understand the importance of the two-way feedback is to first
evaluate the sector riskiness to banks when we consider only the “firm to bank” conta-
gion channel, thus disabling the “bank to firm” contagion channel that we model through
increasing credit constraints of banks. Afterwards, we recompute the sector riskiness by
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now considering the “firm to bank” and “bank to firm” contagion channels (financial ac-
celerator). The observed increment in the sector riskiness is then attributed to the second-
and high-order rounds of stress propagation. Note that we let enabled the classical “bank-
bank” contagion channel in both simulations.

Unlike the previous sections in which we simply default all firms of a sector, we are
now concerned with how sector riskiness to banks relates to different initial stress levels of
sectors. As we increase the initial stress level of the sector, banks become more distressed
and hence the sector riskiness rises. However, we verify here that similar increases of
stress levels in different sectors result in different increments in the corresponding sector
riskiness to banks. We show that the reason of the heterogeneity in the stress amplification
is due to the network effect.

Figures 18a and 18b portray the sector riskiness to banks in June 2014 when we
consider the one-way and two-way feedback mechanisms between firms and banks, re-
spectively. The exercise consists in partially stressing firms of a same sector and then
in verifying the resulting sector riskiness. As expected, we can see that the sector riski-
ness using bidirectional feedback is higher than when considering only the “firm to bank”
contagion channel. Figure 18c displays the percentage difference between these two ap-
proaches. Applying a right-sided Wilcoxon signed rank test, we conclude that the in-
creases in systemic risk estimates in light of the feedback effects are significant at the 1%
significance level.27

Though not the riskiest sector, the oil and gas sector is the one that is mostly under-
estimated when we consider only the “firm to bank” contagion channel. This fact occurs
because:

• firms of the oil and gas sector have considerable bank dependency. As such, ac-
cording to the dynamic of our feedback-based model, these firms can reach high
stress levels. Consequently, they are able to stress financing banks to a large extent.

• financing banks provide massive amounts of loans to firms of the oil and gas sector.
In this way, the vulnerability of banks to this sector is expected to be non-negligible.
As such, they are more susceptible to shocks coming from these firms.

Putting these two observations together, we can check that the stress propagation
cycles from “firms and banks,” due to elevated firm stress levels, and from “banks to
firms,” due to credit constraint, are large. Therefore, since the unidirectional feedback
approach does not account for these cycles, it severely underestimates the true risk of the
oil and gas sector to banks. This is an example where the financial accelerator plays an
important role in the stress propagation.

27We conduct the same exercise using the right-sided paired-sample t-test and also conclude for the
statistical significance of the feedback effects in estimating systemic risk in the real and financial sectors.
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(a) One-way (firm to bank) feedback
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(b) Two-way feedback
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(c) Difference between the two- and one-way approaches (in %)

Figure 18: Curves showing sector riskiness as a function of both time and the sector initial stress level
in June 2014. In (a), we only account for the firm to bank feedback, thus disabling the “bank to firm”
contagion channel. In (b), we enable both the “firm to bank” and “bank to firm” contagion channels.
In (c), we provide the percentage difference between the two approaches. Observe that the bidirectional
feedback is important because it allows for second- and high-order rounds of stress propagation.

Still looking at the Figs. 18a and 18b, when we solely consider the “firm to bank”
contagion channel, the construction sector is the riskiest sector to banks in June 2014 for
any combination of partial stress levels. When we add the reversal “bank to firm” con-
tagion channel, thus establishing the financial accelerator engine, the construction sector
only remains as the riskiest sector when partial stress levels of sectors are below the 90%
mark. After that point, the metal extraction and processing and the food and beverage
sectors surpass the construction sector in terms of sector riskiness to banks.

In special, when all of the firms of a same sector default, then the metal extrac-
tion and processing sector is the riskiest one. To get a picture of how the riskiness of
this sector evolves with respect to different partial stress initial scenarios as a function of
time, we depict in Figs. 19a and 19b the surfaces of the riskiness of the metal extraction
and processing sector to banks as a function of time and initial stress levels when we
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consider unidirectional and bidirectional feedback between banks and firms, respectively.
Figure 19c portrays the surface representing the percentage difference between the two
approaches. We see that the underestimation of sector riskiness to banks can be underes-
timated up to 300% in some parts of the surface. On average, the underestimation is of
47.76% in the analyzed period for the metal extraction and processing sector. In this way,
we can see that, by avoiding the two-way feedback between firms and banks, we may
be incurring in large underestimation errors when computing risk-related network mea-
sures. Thus, we argue that it becomes essential to model two-way feedback mechanisms
between different contagion channels. This task becomes even more crucial in financial
networks, in that economic agents are heavily interconnected in a complex way.
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(a) One-way (firm to bank) feedback
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(b) Two-way feedback
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(c) Difference between the two- and one-way approaches (in %)

Figure 19: Surface showing the riskiness of the metal extraction and processing sector to banks as a
function of both time and the sector initial stress level. In (a), we only account for the firm to bank feedback,
thus disabling the “bank to firm” contagion channel. In (b), we enable both the “firm to bank” and “bank
to firm” contagion channels. In (c), we provide the percentage difference between the two approaches.
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Going back to Figs. 18a and 18b, we attribute the increment in the sector riskiness
due to an infinitesimal increase in the sector stress level to the network amplification
effect. Define NAE( fs), the network amplification effect of sector s ∈S when its stress
level is fs ∈ [0,1], as:

NAE( fs) =
∂

∂ fs
r( fs), (45)

in which r( fs) denotes the riskiness of sector s to banks when it has a stress level exactly
equal to fs. Note that increments in the stress level of a specific sector s that largely
increase riskiness to banks yield a large network amplification effects in view of the large
derivative values in (45).

Figures 20a and 20b display the network amplification effect when we consider the
one-way and two-way feedback mechanisms, respectively. We can see that the network
amplification effects of sectors are roughly non-increasing piecewise linear. One linear
region connects to the subsequent one through an adjacent critical point. Critical points
dampen the network amplification effect as we move far from the graph origin. Conse-
quently, the further from the origin critical points are, the more harmful a small increase
in the stress levels of firms of that sector can be.

We can check that there are much fewer critical points when we only use the “firm
to bank” contagion channel in detriment to the bidirectional “firm to bank” and ”bank to
firm” contagion channels. In addition, correspondent critical points of latter are shifted to
the right in relation to the former.

In the case we enable the bidirectional feedback mechanism, the construction sector
has a critical point that accounts for a large drop-off of its network amplification effect
at the 75% mark. Similarly, the food and beverage has a large drop-off critical point
at the 90%. The metal extraction and processing sector has several critical points that
gradually dampen the network amplification effect. In contrast, we see that the technology
sector does not have critical points, hence its network amplification effect is constant for
different initial sector stress levels.

We can also relate the existence of the critical points in Fig. 20 to phase transition.
We can say that there is phase transition for those critical points in which an infinitesimal
increase in the initial stress level of firms causes large changes in the network amplifi-
cation effect. Looking at Fig. 20b, the construction sector shows a perceptible phase
transition when its firms have initial stress levels at the surroundings of the 75% mark.
In this respect, we see that the network goes from a more stress amplifying behavior to a
less stress amplifying behavior as we cross the 75% mark. Our result corroborates Ace-
moglu et al. (2015b)’s findings that networks exhibit some sort of phase transition that is
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(a) One-way (firm to bank) feedback
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(b) Two-way feedback

Figure 20: Network amplification effect of the sector riskiness to banks when we increment the sector initial
stress levels. The network effect is given by the derivative of the sector riskiness to banks with respect to
the sector initial stress levels. The curves in (a) and (b) correspond to the derivatives of the curves in Figs.
18a and 18b.

dependent on the initial shock magnitude they receive. While we uncover the existence
of phase transition in the initial shock magnitude to the potential stress that the financial
sector suffers, Acemoglu et al. (2015b) study how the magnitude of initial shocks starting
from the financial sector relate to the integration and diversification of banks.
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3.6 Policy implications

There is an ongoing discussion carried out by the Basel Committee regarding bank’s
risk-weighting of assets. Studies report a non-negligible variability on bank’s regula-
tory capital ratios. Such variance is not fully explained by differences in the riskiness
of banks’ portfolios, which weakens the confidence in capital ratios. Efforts to address
this issue comprises the revision of standardized approaches for the calculation of risk-
weighted assets (RWA), rendering them more risk-sensitive, the revision of the role of
internal models, the promotion of greater consistency of disclosure requirements related
to RWA, the enhancement of the comparability of RWA calculated by different internal
rating-based models and the ongoing monitoring of risk-weighted assets variation (BCBS
(2014a, 2015)).

Our study can shed some light on this debate, providing a tool for setting the weights
to loans to specific economic sectors. Our econometric model highlights the determinants
of sector riskiness (total loans, firm HHI, bank HHI, bank impact diffusion, bank lever-
age and bank dependency) and enables to assess which sectors are more/less risky to
the financial system. Financial regulators can use this information to weigh loans by a
higher/lower factor in the composition of the RWA depending on the current riskiness of
the network topology.

One important aspect of financial regulation that is often left aside by the literature
is of its endogenous nature with respect to the observed network topology. Economic
agents make decisions based on what the current regulation permits or forbids. Should
the financial regulation change incentives, broaden or reduce the list of in-law possibilities
of economic agents, the network topology is expected to change as well to reflect these
innovations. Moreover, decisions that would be optimal to regulators in pursuing financial
stability, such as to force one economic agent to engage in connections with less risky
counterparties may not always induce the desired global properties in the financial system.
For instance, even if we force these connections, the collectiveness of all of the economic
agents’ decisions may still provide network topologies with higher systemic risk levels.
Studies that bring together the consequences on network topology and systemic risk as a
response to financial regulation are important questions that still lack proper study in the
literature.

4 Conclusion

We develop a general framework to estimate systemic risk that accounts for feed-
back effects between different contagion transmission channels. To the best of our knowl-
edge, this is the first work to recognize and quantify the importance of feedback effects in
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contagion models. We show that the model has strong theoretical properties, such as the
existence of a unique fixed point.

We elaborate on an innovative financial accelerator engine to model the feedback
effects between the real and financial sectors by using contagion transmission channels
such as loan defaults, bank credit crunches, deposit withdrawals, and deposit defaults. The
financial accelerator models the fact that, if a shock hits the real sector, it also generates
distress in the financial sector, which then feedbacks into the real sector, and once again
bounces back to the financial sector, and so forth.

We illustrate the model using unique data sets from Brazil that have all loans made
between banks and all loans made by banks to firms. We find that the feedback effects
between the real and financial sectors are economically significant, which imply that mod-
els that do not incorporate feedback effects may be significantly underestimating systemic
risk.

Our approach is relevant for the design of proper economic policies and financial
regulation. Also, it can be used for the design of stress testing and to evaluate the relative
importance of a variety of shocks in the economy and the interactions between the real
and the financial sector.

Our model is flexible and its extension anchor consists in designing suitable vul-
nerability matrices to account for new behaviors. In this spirit, there are several ways
in which we can extend the model. If an external shock originates in the banking sys-
tem, firms can trigger bank runs that would exacerbate such shocks. In addition, we may
incorporate fire sales and liquidity constraints as new contagion transmission channels.
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Appendix A Impact diffusion influence

This network measure is introduced by Silva et al. (2015). The gross exposure
matrix A is not a representative candidate for evaluating possible contagion routes among
pairs of banks, as it does not convey the notion of banks’ capability of absorbing impacts
coming from their direct exposures. Rather, the exposure matrix A only numerically
quantifies the pairwise exposures in an absolute manner. The vulnerability matrix is a
more suitable candidate for risk-related network measurements, because it considers the
loss absorbing capabilities of banks.

The impact diffusion influence relies on the truncated vulnerability matrix V̄ that
we compute as follows:

V̄i j =

1, if Vi j = 1.

0, otherwise.
(46)

in which Vi j is the usual vulnerability matrix as defined in (3).
The truncated vulnerability network not only provides information of direct con-

tagion, but indirect contagion once we take higher powers of V̄. For instance, the entry
(V̄k)i j ∈N indicates the quantity of contagion paths of length k that starts from i and are
transmitted to j due to high vulnerabilities of other banks in the path.

The impact diffusion influence measures the potential influence exercised by a bank
on the diffusion or propagation of impacts in the network. Thus, it gives us a proxy of
how harmful is one member of the network to the others. The impact diffusion influence
can be seen as a centrality measure of the bank in the network or the overall dependence
of other members in the network to a specific bank.

The concept of the impact diffusion influence is built upon the notion of communi-
cability in networks. In this respect, the communicability from i to j is computed as:

Gi j(V̄),
1
s!

Pi j + ∑
k>s

1
k!
(V̄k)i j = (eV̄)i j, (47)

in which Pi j denotes the number of paths with the shortest length from i to j; s is the
length of such paths. The term V̄(k)

i j is the (i, j)-th element of the kth power of matrix V̄,
which gives the number of walks of length k from i to j along the truncated vulnerability
matrix V̄, where k > s. Note here that we are quantifying not only shortest paths between
pairwise banks, but also longer paths that contagion routes can materialize from due to
lower capital buffers of banks in these peculiar paths. In any case, we are always attenu-
ating the influence of these walks in accordance with their lengths, so as to prefer direct
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to indirect contagion.
The diffusion influence of a bank i can be understood in terms of the variation it pro-

vokes on the communicabilities between all of the participants when i’s power of diffusing
impacts is removed from the network that is built up from the truncated vulnerability ma-
trix. This can be effectively performed by deleting all of the out-edges emanating from
i. This type of filtering transforms i in a sink vertex in the network, for every path that
reaches i must end in there.

The reasoning behind that procedure is as follows. If i is responsible for diffusing
a significant portion of impact throughout the network, then its removal will reduce the
communicability indices of all of the banks. In contrast, if i does not potentially diffuse
impact to the network, then the communicability indices will remain unaltered or slightly
altered.

In light of that, we define the potential influence that i exerts on diffusing impact to
the network as:

Ii(V̄,P(value)), ∑
j∈B

∑
r∈B
r 6= j

[
G jr(V̄)−G jr(V̄(i−))

]
·P(value)

r , (48)

in which V̄(i−) denotes the modified truncated vulnerability matrix, in which all of the
out-edges that emanate from i are removed. P(value) is a proxy for the value or importance
of all of the banks in the market. In this work, we proxy the banks’ importance as the total
liabilities they hold inside the interbank network. The factor

[
G jr(V̄)−G jr(V̄(i−))

]
indi-

cates the communicability index of walks from j to r that visit i. This term is evaluated by
first computing the communicability index of j to r in the original truncated vulnerability
network. From that, we subtract the fraction of that communicability that is not due to
a path that has i along the way. Consequently, Equation (48) effectively quantifies the
shortfall, which is weighted by the bank’s importance, occurred in the network when i’s
power of diffusing impacts is disabled.
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