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Multivariate Stochastic Volatility-Double Jump Model: an
application for oil assets
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Abstract

The Working Papers should not be reported as representing the views of the Banco Central
do Brasil. The views expressed in the papers are those of the author(s) and not necessarily
reflect those of the Banco Central do Brasil.

We propose a new multivariate model to capture the presence of jumps in mean and 
conditional variance in the returns of oil prices and companies in this sector. The 
model is based on the presence of common factors associated with jumps in mean 
and variance, as it performs a decomposition of the conditional variance of each as-
set as the sum of the common factor plus a specific transitory factor in a multivariate 
stochastic volatility structure. The estimation is made through Bayesian methods us-
ing Markov Chain Monte Carlo. The model allows recovering the changes in prices 
and volatility patterns observed in this sector, relating the jumps with the events 
observed in the period 2000-2015. We apply the model to estimate risk 
management measures, hedging and portfolio allocation and performing a 
comparison with other multivariate models of condi-tional volatility. Based on the 
results, we may conclude that the proposed model has a better performance when 
used to calculate portfolio VaR, since it does not reject the hypothesis of correct 
nominal coverage with certain specifications presented in this work. Furthermore, 
we conclude that the model can be used to hedge oil price risks, through the 
optimal hedge ratio for a portfolio containing an oil company as-set (stock) and the 
oil price contract. When compared to the standard methodology based on GARCH 
models, our model performs well in this application.
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1 Introduction

A stylized fact in the evolution of oil prices is the presence of sudden changes in
prices and volatility patterns. These events have a major impact on the cost and rev-
enue structure of the companies in this sector, and thus the correct identification of these
events is critical to the financial planning process and ultimately to the processes of risk
management and allocation of portfolios.

Due to the importance of the jumps and the presence of a persistent volatility in
oil prices, a comprehensive literature has been developed to analyze these phenomena.
We can cite as recent examples of this literature Askari and Krichene (2008), Lee et al.
(2010), Larsson and Nossman (2011), Ozdemir et al. (2013) and Gronwald (2012).

Our work presents a new contribution to this literature by introducing a new multi-
variate model that allows the modeling of common jumps in mean and conditional vari-
ance for log returns of oil prices and of companies in this sector. Our model allows us to
identify which jumps are shared between oil and stock prices, and also allows a decom-
position of permanent and transient effects on the conditional volatility structure. The
model allows to estimate the common factor in the conditional volatility of oil sector, and
the volatility for each asset is given by this common factor plus a specific mean reverting
component. This analysis of common jumps is inserted into the literature of estimation of
jumps in stock indexes (e.g. Kaeck and Alexander (2012), Kaeck and Alexander (2013))
and especially in the analysis of joint events in prices and asset returns, e.g. Asgharian and
Bengtsson (2006), Bollerslev et al. (2008), Clements and Lia (2013), and Pukthuanthong
and Roll (2014), and also has some connections with the methods used in jump detec-
tion in continuous time (Barndorff-Nielsen and Shephard (2006) and Jacod and Todorov
(2009)).

This model generalizes different methodologies applied in the modeling of oil prices.
It allows to capture jumps in the structure of the oil price returns, similar to the works of
Larsson and Nossman (2011) and Baum and Zerilli (2015), but in our model these jumps
are formulated as a common factor to all analyzed assets, and thus we can identify which
jumps are common between oil and stock prices. This formulation can also be interpreted
as regime switching model, where we have regimes with common shocks and regimes
with only specific shocks for each asset. The model is also related to the analysis in
Elyasiani et al. (2011), Narayan and Sharma (2011) and Sim and Zhou (2015), relating
the impact of oil price fluctuations in the return dynamics of individual stocks and indus-
tries.

Our work is based on the use of a factor structure for the multivariate stochastic
volality process. The use of factor structures in conditional volatility models has a long
tradition in finance, for both models based on ARCH (Diebold and Nerlove (1989)) and
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stochastic volatility (Pitt and Shephard (1999)) specifications. Factorial designs and re-
lated principal components decompositions (e.g. Alexander (2002) and Hu and Tsay
(2014)) allow parsimonious representation of volatility process, reducing the problems
associated with the high number of parameters in multivariate models and also allowing
a clearer interpretation of common volatility processes.

The conditional volatility structure of this model is based on the multivariate spec-
ification proposed in Laurini and Mauad (2015), where the conditional variance of each
asset is decomposed into a common factor and a specific mean reverting factor. This
common factor can be interpreted as the level of the conditional volatility, and is mod-
elled using a structure of random level shifts proposed by Qu and Perron (2013). In this
formulation the conditional variance is subject to the presence of jumps that represent
changes in the level, and these jumps are modeled by a compound Binomial process. This
formulation allows to capture in a simple and intuitive way the impact of jumps that alter
the level of volatility for each asset, and can also be interpreted as a switching model
for the conditional variance (e.g. Fong and See (2001) and Gias and Ramos (2014)), but
where the number of regimes is not fixed, allowing great flexibility in capturing the risk
patterns embedded in each asset, as discussed in Qu and Perron (2013) and Laurini and
Mauad (2015).

We analyze both WTI (West Texas Intermediate) and Brent prices for oil, and
the returns of four large oil companies: Petrobras, Exxon Mobil, Chevron and British
Petroleum. The results show that there is a relation between these cited series, so that the
model can in fact provide information for investors or oil traders in physical market and
help with decision making. Companies such as Exxon and Chevron, besides Brent and
WTI price series, show relatively low volatility persistence parameters when compared to
Petrobras and British Petroleum. This means that their reversion to the average level of
volatility is faster, indicating more autonomous volatility dynamics for Petrobras and BP
in relation to shocks in oil prices.

To show the advantages of the specification proposed in this article, we performed
comparative analyzes with other multivariate conditional volatility models used in the
literature, and check the model performance in practical applications in risk manage-
ment and portfolio allocation, calculating Value At Risk measures and building minimum
global variance and hedge portfolios. The results indicate that the proposed model per-
forms well in these applications, indicating the validity of the proposed formulation.

Calculating the dynamic Value at Risk (VaR) for the series we obtain better results
when using the volatility estimated by our model when compared to the VaR calculation
using the univariate calculation of volatility of a GARCH(1,1) model. Besides the VaR,
we have also applied the model to the construction of hedge portfolios, minimizing the
exposure of oil companies to the risk associated with changes in oil prices. We have built
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the hedge portfolios by combining individually Petrobras, Exxon, Chevron and British
Petroleum with WTI oil, setting the optimal hedge portfolio by a given rule presented
in this work. Comparing the results using the conditional variances and covariances es-
timated by the model proposed in this article and the DCC model, we can see that the
portfolio that uses the optimal weight estimated using the double jumps model generates
a smaller variance for most of the analyzed companies. More details on these applications
are presented throughout the work.

This work has the following structure - in Section 2 we present the model and the
Bayesian estimation methodology based on Markov Chain Monte Carlo. The database
and chronology of the major events in the oil sector for the analysed period are described
in Section 3, and the model estimation results and some adjustment measures are showed
in Section 4. Applications in risk management and portfolio allocation are placed in
Section 5, and the final conclusions are in Section 6.

2 Multivariate Double Jumps Model

The model is based on a generalization of the multivariate stochastic volatility with
common jumps model proposed in Laurini and Mauad (2015), combining the structure
of random jumps in volatility level originally proposed in Qu and Perron (2013), but
introducing the possibility of common (joint) jumps on mean and conditional volatility.
The model is based on the following specification:

yit = exp
(

hit

2
+

sv
i µt

2

)
(εit) (1)

hit = φihit−1 +συiυit (2)

µt = µt−1 +δ
v
t σηηt (3)

γit = sm
i δ

m
t σννt (4)

hi, jt = sv
i sv

jµt (5)

δ
v
t ∼ Bern(pv), δ

m
t ∼ Bern(pm) (6)

εit ∼ N(γit ,1), υit ∼ N(0,1), νt ∼ N(0,1) (7)

The model is based on a multivariate stochastic volatility structure (Taylor (1986)),
but modified to include the possibility of common jumps in the mean and conditional
volatility. In this model yit denote the set of observed series, log returns of financial
assets. The conditional volatility process for each asset is obtained as the sum of a mean
reverting component (specific) for each series, and a common factor, modeled using a
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compound Binomial process.
The common factor in the conditional variance is given by a compound Binomial

process, represented by the latent component µt , with δ v
t being a sequence of independent

Bernoulli variables with common parameter pv, representing the probability in jumps in
variance. The transitory component in the volatility for the series i is represented by hit ,
parameterized as first-order autoregressive processes, with persistence parameter φi and
volatility συi . The conditional volatility of each series is given by the sum of transitory
component plus the common factor µt , multiplied by a scale factor sv

i . We normalize sv
1,

the scale for WTI oil, to one to identify the volatility process, as usual in factor models.
In this representation the process µt depends on the realization of δ v

t variable. If this
variable is sampled with value zero (no jump), the process µt remains with the same value
of prior period (µt−1). If the realization of the variable δ v

t is one, indicating the occurrence
of a jump, the process µt is given by the previous value µt−1 plus an innovation from a
white noise Gaussian process, with volatility given by the parameter ση , which represents
the random intensity of jumps.

As we mentioned earlier, this structure can be interpreted as a regime changing
model, but where the number of regimes is not fixed and determined by the observed
data. The component µt represents the conditional mean of the process, subject to level
changes. In this way the model can be thought of with a generalization with multiple
long-run values for the variance process of the decomposition of transitory and perma-
nent components of volatility used by Ahmed et al. (2012) to model oil prices, based on
Component GARCH models.

Similarly the model can also be related to the decomposition of unconditional vari-
ance regimes based on Markov Regime Switching models, used to analyze the prices of
Brent and Wti prices used in Zhang and Zhang (2015). This analysis is based on the pres-
ence of three regimes for unconditional variance, based on the formulation proposed by
Hamilton (1989). Our model is more flexible for not assuming a fixed number of regimes,
and allow the joint modeling of various assets. Our decomposition of transitory and per-
manent components based on common and specific volatility factors allows to analyze the
dynamics of these series in a much more intuitive way. Thus, our model combines and
generalizes other modeling methods applied to financial and oil prices.

The second component of the model is the structure of common jumps in the
mean. This structure is given by the process γit , represented by a process of indepen-
dent Bernoulli jumps δ m

T multiplied by a factor of variance σν , which captures the size of
jumps. Distinct from the process of jumps in conditional variance, the jump process in
mean is not persistent and only impacts the returns in period t. Again we use scale pa-
rameters, denoted by sm

i , to represent the intensity of jumps in each asset, where we also
impose that the scale for WTI is equal to one. To incorporate the errors in mean for each
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asset, the component εit affecting each series is given by a Gaussian white noise process
with mean γit and unit variance. When there is no jumps in the error process in mean
reduces to a Gaussian white noise with unit variance, similar to a standard SV process
(Eq. 1).

2.1 Estimation

To perform the inference procedure we use Bayesian estimation using Markov
Chain Monte Carlo methods, generalizing the procedure proposed in Laurini and Mauad
(2015). The methodology is based on a mixture of Gibbs sampling and Metropolis-
Hastings algorithms to sample the parameters and latent components. In special, the
model is based on a data augmentation process to sample the jump processes in mean and
conditional variance.

We use a methodology based in the threshold exceedance methodology proposed
by Albert and Chib (1993), using an auxiliary latent variable with uniform distribution
to perform the sampling for the Bernoulli variables corresponding to the occurrence of
jumps. The jump processes δ v

t and δ m
t assume value one if this auxiliary variables exceed

specific threshold values, and assumes zero value if are sampled below this thresholds.
The threshold values are calibrated in accordance with the probability of jumps pv and
pm, whose prior probabilities are assumed as generated by Beta densities.

Our sampling procedure, similar to Laurini and Mauad (2015), is based on a mix-
ture of Gibbs sampling algorithms for the conjugated densities and Metropolis-Hastings
sampling for the non-conjugated processes. We avoid the linearization step in Qu and
Perron (2013), using a Metropolis-Hastings procedure to sample the non-linear steps, and
not needing the use of the mixture of normals sampler of Kim et al. (1998).

The data augmentation process determining the Bernoulli thresholding is given by
a sequence of independent standard Uniform densities. We assume Beta priors for the
probabilities of jumps in the model, independent Gaussian distributions for the persistence
parameters φi and Gamma densities for all the volatility parameters. The hyperparameters
used in the priors are disponible with the authors.

The sampling algorithm can be summarized by the following steps:

1. Initialize the latent variables and parameters hit , µt , δ v
t , δ m

t , φi, συi , pv, ση , sv
i , σν ,

sm
i ;

2. Sampling φi, sv
i , ση , συi , conditional on hit , µt and the location of the jumps δ v

t ,

3. Sampling µt ;

4. Sampling hit ;
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5. Sampling the process of jumps δ v
t ;

6. Sampling the probability of jumps pv;

7. Sampling sm
i , σν , συi , conditional on the location of the jumps δ m

t ,

8. Sampling γit ;

9. Sampling the process of jumps δ m
t ;

10. Sampling the probability of jumps pm;

11. Go back to step 2.

As commented above, the sampling procedure in steps 2-11 is based on Gibbs Sam-
pling for the conjugated distributions and Metropolis-Hastings using the Slice Sampler
of Neal (2003) for the non-conjugated posterior distributions, according to assumed prior
distributions and the non-linear structure of the model. The inference procedure is based
on a burn-in of 8,000 samples, and calculating the all posterior distributions using 24,000
additional samples1.

3 Database

We apply the model in Section 2 for a set of six assets. In this group we include as oil
price references the weekly log returns in US Dollars of WTI (West Texas Intermediate)
and Brent oil prices, the two main references of price formation in oil market. The dataset
also includes the dollar log-returns of Petrobras, Exxon, Chevron and British Petroleum,
some of the largest oil companies in the world. The sample consists of weekly returns
between 07/01/2000 and 01/09/2015, calculated using the closing price of every Friday.
The total sample consists of 784 observations for each series. Although it’s possible to use
daily data, we use weekly data to avoid synchronization problems in the jumps between
different series. As we are seeking common factors associated with jumps in the series,
the weekly data provides enough time for a change in one of the series to impact the
others and, therefore, the common jumps captured are more accurate using this frequency
of data.

Figure 1 shows the returns for oil prices and the analyzed companies, and Table
1 presents descriptive statistics of the data used in this work. We can see in this table
the presence of some stylized facts related to financial series, linked to the presence of
conditional volatility structures. Returns have estimated means close to zero, and we

1Details on the Implementation details, the hyperparameters used in the priors, and convergence mea-
sures are not presented for space reasons but can be obtained from the authors.
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can observe that the series are asymmetrical and have heavy tails, consistent with the
presence of jumps and time varying volatility. The presence of jumps in the mean can
also be observed by high maximum and minimum values observed in all series.

We can observe in Figure 1 that in 2014 the volatility is higher and the returns
are lower. The oil prices have decreased since mid-2014, when WTI reached more than
US$ 100,00 and fell to less than US$ 50,00 in about six months. Besides the high oil
inventories around the world due to the application of new technologies in the sector, the
demand was below expectations in 2014, leading to a sharp decline in prices. Moreover,
China showed lower growth expectations in 2014, with lower demand for raw materials
from other countries and less production, leading to higher volatility in the markets and
declines in oil prices.

Another reason for this fall is the fact that America has became the largest oil pro-
ducer in the world. Though it does not export crude oil, it now imports much less, creating
a lot of spare supply. Besides, the Saudis and their Gulf allies have not tried to restore
market prices, in order not to lose their market share. If they decided to curb their pro-
duction, prices could rise, but the main benefits of such an action would go to countries
like Iran and Russia. As Saudi Arabia has a large amount in reserves (US$ 900 bi), it can
tolerate lower oil prices for a longer time. Besides, their oil extraction costs very little
(aroud US$ 5 per barrel).

WTI Brent Petrobras Exxon Chevron British Petr.
mean 0.001 0.001 0.001 0.001 0.002 -0.001

sd 0.043 0.042 0.065 0.030 0.033 0.030
max 0.251 0.200 0.263 0.095 0.155 0.135
min -0.192 -0.232 -0.364 -0.223 -0.317 -0.136

skewness -0.455 -0.599 -0.640 -0.844 -1.231 -0.346
kurtosis 6.486 5.489 5.963 7.568 13.935 5.175

Table 1: Descriptive Statistics

WTI Brent Petrobras Exxon Chevron British Petr.
WTI 1.000 0.825 0.266 0.203 0.265 0.123

Brent 0.825 1.000 0.247 0.155 0.216 0.089
Petrobras 0.266 0.247 1.000 0.434 0.493 0.280

Exxon 0.203 0.155 0.434 1.000 0.817 0.437
Chevron 0.265 0.216 0.493 0.817 1.000 0.473

British Petr. 0.123 0.089 0.280 0.437 0.473 1.000

Table 2: Correlation - Weekly log returns

In Table 2 we present the linear correlation matrix estimated for the analyzed re-
turns. As expected we noticed a strong correlation between WTI and Brent returns, and
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we can observe a significant correlation between Exxon and Chevron returns. This table
reflects the patterns observed in Figure 1.

To set the context of the sector, we perform an annual chronology of major events in
the period, and relate these events with major shocks identified by the model throughout
the work. The main events related to the oil sector are presented below.

• 2000: Successive small falls in oil prices were derived from the increase in OPEC
production quotas which sought to curb rising prices. This increase was the result
of global economic recovery in late 90s (4 negative spikes at the beginning of the
series).

• 2001: With the weaker US economy and increased production ceases recovery in
prices. The terrorist attacks in Sept/2001 cause the first big negative spike in oil
series. OPEC does not react in 2001.

• 2002: OPEC and non-OPEC countries (especially Russia) decide to cut production
leading to the recovery in prices. At the end of the year, the low US inventories and
internal problems in Venezuela (Chavez and strike at PDVSA) cause skyrocketing
prices.

• 2003: OPEC decides to increase production, down prices; it is the second large neg-
ative spike at the beginning of the series. Thereafter (2003 and 2004) the recovery
of the US economy and the strong demand coming from Asian growth drive prices
sharply.

• 2005: Early in the second half damages from Katrina and Rita Hurricanes drive
further prices.

• 2006: This year the inventories of OECD countries (Organization for Economic Co-
operation and Development) grew a lot and in the second semester prices began a
path of gradual decline (note that there is no large spikes in this movement). OPEC
reacts with a cut in production and at the end of the year there is a positive spike.

• 2007: OPEC keeps the production cut (positive prices spikes in the beginning of
year). Begins a recessive process in the US economy.

• 2008: The recessive process weakens the stock prices and financial markets are
positively affected by the good performance of commodities. Begins a speculative
process with oil prices. The second semester is marked by the beginning of financial
crisis, and the anticipation of global recession negatively affects prices. Amid the
decline there is a period of strong volatility.
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Figure 1: Weekly log returns
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• 2009: OPEC drastically cut production. Asia returns to increase demand and prices
have strong recovery. Most positive spike in the series.

• 2011: At the beginning of the year prices shoot (large positive spike) as a result of
lost production in Libya (Arab Spring) and the possible spread of the crisis by oil
producing Arab countries. In the second semester the Libyan production is restored
and prices recede (negative spike).

• 2012-2014: During this period the prices range between from US$ 80 to US$ 100
(from 2012 to mid-2014). With high prices there is a strong stimulus for new dis-
coveries and application of new technologies (shale production). Oil inventories
around the world increase and the demand grew below expectations. The recovery
of the US economy was slow (and still ongoing). This results in a sharp decline in
prices in the second half of 2014 (successive negative spikes).

Besides these aspects that explain the changes in oil prices, we can mention some
specific events that affect the companies. The transitory volatility factors for British
Petroleum and Petrobras show greater persistence compared to other companies. This
pattern is also consistent with some relevant events with these companies.

The volatility of British Petroleum is pronounced in the first half of 2010, reflect-
ing the accident in the Gulf of Mexico in April 2010, (known as BP oil spill, Macondo
blowout). The platform leased to British Petroleum suffered an explosion and sank caus-
ing a leak that lasted for a long period, resulting in a substantial drop in its stock prices.

Petrobras was affected by a series of events from the beginning of our sample. In
the second half of 2002 the uncertainty about the results in the presidential election af-
fected stock market prices in Brazil, especially Petrobras. In late 2007 and early 2008
Petrobras prices were affected by the poor financial performance shown in the last quarter
of 2007, when Petrobras presented a drop in profits of 17% caused by the appreciation
of the Brazilian Real, reducing the revenue generated in US dollars, and the great capital
injection made in the background the company’s pension fund.

In the second half of 2010 Petrobras conducted a capitalization process, generating
great speculation about what would be the offered price, and there was the unexpected
second round in the presidential election, generating high volatility in prices. In late
2011 the return on equity (ROE) was 10%, in contrast to the value of 30% in 2004,
showing to the stockholders the weakness of internal management and the increasing
levels of leverage. In late 2014 there was a substantial drop in the oil prices, which
coupled with research on internal corruption in the company led to consecutive declines
in the company’s prices and a sharp increase in volatility.

Our results are related to some other findings in the literature. Juvenal and Petrella
(2015) obtains evidence that global demand shocks are responsible for most of price fluc-
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tuations, but speculative shocks also are important to explain the oil price increase be-
tween 2004 and 2008. A similar conclusion was find in Kaufmann (2011) and Morana
(2013), and Cifarelli and Paladino (2010) relates the speculation process with the condi-
tional variance observed in oil prices. Aastveit et al. (2014) geographically decompose
the demand effects, and obtains evidence that the demand of emerging countries is more
important than the demand of developed countries to explain the dynamics of prices and
oil production, and that Europe and North America are more negatively affected for oil
shocks than countries in Asia and South America, while Baumeister and Peersman (2013)
indicate that time-varying short run oil demand and supply elasticities has an important
role in the dynamics of the volatility of oil prices for the period 1986-2013.

4 Estimation Results

The results of the model estimation are presented in the next tables and figures.
The posterior distribution of the estimated parameters are summarized in Table 3 in the
Appendix, where we also show figures with the full estimated posterior distribution for the
main parameters of the model. There are several interesting results in this estimation. The
volatility persistence parameters φi can be separated into two groups, a first group having
a lower persistence, for WTI, Brent, Exxon and Chevron, with the posterior means in the
range of 0.25-0.32, and a second group with parameters higher than 0.91 for Petrobras
and British Petroleum. A lower value indicates a rapid reversion to the average level of
volatility, which is captured by the scaled common factor µt , while a higher persistence
in the transitory factor indicates that the process of reversion to the common factor is
slower. These results indicate that Petrobras and British Petroleum have more autonomous
dynamics of conditional volatility in relation to the common factor.

Regarding the common volatility factor, we can see that the posterior mean for the
probability of jumps to this component is estimated as 0.07, indicating a significant pres-
ence of jumps in the conditional variance process. The parameter ση associated with the
size of the shocks was estimated with posterior mean of 1.79. Recalling that this pa-
rameter is associated with the average log-variance, this value indicates that the jumps in
volatility process can have a large magnitude. The estimated scale factors for the pro-
cess of variance sv

i show a pattern consistent with the dispersion of returns observed
among these assets. Recalling that the common factor µt is the process of conditional
log-variance, higher values for the scale factor sv

i indicate a lower average variance for
the series (a more negative log variance). The parameter associated with Petrobras was
estimated with posterior mean of 0.89, indicating a higher exposure to the common vari-
ance factor, amplifying the effects of jumps. Conversely, the variance scale parameters for
Exxon, Chevron and British Petroleum are estimated with values greater than one, lead-
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ing to a lower exposure to variations in the common factor. Recalling that in this model
the common factor µt process represents the level of the conditional variance, this result
indicates that unconditional variances of these series will be relatively smaller, consistent
with the observed series.

Figure 2: Jump Process in Variance
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Regarding the parameters associated with jumps on the mean, we can also observe
some significant effects. The parameter pm, which measures the probability of common
jumps on the mean, was estimated with posterior mean of 0.23. We can interpret this value
as a form of regime switching model, indicating the presence of two distinct regimes.
The first regime, associated with the presence of a common jump in mean, indicates the
presence of a shock that is transmitted to all the series, while in the second regime without
jumps the variation in returns is determined only by specific innovations in each series. In
this case the jumps process is not connected only to the presence of extreme movements
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in returns, but indicates the presence of common shocks to all series.

Figure 3: Jump Process in Mean
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The parameter σν , which measures the intensity of the jumps in common factor for
mean was estimated with posterior mean of 0.028, indicating that they explain a signif-
icant part of the total variance of all series. The scaling factors for the jumps on mean
sm

2 are also consistent with these results. The parameter sm
3 , linked to Petrobras, was esti-

mated with a posterior mean of 1.22, indicating that this company amplifies the observed
jumps in the mean, while at the other end the parameter sm

6 connected to British Petroleum
was estimated with a posterior mean of 0.47, indicating that this company is less exposed
to common jumps in mean.

Figure 2 shows the estimated posterior probability of jumps in the variance, asso-
ciated with the process δ v

t , and the estimated posterior mean for the common factor of
volatility µt . The pattern captured for the common factor is very close to the behavior
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observed for return series, in particular for the observed variation in the returns WTI oil.
In particular, the common factor is consistent with the greater volatility observed in 2008-
2009 and in late 2014, period with the largest jumps observed in the common factor µt .

In Figure 3 we present the posterior probability of jumps on mean, connected to the
Bernoulli process δ m

t , and the process of common jumps in mean γit . We can see that the
posterior probability of jumps indicates a pattern consistent with the estimated parameter
pm, indicating the presence of many common shocks among the analyzed series. We can
also note that the estimated γit process is also consistent with the price changes observed
in the oil sector, as the large price variations in 2001, 2003, 2009 and the end of 2014.

Figure 4: WTI
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(c) Transitory - WTI
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(d) Jumps in mean - WTI

Figures 4-9 show panels with the observed returns, a comparison between the abso-
lute returns and the volatility adjusted by the model, the transitory factor and the common
jump factor multiplied by the scaling factor for returns of WTI, Brent, Exxon, Chevron
and British Petroleum. We can see that the adjusted volatility process is a proper fit for
all assets when compared to absolute returns, the usual proxy for the true latent volatility
process, capturing the observed changes in the level of these absolute returns. This can
be observed on the Panel b of figures 4-9.
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Figure 5: Brent
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(d) Jumps in mean - Brent
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Figure 6: Petrobras
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(d) Jumps in mean - Petrobras

The analysis for the WTI and Brent oil show that its returns seem close, and both
are more volatile around 2009. Plotting the absolute returns with the estimated volatility
for these series, as observed in Panel b of figures 4 and 5, it is possible to conclude that the
estimation of the model for the volatility seem quite accurate, as it is for the other assets
too. As for the comparison of the transitory component, we can observe that it seems
more significant for the WTI prices than for the Brent ones. This fact can be verified in
figure 14, where we can see that the density of the volatility persistence parameter for the
WTI is concentrated on lower values when compared to the Brent prices. Therefore, we
can conclude that jumps in the volatility of Brent returns tend to last longer than those in
the WTI prices.
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Figure 7: Exxon
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(b) Abs. Returns and Estimated Volatility
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(d) Jumps in mean - Exxon

The transitory variance factors hit , observed on Panel c of figures 4-9, are consistent
with the results for the estimation of persistence parameters of φi. We can see that the
transitory factors for WTI, Brent, Exxon and Chevron indicate a fast mean reversion to
the common volatility factor, while for British Petroleum and Petrobras transitory factors
are more persistent and has a greater range of values.
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Figure 8: Chevron
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(d) Jumps in mean - Chevron
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Figure 9: British Petroleum

Time

B
ri

ti
s
h
 P

e
tr

o
le

u
m

2002 2004 2006 2008 2010 2012 2014

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

 Returns

(a) Returns
Time

V
o
la

ti
li
ty

 x
 A

b
s
 R

e
tu

rn
s
−

 B
ri

ti
s
h
 P

e
tr

o
le

u
m

2002 2004 2006 2008 2010 2012 2014

0
.0

0
0
.0

2
0
.0

4
0
.0

6
0
.0

8
0
.1

0
0
.1

2
0
.1

4

Abs. Ret.

Est. Vol.

(b) Abs. Returns and Estimated Volatility
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(d) Jumps in mean - British Petroleum

The slow mean reversion for the volatility of Petrobras can in part be explained by
the high leverage ratio of the Brazilian company. Historically, the high levels of debt
might have caused instability in the trading of Petrobras’ stocks, leading to higher volatil-
ity.

4.1 Model Fit Measures

To quantify the quality of the adjustment of the proposed double jumps model,
we performed a comparative analysis with some of the leading multivariate models of
conditional volatility used in the analysis of financial time series. To perform this analysis,
we use the common metric of comparison, using the square returns as a proxy of the true
unobserved conditional variance.

Table 4 in the Appendix shows the mean error and root mean squared error of our
model in comparison with four different models proposed in the literature. We compare
our results with the DCC (Diagonal Conditional Correlation), DVEC (Diagonal Vec),
CCC (Constant Conditional Correlation) and the Dynamic Copula-GARCH model. The
dynamic correlation model (DCC) - is described in Engle (2002) as a class of multivariate
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models which have the flexibility of univariate GARCH models coupled with parsimo-
nious parametric models for correlations. The diagonal vec model - DVEC, formulated
by Bollerslev et al. (1988), is a multivariate generalization of univariate GARCH mod-
els, proposing GARCH-like structures for the conditional covariance. The CCC model,
proposed by Bollerslev (1990) is based on the estimation of univariate GARCH models,
with the conditional covariance being estimated assuming a constant correlation between
series, and the Dynamic Copula-GARCH model joins the GARCH formulation for con-
ditional variances with flexible dependence structures between series based on copula de-
composition, e.g. Jondeau and Rockinger (2006). We do not present the details on these
models; a complete survey about these specifications and general multivariate GARCH
models can be found in Bauwens et al. (2006).

We use for the DCC model a specification based on GARCH(1,1) processes for the
analyzed series and a DCC(1,1) order for the correlation structure. The DVEC model is
also based on GARCH(1,1) formulations for conditional variances and covariances, and
for CCC model we use an analogous specification. The Copula-GARCH model is based
on a Student-t Copula to model the dependence between series, and GARCH(1,1) to each
univariate process.

We can see in Table 4 that the multivariate SV-double jumps model proposed in
this article has a overall performance superior the other models, when we look at the
root mean squared error between the conditional variance adjusted by the models and the
squared returns with smaller rmse for all analyzed series, except for Petrobras, where the
DVEC, CCC and Copula-GARCH achieve a better fit.

The conditional covariance estimation in the proposed model is obtained through
Equation (2.5), and indicates that the covariance between assets i and j is obtained as
the product of scale parameters and the common factor µt , and thus all dependence is a
function of exposure to the common variance factor. As an example, we show in Figures
10 and 11 the estimated covariances between WTI and Petrobras and Petrobras and Exxon
estimated by our model, in conjunction with the covariance estimated by the DCC model
and cross returns as proxy for the true latent covariance.

We present in Tables 5 and 6 (in the Appendix) the root mean squared error between
the covariance estimated by the double jump and DCC models and cross returns as the
proxy for true unobserved covariance. In general, the two models have a similar perfor-
mance in the estimation of the conditional covariance, without a clear dominance of one
model.
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Figure 10: Estimated Covariance - WTI and Petrobras
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5 Applications in Risk Management and Portfolio Allo-
cation

5.1 Value At Risk

To check the properties of the proposed model, we performed some practical tests
using the model for the calculation of risk management measures and asset allocation
procedures. The first application is the calculation of Value At Risk, a key measure in the
measurement of extreme events and the impact of these events on assets and portfolios.
See Hung et al. (2008) for VaR estimations applied to energy commodities. For this we
realized dynamic Value At Risk estimations using a Gaussian approximation for the VaR.
In this case the VaR of the portfolio in the period t is calculated as VaRt = ŷit − qαHit ,
where ŷit and Hit are the expected values estimated for the mean and conditional variance
of the asset i in period t. We compare the dynamic calculation of VaR using estimates of
volatility Hit = exp(hit/2+sv

i µt/2)+Var(γit) obtained from our model and the univariate
estimation of a GARCH (1,1) model, a common choice in the estimation of dynamic VaR
measure.

In Tables 7 and 8 in the Appendix we present the proportions of violations using the
VaR measures calculated using our model and the GARCH benchmark, for VaR levels
of 5% and 1%. The Tables also show the p-value of the unconditional coverage test
Christoffersen (1998), a usual specification procedure for this class of risk measures. The
null hypothesis of this test is E[It ] = p, while the alternative is E[It ] 6= p, where {It}T

t=1 is
an indicator sequence constructed from a given interval forecast. In our case, the sequence
is formed by the proportion of violations for each model and the parameter p is 5% and
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Figure 11: Estimated Covariance - Petrobras and Exxon
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1% (for tables 7 and 8 respectively). The significance level is 5% for both tables.
When we look at the results for the VaR with 5% level, we can see that the two

methods of VaR calculation has similar performance, except for the WTI series where the
Jump method has a lower proportion of violations than the 5% nominal coverage. In all
other series the results are similar, indicating no rejection of the hypothesis of nominal
coverage equal to 5%.

However, when we look at the 1% VaR level, which represent the risk of most
extreme violations, we can see that the results based on the double jumps model are
more adequate. The 1% nominal coverage is rejected for the series of Petrobras, Exxon,
Chevron and British Petroleum when we use VaR-GARCH method, while in general we
cannot reject the hypothesis of correct nominal coverage for the VaR estimation using the
double jumps model, except for the WTI returns. However, this rejection is due to a lower
than expected number of violations, indicating a more conservative VaR, which is less
harmful in terms of exposure to extreme risks. Figure 12 shows the values of the dynamic
VaR estimated using the SV-double jump model for the series, compared to the observed
returns.

5.2 Hedging Oil Price Risk

An important application of multivariate conditional volatility model is the con-
struction of hedge portfolios, minimizing the exposure of oil companies to the risk as-
sociated with changes in oil prices. For this, we can determine the optimal hedge ratio
(Kroner and Ng (1998)) for a portfolio containing the asset a and oil o by the optimal
weight given by:
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Figure 12: Value At Risk
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woa,t =
Hat−Ho,at

Hot−2Ho,at−Hat
(8)

where:

woa,t =

0 i f woa,t < 0
woa,t i f 0≤ woa,t ≤ 1

1 i f woa,t > 1

(9)

The woa,t variable denotes the weight of the oil in a portfolio containing oil and
assets, Hat the variance estimated for the asset a, Ht the conditional variance of oil and
Ho,at the covariance between the two assets in the period t. The hedging strategy involves
a short position in one asset and long position on the other. See Salisu and Oloko (2015)
for an application of this methodology in risk management in the oil sector.

In this application we built the hedge portfolios by combining individually Petro-
bras, Exxon, Chevron and British Petroleum with WTI oil, setting the optimal hedge
portfolio by the rule given by Equations 8 and 9. Table 9 (in the Appendix) shows the
mean and the variance of the hedge portfolios.

We compare the results using the conditional variances and covariances estimated
by the model proposed in this article and the DCC model. We can see in Table 9 that the
hedge portfolio using the optimal weight estimated using the double jumps model gener-
ates a smaller variance for Petrobras, Exxon and Chevron, and has a worse performance
for the portfolio of British Petroleum. This result indicates that the model performs well
in this application, compared to the standard methodology based on GARCH models.

5.3 Portfolio Weights

An important application of multivariate volatility models is on dynamic portfolio
management. In particular, multivariate volatility models are used in the construction of
minimum variance portfolios, being a dynamic generalization of the Markowitz’ portfo-
lio theory. A common benchmark in these analyzes is to compare the performance of the
global minimum variance portfolio constructed from the estimates of the conditional co-
variance matrix. The estimation of global minimum variance portfolios represent a simple
way to compare the performance of variance estimation methods in allocation problems,
and have some advantages relative to other procedures. See Amenc and Martellini (2002)
and DeMiguel et al. (2009) for advantages and limitations of this methodology.

To check the performance of the model proposed in this work, we build global
minimum variance portfolios using the returns of Exxon, Chevron and British Petroleum.
A similar application was also performed including Petrobras, but in that case the weights
of the global minimum variance portfolio for this company were generally near zero, due
to the fact that the variance of this series is much higher than the others. Similarly to
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the previous section, we compared our results with an allocation based on the conditional
covariance matrix estimated by the DCC model. In this experiment we compared the in-
sample performance of these two portfolios, similar to the analyzes conducted in Engle
(2009).

Table 10 in the Appendix presents some performance measures comparing the
global minimum variance portfolios obtained by the two methods of estimating the co-
variance matrix. We can see that the Sharpe Ratio of the portfolio of minimum variance
obtained by double jumps model was 0.04864, compared to a Sharpe Ratio of 0.01147
obtained by the portfolio built using the DCC model. We test the statistical significante of
difference between Sharpe Ratios using the robust procedures of Ledoit and Wolf (2008),
finding HAC and block bootstrap p-values of 0.015 and 0.012, supporting the best perfor-
mance of the double jump model in this application.

This result indicates a higher risk premium per unit of risk for the model proposed
in this article, resulting in a superior allocation. The variance of the portfolio estimated
by jumps model was estimated as 0.00072, slightly higher than the value of 0.00065 of
the portfolio based on the DCC estimation. Although the variance of the portfolio is
greater, the risk premium in the portfolio based on the jumps model is higher than what is
generally considered a more appropriate allocation.

Another key point differentiating these two portfolios is in the rebalancing process,
the process of buying and selling positions in each asset to maintain the optimal weights.
In the last line of Table 10 we present the turnover of the portfolios, which is a measure
of mean cumulative change in the portfolio weights. A portfolio with lower turnover
indicates less rebalancing, and thus lower transaction costs associated with maintenance
of the portfolio.

We can observe that the mean turnover of the portfolio based on the jumps model
was 0.05167, compared to the mean turnover of 0.28090 of the portfolio based on the
DCC estimation, indicating much lower transaction costs for the proposed model in this
article. This result can be interpreted by viewing the evolution of the weights in the port-
folio during the period. Figure 13 shows the optimal weights for the assets in the portfo-
lios. We can observe that the variation between weeks in portfolio weights for the double
jumps model is much inferior to the variations in DCC portfolios, which show a rather
noisy allocation. The results indicate that a portfolio allocation based on proposed model
gives a higher Sharpe ratio and much lower turnover, which are two desired characteris-
tics in the asset allocation procedures, indicating that the method proposed in this work
has practical advantages in the processes of risk management and portfolio allocation for
the series under review.
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Figure 13: Portfolio Weights - Double Jump and DCC models
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6 Conclusion

In this paper we propose a new multivariate model that allows incorporating the
presence of common factors related to joint jumps in the mean and conditional variance of
oil prices returns and companies in this sector. The application of this model to the series
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of the stock returns of the some of main oil companies in the world (Exxon, Chevron,
Petrobras and British Petroleum) and to the series of oil prices (Brent and WTI) shows that
proposed model can adequately capture the dynamics of jumps and conditional volatility
of the analyzed series.

The common factors estimated by the model can be associated with the main events
in the oil sector, and thus the model allows an economic interpretation of shock transmis-
sion dynamics in this sector. Another important contribution of the proposed methodol-
ogy is to allow different rates of mean reversion in the conditional volatility, through the
decomposition of the total volatility as the sum of the common factor plus asset specific
autoregressive processes. The results indicate that Exxon and Chevron have fast mean
reversions in the conditional volatility, while Petrobras and British Petroleum have more
autonomous volatility dynamics in relation to shocks in oil prices.

The model allows to incorporate some important features in the oil sector, especially
the transmission of oil price shocks to returns and volatilities of the companies in this
sector. This aspect is important for the financial planning of oil companies, and especially
in risk management and portfolio allocation. Applying the model to the analysis of Value
at Risk, hedging oil price risk and portfolio selection, the results show that the proposed
model has generally outperformed the main methodology used in these procedures, based
on GARCH models.

An important extension to the model proposed in this work is the introduction of a
variable intensity in jumps processes , similar to Laszlo et al. (2015) and especially Xu
and Perron (2014). This variable intensity structure may be important to characterize the
changes in volatility observed in the oil industry in recent periods.
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Appendix

Posterior Distribution for Selected Parameters

Figure 14: Volatility Persistence - φi
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Figure 15: Scale Parameters - Mean sm
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Figure 16: Scale Parameters - Variance - sv
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Figure 17: Jump Probabilities
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(a) WTI parameters - sv
1 and sm

1 are normalized to one

2.5% Mean 97.5% SD
φ1 0.0084 0.2556 0.6818 0.1890
συ1 0.0558 0.1576 0.3775 0.0794

(b) Brent parameters

2.5% Mean 97.5% SD
φ2 0.0112 0.3086 0.7818 0.2272
συ2 0.0439 0.1273 0.2981 0.0660
sv

2 0.9835 1.0090 1.0360 0.0132
sm

2 0.5305 0.6360 0.7431 0.0545

(c) Petrobras parameters

2.5% Mean 97.5% SD
φ3 0.8452 0.9165 0.9662 0.0319
συ3 0.0420 0.0962 0.1954 0.0393
sv

3 0.8391 0.8932 0.9412 0.0258
sm

3 1.0608 1.2238 1.4007 0.0869

(d) Exxon parameters

2.5% Mean 97.5% SD
φ4 0.0116 0.3057 0.7601 0.2213
συ4 0.0424 0.1035 0.2039 0.0421
sv

4 1.1156 1.1487 1.1833 0.0170
sm

4 0.6026 0.6845 0.7724 0.0435

(e) Chevron parameters

2.5% Mean 97.5% SD
φ5 0.0131 0.3209 0.7460 0.2074
συ5 0.0461 0.1069 0.2296 0.0478
sv

5 1.1012 1.1335 1.1675 0.0170
sm

5 0.6662 0.7583 0.8564 0.0483

(f) British Petroleum parameters

2.5% Mean 97.5% SD
φ6 0.8912 0.9419 0.9762 0.0221
συ6 0.0288 0.0567 0.1054 0.0197
sv

6 1.0681 1.1147 1.1609 0.0236
sm

6 0.4017 0.4783 0.5638 0.0411

(g) Common Parameters

2.5% Mean 97.5% SD
pv 0.0475 0.0722 0.1014 0.0137
ση 1.0549 1.7945 2.9550 0.4884
pm 0.1923 0.2398 0.2866 0.0206
σν 0.0227 0.0286 0.0364 0.0035

Notation: 1- WTI, 2- Brent, 3 - Petrobras, 4 - Exxon, 5 -Chevron, 6 - British Petroleum.

Table 3: Posterior distribution of estimated parameters
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Jump DCC DVEC CCC Copula
me rmse me rmse me rmse me rmse me rmse

WTI -0.00028 0.00362 0.00001 0.00395 0.00003 0.00395 -0.00001 0.00393 0.00001 0.00395
Brent -0.00031 0.00313 0.00009 0.00355 -0.00002 0.00399 -0.00007 0.00393 0.00002 0.00392

Petrobras -0.00105 0.00807 -0.00015 0.00866 0.00239 0.00458 0.00229 0.00474 0.00225 0.00465
Exxon -0.00032 0.00230 0.00002 0.00230 -0.00088 0.00432 -0.00091 0.00422 -0.00087 0.00418

Chevron -0.00047 0.00381 0.00001 0.00395 -0.00073 0.00423 -0.00074 0.00406 -0.00069 0.00409
British Petr. -0.00013 0.00148 -0.00002 0.00167 -0.00091 0.00426 -0.00093 0.00426 -0.00093 0.00426

Table 4: Mean Squared Error

WTI Petrobras Exxon Chevron British Petr. Brent
WTI 0.00362 0.00415 0.00196 0.00212 0.00197 0.00293

Petrobras 0.00415 0.00807 0.00361 0.00476 0.00287 0.00394
Exxon 0.00196 0.00361 0.00230 0.00286 0.00113 0.00208

Chevron 0.00212 0.00476 0.00286 0.00381 0.00128 0.00214
British Petr. 0.00197 0.00287 0.00113 0.00128 0.00148 0.00195

Brent 0.00293 0.00394 0.00208 0.00214 0.00195 0.00313

Table 5: Root Mean Squared Error - Covariance Matrix - Double Jumps Model

WTI Petrobras Exxon Chevron British Petr. Brent
WTI 0.00395 0.00362 0.00187 0.00213 0.00171 0.00322

Petrobras 0.00362 0.00866 0.00365 0.00486 0.00254 0.00336
Exxon 0.00187 0.00365 0.00230 0.00285 0.00117 0.00195

Chevron 0.00213 0.00486 0.00285 0.00395 0.00131 0.00211
British Petr. 0.00171 0.00254 0.00117 0.00131 0.00167 0.00158

Brent 0.00322 0.00336 0.00195 0.00211 0.00158 0.00355

Table 6: Root Mean Squared Error- Covariance Matrix - DCC Model

Emp. Viol. Emp. Viol. Coverage Test Coverage Test
Jump GARCH Jump GARCH

WTI 0.026 0.065 0.001 0.059
Brent 0.046 0.055 0.682 0.512

Petrobras 0.045 0.057 0.566 0.325
Exxon 0.054 0.055 0.623 0.512

Chevron 0.046 0.055 0.682 0.512
British Petr. 0.040 0.052 0.190 0.743

Table 7: Value At Risk 5%
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Emp. Viol. Emp. Viol. Coverage Test Coverage Test
Jump GARCH Jump GARCH

WTI 0.003 0.013 0.029 0.371
Brent 0.004 0.013 0.102 0.371

Petrobras 0.014 0.026 0.275 0.000
Exxon 0.017 0.019 0.071 0.018

Chevron 0.014 0.022 0.275 0.003
British Petr. 0.005 0.018 0.208 0.044

Table 8: Value At Risk 1%

Jump DCC
mean var mean var

Petrobras 0.00008 0.00195 -0.00054 0.00198
Exxon 0.00017 0.00190 -0.00059 0.00191

Chevron 0.00155 0.00205 0.00141 0.00213
British Petr. 0.00136 0.00098 0.00071 0.00060

Table 9: Hedge Effectivity

Jump DCC
Sharpe ratio 0.04864 0.01147

Variance 0.00072 0.00065
Turnover 0.05167 0.28090

Results for Sharpe Ratio Difference Tests (Ledoit and Wolf (2008)) - p-value HAC - 0.015,
p-value block bootstrap - 0.012.

Table 10: Global Minimum Variance Portfolio Performance
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