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Local Unit Root and Inflationary Inertia in Brazil*

Wagner Piazza Gaglianoney

Osmani Teixeira de Carvalho Guillénz

Francisco Marcos Rodrigues Figueiredox

Abstract

The Working Papers should not be reported as representing the views of the Banco

Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily re�ect those of the Banco Central do Brasil.

In this paper, we study the persistence of Brazilian in�ation using quan-
tile regression techniques. To characterize the in�ation dynamics we employ the
Quantile Autoregression model (QAR) of Koenker and Xiao (2004, 2006), where
the autoregressive coe¢ cient may assume di¤erent values in distinct quantiles,
allowing testing the asymmetry hypothesis for the in�ation dynamics. Further-
more, the model allows investigating the existence of a local unit root behavior,
with episodes of mean reversion su¢ cient to ensure stationarity. In other words,
the model enables one to identify locally unsustainable dynamics, but still com-
patible with global stationarity; and it can be reformulated in a more conven-
tional random coe¢ cient notation to reveal the periods of local non-stationarity.
Another advantage of this technique is the estimation method, which does not
require knowledge of the innovation process distribution, making the approach
robust against poorly speci�ed models. An empirical exercise with Brazilian
in�ation data and its components illustrates the methodology. As expected, the
behavior of in�ation dynamics is not uniform across di¤erent conditional quan-
tiles. In particular, the results can be summarized as follows: (i) the dynamics
is stationary for most quantiles; (ii) the process is non-stationary in the upper
tail of the conditional distribution; (iii) the periods associated with local unsus-
tainable dynamics can be related to those of increased risk aversion and higher
in�ation expectations; and (iv) out-of-sample forecasting exercises show that the
QAR model at the median quantile level can exhibit, in some cases, lower mean
squared error (MSE) compared to the random walk and AR forecasts.
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1 Introduction

There are several methods available in the literature to estimate the in�ationary inertia

(or persistence). The simplest approach consists on regressing the in�ation rate on its

own lags and, then, computing the sum of autoregressive coe¢ cients. Methods that

are more sophisticated include, for instance, the estimation of reduced-form Phillips

curves, or even building structural macroeconomic models representing the in�ationary

dynamics based on latent factors and Kalman �ltering. See Rudd and Whelan (2007)

or Pivetta and Reis (2007) for further details.

In developed economies, it is well known that in�ation persistence has been di-

minishing over the past decades according to several studies in the literature (e.g.,

Mishkin, 2007; Stock and Watson, 2007). For instance, there has been a reduction

of persistence in the U.S., especially after the 90s, due to the great moderation pe-

riod. There is also evidence of declining persistence in the G7 countries according to

Cecchetti et al. (2007).

In Brazil, such evidence is less clear-cut, since some studies indicate a diminishing

persistence, whereas others point out the opposite results. For example, Machado

and Portugal (2014) decompose in�ationary inertia into three components (deviations

of expectations from the actual monetary policy target; persistence of the factors

driving in�ation; and the usual intrinsic measure of persistence evaluated through

lagged in�ation terms) and conclude that intrinsic persistence declined between 1995

and 2011, while the other components remained relatively stable. On the contrary,

Roache (2014) compares in�ation targeting countries and concludes that in�ationary

persistence in Brazil augmented until 2013, in particular, for periods with in�ationary

shocks. In turn, Oliveira and Petrassi (2014), based on a sample of 40 countries since

1995, suggest that persistence remained relatively stable in Brazil.

In this paper, we tackle such issue from a di¤erent perspective. The objective

here is to study the persistence of Brazilian in�ation, and its main components, using

quantile regression techniques.

Quantile regression is a statistical method for estimating models of conditional

quantile function. Nowadays, it is applied in many �elds since it allows for statistical

inference on the entire conditional distribution. Based on a semiparametric approach,
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it provides a complete picture for analyzing statistical relationships, by showing how

covariates in�uence the location, scale and shape of the entire response distribution.

In recent years, a great amount of empirical applications appeared in the time-series

literature based on quantile regressions, such as: Koenker and Zhao (1996); Engle

and Manganelli (2004); Koenker and Xiao (2006); Lima et al. (2008); Xiao (2009);

Gaglianone and Lima (2012, 2014), Xiao (2014), among many others. Regarding

the use of quantile autoregressions for analyzing in�ation, Çiçek and Akar (2013) for

Turkey; and Wolters and Tillman (2015) and Manzan and Zerom (2015) for United

States are recent examples. In terms of Brazilian in�ation, Maia and Cribari Neto

(2006) analyzes the dynamics of IPCA and IGP-DI from August/1994 to April/2004.

They found that the in�ationary dynamics is not uniform across di¤erent quantiles.

To characterize the dynamics of in�ation we used in this paper the Quantile Au-

toregression model (QAR), proposed by Koenker and Xiao (2002, 2004, 2006), in which

the autoregressive coe¢ cient may assume di¤erent values in distinct quantiles, allow-

ing testing the asymmetry hypothesis for the in�ation dynamics. Furthermore, the

model allows investigating the existence of a local unit root behavior, with episodes of

mean reversion su¢ cient to ensure stationarity. In other words, the model enables us

to identify locally unsustainable dynamics, but still compatible with a global station-

arity hypothesis of the investigated series. In addition, the model can be reformulated

in a more conventional random coe¢ cient notation, in order to reveal the periods of

local non-stationarity. Another advantage of this technique is the estimation method,

which does not require knowledge of the innovation process distribution, making this

approach robust against poorly speci�ed models.

It is used in this study data from the monthly Brazilian consumer price index

(IPCA) and its components for the period from January 1995 until April 2014. To

explore possible di¤erences in disaggregated in�ation data, we studied the main disag-

gregated components of the headline in�ation: market prices and regulated prices. Ad-

ditionally, we disaggregate market prices in two ways: i) tradables and non-tradables;

and ii) services, food and beverages, and industrial goods. Therefore, our work di¤ers

from that one by Maia and Cribari-Neto (2006), by using a larger data sample that in-

cludes almost 15 years under in�ation targeting and taking in account the components

of IPCA in�ation.
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As expected, when we apply the usual unit root tests, the in�ation series are

stationary for post stabilization period. When we compare the choice of lags for the

QARmodel, the headline in�ation, market prices and industrial goods are described by

simple autoregressive model, whilst other disaggregated items are described by a more

complex autoregressive dynamics. The choice of lags may indicate that disaggregated

items have a higher temporal dependence caused by idiosyncratic movements, lost in

the act of aggregation.

The "local" unit root analysis, based on the test of Koenker and Xiao (2004), was

applied to investigate the non-stationary dynamics of the in�ation rate in Brazil, in

order to �nd the largest quantile level (denoted by � crit:) in which the null hypothe-

sis of a unit root can be rejected. The result shows that the critical quantile found

using Brazilian in�ation data belongs to a conditional quantile between the quantile

level 0:7 and 0:8. If we use a �ner grid we �nd that � crit: = 0:71. Consequently, for

approximately H = 29% of the periods the in�ation rate exhibited a non-stationary

behavior in the considered sample (1995-2014). To further understand the in�ation

inertia in the past two decades, we next reestimate the QAR(1) model by using a recur-

sive estimation scheme and computing the respective H statistic. From this recursive

exercise, we can infer that there was a gradual reduction of in�ation inertia, which

can be credited to the in�ation targeting regime. For disaggregated data, regulated

prices are in quantile 64%, while the market prices are located in the 77% quantile;

whereas food and beverages in�ation, for instance, belongs to the 90% quantile. This

result indicates that disaggregated data may have a lower persistence. Moreover, out-

of-sample forecasting exercises show that the QAR model might exhibit lower mean

squared error (MSE) in comparison to standard autoregressive and random walk point

forecasts.

The outline of the paper is as follows. In Section 2 we provide an overview of the

methodology. Section 3 presents the empirical exercise and Section 4 concludes.
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2 Methodology

2.1 The Quantile Autoregression (QAR) model

The techniques discussed in this paper are appropriate for investigating the dynamics

of a weakly stationary and ergodic univariate process fytg. In a sequence of papers

Koenker and Xiao (2002, 2004, 2006) introduced the so-called Quantile Autoregression

(QAR) model. In this paper, we employ their approach to study in�ationary inertia

and separate non-stationary observations from stationary ones by using the QAR

model. First, consider the following assumptions:

Assumption 1 Let fUtg be a sequence of i.i.d. standard uniform random variables.

Assumption 2 Let �i (Ut), i = 0; :::; p be comonotonic random variables.1

We de�ne the p-th order autoregressive process as follows,

yt = �0 (Ut) + �1 (Ut) yt�1 + :::+ �p (Ut) yt�p, (1)

where �j�s are unknown functions [0; 1] ! R to be estimated. We refer the previ-

ous equation as the QAR(p) model. Given assumptions 1 and 2, the quantile of yt

conditional of the information set available at t� 1, that is Ft�1, is given by

Qyt(� j Ft�1) = �0 (�) + �1 (�) yt�1 + :::+ �p (�) yt�p,

where � is the quantile of Ut and Ft�1 = (yt�1; :::; yt�p) only includes here2 the past

values of the variable of interest yt.

The QAR(p) model (1) can be reformulated in a more conventional random coef-

�cient notation as follows:

yt = �0 + �1;tyt�1 + :::+ �p;tyt�p + ut, (2)

1Two random variables X;Y : 
 ! R are said to be comonotonic if there exists a third random
variable Z : 
! R and increasing functions f and g such that X = f(Z) and Y = g(Z).

2See the Quantile Autoregressive Distributed-Lag model (QADL) of Galvão Jr et al. (2013), which
also includes exogenous stationary covariates and generalizes the QAR model of Koenker and Xiao
(2006).
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where

�0 = E(�0 (Ut)),

ut = �0 (Ut)� �0,

�j;t = �j (Ut) ; j = 1; :::; p.

Thus, futg is an i.i.d. sequence of random variables with distribution F (�) =

��10 (�+ �0), and the �j;t coe¢ cients are functions of this ut innovation.

An alternative form of model (2) widely used in economic applications is the ADF

(augmented Dickey-Fuller) representation (3), in which the �rst order autoregressive

coe¢ cient plays an important role in measuring persistence in economic and �nancial

time series, which in our case will be crucial to determine the dynamics of the in�ation

rate:

yt = �0 + �1;tyt�1 +

p�1X
j=1

�j+1;t�yt�j + ut, (3)

where, corresponding to (1),

�1;t =

pX
i=1

�i(Ut),

�j+1;t = �
pX
i=j

�i(Ut); j = 1; :::; p.

Under some regularity conditions, if �1;t = 1, then yt contains a unit root and

is persistent; and if j �1;t j< 1, then yt is stationary. Notice that equations (1), (2)

and (3) are all equivalent representations of the adopted econometric model. More

on regularity conditions underlying model (1) are found in Koenker and Xiao (2004,

2006).3

3For instance, Koenker and Xiao (2006) show that under some mild conditions the QAR(p) process
yt is covariance stationary and satis�es a central limit theorem.
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2.2 Model estimation

Provided that the right hand side of (1) is monotone increasing in Ut, it follows that

the � -th conditional quantile function of yt can be written as

Qyt (� j yt�1; :::; yt�p) = �0 (�) + �1 (�) yt�1 + :::+ �p (�) yt�p, (4)

or more compactly as

Qyt (� j yt�1; :::; yt�p) = x0t� (�) ,

where x0t = (1; yt�1; :::; yt�p)
0. The transition from (1) to (4) is an immediate conse-

quence of the fact that for any monotone increasing function g and a standard uniform

random variable, U , we have:

Qg(U) (�) = g (QU (�)) = g (�) ,

where QU (�) = � is the quantile function of Ut. Analogous to quantile estimation,

quantile autoregression estimation involves the solution to the problem

min
f�2Rp+1g

nX
t=1

�� (yt � x0t�) , (5)

where �� is de�ned as in Koenker and Basset (1978):

�� (u) =

8<: �u; u � 0

(� � 1)u; u < 0
.

It is worth mentioning that the quantile regression method is robust in distribu-

tional assumptions, a property that is inherited from the robustness of the ordinary

sample quantiles. In addition, it is not the magnitude of the dependent variable that

matters in quantile regression, but its position relative to the estimated hyperplane.

As a result, the estimated coe¢ cients are less sensitive to outlier observations than,

for example, the standard OLS estimator. This superiority over OLS estimator is, in

fact, common to any M-estimator.
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Autoregressive order choice

Equation (1) gives our p-th order quantile autoregression model. We now discuss how

to choose the optimal lag length p:We follow Koenker and Machado (1999) in testing

for the null hypothesis of exclusion for the p-th control variable �p (�) as it follows:

H0 : �p (�) = 0; for all � 2 �, (6)

where � is some (discrete) index set � � (0; 1) : Let b� (�) denote the minimizer of
bV (�) = min

f�2Rp+1g

X
�� (yt � x0t�) ,

where x0t = (1; yt�1; yt�2; :::; yt�p)
0and e� (�) denotes the minimizer for the corresponding

constrained problem without the p-th autoregressive variable, with

eV (�) = min
f�2Rpg

X
�� (yt � x01t�) ,

where x01t =
�
1; yt�1; yt�2; :::; yt�(p�1)

�0
: Thus, b� (�) and e� (�) denote the unrestricted

and restricted quantile regression estimates. Koenker and Machado (1999) state that

one can test the null hypothesis (6) using a related version of the likelihood process

for a quantile regression with respect to several quantiles. Suppose that the futg are

i.i.d. but drawn from some distribution F . The LR statistics at a �xed quantile � is

derived, under some regularity conditions, as it follows:

Ln (�) =
2
�eV (�)� bV (�)�
� (1� �) s (�) , (7)

where s (�) is the sparsity function, de�ned by:

s (�) =
1

f (F�1 (�))
.

The sparsity function, also known as the "quantile-density function", plays the role

of a nuisance parameter. In order to carry out a joint test about the signi�cance of

the p-th autoregressive coe¢ cient with respect to the set of quantiles �, Koenker and
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Machado (1999) suggest using the Kolmogorov-Smirnov type statistics:

sup
�2�

Ln (�) .

The authors show that under the null hypothesis (6):

sup
�2�

Ln (�) sup
�2�

Q21 (�) ,

where Q1 (�) is a Bessel process of order 1. Critical values for sup Q2q (�) are extensively

tabled in Andrews (1993).

Global stationarity

Given the choice of the optimal lag length p, one must check for global stationarity

of the yt process, in order to verify whether yt is covariance stationary in the sense of

Koenker and Xiao (2006). An approach for testing the unit root property is to examine

it over a range of quantiles � 2 �, instead of focusing only on a selected quantile � , by

using a Kolmogorov-Smirnov (KS) type test based on the regression quantile process

for � 2 �. In this sense, Koenker and Xiao (2006) proposed the following quantile

regression based statistics for testing the null of a unit root:4

QKS = sup
�2�

j Un (�) j; (8)

where Un (�) is the coe¢ cient based statistics given by:

Un (�) = n (b�1 (�)� 1) :
Koenker and Xiao (2004) suggest the approximation of the limiting distribution

of (8) under the null hypothesis by using the autoregressive bootstrap (ARB). An

alternative way is to approximate the distribution under the null using the residual

based block bootstrap procedure (RBB). The advantages of the RBB over ARB are

documented in Lima and Sampaio (2005). In this paper, we conduct usual unit root

tests (e.g. ADF) to check for global stationarity.

4The presence of a unit root implies that a shock today has a long-lasting impact.
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Local unit root test

In this section, we introduce the Koenker-Xiao test, which is used to test the null

hypothesis H0 : �1(�) = 1, for a �xed � 2 (0; 1). We express the null hypothesis in

the ADF representation as:

H0 : �1 (�) = 1; for selected quantiles � 2 (0; 1) :

In order to test such a hypothesis, Koenker and Xiao (2004) proposed a statistic

similar to the conventional augmented Dick-Fuller (ADF) t-ratio statistic. The tn

statistic is the quantile autoregression counterpart of the ADF t-ratio test for a unit

root and is given by:

tn (�) =
\f (F�1 (�))p
� (1� �)

�
Y 0�1PXY�1

� 1
2 (b�1 (�)� 1) ;

where \f (F�1 (�)) is a consistent estimator of f (F�1 (�)); Y�1 is the vector of lagged

dependent variables (yt�1) and PX is the projection matrix onto the space orthogo-

nal to X = (1;�yt�1; :::;�yt�p+1) : Koenker and Xiao (2004) show that the limiting

distribution of tn (�) can be written as:

tn (�)) �

�Z 1

0

W 2
1

�� 1
2
Z 1

0

W 1dW1 +
p
1� �2N (0; 1)

where W 1 (r) = W1 (r) �
R 1
0
W1 (s) ds and W1 (r) is a standard Brownian Motion.

Thus, the limiting distribution of tn (�) is nonstandard and depends on parameter �

given by:

� = � (�) =
�! (�)

�!
p
� (1� �)

;

which can be consistently estimated. The terms �! (�) and �! come from the long

run covariance matrix of a bivariate Brownian motion and the critical values for the

statistic tn (�) are provided by Hansen (1995, p.1155) for values of �
2 in steps of 0.1 (for

intermediate values of �2, Hansen suggests obtaining critical values by interpolation).
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2.3 Identifying non-stationary observations

The QAR model can play a useful role in expanding the territory between classical

stationary linear time series and their unit root alternatives. To see this, consider the

following example of a simple QAR(1) model discussed in Lima et al. (2008):

yt = �0 (Ut) + �1 (Ut) yt�1. (9)

Suppose that �1 (Ut) = Ut+0:5. In this case, note that if 0:5 � Ut < 1 then the model

generates yt according to a non-stationary dynamics, however, for smaller realizations

of Ut, there is a mean reversion tendency. This way, the model exhibits a form of

asymmetric persistence in the sense that sequences of strongly positive innovations of

the i.i.d. standard uniform random variable Ut tend to reinforce its non-stationary

like behavior, while occasional smaller realizations induce mean reversion and thus

undermine the persistence of the process. Therefore, it is possible to have locally

non-stationary time series being globally stationary.5

How to separate periods of (local) stationarity from periods where yt exhibits non-

stationary behavior? Lima et al. (2008) tackle this issue by de�ning the critical

quantile (� crit:) as the largest quantile � 2 � = (0; 1) such that �1;t (�) =
Pp

i=1 �i(�) <

1; where � is the quantile of Ut. The critical quantile � crit: can easily be identi�ed by

using the Koenker and Xiao (2004) test for H0 : �1;t (�) = 1 over a grid of selected

quantiles � 2 � = (0; 1). In turn, the critical conditional quantile Qyt(� crit: j Ft�1) is

de�ned as the � -th conditional quantile function evaluated at � = � crit:.

Now, let 
 = (t1; t2; :::tT ) be the set of all observations T and assume that for the

subset of time periods � � 
, the time series yt exhibits non-stationary behavior (unit

root model). Lima et al. (2008) show that: Qyt(� crit: j Ft�1) < yt for all t 2 �, that

is, the critical conditional quantile of yt will always be lower than yt for all periods in

which yt exhibits a unit-root behavior.

Moreover, by comparing both time series yt and bQyt(� crit: j Ft�1), one can compute

the statistic H = 1
T

TP
t=1It fyt> bQyt (�crit:jFt�1)g, which represents the percentage of pe-

5For instance, reproducing the example of Lima et al. (2008), if at a given period t = tA, UtA = 0:2,
then �1 (UtA) = 0:7 and the model will present a mean reversion tendency at t = tA. However, if at
t = tB , UtB = 0:5, then �1 (UtB ) = 1, and yt will have a local unit-root behavior.
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riods in which yt exhibits (local) non-stationary behavior, where T is the sample size

and It is an indicator function such that It =

8<: 1 ; if yt > bQyt (� crit: j Ft�1)

0 ; otherwise
. Un-

der some mild conditions, one can further show, as expected, that plim
T!1

(H) = 1�� crit:
See Lima et al. (2008) for further details. In next section, we apply these results to

a set of in�ation rates in Brazil in order to reveal those periods in which the in�ation

rate yt exhibited non-stationary dynamics.

Note that our de�nition of in�ationary inertia (i.e. the statistic H) is the frequency

of non-stationary periods observed in the sample, instead of the usual de�nition of

inertia related to the sum of the autoregressive coe¢ cients, for instance, in an OLS

regression.

3 Empirical Exercise

3.1 Data

We focus our analysis on the dynamics of the monthly in�ation rate in Brazil, as

measured by IPCA, which is a consumer price index (CPI) used to compute the o¢ cial

in�ation target. Our goal is to estimate the QAR(p) model for the in�ation rate based

on the IPCA and its main components. In this sense, we study the monthly headline

in�ation (IPCA) as well as its two main components: (1) the market prices; and (2)

the regulated and monitored prices.6

In addition, we investigate the dynamics of the market prices disaggregated in

two ways: (i) tradables and (ii) non-tradables; or, alternatively, disaggregated as: (a)

services, (b) food and beverages, and (c) industrial goods.7 The sample period ranges

from January 1995 to April 2014. The complete dataset is publicly available in the

Time Series Management System (SGS) in the BCB website (www.bcb.gov.br).

Figure 1 shows the CPI in�ation rate since 1995, as measured by the Brazilian

Institute of Geography and Statistics (IBGE). The graph exhibits the more recent

period, after the Brazilian (in�ation) stabilization plan in mid 1994.

6The regulated prices are de�ned as those that are relatively insensitive to domestic demand and
supply conditions or that are in someway regulated by a public agency.

7The "industrial goods" is an arti�cal series of in�ation, de�ned here as the (log) di¤erence of the
market price in�ation and the sum of services and food and beverages�monthly in�ation rates.
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Figure 1 - In�ation rate (IPCA) % per month
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Descriptive statistics for the headline IPCA in�ation as well as its components are

presented in Table 1. The last column of Table 1 shows the weights of each component

in the aggregate IPCA index.

Table 1 - In�ation and its components:

descriptive statistics for monthly rates and weights

In�ation Mean Median Maximum Minimum Std. Dev. Weight (%)

1) headline 0.59 0.49 3.02 -0.51 0.49 100.00

1.1) regulated prices 0.78 0.42 5.86 -1.11 1.09 22.70

1.2) market prices 0.54 0.49 2.99 -0.45 0.48 77.30

1.2.i) tradables 0.46 0.37 3.58 -0.66 0.56 35.70

1.2.ii) non-tradables 0.63 0.46 4.44 -0.40 0.68 41.60

1.2.a) services 0.71 0.48 6.91 -0.36 0.89 35.60

1.2.b) food and beverages 0.56 0.56 5.85 -1.28 0.86 24.80

1.2.c) industrial goods 0.36 0.33 2.23 -1.60 0.47 16.90

Notes: The sample period ranges from January 1995 to April 2014.

Weights of sub-indexes, in respect to the headline in�ation, are as of April 2014.

After several unsuccessful economic plans that attempt to �ght the inertial in�ation

in Brazil, the in�ation stabilization was achieved with the implementation of the Real

Plan in June 1994. The average monthly in�ation measured by IPCA in the �rst half

of 1994 was 43.1% whereas the average of the second half was just 2.9%. There has

been a structural change in the dynamics of in�ation and the behavior on this variable
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post 1994 has displayed more stable character.

Considering the twelve-month in�ation rates shown in Figure 2, we observe the

data for the headline in�ation as well as its components are a¤ected by the period of

disin�ation. We can also observe a spike of in�ation in 2002. This in�ationary episode

was result of the capital �ight and consequently devaluation of the Real that occurred

before Lula�s presidential election.

Figure 2 - Disaggregated in�ation rates (% 12 months)

Among the components of market prices, services and food and beverages prices

are the most volatiles and they present the greatest average monthly change. But the
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behavior of the components are not uniform through the sample period. Table 2 shows

the average yearly in�ation rates for 4 subsamples.

Table 2 - Yearly Average In�ation Rates

In�ation 1995-1999 2000-2004 2005-2009 2010-2014*

1) headline 9.7 8.6 4.7 6.1

1.1) regulated prices 17.1 12.5 4.6 3.7

1.2) market prices 8.2 7.2 4.8 6.9

1.2.i) tradables 5.8 8.2 3.7 5.6

1.2.ii) non-tradables 11.2 6.1 5.9 8.1

1.2.a) services 16.1 5.5 6.0 8.6

1.2.b) food and beverages 4.7 8.7 5.7 8.7

1.2.c) industrial goods 5.5 7.4 3.0 2.2

Note: *For 2014, data through April.

Remaining indexation and realignment of prices in the process of privatization

occurred through the 1990s explains mostly of the behavior of services in the �rst

subsample and the regulated prices8 in the �rst two subsamples. The huge devaluation

of the Real currency in 2002 a¤ected the prices of tradable goods as expected. For

the period of 2005-2009, we see a more homogeneous behavior with more in�ation

regarding services. Such feature is more salient in the last period along with a similar

behavior of food and beverages. Since there is heterogeneous behavior among the

components of aggregate in�ation, it is advisable to take into account this feature in

the empirical analysis.

Usual unit root tests for headline in�ation and its components using Augmented

Dickey-Fuller (ADF) and Kwiatkowski�Phillips�Schmidt�Shin (KPSS) approaches are

displayed in Table 3.

8For a description of the behavior of regulated prices in the 1990s and early 2000 see Figueiredo
and Ferreira (2002).
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Table 3 - Usual unit root tests

monthly 12 months

In�ation ADF KPSS ADF KPSS

1) headline -7.11 0.17 -4.50 0.34

1.1) regulated prices3 -12.63 0.06 -5.00 0.09

1.2) market prices -6.37 0.14 -4.49 0.08

1.2.i) tradables -7.66 0.12 -3.25 0.12

1.2.ii) non-tradables -5.70 0.30 -5.71 0.16

1.2.a) services -6.17 0.22 -3.78 0.20

1.2.b) food and beverages -7.82 0.24 -9.20 0.04

1.2.c) industrial goods -8.10 0.06 -8.10 0.06

Notes: 1) Critical values (1%, 5%, 10%): ADF (intercept) (-3.46, -2.87, -2.57) and KPSS (intercept) (0.74, 0.46, 0.35).

2) ADF (intercept+trend) ( -4.00, -3.43, -3.14) and KPSS (intercept+trend) ( 0.22, 0.15, 0.12).

3) Equation includes intercept and trend. Equations for other series only include intercept.

In terms of ADF tests, the null hypothesis of unit root is rejected in all cases for

a signi�cance level of 1% to both monthly and 12-month rates except for tradables

where the null is rejected in a 5% signi�cance level. Similar results are found for KPSS

tests and the null hypothesis of stationarity is not rejected in all cases.

3.2 In-sample analysis

In this paper, we choose to use seasonal adjusted data (X12 �ltering) to avoid a more

complex dynamics in the quantile autoregressive process. Another reason to deal with

�ltered data is to properly discriminate the source of non-stationarity, that is, to focus

on local unit roots and to avoid seasonal unit root processes (see Ghysels and Osborn,

2001). In addition, the QAR modelling and the respective testing procedures are not

originally designed to deal with seasonal e¤ects.9

9Although some in�ation components in Brazil clearly exhibit some seasonal patterns (e.g. ser-
vices in�ation), a proper investigation considering the raw data (without seasonal adjustment) would
require additional econometric tools outside the main focus of this paper. We leave this route as a
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We start investigating the behavior of headline in�ation over the past two decades

(January1995-April2014). In appendix, we present the results for the other in�ation

components presented in Table 1. First, we determine the autoregressive order of

the QAR(p) model (1) using the Kolmogorov-Smirnov test based on LR statistics,

following Koenker and Machado (1999). We start estimating the quantile regression

next presented with pmax = 6, that is:

Qyt (� j yt�1; :::; yt�p) = �0 (�) + �1 (�) yt�1 + :::+ �6 (�) yt�6:

The index set used for quantiles is � 2 � = [0:1; 0:9] with steps of 0:05. Next, we

test if the sixth order covariate is relevant, based on the null hypothesis:

H0 : �6 (�) = 0; for all � 2 �:

The results are reported in Table 4. Using critical values obtained in Andrews

(1993), we can infer that the autoregressive variable yt�6 can be excluded from our

econometric model.

Table 4: Choice of the autoregressive order

excluded

variable

sup�2� Ln (�)

estimate
H0 Result at 5%

yt�6 0.71 �6 (�)= 0 do not reject

yt�5 1.06 �5 (�)= 0 do not reject

yt�4 2.65 �4 (�)= 0 do not reject

yt�3 4.81 �3 (�)= 0 do not reject

yt�2 3.01 �2 (�)= 0 do not reject

The 5% and 10% critical values are 9.31 and 7.36, respectively.

Since the sixth order is not relevant, we proceed the analysis by checking whether

the �fth order covariate is relevant (or not).10 Thus, we considered the null hypothesis:

suggestion for future research.
10As usual, we performed the test for exclusion of yt�6 with same sample size used to test the

exclusion of yt�5:
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H0 : �5 (�) = 0; for all � 2 �;

whose results are also presented in Table 4. Indeed, we verify that all variables from the

sixth up to the second autoregressive covariates can be excluded. Thus, the optimal

choice of lag length in our model is p = 1 and this order will be used in the subsequent

estimation and hypothesis tests. In other words, the model of the conditional quantiles

estimated for the headline in�ation is the following: Qyt (� j yt�1) = �0 (�)+�1 (�) yt�1.

The point estimates of the respective functions b�i (�) ; i = f0; 1g; for a discrete grid of
quantiles � are presented in Table 5.11

Table 5 : Estimated QAR(1) model

for the headline in�ation (IPCA)

� b�0 (�) Std. Error b�1 (�) Std. Error

0.10 0.02 0.06 0.50 0.12

0.20 0.06 0.05 0.55 0.12

0.30 0.08 0.03 0.61 0.07

0.40 0.10 0.04 0.67 0.08

0.50 0.11 0.03 0.78 0.07

0.60 0.13 0.03 0.80 0.07

0.70 0.17 0.04 0.87 0.09

0.80 0.23 0.04 0.91 0.07

0.90 0.33 0.04 0.98 0.07

Note: Standard errors are computed from a Huber sandwich covariance matrix.

Next, we conduct two usual tests to further investigate the estimated quantile

process. The �rst test is the so-called "Slope Equality Testing" due to Koenker and

Bassett (1982). The idea is to check for slope equality across quantiles as a robust

test of heteroskedasticity. The null hypothesis is given by Ho : � (� 1) = � (� 2) =

::: = � (� k) and these restrictions on the coe¢ cients, along the set of quantiles � 2
11Compared to Maia and Cribari Neto (2006), our results, based on a larger data sample, indicate

a higher autoregressive point estimate b�1 (�) for the median quantile � = 0:5 (that is, 0.63 from Maia
and Cribari Neto, whereas in this paper we �nd 0.78).
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[� 1; :::; � k], can be tested through a Wald statistic, which is distributed as a chi-squared

distribution.

The second test is called "Symmetry Testing" and is based on Newey and Powell

(1987), which proposes a less restrictive hypothesis of symmetry for asymmetric least

squares estimators, but the approach can also be used for quantile regressions. The

idea of the test is that if the conditional distribution of yt is symmetric, then it follows

that Ho : � (0:5) = �(�)+�(1��)
2

. This null hypothesis can be evaluated through a Wald

test on the quantile process.12

The results for the headline in�ation suggest that the in�ationary dynamics in

Brazil is not uniform across distinct quantile levels. The test results indicate a rejection

of the null hypothesis (at 5% signi�cance level) in the slope equality test; whereas the

null for the symmetry test cannot be rejected at the same signi�cance level (see Table

9 for further details).

Now, we conduct the "local" unit root analysis by using the Koenker and Xiao

(2004) test. In order to investigate the non-stationary dynamics of the in�ation rate

in Brazil , we need to test the null hypothesis H0 : �1 (�) = 1 at various quantiles by

using the t-ratio test tn (�) proposed by Koenker and Xiao (2004). Table 6 reports

the results. The second column displays the estimate of the autoregressive term at

each decile. Note that, in accordance with our theoretical model, b�1 (�) is monotonic
increasing in � , and it is close to unity when we move towards upper quantiles. Table

6 also shows that the null hypothesis H0 : �1 (�) = 1 is rejected against the alternative

hypothesis H1 : �1 (�) < 1 for all � 2 [0:1; 0:7]. The critical values were obtained

by interpolation of the critical values reported in Hansen (1995). The last column

summarizes the local analysis.

Table 6 shows that the critical quantile found using Brazilian in�ation data belongs

to a conditional quantile between the quantile level 0.7 and 0.8. Indeed, using a �ner

grid we �nd that � crit: = 0:71. Consequently, for approximately H = 29% of the

periods the in�ation rate exhibited a non-stationary behavior in the considered sample

(1995-2014). Figure 3 displays the estimated coe¢ cients of the QAR(1) model and

its 95% con�dence bands (and respective OLS estimates for comparison purposes)

12Newey and Powell point out that if it is known (a priori) that the errors are i.i.d., but possibly
asymmetric, one can restrict the null hypothesis to only test the restriction for the intercept.
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and Figure 4 presents the respective non-stationary periods (i.e. vertical gray bars),

represented by the indicator variable It =

8<: 1 ; if yt > bQyt (� crit: = 0:71 j Ft�1)

0 ; otherwise
.

Table 6 : Koenker-Xiao test

� b�1 (�) tn (�) �2
H0:

�1 (�)= 1

0.10 0.50 -10.14 -2.37 reject

0.20 0.55 -18.43 -2.47 reject

0.30 0.61 -13.40 -2.57 reject

0.40 0.67 -9.85 -2.61 reject

0.50 0.78 -7.64 -2.69 reject

0.60 0.80 -5.66 -2.68 reject

0.70 0.87 -2.98 -2.73 reject

0.80 0.91 -1.69 -2.70 do not reject

0.90 0.98 -0.29 -2.60 do not reject

Note: Last column�s results are related to a 5% level of signi�cance.

Figure 3 - Estimated coe¢ cients (IPCA, headline in�ation, 1995-2014)

Notice from Figure 4 that the non-stationary dynamics is observed for 29% of

the observations, although the unit root behavior seems to be concentrated in the

beginning of the sample. Due to the nonlinear dynamics of yt, it is possible to identify

di¤erent in�ation regimes by estimating, for several historical periods, the respective

statistic H previously described in section 2.3.
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Figure 4 - In�ation (IPCA) and periods associated with local

unit root (upper panel) or lower quantiles (bottom panel)

To further understand the in�ation inertia in the past two decades, we next reesti-

mate the QAR(1) model by using a recursive estimation scheme. To do so, we estimate

the model coe¢ cients for the sample Jan1995-Dec1998, with 48 observations, and com-

pute the respective H statistic. Then, we add a new observation (Jan1999), reestimate

the model, and compute again the H statistic. We continue this way until we reach

the full sample with 232 observations (Jan1995-April2014). We also computed the H

statistics based on a rolling window scheme. The result is presented in Figure 5. From

this exercise, we can infer that there was a gradual reduction of in�ation inertia in

Brazil, which can be credited to the in�ation targeting regime.
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Figure 5 - Frequency of periods with non-stationary dynamics

with recursive and rolling window estimation of the H statistic
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Note: The vertical bars represent the non-stationary periods.

An interesting question one could ask is about the relationship between the non-

stationary periods of in�ation and other macroeconomic variables. Although this is

not the main objective of the paper, we next provide a �avor of such analysis by

comparing the QAR results for the headline in�ation with a measure of country risk

aversion (Embi+Br) and also a market expectations series for the twelve-month ahead

cumulated in�ation.13

Indeed, the periods associated with local unsustainable in�ationary dynamics can

be related to those of increased risk aversion and higher in�ation expectations (see

Appendix B and C for further details). In addition, we further apply the QAR model

to those macro series (Embi+Br and in�ation expectations) in order to construct its

own series of non-stationary periods (that is, IEmbi+Brt and IExpectt ).

The respective estimations are based on the samples: Jan1995-Apr2014 (Embi+Br)

and Nov2001-Apr2014 (in�ation expectations) and lead to a QAR(2) model for the

Embi+Br time series (resulting inHEmbi = 47%) and a QAR(4) model for the in�ation

expectations (with HExpect = 10%). The comparison of the non-stationary periods

regarding headline in�ation, Embi+Br and in�ation expectations is presented in Tables

7 and 8. In particular, notice from the Granger causality tests that the non-stationary

periods of the Embi+Br series seem to anticipate those regarding the in�ationary

13We use the Focus survey of market expectations conducted by the Central Bank of Brazil (avail-
able at: https://www3.bcb.gov.br/expectativas/publico/en/serieestatisticas).
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dynamics.

Table 7 - Sample correlations of non-stationary periods It

for IPCA, Embi+Br and In�ation Expectations

number of lags (j) Corr(IIPCAt ; IEmbi+Brt�j ) Corr(IIPCAt ; IExpect:t�j )

0 -0.006 0.204

1 0.152 0.038

2 0.020 0.149

3 0.243 0.038

4 0.078 0.038

5 -0.046 -0.072

6 0.061 0.094

Table 8 - Granger causality test between non-stationary periods It

for IPCA, Embi+Br and In�ation Expectations

Null hypothesis p-value

IEmbi+Brt does not Granger Cause IIPCAt 0.006

IIPCAt does not Granger Cause IEmbi+Brt 0.156

IExpectt does not Granger Cause IIPCAt 0.573

IIPCAt does not Granger Cause IExpectt 0.531

IExpectt does not Granger Cause IEmbi+Brt 0.918

IEmbi+Brt does not Granger Cause IExpectt 0.307

Note: The pairwise Granger causality test is based on 4 lags.

Next, we investigate the disaggregated components of in�ation. Table 9 summa-

rizes the results (detailed in Appendix A), regarding such components of the headline

in�ation for the same investigated period (1995-2014).
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Table 9 - Summary of results for in�ation disaggregated components

In�ation optimal lag � crit: H1995�2014
slope

test

symmetry

test

1) headline 1 0.71 0.29 0.0059 0.2087

1.1) regulated prices 4 0.64 0.36 0.0000 0.0820

1.2) market prices 1 0.77 0.23 0.1226 0.0774

1.2.i) tradables 2 0.84 0.16 0.0331 0.0917

1.2.ii) non-tradables 2 0.77 0.23 0.0000 0.6858

1.2.a) services 3 0.86 0.14 0.0000 0.9735

1.2.b) food and beverages 2 0.90 0.10 0.0597 0.2877

1.2.c) industrial goods 1 0.90 0.10 0.6008 0.4518

Notes: Sample: Jan1995-Apr2014. P-values in the last two columns. Each test (slope equality and symmetry)

includes intercept and all slopes�responses along the grid of quantiles � = [0:1; 0:2; :::; 0:9].

Hoslope test: � (� 1)= � (� 2)= ::: = � (� k) ; Ho
symmetry test: � (0:5)=

� (�)+� (1� �)
2

Figure 6 - Inertia measure for in�ation and its components

(rolling window estimation of H; which is the ratio of non-stationary periods)
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When we compare the choice of lags, the headline in�ation, market prices and

industrial goods are described by simple autoregressive model, while services and reg-

ulated prices are described by a more complex autoregressive dynamics. The choice of
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lags may indicate that disaggregated items have a higher temporal dependence caused

by idiosyncratic movements, lost in the act of aggregation.

By analyzing the critical quantile, the headline in�ation belongs to the quantile

71%, whereas its two main components (regulated and market prices) are located in

quantiles 64% and 77%, respectively. In turn, the disaggregated components of market

prices all belong to higher quantiles (e.g., services, foods and beverages, and industrial

goods are located in quantiles 86%, 90% and 90%, respectively). This result indicates

that disaggregated data may have a lower persistence (i.e., higher critical quantile). In

other words, the quantile autoregression approach, applied to Brazilian in�ation data,

suggests that aggregation increases persistence; corroborating previous �ndings in the

literature (e.g. Altissimo, Mojon and Za¤aroni, 2009).

The results of the statistical H for the whole sample (1995-2014) are in line with

previous results.14 For disaggregated data, we �nd a non-stationary behavior in a

smaller percentage when compared to aggregate data. When we analyze theH statistic

calculated recursively, there is a temporal decrease in this except in services in�ation,

which shows a signi�cant increase pattern since mid 2009.

In order to identify the periods of non-stationary behavior for the aggregate IPCA

and its components, Figure 7 displays the accumulated number of local non-stationary

episodes in 12 months for headline in�ation and its components. The two highlighted

areas shows the disin�ation post Real Plan period (May/1995 to November/1996) and

the con�dence crisis before Lula�s election (July/2002 to May/2003). Additionally, to

make the inspection of Figure 7 more straightforward, three lines were drawn in the

charts: Two dotted lines for 3 and 9 episodes and one bold line representing 6 episodes

of (local) non-stationary behavior.

14As a historical curiosity, we also include the analysis for the period of hyperin�ation (1980-1994).
In this case we impose the (unrealistic) assumption that the data are stationary for this period. The
test of Koenker and Machado (1999) indicates that a �rst-order autoregressive process would describe
well this dataset. The critical quantile is the �rst quantile (� crit: = 0:10), which shows the existence
of high persistence, since the H statistic indicates that in 90% of cases there was a non-stationary
behavior for this period. We leave as a sugestion for future research the investigation of the 1980-1994
period using the second di¤erence of price indexes, that is, the �rst di¤erence of in�ation rates, which
are expected to show an overall stationary behavior.
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Figure 7 - Twelve-month accumulated

number of local non-stationary episodes

Regarding the headline in�ation, the observed periods with more occurrences of

non-stationary episodes coincides with the highlights one. Furthermore, the reduc-

tion of occurrences is patent in the last part of the sample. The reduction of non-

stationarities is also evident for the regulated and monitored prices and it could ex-

plain at least partially the reduction observed in the headline in�ation. As mentioned

before, the process of the price realignment explains the behavior of monitored prices

in the �rst part of the sample. It also noticeable a hike in the latest period covered by

the sample used in this paper. Additionally, food and beverages displayed a stationary

like behavior all over the entire sample.

3.3 Out-of-sample forecasting exercise

In this section, we compare the out-of-sample point forecast performance of the QAR

model (at median quantile), with standard AR and random walk counterparts.15 To do

so, we use data over the period January 1995-December 2004 (T = 120 observations)

for model estimation (training sample) and reserve the remaining data for out-of-

sample forecasting. We construct point forecasts for horizons h = 1; :::; 36 months;

15For each price index, we estimate a QAR model using the same lag length indicated in the
previous section.
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and the evaluation sample for h = 1 ranges from January 2005-April 2014 (i.e. 112

point forecasts).

To evaluate the performance of the competing models, we estimate them by using

both recursive estimation (increasing sample size) as well as rolling window estimation

(with a �xed sample of T = 120 monthly observations) which is more suitable in

the presence of structural breaks. In the later case, each model is initially estimated

using the �rst 120 observations and the one-month-ahead (up to h = 36 months-

ahead) point forecasts are generated. We, then, drop the �rst data point, add an

additional observation at the end of the sample, re-estimate the models and generate

again out-of-sample forecasts. This process is repeated along the remaining data. See

Morales-Arias and Moura (2013) for a detailed discussion about rolling window and

recursive forecasting.

We compute the Mean Squared Error (MSE) of each model for every forecast

horizon and generate MSE ratios of each model in respect to the quantile regression

(benchmark model). The results for the headline in�ation are presented in Table 10;

and for the remaining price indexes are shown in Appendix D. We also statistically

test (pairwise) the di¤erence between the MSE loss functions of the quantile regression

forecast (at median quantile), in respect to the other approaches, based on the Diebold

and Mariano (1995) and West (1996) test16, in the recursive estimation scheme, and on

the unconditional predictive ability test of Giacomini and White (2006), in the rolling

window case. In both tests, the null hypothesis assumes equal predictive ability of two

competing forecasts.

In respect to the MSE ratios for the headline in�ation, it is worth noting the

relatively good performance of the QAR model in comparison to the AR and random

walk forecasts in several horizons and both sampling schemes. In respect to the other

price indexes, excepting the results for non-tradables and food and beverages, the

QAR model is again indicated as the best model (based on the MSE ratio) among

the competing investigated models, in many cases of the two sampling schemes and

considered forecast horizons. The Diebold-Mariano-West and Giacomini-White tests
16The variances entering the test statistics use the Newey and West (1987) estimator, with a

bandwidth of 0 at the 1-month horizon and 1.5*horizon in the other cases, following Clark (2011,
supplementary appendix) and Clark and McCracken (2012, p.61).

29



corroborate these results in many situations.17

Table 10 - MSE ratios for the headline in�ation

Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.171 *** 1.288 *** 1.379 *** 1.318 * 1.374 1.314 * 2.150 ** 1.784 *

[3.453] [3.197] [2.871] [1.662] [1.654] [1.667] [2.483] [1.918]

(0.001) (0.002) (0.005) (0.1) (0.101) (0.099) (0.015) (0.059)

2 AR(1) 1.028 ** 1.055 ** 1.087 ** 1.220 *** 1.283 *** 1.332 *** 1.371 *** 1.404 ***

[2.414] [2.231] [2.428] [2.836] [3.11] [3.346] [3.774] [4.026]

(0.017) (0.028) (0.017) (0.006) (0.002) (0.001) (0) (0)

3 AR(2) 1.017 1.049 ** 1.077 ** 1.190 *** 1.245 *** 1.297 *** 1.351 *** 1.383 ***

[1.232] [2.173] [2.499] [2.757] [2.959] [3.241] [3.711] [3.974]

(0.22) (0.032) (0.014) (0.007) (0.004) (0.002) (0) (0)

4 AR(3) 1.015 1.044 ** 1.061 ** 1.146 ** 1.183 *** 1.215 *** 1.230 *** 1.254 ***

[1.061] [2.066] [2.244] [2.478] [2.733] [3.08] [3.38] [3.77]

(0.291) (0.041) (0.027) (0.015) (0.007) (0.003) (0.001) (0)

5 AR(4) 0.989 0.980 0.966 1.025 1.032 1.064 * 1.095 ** 1.110 ***

[­0.437] [­1.086] [­1.323] [0.732] [0.877] [1.889] [2.454] [3.315]

(0.663) (0.28) (0.189) (0.466) (0.382) (0.062) (0.016) (0.001)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 5 5 5 6 6 6 6 6

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.246 ** 1.340 *** 1.406 ** 1.359 * 1.434 * 1.340 ** 2.285 *** 2.024 ***

[5.298] [8.477] [6.107] [3.242] [3.399] [4.218] [22.533] [14.021]

(0.021) (0.004) (0.013) (0.072) (0.065) (0.04) (0) (0)

2 AR(1) 1.015 1.019 1.020 1.095 1.092 1.107 1.101 1.145
[0.231] [0.232] [0.125] [1.065] [0.852] [1.089] [0.83] [2.672]

(0.631) (0.63) (0.724) (0.302) (0.356) (0.297) (0.362) (0.102)

3 AR(2) 1.030 1.030 1.035 1.106 1.099 1.106 1.097 1.147
[0.855] [0.576] [0.363] [1.352] [0.987] [1.128] [0.791] [2.644]

(0.355) (0.448) (0.547) (0.245) (0.32) (0.288) (0.374) (0.104)

4 AR(3) 1.042 1.042 1.043 1.100 1.097 1.098 1.086 1.137
[1.796] [1.058] [0.535] [1.173] [0.932] [1.006] [0.71] [2.666]

(0.18) (0.304) (0.465) (0.279) (0.334) (0.316) (0.4) (0.103)

5 AR(4) 1.031 1.006 0.994 1.049 1.058 1.064 1.061 1.112
[0.919] [0.028] [­0.012] [0.397] [0.443] [0.597] [0.495] [2.324]

(0.338) (0.868) (0.912) (0.529) (0.505) (0.44) (0.482) (0.127)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 5 6 6 6 6 6

Notes: Forecast horizons (h) in months. Sample estimation (h=1): Jan1995-Dec2004. Sample evaluation (h=1):

Jan2005-Apr2014. Rolling window estimation is based on T=120 observations. The median quantile regression

(model 6) is used as benchmark in both panels to compute the MSE ratios (MSE of model 6 in denominator).

The Diebold-Mariano-West test is used in Panel A, and the Giacomini-White test is employed in Panel B.

In both panels, positive test statistics indicate that the loss of model m is greater than the benchmark (QAR) loss.

The null in both tests assumes equal predictive ability. Test statistics are presented [in brackets] and p-values are

shown (in parenthesis). *, **, and *** indicate rejection of the null at 10%, 5% and 1% levels, respectively.

17This result in favor of the quantile-based point forecasts can partially be explained by the abil-
ity of the (median) quantile regression in dealing with outlier observations (in our case, extreme
non-anticipated in�ationary shocks), which might a¤ect the performance of the remaining models,
exclusively based on Ordinary Least Squares (OLS) estimation, which is only designed to account for
average responses.
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4 Conclusions

The purpose of this article is to study the persistence of Brazilian in�ation using

quantile regression techniques. To characterize the dynamics of in�ation we used the

Quantile Autoregression model (QAR) proposed by Koenker and Xiao (2002, 2004,

2006). Based on a QAR, we �nd evidence of important heterogeneity associated with

the in�ation dynamics in Brazil, that cannot be described by processes simply mod-

elling the conditional mean and estimated with a standard OLS setup. Moreover, the

upper quantiles of the in�ation rate process in Brazil seem to exhibit a strong persis-

tence that can be well described by processes of autoregressive type when the economy

is in distress periods.

As expected, when we apply the usual unit root tests, the in�ation series are

stationary for the post stabilization period. When we compare the choice of lags for the

QARmodel, the headline in�ation, market prices and industrial goods are described by

simple autoregressive model, whilst other disaggregated items are described by a more

complex autoregressive dynamics. The choice of lags may indicate that disaggregated

items have a higher temporal dependence caused by idiosyncratic movements, which

are potentially lost (or mutually canceled) in the act of price-component aggregation.

The "local" unit root analysis based on the test of Koenker and Xiao (2004) was

applied to investigate the non-stationary dynamics of the in�ation rate in Brazil. The

result shows that the critical quantile using Brazilian in�ation data belongs to the level

� crit: = 0:71. Consequently, for approximately H = 29% of the periods the in�ation

rate exhibited a non-stationary behavior in the considered sample (1995-2014). To

further understand the in�ation inertia in the past two decades, we next reestimate

the QAR(1) model by using a recursive estimation scheme and compute the respective

H statistic, which is our suggested proxy for in�ationary inertia. From this recursive

exercise, we can infer that there was a gradual reduction of in�ation inertia, which

can be credited to the in�ation targeting regime. For disaggregated data, the results

indicate lower persistence.

The relationship between the non-stationary periods of in�ation were compared

with a measure of risk aversion and a market expectation series. From the results

of Granger causality tests, the non-stationary periods of the measure of risk aversion
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seems to anticipate those regarding the in�ationary dynamics.

We also performed an out-of-sample forecast exercise comparing the QAR model

against random walk and autoregressive models. For the headline in�ation, based on

MSE ratios, the QAR outperformed the other models for several forecast horizons.

Regarding the components of the headline in�ation, excepting for the results of non-

tradables and food beverages, the QAR models displayed a good performance among

the competing investigated models in many cases.

Regarding future research, possible extensions might include checking how season-

ality a¤ects the empirical results. Other route would be to investigate the in�ation

data before the Real plan. Preliminary results using a sample data starting in 1980

shows a strong non-stationary dynamics for the most part of the sample.
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Table A.3: Koenker-Xiao test (cont.)

services food and beverages industrial goods
� �1 (�) tn (�) �2 �1 (�) tn (�) �2 �1 (�) tn (�) �2

0.1 0.80 -4.58 -2.22 0.39 -6.05 -2.34 0.54 -3.93 -2.47
0.2 0.80 -8.74 -2.40 0.43 -10.06 -2.47 0.58 -5.75 -2.53
0.3 0.82 -9.09 -2.33 0.49 -8.36 -2.56 0.61 -7.07 -2.56
0.4 0.81 -8.79 -2.33 0.52 -6.50 -2.58 0.66 -7.12 -2.57
0.5 0.85 -9.11 -2.38 0.49 -7.63 -2.60 0.64 -7.23 -2.58
0.6 0.87 -8.28 -2.34 0.49 -7.07 -2.60 0.64 -8.14 -2.59
0.7 0.87 -6.52 -2.34 0.67 -3.92 -2.58 0.68 -5.66 -2.57
0.8 0.89 -3.11 -2.33 0.65 -4.77 -2.57 0.64 -3.70 -2.60
0.9 1.03(�) 0.70 -2.34 0.60 -2.84 -2.49 0.56 -3.11 -2.51

Notes: Ho : �1 (�)= 1. (*) means that Ho cannot be rejected at 5% level of signi�cance.
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Figure A.1 - Estimated coe¢ cients (1995-2014)

Headline in�ation

Regulated and monitored prices

Market prices

Tradables

Note: We omitted coe¢ cients of higher lags (if applicable) to save space.
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Figure A.2 - Estimated coe¢ cients (1995-2014)

Non-tradables

Services

Food and beverages

Industrial goods

Note: We omitted coe¢ cients of higher lags (if applicable) to save space.
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Figure A.3 - Local unit root and ratio
of periods with non-stationary in�ation

Headline in�ation

Regulated and monitored prices

Market prices

Tradables
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Figure A.4 - Local unit root and ratio
of periods with non-stationary in�ation

Non-tradables

Services

Food and beverages

Industrial goods
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Appendix B

Figure B.1 - Risk aversion proxied by EMBI+BR and periods associated
with in�ation local unit root (�rst panel) or lower quantiles (second panel)

or Embi and its own non-stationary periods (third panel)
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Appendix C

Figure C.1 - In�ation expectations and periods associated with
in�ation local unit root (�rst panel) or lower quantiles (second panel)
or expectations and its own non-stationary periods (third panel)
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Appendix D

Table D.1 - MSE ratios for regulated prices
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.224 * 1.486 ** 1.540 ** 1.112 1.253 1.127 1.014 1.036

[1.961] [2.513] [2.483] [0.58] [1.027] [0.479] [0.076] [0.184]

(0.052) (0.013) (0.015) (0.563) (0.307) (0.633) (0.94) (0.854)

2 AR(1) 1.885 *** 2.631 *** 3.200 *** 3.568 *** 3.088 *** 3.028 *** 2.712 *** 2.768 ***

[6.784] [6.544] [6.908] [8.954] [9.257] [11.557] [11.846] [12.555]

(0) (0) (0) (0) (0) (0) (0) (0)

3 AR(2) 1.618 *** 1.955 *** 2.467 *** 3.178 *** 2.980 *** 3.002 *** 2.723 *** 2.781 ***

[5.309] [6.198] [6.643] [8.139] [8.795] [11.178] [11.623] [12.457]

(0) (0) (0) (0) (0) (0) (0) (0)

4 AR(3) 1.492 *** 1.736 *** 2.071 *** 2.784 *** 2.752 *** 2.852 *** 2.659 *** 2.718 ***

[4.631] [5.685] [6.238] [7.349] [8.094] [10.413] [11.327] [12.258]

(0) (0) (0) (0) (0) (0) (0) (0)

5 AR(4) 1.340 *** 1.488 *** 1.695 *** 2.260 *** 2.404 *** 2.653 *** 2.753 *** 2.860 ***

[4.463] [5.041] [5.39] [6.534] [7.109] [8.665] [10.57] [12.198]

(0) (0) (0) (0) (0) (0) (0) (0)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 6 6 6 6 6 6

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.204 1.473 ** 1.626 ** 1.225 1.479 1.385 1.282 * 1.312 **

[0.906] [5.096] [6.284] [1.104] [2.091] [1.429] [3.652] [4.821]

(0.341) (0.024) (0.012) (0.293) (0.148) (0.232) (0.056) (0.028)

2 AR(1) 1.348 *** 1.664 *** 2.016 *** 2.259 *** 2.120 *** 2.252 *** 2.201 *** 2.313 ***

[8.401] [17.557] [22.949] [29.861] [22.12] [18.799] [11.414] [18.906]

(0.004) (0) (0) (0) (0) (0) (0.001) (0)

3 AR(2) 1.411 *** 1.694 *** 2.025 *** 2.233 *** 2.103 *** 2.241 *** 2.189 *** 2.307 ***

[11.676] [21.003] [25.527] [29.161] [22.164] [19.386] [11.811] [19.407]

(0.001) (0) (0) (0) (0) (0) (0.001) (0)

4 AR(3) 1.343 *** 1.543 *** 1.760 *** 2.087 *** 2.043 *** 2.204 *** 2.169 *** 2.285 ***

[10.076] [17.514] [21.227] [26.265] [20.705] [18.845] [11.686] [19.161]

(0.002) (0) (0) (0) (0) (0) (0.001) (0)

5 AR(4) 1.278 *** 1.448 *** 1.637 *** 1.963 *** 1.960 *** 2.144 *** 2.150 *** 2.272 ***

[11.902] [20.291] [23.204] [25.718] [21.343] [20.247] [12.034] [18.36]

(0.001) (0) (0) (0) (0) (0) (0.001) (0)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 6 6 6 6 6 6
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Table D.2 - MSE ratios for market prices
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.201 *** 1.326 *** 1.469 *** 1.500 ** 1.396 * 1.764 *** 2.214 *** 1.557 **

[3.018] [3.446] [3.49] [2.465] [1.681] [3.838] [3.021] [2.248]

(0.003) (0.001) (0.001) (0.015) (0.096) (0) (0.003) (0.028)

2 AR(1) 1.035 1.036 1.043 0.977 0.910 0.943 0.765 * 0.684 **

[1.455] [0.797] [0.692] [­0.192] [­0.621] [­0.365] [­1.899] [­2.396]

(0.149) (0.427) (0.49) (0.848) (0.536) (0.716) (0.061) (0.019)

3 AR(2) 1.051 * 1.037 1.043 0.983 0.929 0.949 0.763 * 0.685 **

[1.707] [0.764] [0.652] [­0.129] [­0.454] [­0.302] [­1.824] [­2.298]

(0.091) (0.447) (0.516) (0.898) (0.651) (0.763) (0.072) (0.024)

4 AR(3) 1.051 1.031 1.028 0.962 0.916 0.925 0.757 ** 0.692 **

[1.62] [0.655] [0.458] [­0.321] [­0.601] [­0.515] [­2.161] [­2.591]

(0.108) (0.514) (0.648) (0.749) (0.549) (0.607) (0.033) (0.012)

5 AR(4) 1.021 0.990 0.967 0.941 0.907 0.917 0.778 *** 0.727 ***

[0.637] [­0.251] [­0.682] [­0.632] [­0.877] [­0.757] [­2.647] [­3.03]

(0.526) (0.802) (0.497) (0.529) (0.382) (0.451) (0.01) (0.003)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 5 5 5 5 5 4 2

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.270 ** 1.408 *** 1.572 *** 1.541 ** 1.447 * 1.828 *** 2.216 *** 1.528 ***

[4.369] [9.609] [11.47] [6.109] [3.178] [29.93] [13.669] [9.258]

(0.037) (0.002) (0.001) (0.013) (0.075) (0) (0) (0.002)

2 AR(1) 1.028 1.028 1.028 0.960 0.937 0.964 0.766 *** 0.671 ***

[0.53] [0.287] [0.201] [­0.138] [­0.233] [­0.071] [­14.067] [­23.114]

(0.466) (0.592) (0.654) (0.71) (0.629) (0.79) (0) (0)

3 AR(2) 1.038 1.021 1.019 0.966 0.949 0.966 0.764 *** 0.671 ***

[0.776] [0.151] [0.082] [­0.093] [­0.14] [­0.061] [­13.831] [­22.649]

(0.378) (0.697) (0.775) (0.761) (0.708) (0.805) (0) (0)

4 AR(3) 1.042 1.035 1.027 0.969 0.958 0.959 0.755 *** 0.672 ***

[0.862] [0.363] [0.17] [­0.072] [­0.093] [­0.09] [­15.438] [­22.521]

(0.353) (0.547) (0.68) (0.788) (0.76) (0.765) (0) (0)

5 AR(4) 1.045 1.027 1.015 0.961 0.948 0.953 0.748 *** 0.675 ***

[0.779] [0.213] [0.053] [­0.125] [­0.158] [­0.13] [­17.108] [­23.829]

(0.377) (0.644) (0.817) (0.724) (0.691) (0.719) (0) (0)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 6 2 2 5 5 3
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Table D.3 - MSE ratios for tradables
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.238 *** 1.509 *** 1.734 *** 1.833 *** 1.466 * 1.867 *** 2.359 *** 2.096 ***

[2.843] [2.922] [3.643] [3.295] [1.74] [4.111] [3.588] [3.237]

(0.005) (0.004) (0) (0.001) (0.085) (0) (0.001) (0.002)

2 AR(1) 1.010 1.035 1.047 1.058 1.010 0.983 0.866 0.851
[0.243] [0.592] [0.606] [0.431] [0.068] [­0.122] [­0.959] [­1.052]

(0.809) (0.555) (0.546) (0.668) (0.946) (0.903) (0.34) (0.296)

3 AR(2) 1.006 1.014 1.028 1.078 1.041 0.991 0.867 0.854
[0.171] [0.209] [0.304] [0.502] [0.27] [­0.058] [­0.923] [­0.998]

(0.864) (0.835) (0.762) (0.617) (0.788) (0.954) (0.359) (0.321)

4 AR(3) 1.008 1.014 1.027 1.070 1.035 0.986 0.864 0.851
[0.229] [0.216] [0.298] [0.467] [0.232] [­0.094] [­0.96] [­1.038]

(0.819) (0.83) (0.766) (0.641) (0.817) (0.926) (0.34) (0.302)

5 AR(4) 1.030 1.034 1.044 1.065 1.023 0.961 0.850 0.841
[0.807] [0.527] [0.509] [0.431] [0.165] [­0.308] [­1.177] [­1.255]

(0.421) (0.599) (0.612) (0.667) (0.87) (0.759) (0.242) (0.214)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 6 6 6 5 5 5

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.194 ** 1.433 *** 1.689 *** 1.906 *** 1.582 ** 1.997 *** 2.457 *** 2.157 ***

[5.174] [9.144] [15.11] [16.276] [4.292] [26.466] [30.794] [37.569]

(0.023) (0.002) (0) (0) (0.038) (0) (0) (0)

2 AR(1) 0.996 1.016 1.064 1.121 1.102 1.111 0.923 0.903
[­0.015] [0.112] [0.908] [1.013] [0.489] [0.46] [­0.539] [­0.753]

(0.904) (0.738) (0.341) (0.314) (0.484) (0.498) (0.463) (0.385)

3 AR(2) 0.991 0.994 1.037 1.130 1.131 1.104 0.920 0.899
[­0.076] [­0.015] [0.251] [0.936] [0.731] [0.387] [­0.577] [­0.809]

(0.783) (0.903) (0.616) (0.333) (0.393) (0.534) (0.448) (0.369)

4 AR(3) 1.001 1.003 1.051 1.138 1.131 1.108 0.918 0.899
[0.002] [0.003] [0.491] [1.055] [0.734] [0.417] [­0.594] [­0.799]

(0.966) (0.958) (0.484) (0.304) (0.392) (0.518) (0.441) (0.371)

5 AR(4) 1.025 1.022 1.078 1.157 1.142 1.102 0.912 0.899
[0.542] [0.145] [0.928] [1.178] [0.836] [0.384] [­0.668] [­0.798]

(0.462) (0.703) (0.335) (0.278) (0.361) (0.536) (0.414) (0.372)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 3 3 6 6 6 6 5 3

45



Table D.4 - MSE ratios for non-tradables
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.284 *** 1.355 *** 1.412 *** 1.447 *** 1.458 ** 1.693 *** 1.615 *** 1.048

[3.019] [3.252] [3.076] [2.735] [2.469] [3.173] [3.268] [0.317]

(0.003) (0.002) (0.003) (0.007) (0.015) (0.002) (0.002) (0.752)

2 AR(1) 1.119 ** 1.072 * 1.040 0.958 0.914 0.908 0.760 *** 0.716 ***

[2.075] [1.822] [0.881] [­0.805] [­1.334] [­1.317] [­3.564] [­4.284]

(0.04) (0.071) (0.38) (0.423) (0.185) (0.191) (0.001) (0)

3 AR(2) 1.047 ** 1.067 ** 1.070 * 1.005 0.969 1.015 0.896 *** 0.812 ***

[2.392] [2.438] [1.712] [0.091] [­0.508] [0.244] [­2.813] [­4.569]

(0.018) (0.016) (0.09) (0.928) (0.612) (0.808) (0.006) (0)

4 AR(3) 1.034 ** 1.052 ** 1.048 0.990 0.963 0.990 0.895 *** 0.862 ***

[2.56] [2.323] [1.539] [­0.254] [­0.919] [­0.239] [­3.976] [­4.33]

(0.012) (0.022) (0.127) (0.8) (0.36) (0.812) (0) (0)

5 AR(4) 1.021 0.993 0.972 0.982 0.993 1.014 0.973 * 0.973
[0.905] [­0.479] [­1.6] [­0.714] [­0.29] [0.507] [­1.692] [­1.164]

(0.367) (0.633) (0.113) (0.477) (0.772) (0.613) (0.094) (0.248)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 5 5 2 2 2 2 2

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.394 ** 1.535 *** 1.516 *** 1.412 ** 1.419 ** 1.730 *** 1.714 *** 1.084

[4.37] [10.009] [8.009] [5.641] [5.172] [13.08] [63.424] [0.711]

(0.037) (0.002) (0.005) (0.018) (0.023) (0) (0) (0.399)

2 AR(1) 0.962 0.933 0.944 * 0.966 0.953 0.967 0.920 ** 0.918
[­0.542] [­2.577] [­2.796] [­0.477] [­0.913] [­0.367] [­3.891] [­1.374]

(0.462) (0.108) (0.094) (0.49) (0.339) (0.545) (0.049) (0.241)

3 AR(2) 0.955 0.948 ** 0.943 ** 0.933 * 0.933 0.953 0.927 * 0.939
[­2.17] [­4.153] [­5.197] [­3.631] [­2.572] [­0.983] [­3.721] [­1.66]

(0.141) (0.042) (0.023) (0.057) (0.109) (0.321) (0.054) (0.198)

4 AR(3) 0.971 0.958 * 0.946 ** 0.933 ** 0.933 * 0.952 0.928 * 0.945
[­1.286] [­3.638] [­4.781] [­4.045] [­2.839] [­1.082] [­3.802] [­1.564]

(0.257) (0.056) (0.029) (0.044) (0.092) (0.298) (0.051) (0.211)

5 AR(4) 0.972 0.963 * 0.949 ** 0.924 ** 0.933 * 0.947 0.930 * 0.956
[­1.198] [­2.908] [­4.637] [­5.296] [­2.923] [­1.39] [­3.656] [­1.442]

(0.274) (0.088) (0.031) (0.021) (0.087) (0.238) (0.056) (0.23)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 3 2 3 5 5 5 2 2
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Table D.5 - MSE ratios for services
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.558 ** 1.560 ** 1.268 ** 1.201 1.109 0.995 0.845 0.616 ***

[2.574] [2.489] [2.064] [1.525] [0.768] [­0.035] [­1.184] [­4.763]

(0.011) (0.014) (0.041) (0.13) (0.444) (0.972) (0.24) (0)

2 AR(1) 1.376 ** 1.265 * 0.993 0.855 ** 0.776 *** 0.694 *** 0.533 *** 0.452 ***

[2.261] [1.843] [­0.12] [­2.4] [­3.426] [­4.069] [­6.375] [­8.797]

(0.026) (0.068) (0.904) (0.018) (0.001) (0) (0) (0)

3 AR(2) 1.134 1.153 ** 0.997 0.960 0.893 *** 0.883 *** 0.926 ** 1.002
[1.547] [2.005] [­0.094] [­1.128] [­2.826] [­2.647] [­2.13] [0.066]

(0.125) (0.047) (0.926) (0.262) (0.006) (0.009) (0.036) (0.948)

4 AR(3) 1.048 * 1.043 0.987 0.963 * 0.931 *** 0.931 *** 0.960 * 1.011
[1.667] [1.417] [­0.769] [­1.866] [­2.819] [­2.655] [­1.889] [0.5]

(0.098) (0.159) (0.444) (0.065) (0.006) (0.009) (0.062) (0.618)

5 AR(4) 1.080 1.070 1.009 0.986 0.982 0.991 1.016 1.061 ***

[1.003] [1.292] [0.215] [­1.141] [­1.01] [­0.617] [0.975] [3.422]

(0.318) (0.199) (0.83) (0.257) (0.315) (0.539) (0.332) (0.001)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 4 2 2 2 2 2

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.716 *** 1.738 *** 1.381 ** 1.432 *** 1.416 *** 1.385 ** 1.373 *** 0.987

[7.612] [6.74] [5.342] [8.85] [7.574] [5.092] [13.75] [­0.016]

(0.006) (0.009) (0.021) (0.003) (0.006) (0.024) (0) (0.901)

2 AR(1) 1.177 ** 1.254 *** 1.277 *** 1.166 *** 1.186 *** 1.184 *** 1.151 ** 1.105
[5.978] [7.239] [6.747] [8.397] [8.142] [11.301] [4.5] [0.548]

(0.014) (0.007) (0.009) (0.004) (0.004) (0.001) (0.034) (0.459)

3 AR(2) 1.100 1.148 * 1.134 * 1.122 ** 1.172 *** 1.161 *** 1.130 * 1.155
[1.793] [3.22] [3.35] [6.589] [10.497] [8.936] [3.776] [2.61]

(0.181) (0.073) (0.067) (0.01) (0.001) (0.003) (0.052) (0.106)

4 AR(3) 0.993 1.029 1.038 * 1.057 * 1.112 *** 1.125 *** 1.129 ** 1.172 **

[­0.054] [2.278] [2.845] [3.365] [7.014] [6.917] [5.609] [5.634]

(0.816) (0.131) (0.092) (0.067) (0.008) (0.009) (0.018) (0.018)

5 AR(4) 0.982 1.023 1.030 1.018 1.053 1.082 * 1.113 ** 1.171 ***

[­0.221] [0.805] [1.268] [0.643] [2.405] [3.373] [5.78] [8.643]

(0.639) (0.37) (0.26) (0.423) (0.121) (0.066) (0.016) (0.003)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 5 6 6 6 6 6 6 1
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Table D.6 - MSE ratios for food and beverages
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.234 1.506 ** 1.738 ** 1.440 1.466 1.715 *** 2.403 *** 2.123 ***

[1.623] [2.206] [2.502] [1.5] [1.517] [3.41] [3.5] [2.668]

(0.107) (0.03) (0.014) (0.137) (0.132) (0.001) (0.001) (0.009)

2 AR(1) 1.018 0.992 0.965 0.889 0.879 * 0.879 * 0.862 ** 0.862 ***

[0.302] [­0.107] [­0.405] [­1.569] [­1.847] [­1.926] [­2.455] [­2.901]

(0.763) (0.915) (0.686) (0.12) (0.068) (0.057) (0.016) (0.005)

3 AR(2) 0.959 0.929 0.917 0.916 0.886 * 0.879 * 0.855 ** 0.860 ***

[­1.349] [­1.49] [­1.455] [­1.317] [­1.8] [­1.906] [­2.512] [­2.909]

(0.18) (0.139) (0.149) (0.191) (0.075) (0.06) (0.014) (0.005)

4 AR(3) 0.971 0.928 0.913 0.907 0.892 * 0.886 ** 0.871 ** 0.874 ***

[­0.952] [­1.526] [­1.515] [­1.558] [­1.902] [­2.005] [­2.522] [­3.011]

(0.343) (0.13) (0.133) (0.122) (0.06) (0.048) (0.014) (0.004)

5 AR(4) 0.985 0.943 0.929 0.922 0.896 * 0.889 ** 0.874 ** 0.878 ***

[­0.51] [­1.283] [­1.329] [­1.354] [­1.923] [­2.027] [­2.517] [­3.032]

(0.611) (0.202) (0.187) (0.179) (0.057) (0.045) (0.014) (0.003)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 3 4 4 2 2 3 3 3

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.260 * 1.575 ** 1.836 *** 1.522 * 1.509 1.737 *** 2.427 *** 2.183 ***

[3.213] [5.323] [7.623] [3.054] [2.316] [13.269] [32.568] [27.403]

(0.073) (0.021) (0.006) (0.081) (0.128) (0) (0) (0)

2 AR(1) 1.049 1.059 1.041 0.906 0.868 0.888 0.862 ** 0.850 ***

[0.691] [0.434] [0.189] [­1.414] [­2.585] [­1.839] [­4.81] [­22.892]

(0.406) (0.51) (0.664) (0.234) (0.108) (0.175) (0.028) (0)

3 AR(2) 0.997 0.987 0.972 0.931 0.884 0.884 0.851 ** 0.848 ***

[­0.004] [­0.043] [­0.192] [­1.021] [­2.232] [­2.078] [­5.195] [­24.978]

(0.95) (0.837) (0.662) (0.312) (0.135) (0.149) (0.023) (0)

4 AR(3) 1.002 0.989 0.975 0.918 0.881 0.883 0.853 ** 0.851 ***

[0.002] [­0.034] [­0.132] [­1.36] [­2.349] [­2.115] [­5.163] [­25.34]

(0.961) (0.854) (0.717) (0.244) (0.125) (0.146) (0.023) (0)

5 AR(4) 1.017 1.010 0.998 0.938 0.882 0.884 0.851 ** 0.851 ***

[0.159] [0.029] [­0.001] [­0.797] [­2.338] [­2.11] [­5.153] [­25.464]

(0.69) (0.866) (0.977) (0.372) (0.126) (0.146) (0.023) (0)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 3 3 3 2 2 4 5 3
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Table D.7 - MSE ratios for industrial goods
Panel A - Recursive estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.264 * 1.520 ** 1.560 * 1.577 1.410 1.721 *** 1.689 ** 1.108

[1.849] [2.133] [1.935] [1.532] [1.45] [3.125] [2.467] [0.459]

(0.067) (0.035) (0.056) (0.129) (0.15) (0.002) (0.016) (0.647)

2 AR(1) 1.016 1.039 ** 1.064 *** 1.110 *** 1.120 *** 1.135 *** 1.143 *** 1.131 ***

[1.525] [2.388] [2.738] [3.523] [3.338] [3.611] [4.556] [4.388]

(0.13) (0.019) (0.007) (0.001) (0.001) (0.001) (0) (0)

3 AR(2) 1.024 1.025 1.031 1.067 *** 1.081 *** 1.104 *** 1.112 *** 1.101 ***

[1.285] [1.55] [1.318] [2.846] [2.781] [3.264] [4.324] [4.26]

(0.202) (0.124) (0.19) (0.005) (0.006) (0.002) (0) (0)

4 AR(3) 1.001 0.996 1.007 1.041 * 1.052 * 1.089 *** 1.108 *** 1.096 ***

[0.041] [­0.106] [0.197] [1.665] [1.936] [2.719] [4.251] [4.218]

(0.968) (0.916) (0.844) (0.099) (0.056) (0.008) (0) (0)

5 AR(4) 0.998 0.982 0.999 1.022 1.017 1.039 * 1.046 *** 1.040 ***

[­0.077] [­0.455] [­0.019] [0.963] [0.735] [1.718] [2.857] [3.33]

(0.939) (0.65) (0.985) (0.338) (0.464) (0.089) (0.005) (0.001)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 5 5 5 6 6 6 6 6

Panel B - Rolling window estimation

Model Description h=1 h=2 h=3 h=6 h=9 h=12 h=24 h=36
1 Random walk 1.257 * 1.505 ** 1.546 ** 1.572 1.399 1.680 *** 1.646 ** 1.073

[2.73] [4.696] [4.198] [2.174] [1.874] [6.678] [5.539] [0.046]

(0.098) (0.03) (0.04) (0.14) (0.171) (0.01) (0.019) (0.829)

2 AR(1) 1.037 1.070 ** 1.054 1.102 *** 1.126 *** 1.132 *** 1.162 *** 1.176 ***

[1.84] [4.85] [1.875] [7.252] [10.642] [10.345] [47.546] [17.024]

(0.175) (0.028) (0.171) (0.007) (0.001) (0.001) (0) (0)

3 AR(2) 1.067 * 1.063 * 1.027 1.073 1.102 *** 1.124 *** 1.159 *** 1.171 ***

[2.977] [2.764] [0.259] [2.568] [7.149] [9.104] [50.339] [17.349]

(0.084) (0.096) (0.611) (0.109) (0.008) (0.003) (0) (0)

4 AR(3) 1.037 1.019 1.001 1.059 1.063 1.099 ** 1.155 *** 1.167 ***

[0.874] [0.166] [0] [0.742] [2.601] [4.213] [55.499] [17.97]

(0.35) (0.684) (0.991) (0.389) (0.107) (0.04) (0) (0)

5 AR(4) 1.069 1.052 1.040 1.085 1.079 ** 1.105 ** 1.152 *** 1.166 ***

[2.215] [1.373] [0.4] [1.654] [3.886] [4.192] [54.247] [15.6]

(0.137) (0.241) (0.527) (0.198) (0.049) (0.041) (0) (0)

6 QAR 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Best model 6 6 6 6 6 6 6 6
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