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Business Cycles * 

Eurilton Araújo** 

Abstract 
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do Brasil. The views expressed in the papers are those of the author(s) and do not 

necessarily reflect those of the Banco Central do Brasil. 

In a sticky-price model in which money can potentially play a key role in 

business cycles, I estimate monetary policy preference parameters under 

commitment in a timeless perspective. Empirical findings suggest that 

inflation stabilization and interest rate smoothing are the main objectives of 

monetary policy, with a very small role for output gap stabilization. Though 

the money growth rate is irrelevant as an argument in the Fed's objective 

function, its presence in structural equations improves model fit. Moreover, 

marginal likelihood comparisons show that the data favor Taylor rules over 

optimal policies. Finally, the way of describing monetary policy matters for 

macroeconomic dynamics. 

Keywords: estimation, central bank preferences, optimal monetary policy 

JEL Classification: E52, E58, E61 

* I acknowledge financial support from the Brazilian Council of Science and Technology (CNPq). The 

views expressed in this paper are my own and should not be interpreted as representing the positions of 

the Banco Central do Brasil or its board members. 

** Research Department, Banco Central do Brasil. Email: eurilton.araujo@bcb.gov.br. 

3



1 Introduction

In the standard sticky-price new Keynesian model, as described in Galí

(2008), monetary aggregates do not affect the equations describing infla-

tion, interest rates and output dynamics. Furthermore, the central bank sets

the interest rate and supplies any quantity of money demanded by economic

agents at the given target rate. In sum, the canonical new Keynesian model,

which is frequently employed to study monetary policy in academia and pol-

icy institutions, is block-recursive in money balances. Hence, the presence of

a money demand equation imposes no restrictions on the dynamic behavior

of key macroeconomic variables.

Evidence from estimated vector auto-regressions, such as Roush & Leeper

(2003) and Favara & Giordani (2009), challenged this view for neglecting the

role of money in business cycles. In addition, a burgeoning literature, based

on estimated dynamic stochastic general equilibrium models, has started to

find empirical evidence for the role of money in explaining macroeconomic

fluctuations. Andrés et al. (2009), Poilly (2010), Canova & Menz (2011),

Canova & Ferroni (2012), Benchimol & Fourçans (2012), Zanetti (2012) and

Castelnuovo (2012) are examples of this literature. By supporting money as

a relevant factor in business cycles, these papers contradict the early findings

of Ireland (2004) and Andrés et al. (2006), who found no major role for

money in cyclical fluctuations.

The literature above used Taylor rules to summarize monetary policy and

documented a significant interest rate reaction to the growth rate of nominal

money. To assess the potential role for the money growth rate as a monetary

policy objective, i.e., an argument in the central bank’s loss function, I depart

from the specification of monetary policy shown in these papers, and replace

the Taylor rule with optimal monetary policy under commitment in a timeless
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perspective.

As discussed in Svensson (2003), there are pitfalls in trying to infer the

target variables that central banks may care about in their loss functions

from the coefficients of simple monetary policy rules. In fact, a significant

coefficient associated with the money growth rate may only signal that money

is a useful indicator for forecasting inflation and the output gap, which are

the only variables that the central bank cares about. Appendix A illustrates

this point with an example based on the model studied in this paper. In

short, a statistically significant variable in a Taylor rule is not necessarily a

target variable in the central bank’s loss function1.

Following Dennis (2004, 2006), Ilbas (2010, 2012), Adolfson et al. (2011)

and Givens (2012), I therefore specify the central bank’s objective function

as an intertemporal quadratic loss function to be minimized subject to the

bank’s information about the state of the economy and its view on the trans-

mission mechanism. I then use quarterly data, ranging from 1984:Q1 to

2007:Q2, to estimate the model studied in Andrés et al. (2009) under opti-

mal policy.

Empirical findings suggest that the Fed does not target the money growth

rate and this variable is significant in estimated Taylor rules because it helps

forecasting inflation and the output gap, which are themselves monetary

policy objectives. The Fed’s major concern is inflation stability and changes

in interest rates are gradual, a typical conduct of central banks in normal

times. There is evidence supporting the presence of money in the equations

describing private agents’ behavior. This presence indicates a more active

role for money in explaining business cycles. Finally, optimal policies impose

1Kam et al. (2009) showed that, in small open economies under inflation-targeting,
real exchange rates were significant macroeconomic variables in Taylor rules, but did not
belong to the monetary authority’s objective function.
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additional restrictions on the equations characterizing the equilibrium, which

are rejected by the data. Thus, compared to Taylor rules, optimal policies

lead to alternative cyclical behavior of key macroeconomic variables but do

not improve model fit.

The rest of this paper proceeds as follows. Section 2 sets out the model.

Section 3 discusses the empirical methodology. Section 4 presents the main

findings. Section 5 checks the robustness of some results. Finally, the last

section concludes.

2 A sticky-price model with money

In this section, I present the log-linear approximation of the sticky price

economy developed by Andrés et al. (2009), henceforth the ALSN model.

This artificial economy, in contrast to the canonical new Keynesian model,

features an explicit role for money.

In the ALSN model, money affects the description of the equilibrium

through the specification of nonseparable preferences and portfolio adjust-

ment costs.

First, the model assumes that household preferences are nonseparable

in consumption and real money balances. This nonseparability assumption

affects households’ intertemporal rate of substitution in consumption. Con-

sequently, the Euler equation characterizing output dynamics depends on

real money balances.

In addition, nonseparable preferences alter intratemporal choices. In this

context, real money balances affect labor supply and real marginal costs.

Therefore, the new Keynesian Phillips curve, which describes inflation dy-

namics, depends on the evolution of real money balances over time.
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Second, the presence of portfolio adjustment costs makes the demand for

money a forward-looking equation. In the canonical new Keynesian model,

the demand for money is a static equation and real money balances do not

influence the dynamics of the remaining macroeconomic variables. For this

reason, the analysis of the canonical new Keynesian model does not really

need an explicit money demand equation.

Andrés et al. (2009) and Arestis et al. (2009) showed that a forward-

looking money demand equation implies that movements in real money bal-

ances not accounted for by the static determinants of money demand (output

and the nominal interest rate) reflect variations in expected natural rates of

output. Since the natural rate of output is a function of the structural shocks,

which ultimately drive macroeconomic dynamics, money therefore conveys

information on the determinants of aggregate demand and supply beyond

that contained in its static determinants. Because of this informational role,

regardless of whether monetary aggregates appear or not explicitly in the

Euler equation and in the new Keynesian Phillips curve, if central banks

somehow incorporate them in their monetary policy strategy, money will

have an active role in business cycles.

2.1 The log-linear equilibrium conditions

The following equations define a linear rational expectations model, approx-

imately describing the equilibrium conditions of the ALSN model.
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ŷt =
φ1

φ1 + φ2
ŷt−1 +

βφ1 + φ2
φ1 + φ2

Etŷt+1 −
1

φ1 + φ2
(r̂t − Etπ̂t+1) (1)

−
βφ1
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Etŷt+2 +
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(
1

1− βh

)(
1
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)
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−
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(
1

1− βh

)[(
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)
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)
Etm̂t+2
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−
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1− βh

)(
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φ1 + φ2

)
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(
1− βhρa
1− βh

)(
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φ1 + φ2

)
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π̂t =
β

1 + βκ
Etπ̂t+1 +

κ

1 + βκ
π̂t−1 + λ

m̂ct

1 + βκ
(2)

m̂ct = (χ+ φ2)ŷt − φ1ŷt−1 − βφ1Etŷt+1 (3)

−
ψ2
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1− βh
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1− βhρe
1− βh

)
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−

(
βh
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)
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[1 + δ0(1 + β)] m̂t = γ1ŷt − γ2r̂t + [γ2(r − 1)(hφ2 − φ1)− hγ1] ŷt−1 (4)
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)
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)]
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µ̂t = m̂t − m̂t−1 + π̂t (5)

ât = ρaât−1 + εat (6)

êt = ρeêt−1 + εet (7)

ẑt = ρz ẑt−1 + εzt (8)

The variables ŷt, r̂t, π̂t, m̂t, m̂ct and µ̂t are output, the nominal interest

rate, inflation, real money balances, real marginal costs and nominal money

growth. The disturbances ât, êt and ẑt are a preference shock, a money

demand shock and a technology shock. I measure all variables in deviations

from their steady-state values.

Equation (1) is the Euler equation that arises from the household choice

problem and describes the aggregate demand in the artificial economy. Be-

cause preferences exhibit nonseparability between consumption and real money

balances, terms involving real money balances and their expected values are

part of the aggregate demand equation. The presence of habit persistence

introduces a role for the lagged value of output as a factor explaining current

output.

Equations (2) and (3) characterize the supply side of the model. Equation

(2) is the new Keynesian Phillips curve that arises from firms’ price-setting

behavior. Equation (3) is an expression defining real marginal costs, which

are an important driving force for inflation dynamics, according to equation

(2).

9



The introduction of portfolio adjustment costs and the nonseparability

across real money balances and consumption shape the form of the money

demand relationship. In contrast to the traditional static money demand

schedule, equation (4) shows that the real money balance is a forward-looking

variable.

Equation (5) defines nominal money growth rate, and equations (6) to

(8) specify the stochastic disturbances for the shocks, which follow AR(1)

processes with normal innovations εat, εet and εzt, with zero mean and vari-

ance σ2j for j ∈ {a, e, z}. The persistence parameters for the shocks are ρj

for j ∈ {a, e, z}.

The compound parameters of the model are:

ψ1 =
(

−Ψ1
y1−hΨ11

)
, ψ2 =

(
−Ψ12

y1−hΨ11

) (
m
e

)
, φ1 =

(
1
ψ1
−1
)
h

1−βh
, φ2 =

1
ψ1
+
(

1
ψ1
−1
)
βh2−βh

1−βh
,

χ = ϕ+α
1−α

, λ =
(
(1−θ)(1−βθ)

θ

)(
1−α

1+α(ε−1)

)
and δ0 =

dc2

m
.

The variables y, m and e are steady-state figures. In addition, r denotes

the steady-state value for the gross nominal interest rate. The coefficients γ1

and γ2 are the long-run real income and interest rate response parameters.

The terms Ψ1, Ψ11 and Ψ12 are the partial derivatives of the function

Ψ, which summarizes how consumption and real money balances interact in

the utility function of the representative household. I evaluate these deriv-

atives at steady-state levels2. The parameter β is the household’s discount

factor, ϕ is the inverse of the Frisch labor supply elasticity, and h is a pa-

rameter controlling the degree of habit persistence in consumption. Finally,

the coefficients c and d determine the shape of the portfolio adjustment cost

function.

The technology parameter in the production function of intermediate

goods is α, and the coefficient ε is the elasticity of substitution between

2To simplify notation, I omitted the arguments of Ψ, Ψ1, Ψ11 and Ψ12 in the text. In
fact, I evaluated these functions at the point

(
y1−h, m

e

)
.
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the differentiated goods composing the production bundle. The Calvo para-

meter, which measures the degree of price stickiness, is θ. Additionally, the

parameter κ measures the degree of price indexation.

The role of money in equations (1) to (3), which describe aggregate de-

mand and aggregate supply, depends on the parameter ψ2. If ψ2 = 0, the

terms involving real money balances and their expectations vanish in expres-

sions (1) to (3). If ψ2 > 0, real money and consumption are substitutes.

In equation (4), the forward-looking nature of money demand depends on

setting ψ2 6= 0 or on the presence of portfolio adjustment costs (δ0 6= 0).

The output gap is a key variable for central banks when they set monetary

policy. Following Smets & Wouters (2007) and Ilbas (2010, 2012), I define

the output gap as the difference between actual output and the natural rate

of output. The natural rate of output is the equilibrium output in a flexible-

price version of the ALSN model. In this version of the model, m̂ct = 0

since the price-markup is constant under flexible prices. In addition, there

is no new Keynesian Phillips curve due to instantaneous price adjustments,

implying π̂t = 0 for all t. The variables ŷ
n
t , r̂

n
t and m̂

n
t , measured in deviations

from their steady-state values, denote the natural rate of output, the interest

rate and real money balances in the flexible-price equilibrium. Equations (1),

(3) with m̂ct = 0 and (4) to (8) characterize the flexible-price equilibrium

and the vector (ŷnt , r̂
n
t , m̂

n
t ) solves this system of dynamic stochastic difference

equations. Thus, the difference ŷt− ŷ
n
t corresponds to the output gap, which

is a model-based measure that indicates how efficiently resources are being

employed.

Appendix B provides more details of the model. Next, I describe how the

central bank conducts monetary policy. Specifically, I present a quadratic

loss function that summarizes the Fed’s policy preferences.
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2.2 Monetary Policy

To close the model, I have to specify the behavior of the central bank. I treat

the central bank as an optimizing agent in the same way I treat households

and firms. In fact, the central bank chooses the best policy subject to the

constraints imposed by private agents’ behavior; it minimizes an intertem-

poral quadratic loss function under commitment.

I postulate an ad hoc functional form for the loss function, which is not

microfounded and does not correspond to a second-order approximation of

the representative agents’ utility function. The approach of specifying an ad

hoc loss function assumes that the central bank acts according to a specific

mandate. As a consequence, the central bank is not a benevolent planner

and the policy objective function is not welfare-based.

The formulation of a Ramsey policy problem, in which a benevolent plan-

ner maximizes the utility of the representative household, is theoretically the

best approach from a public finance perspective. Nevertheless, households’

preferences constrain the welfare-based objective function by imposing highly

nonlinear structural restrictions, which are most likely misspecified with re-

spect to the data-generating process. Therefore, from an empirical perspec-

tive, assuming that the monetary authority follows a mandate is a sensible

strategy if the research goal is to infer the relative importance of targets that

the central bank may care about. This strategy leads to free parameters in

the loss function, which improves model fit.

To avoid these econometric drawbacks, the empirical papers on optimal

policies in dynamic stochastic general equilibriummodels, which I list in foot-

note 4, employed postulated ad hoc loss functions. Besides the econometric

difficulties discussed before, I decide to use a postulated loss function because

I am able to compare the estimated weights with the ones documented in
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this empirical literature. Moreover, in this paper, the weights reported in

this previous research may inform the choice of priors for the parameters in

the loss function.

In the context of the ALSN model, the analytical derivation of the loss

function as an approximation of households’ utility is a task beyond the

scope of this paper. Woodford (2003, chapter 6) and Paustian & Stoltenberg

(2008) obtained such loss function in a simple model with money. Since they

considered a static money demand schedule, they were able to substitute out

real money balances. Because of this substitution, monetary aggregates were

absent from their utility-based measure. Hence, inflation, the output gap

and the interest rate were the only arguments in their loss function.

In the case of the ALSN model, with the presence of equation (4) as

a consequence of portfolio adjustment costs, the quadratic approximation

will be an explicit function of ŷt − ŷnt , m̂t, π̂t and µ̂t, since one can write

the expression for portfolio adjustment costs, denoted by G, as a function

of inflation and the money growth rate. The weights on quadratic terms

for m̂t and µ̂t will hinge on the partial derivatives of the function Ψ, which

summarizes how consumption and real money balances interact in the utility

function of the representative household, as well as on the partial derivatives

of G.

Söderström (2005) studied optimal monetary policy under discretion in a

calibrated version of the canonical new Keynesian model with a loss function

that included money as one of its arguments, but he did not estimate the

central bank’s preference parameters. To estimate the ALSN model under

optimal policy, contrary to Söderström (2005), I follow Ilbas (2010, 2012)

and Adolfson et al. (2011) and assume that the central bank optimizes
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under commitment in a timeless perspective3.

The central bank minimizes Et

∞∑

i=0

βiLosst+i with 0 < β < 1, subject

to the equations describing the behavior of households and firms. The one-

period ad hoc loss function includes inflation, the output gap, a smoothing

component for the interest rate and money growth. The central bank targets

these variables, which are the goals of monetary policy, according to the

following objective function.

Losst = π̂2t + qy (ŷt − ŷnt )
2 + qr(r̂t − r̂t−1)

2 + qµµ̂
2
t

The weights qy, qr and qµ summarize the central bank’s preferences con-

cerning these goals. When estimating the ALSN model under optimal policy,

I allow these parameters to be estimated freely, subject only to non-negativity

constraints.

The term qr(r̂t− r̂t−1)
2 describes a preference for interest rate smoothing.

Central banks typically set policy by changing incrementally the policy rate

and many papers have included the change in the interest rate in the loss

function4. These papers have also argued that adding this term in the loss

function is relevant for capturing movements in interest rates observed in

U.S. data.

According to its assigned mandate, the central bank pursues a nominal

money growth target, which corresponds to the term qµµ̂
2
t . Transaction tech-

nologies5 and portfolio adjustment costs are the usual ways of introducing

3I consider that the commitment occurred some time in the past; and, since the central
bank does not disregard any previous commitment in a timeless perspective, the initial
values of the Lagrange multipliers related to the optimal monetary policy problem are
different from zero. In this case, the optimal policy is thus time consistent.

4For instance, Dennis (2004, 2006), Kam et al. (2009), Ilbas (2010, 2012), Adolfson et
al. (2011) and Givens (2012).

5Croushore (1993) showed the equivalence between money in the utility function, as
described in the ALSN model, and the specification of transaction technologies (shopping-
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money in macroeconomic models. A more stable nominal money growth re-

duces fluctuations in transactions and in the costs of adjusting portfolios,

leading to less volatile business cycles and more predictable costs for rebal-

ancing portfolios in response to shocks. These effects of stabilizing nominal

money growth on the economy are the rationale for the presence of µ̂t in the

loss function as a potential monetary policy objective.

In addition, since the ALSN model represents the central bank’s view

about the economy, the monetary authority takes into account the informa-

tional role of money, implicitly described by equation (4), as it minimizes the

loss function subject to this model.

I compare the ALSN model estimates under optimal policy with the re-

sults obtained assuming that the Fed followed a simple Taylor rule. The

optimal policy design introduces new state variables, which are the Lagrange

multipliers associated with private agents’ decisions. In this context, these

new state variables, compared with the model with a Taylor rule, place more

restrictions on the observable variables, which are the same across alterna-

tive monetary policy specifications. Because the Taylor rule is less restrictive

than the optimal policy specification, big differences in model fit favoring

the Taylor rule can suggest that the assumption of optimal policy under

commitment is incompatible with the data employed in the estimation.

Furthermore, big differences between the parameter estimates under al-

ternative specifications for the conduct of monetary policy can challenge the

implicit assumption that the ALSN model is structural, i.e., its parameters

are invariant to distinct formulations in modeling monetary policy. The es-

timation under different monetary policy specifications may indicate how

plausible this assumption is.

time models).
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I estimate the Taylor rule given by the following equation.

r̂t = ρrr̂t−1 + (1− ρr)
[
ρy (ŷt − ŷnt ) + ρππ̂t + ρµµ̂t

]
+ εrt

The parameters describing the rule are ρr, capturing interest rate inertia

and the coefficients ρy, ρπ and ρµ, capturing the response of the interest rate

to the macroeconomic variables ŷt − ŷnt , π̂t and µ̂t. The monetary policy

shock is εrt. This rule is widely used in papers that investigate the role of

money in sticky-price models, such as Andrés et al. (2009), Arestis et al.

(2009), Poilly (2010), Canova & Menz (2011) and Castelnuovo (2012).

Since µ̂t affects macroeconomic dynamics and summarizes additional in-

formation on the shocks hitting the economy, the central bank may react to

this variable in order to stabilize the economy. Rather than specify a stan-

dard Taylor rule, I choose to work with a more general interest rate rule and

let the data select the best fit specification.

Next, I summarize the findings of four related papers and compare their

specifications with the benchmark model of this paper.

2.3 Related models

Ireland (2004) proposed a new Keynesian model that relaxed the typically

employed assumption that households’ preferences are separable in consump-

tion and real money balances. Working with U.S. data, Ireland (2004) could

not find empirical evidence to reject the assumption of separable preferences.

Andrés et al. (2006) used Euro-area data and reached the same conclusions

as Ireland (2004). By contrast, Andrés et al. (2009) found empirical sup-

port for money as a relevant factor in business cycles when they introduced

portfolio adjustment costs in addition to the nonseparable preference chan-
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nel. As an extension of Ireland (2004), Zanetti (2012) introduced a simple

banking sector. Similar to considering the addition of portfolio adjustment

costs, the introduction of the banking sector strengthened the role of money

in the business cycle.

The difference between the first two papers and the model in Andrés

et al. (2009) hinges on the specification of money demand. Ireland (2004)

and Andrés et al. (2006) worked with a static money demand equation in

contrast to Andrés et al. (2009), which specified a forward-looking money

demand. Equation (4) represented, therefore, this money demand function.

Expressions (1) to (3) and (5) to (8) are common to the three first papers. In

Ireland (2004), however, equations (1) to (3) did not have backward-looking

terms. Though structural parameters differ, the reduced forms for aggregate

demand and supply schedules of Zanetti’s model are similar to the log-linear

equations (1) to (3) with h = κ = 0. In Zanetti (2012), money demand

is static, equations (5) to (8) hold and an additional expression, which did

not exist in the three previous papers, described the household’s deposit

constraint.

In this paper, equations (1) to (8) are identical to the expressions de-

scribing the equilibrium in Andrés et al. (2009), i.e., I specify private agents’

behavior in the same way they did. The difference between the benchmark

model of this paper and Andrés et al. (2009) lies on how the central bank

sets monetary policy. This paper considers optimal policies, departing from

Taylor rules, which characterized monetary policy in Ireland (2004), Andrés

et al. (2006), Andrés et al. (2009) and Zanetti (2012).
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3 Estimation

This section discusses the Bayesian approach to estimate dynamic stochastic

general equilibrium models (DSGE) and presents the data set and the priors

used in the estimation.

3.1 Econometric Strategy and Priors

I estimate the parameters using likelihood-based Bayesian methods as dis-

cussed in Dave & DeJong (2011) and An & Schorfheide (2007). In this paper,

I use the Metropolis-Hastings algorithm to obtain draws from the posterior

distribution, running separate chains composed of 950,000 draws, discarding

the first 50% as initial burn-in. I assess the convergence of the estimations

using diagnostic statistics described in Brooks & Gelman (1998). In addition,

I use the Bayes factor to compare the fit of alternative models to the data.

The second columns in Tables 1 and 2 show the priors for the parameters

and reports the mean and standard deviation of each prior distribution. I

used beta distributions for the parameters restricted to the interval [0, 1] and

inverse gamma distributions for standard errors of the shocks. I centered the

priors in values consistent with the estimated parameters reported in Andrés

et al. (2009) and Castelnuovo (2012). I calibrated some of the parameters

in the ALSN model. Specifically, I followed the calibrated values reported in

Castelnuovo (2012), setting β = 0.9925, α = 1
3
, ε = 6 and r = 1.0158.

The assumption of optimal monetary policy under commitment leads to a

time-inconsistent policy. To interpret the results as the outcome of an optimal

policy from the timeless perspective, which is time-consistent, I initialize the

estimation according to a pre-sample period of 20 quarters. This method

for dealing with time-inconsistency follows the econometric strategy in Ilbas

18



(2010, 2012). Next, I discuss the data used in estimating the ALSN model.

3.2 Data

I collected quarterly U.S. data from the FRED database, which is housed by

the Federal Reserve Bank of St. Louis. The variables are real output, real

money balances, inflation and the short-term interest rate. Real GDP is the

measure of real output, real money balances equal nominal M2 money stock

divided by the GDP deflator, inflation is the quarterly variation in GDP

deflator and the Fed funds rate measures the nominal interest rate.

I worked with seasonally adjusted data, except for the nominal interest

rate. I then expressed real output and real money balances in per-capita

terms, employing the civilian non-institutional population. I used logarithmic

scale for real output and real money balances. The observable series are: real

GDP growth, inflation, the nominal interest rate and the growth rate of the

real money balances. I removed the mean of all series prior to estimation.

In light of the evidence of parameter instability over time reported in

Canova & Menz (2011), Canova & Ferroni (2012) and Castelnuovo (2012),

I focus the analysis on the period after the Volcker disinflation and before

the recent financial crisis. To be precise, the quarterly sample ranges from

1984:Q1 to 2007:Q26. I chose this sample for two reasons. First, the model

describes normal times and does not have features designed to explain finan-

cial crises. Second, I wanted to restrict the analysis to a period in which it

would be reasonable to argue that the Fed followed a conventional monetary

6The sample agrees with the definition of the Great Moderation era in Smets &Wouters
(2007). Indeed, the beginning of the sample is similar to the starting point defining the
sample period in some other papers. For instance, in Ilbas (2010) and Givens (2012),
which are papers that estimated policy preferences, the sample starts at some date in the
first half of the 1980s. In addition, in Ireland (2004) and Zanetti (2012), the estimation
starts at the first quarter of 1980.
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policy, using the interest rate as its instrument to curb inflation7.

4 Empirical Results

This section presents and discusses the main findings of this paper. I first

present the results from the estimation under optimal policy. Next, I move

to the analysis of the estimation results concerning the model in which the

Taylor rule describes monetary policy. I then compare the fit of alternative

models using marginal likelihoods and Bayes factors. To quantitatively assess

the dynamics of macroeconomic variables in the models, I finally compute

selected moments and impulse response functions.

4.1 Estimates with Optimal Policies

Table 1 shows the results from the estimation of the ALSN model under

optimal monetary policy. There are three specifications under optimal mon-

etary policy. The first specification, in the third column of this table, called

No Money, is the ALSN model subject to the following restrictions: qµ =

ψ2 = δ0 = 0. The specification labeled PA only refers to the case in

which money affects private agents’ behavior, corresponding to the restric-

tion qµ = 0. Finally, the specification with label PA and CB allows money

to influence the behavior of private agents and the central bank’s policy

preference.

INSERT TABLE 1

According to Table 1, the main objectives of monetary policy, irrespective

of the role of real money balances in the description of the equilibrium, are

7Walsh (2010) argues that the Fed’s operating procedures to conduct monetary policy
were fairly homogeneous in this period.
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inflation stabilization and interest rate smoothing. Output gap stabilization

is a far less important objective than these two objectives. Estimation results

suggest that the relevance of the money growth rate as a monetary policy

objective is virtually negligible. In fact, the interest rate smoothing para-

meter in the central bank’s loss function is somewhat high, suggesting that

this objective is more important than inflation. Though estimated policy

preference parameters, in medium-scale models, suggest a prominent role for

inflation, the range of values I found for the interest smoothing parameter

is consistent with the findings reported in Dennis (2004, 2006) and Givens

(2012) for the commitment case.

Introducing money substantially changes the estimation of the following

parameters: ψ1, γ2, κ, θ, ϕ, qr, ρa, ρe, ρz, σa, σe and σz. In models with

money, κ and qr tend to be smaller, γ2 and θ tend to be higher and shocks

are more persistent and volatile. Comparing the specifications PA only and

PA and CB, the changes in estimated parameters are mild, the exception

being ϕ and qr.

The model with money opens up the channels through which this variable

affects the equilibrium. Since money is present in the Euler equation and in

the marginal cost equation, it affects demand and supply sides of the arti-

ficial economy. In addition, the dynamic money demand equation activates

the informational role of money, which also modifies the equilibrium. All

these changes introduce money as an additional state variable in the state

space representation of the model, interacting with other state variables. The

estimation of this new state space specification alters parameters’ values re-

lated to demand and supply sides, as well as shocks. By contrast, in the

model without monetary aggregates, money does not influence the equations

describing inflation, interest rates and output dynamics.
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The estimated values for ψ2 is close to zero and δ0 is far from zero. This

characteristic indicates that portfolio adjustment costs are more important

than nonseparability in giving money a distinctive role in explaining the

business cycle. This result coincides with findings reported in Andrés et al.

(2009), Arestis et al. (2009) and Castelnuovo (2012). The estimation yields

a substantial degree of inflation and output inertia due to high values for the

habit persistence parameter h and the price indexation parameter κ. Prices

are very sticky due to high and possibly implausible values of θ8. All these

features cast doubts on the plausibility of optimal policy under commitment

as the best assumption to describe monetary policy. In fact, these features

arise due to the specific cross equation restrictions induced by the optimizing

behavior of the central bank. To fit the data and satisfy these restrictions,

parameter estimates sometimes assume some implausible values.

Finally, I estimate the models assuming that the interest rate is subject

to a measurement error under optimal policy. The variance of this measure-

ment error is stable across specifications and smaller than the variance of the

remaining stochastic disturbances.

Given that the aim of this paper is to provide some evidence on the

role of money as a monetary policy objective, Figures 1 to 3 show priors

and posteriors for the parameters of the model with no restrictions imposed

on the weights in the loss function (the PA and CB specification). Since

posterior distributions move away from priors, the data are informative about

the parameters. Concerning the weights in the loss function, a comparison

between posteriors and priors in Figure 2 shows that the data shift the prior

distributions for qy and qµ to the left, suggesting negligible roles for the

output gap and nominal money growth as monetary policy objectives.

8Kam et al. (2009), Ilbas (2010) and Canova & Ferroni (2012) also reported high and
somewhat implausible values for the Calvo parameter θ.
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INSERT FIGURES 1 TO 3

4.2 Estimates with Taylor Rules

Table 2 shows the results from the estimation of versions of the ALSN model

in which Taylor rules describe monetary policy. For the three specifications

shown in this table, I use the following labels: No Money ( ρµ = ψ2 = δ0 = 0),

PA only ( ρµ = 0) and PA and CB (unrestricted model).

The estimated structural parameters are relatively stable, with the ex-

ception of ψ2, γ2, ρe, σe and σz. Compared with the optimal policy models,

there is more parameter stability across specifications. Inflation inertia, as

measured by κ, is smaller. The high estimated degree of habit persistence h

continues to induce output inertia. Though still high, the parameter θ lies

in a more reasonable interval for the Calvo probability.

As in the estimations under optimal policies, portfolio adjustment costs

seem to be more important than nonseparability in modeling the role of

money for business cycles. The Taylor rules exhibit a moderate degree of

interest rate inertia. Monetary policy shocks are not very volatile, with

variance in line with the estimated variance of the measurement error in

models with optimal policies.

INSERT TABLE 2

Comparing the best fit specification under Taylor rules with the best

model under optimal policies, which are respectively Taylor Rule-PA and CB

and optimal policy-PA only, one can see that most of the parameter estimates

in the equations describing private agents’ behavior are very similar. The

exceptions are κ, θ, ρa, ρe, ρz and σz. Some of these parameters control the

degree of persistence implied by the model and assume high values under
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optimal policies. Therefore, the specifications under optimal policies imply

more inertial dynamics for macroeconomic variables compared with models

using Taylor rules. As explained in Galí (2008), this feature is intrinsic to

optimal policies under commitment since they introduce history dependence.

4.3 Model Comparison

I compare the fit of the models under the optimal policy assumption with

specifications in which a Taylor rule describes monetary policy. I use marginal

data densities or marginal likelihoods to compare the empirical performance

of these models.

Table 3 reports marginal likelihoods and Bayes factors for each model.

The Bayes factor is the ratio of marginal likelihoods associated with alterna-

tive models, i.e., BF = p(YT |M1)
p(YT |M2)

, where p(YT |Mj) is the marginal likelihood

of modelMj. I report Bayes factors in log10 scale, that is, I compute the fol-

lowing expression log10 (BF ). In this way, I can express orders of magnitude

in a more compact scale since the ratio between marginal data densities may

involve large ranges of numerical values.

I normalize the Bayes factor of the model under optimal policy without

money (qµ = ψ2 = δ0 = 0) to zero in log10 scale because this specification

presents the worst empirical fit as measured by the marginal likelihood. To

compare two alternative models, one just takes the differences between their

log10-scaled Bayes factors. An improvement indicates some evidence in favor

of the model with the highest marginal likelihood. The evidence is strong

(decisive) if the improvement is greater than 1.5 (2). For example, in com-

paring the optimal policy-PA only model with the optimal policy-PA and

CB model, the difference between the log10-scaled Bayes factors is 0.1368,

favoring the optimal policy-PA only model, which has the highest marginal
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data density among the two specifications. In fact, in the optimal policy-PA

and CB model, qµ is close to zero. This fact justifies the small difference

between the log10-scaled Bayes factors of the two models. For Taylor rules,

since the difference between the log10-scaled Bayes factors is 1.7655 and the

marginal likelihood of the Taylor Rule-PA and CB model is higher, a com-

parison between the Taylor Rule-PA only model and the Taylor Rule-PA and

CB model indicates a strong evidence favoring the latter.

INSERT TABLE 3

Table 3 shows that the models with Taylor rules dominate the models

with optimal policy under commitment in a timeless perspective. In fact,

the data provide decisive evidence in favor of this specification. This finding

suggests that he cross-equation restrictions associated with optimal policies

are at odds with the Fed’s behavior.

In addition, this result may indicate that the assumption of a central

bank behaving according to the optimal monetary policy under commitment

is not the best way to describe the data. This fact opens the door to alter-

native specifications for monetary policy, which could be conducted under

discretion in an optimal way or could not be characterized by any simple

optimization problem. Alternatively, this result also suggests the possibil-

ity of a misspecified central bank loss function. An investigation of these

hypotheses is beyond the scope of this paper.

Model comparison shows that the presence of the money growth rate as

a monetary policy objective does not improve model fit. The estimated Fed

preference is consistent with a strategy that targets inflation and gradually

adjusts interest rates.

In sum, incorporating money in the structural equations improves model

fit under optimal policy. This evidence supports a relevant role for money
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in modeling private agents’ behavior in small scale macroeconomic models.

In contrast, there is no compelling evidence of a role for money also as a

monetary policy objective. These findings suggest that money as an indicator

variable, conveying information that improves the forecasts of inflation and

economic activity, is the most plausible interpretation for the interest rate

reaction to the growth rate of nominal money in Taylor rules.

4.4 Dynamic Properties

I assess the implications of introducing money for the dynamics of key macro-

economic variables.

Table 4 reports selected moments for the output gap, inflation and the

interest rate. Under Taylor rules, the output gap and inflation are less volatile

in the specification with money. In contrast, under optimal policies, the

presence of money leads to more volatility in the output gap and inflation.

Moreover, independent of the policy specification, interest rates are more

volatile in models with money. Persistence patterns are somewhat similar

in models with and without money, irrespective of how I describe monetary

policy.

INSERT TABLE 4

The inspection of Table 4 reveals differences in key moments of macroeco-

nomic variables associated with alternative descriptions of monetary policy.

Here, I focus on the best fit models. Indeed, as a consequence of a low esti-

mated qy, the best optimal policy model increases the volatility and reduces

the persistence of the output gap. Additionally, inflation is more volatile and

persistent under this model. Regarding interest rates, they are much less

volatile and extremely persistent under optimal policies. This last feature
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is due to an excessive degree of history dependence introduced by optimal

policies.

The last column of Table 4 shows data-based moments9. The best speci-

fication for optimal policies generates moments that are less consistent with

the data than the ones related to the best configuration for Taylor rules. This

result agrees with Table 3, which suggests that Taylor rules are more in line

with the data according to reported marginal likelihoods. Though optimal

policies stand in contrast to the data, they capture well interest rate per-

sistence. Taylor rules, on the other hand, introduce more volatility and less

persistence in interest rates. Overall, the models in Table 4 cannot generate

moments that match closely the ones from the data.

In Figures 4 to 7, I plot impulse response functions to further investigate

the differences in macroeconomic dynamics implied by alternative monetary

policy specifications. To save space, in these figures, for each way of mod-

eling monetary policy, I consider only the best fit specification according to

Table 3. The figures show impulse responses for the models with parameters

calibrated at the posterior mean. I consider a 1% shock and I measure the

impulse in percentage points. Moreover, since the size of the shock is the

same across models, for a given shock, I report the impulse response of the

models together in the same graph.

Figures 4 to 7 exhibit the responses to shocks of the following macroeco-

nomic variables: inflation, the output gap, the nominal interest rate, real

marginal costs, output and real money balances. Since monetary policy

shocks are specific to Taylor rules, the responses under the best optimal

policy configuration are absent in Figure 7. I first describe the effects of

a shock on these variables in the Taylor rule model and then highlight the

9The date-based output gap is the HP-filtered output series.
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differences between these effects and the responses under the optimal policy

specification.

Figure 4 shows responses to a preference shock, which implies an in-

crease in the intertemporal marginal rate of substitution. This shock in-

creases current output, but this increment is less than the hike in its natural

counterpart; hence, the output gap goes down. According to equation (3),

preference shocks negatively affect real marginal costs; inflation therefore de-

creases on impact. Reacting to inflation and the output gap, the interest

rate declines. According to equation (4), the shock leads to a decline in real

money balances on impact. But the final response of this variable depends

on the remaining terms in this equation. The strong output response more

than cancels out this decline, and real money balances mildly increase in the

Taylor rule model. For the optimal policy specification, interest rates barely

move and real money balances decline due to the weak output response and

the dominance of the initial effect of the shock.

INSERT FIGURE 4

Figure 5 presents responses to a money demand shock. Since consump-

tion and real money balances are complementary goods (ψ2 < 0), an increase

in real money balances due to the shock triggers an increase in output. Ac-

cording to equation (3), since ψ2 < 0, money demand shocks negatively affect

real marginal costs; inflation therefore decreases on impact. Finally, inter-

est rates increase responding to an increase in nominal money growth due

to an increment in real money balances, which is strong in magnitude than

the declines in inflation and the output gap. In the case of the Taylor rule

model, this movement in interest rates also helps to bring inflation down. For

the optimal policy specification, interest rates barely react. Excluding real
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marginal costs, output and the output gap, the responses of the remaining

variables are weaker in comparison to the Taylor rule model.

INSERT FIGURE 5

Figure 6 displays responses to a technology shock. Output increases,

though less than its natural counterpart, and inflation decreases. Further,

interest rates decrease, reacting to a reduction in inflation and the output

gap. Nominal money balances increase due to low interest rates and high

output. In addition, under the best optimal policy, except for real marginal

costs, the responses of macroeconomic variables are much weaker than those

associated with the Taylor rule model. Finally, interest rates follow the same

pattern shown in their reaction to preference and money demand shocks.

Due to high estimated values for the Calvo probability θ, movements in

economic activity do not have a great influence on inflation and the Phillips

curve becomes less sensitive to developments in the output gap. Hence, the

response of inflation to a positive technology shock is relatively muted.

INSERT FIGURE 6

Figure 7 reports responses to a monetary policy shock. Since the shock

weakens aggregate demand, output, inflation and real marginal costs de-

crease on impact. Weak aggregate demand and high interest rates lead to

a reduction in real money balances. Finally, the output gap goes down on

impact because the decrease in actual output is bigger than the decrease in

the natural rate of output.

INSERT FIGURE 7

Summing up, Figures 4 to 7 register more inertial responses of inflation

and interest rates to shocks under the best fit model for optimal policies.
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For most variables, the signs of impulse responses on impact are somewhat

qualitatively similar irrespective of how I describe monetary policy. The

exceptions are interest rates and real money balances. On the other hand,

the magnitudes of impulse responses on impact differ a lot across models. For

most responses of variables to shocks, the Taylor rule specification delivers

bigger magnitudes on impact.

5 Sensitivity Analysis

In this section, I perform sensitivity analysis on some elements of the model

to check the robustness of relevant results. First, I evaluate the sensitivity of

the estimated weights in the loss function regarding alternative prior speci-

fications. Second, I consider a model with a restricted version of the Taylor

rule, without money and inertia. Third, I estimate the unrestricted version of

the model under optimal policy (PA and CB ) using artificial data from the

Taylor Rule-PA and CB model, which is the best empirical model according

to Table 3.

5.1 Estimation of the parameters in the loss function

under alternative priors

This exercise checks the result concerning low estimated values for qy and qµ.

Since the aim of this paper is to provide some evidence on the role of money

as a monetary policy objective, estimation under alternative priors are useful

to assess if the finding suggesting qµ close to zero depends on how I set the

priors for the parameters in the loss function.

I consider the following alternative priors:

• loose priors: Gamma distribution as the prior for the three weights
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with mean 0.5 and variance 0.6, which is three times larger than the

one reported in Table 2.

• tight priors: Gamma distribution as the prior for the three weights

with mean 0.5 and variance 0.2, which is half the variance specified in

Table 2.

• weight-specific priors: the prior for qy is Gamma with mean 0.25 and

variance 0.4, the prior for qr is Gamma with mean 0.75 and variance

0.5 and the prior for qµ is Gamma with mean 0.5 and variance 0.6.

The set of priors labeled as loose are flatter than the priors in Table2

and, compared to the baseline case of this table, the posteriors may move

around more relatively to the loose priors. Compared to Table 2, tight priors

constrain the weights around 0.5 by imposing more restrictions on posteriors

displacement relative to them. Since the priors do not need to be the same

for the weights, I choose different mean and variance for each parameter in

the loss function in the third set of priors. I set a loose prior for qµ to try to

restrict the prior influence on the estimated parameter. The mean values of

the priors for qy and qr are based on Dennis (2004, 2006) and Givens (2012),

which documented small magnitudes for qy and large values for qr.

Table 5 reports the posteriors for the parameters in the loss function

under these alternative priors. Under loose and weight-specific priors, for qy

and qµ, the posterior mean is small and, particularly for qy, it is very close to

zero. On the contrary, under these two sets of priors, the posterior mean for

qr assumes considerable magnitudes. The use of tight priors restricts shifts

in the posterior mean relatively to the prior mean. In this case, though prior

and posterior means are not so far from each other, for qy and qµ, the data

still move the posterior mean towards zero. Again, for qr, the posterior mean
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is far from zero than the prior mean. Irrespective of the set of priors, in terms

of magnitudes, the posterior mean of qr is always bigger than the posterior

mean of qµ, which is always bigger than the posterior mean of qy.

INSERT TABLE 5

Figure 8 shows priors and posteriors for the parameters in the loss function

for each set of priors. For qy and qµ, irrespective of the set of priors, the data

shift the prior distribution to the left and posterior central tendency is smaller

than prior central tendency. On the other hand, the data displace the prior

distribution to the right for qr. In other words, the data favor values closer

to zero for qy and qµ. By contrast, the data locate the posterior for qr around

values far away from zero.

INSERT FIGURE 8

Finally, I also experimented with Normal-distributed priors, a priori re-

laxing the restriction confining the weights to be positive numbers. To save

space, I do not present the results for this case since, for qy and qµ, the pos-

terior mean is negative even with a less dispersed prior centered in a positive

number. This situation illustrates the need to impose, a priori, a zero bound

restriction on the parameters in the loss function, reinforcing the choice of a

Gamma distribution as the prior for the weights.

5.2 A standard Taylor rule

An important finding of this paper is that Taylor rules dominate optimal poli-

cies in marginal likelihood comparisons, suggesting that models with Taylor

rules describe better the data. Here, I consider a simple Taylor rule, with-

out money and inertia to evaluate if the joint presence of these elements are

responsible for the empirical preeminence of Taylor rules.
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The following equation characterizes the estimated Taylor rules:

r̂t = ρrr̂t−1 + (1− ρr)
[
ρy (ŷt − ŷnt ) + ρππ̂t + ρµµ̂t

]
+ εrt

I compare the standard Taylor rule (ρr = ρµ = 0) with the following

specifications: a Taylor rule with interest rate smoothing (ρr > 0 and ρµ = 0)

and the general Taylor rule (ρr > 0 and ρµ > 0). These two alternatives to

the standard Taylor rule are the cases reported in Table 2. Table 6 shows

marginal likelihoods and Bayes factors for each interest rate rule. I report the

results related to the model in which money affects the structural equations

describing private agents’ behavior10. The general Taylor rule yields the best

fit and the evidence favoring this rule is decisive. Therefore, disregarding the

standard Taylor rule in Table 2 is just a way to focus on the most empirically

plausible interest rate rules. Comparing Table 3 and Table 6, the standard

Taylor rule fits the data better than any optimal policy specification. Hence,

the superiority of Taylor rules in fitting the data continues to hold even for

this particular case with less empirical support.

INSERT TABLE 6

5.3 The stability of parameter estimates across mone-

tary policy specifications

Table 1 and 2 summarize the estimation of the ALSN model with Taylor rules

and under optimal policies. By comparing these estimations, some parame-

ters are unstable under distinct specifications for the conduct of monetary

policy. This pattern may indicate that the ALSN model is not structural, i.e.,

10According to Table 3, introducing money in the equations associated with the private
sector always improves model fit. The resuts are qualitatively the same for the standard
new Keynesian model (ψ

2
= δ0 = 0). I did not report them for the sake of brevity.
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its private-sector parameters are not invariant to alternative formulations in

modeling monetary policy.

From an econometric point of view, estimated private-sector parameters

may differ across policy specifications since different policies affect the map-

ping from the private-sector parameters to the parameters of the reduced-

form linearized state-space representation of the model, which is the basis

for likelihood computations.

Canova & Menz (2011) and Castelnuovo (2012) reported parameter in-

stability over time in models with money and Taylor rules. Finally, when

Canova & Ferroni (2012) restricted some parameters during the estimation,

the unrestricted ones changed considerably.

One way to assess parameter instability across monetary policy specifi-

cations is to simulate data from the best ALSN model under Taylor rules

and use these simulated data to re-estimate the model with optimal policy.

I choose the best Taylor rule model as the data-generating process because

it is the most empirically plausible model.

To carry out this exercise, I calibrate the parameters of the best Taylor

rule model at their posterior means and generate artificial time series of

length 5000 for the observable variables in the estimation. In this way, with

long time series, small sample sizes do not influence the statistical properties

induced by the Taylor rule model.

Table 7 presents the results. For some parameters, the true values are

far away from the means of the estimated parameters using artificial data.

Further, for most parameters, the true values are outside the 90% inter-

val displayed in the fourth column. Overall, the results indicate that the

estimation employing simulated data cannot recover the parameters of the

data-generating model.
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Interestingly, as in the estimation based on observed data, the likelihood

shifts the prior distribution to the left for qy and qµ and displaces the prior

distribution to the right for qr, though these movements are less dramatic

for the estimation that hinges on artificial data. Particularly, since interest

rates based on the Taylor rule model are less persistent than actual interest

rates, the magnitude of the posterior mean of qr is not so big in the fourth

column of Table 7 compared with the fifth column.

INSERT TABLE 7

6 Conclusion

Standard new Keynesian literature assigns a minimal role for monetary ag-

gregates in explaining cyclical fluctuations. Alternative ways of introducing

money in dynamic stochastic general equilibrium models have challenged this

view and empirical research based on them suggested that monetary aggre-

gates played an important role in explaining U.S. business cycles. This study

also documented that the Fed reacted systematically to the growth rate of

nominal money when a Taylor rule described monetary policy.

This response to money growth rates might be rationalized in two alter-

native ways. First, money growth could be a target variable in the Fed’s loss

function. Alternatively, money could be just an indicator variable, with no

role as a monetary policy objective, being useful in forecasting inflation and

economic activity. To gauge the plausibility of these alternative interpreta-

tions, I estimated the model studied in Andrés et al. (2009), in which money

is a relevant factor, by replacing the Taylor rule with optimal monetary pol-

icy.

According to the empirical evidence, the presence of the money growth
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rate as a monetary policy objective does not improve model fit. Moreover,

inflation variability and interest rate smoothing are the main objectives of

monetary policy, irrespective of the role of money in the equations describing

private agents’ behavior. Additionally, the data favor models in which a

Taylor rule describes monetary policy. These results suggest that considering

money as an indicator variable is the most plausible rationale to account for

the interest rate response to the money growth rate in Taylor rules.

Since macroeconomic variables behave differently across the two alter-

native ways of describing monetary policy, the choice of monetary policy

specification matters for macroeconomic dynamics. Moreover, the introduc-

tion of money balances changes to some extent the model’s transmission

mechanism.

Future research can extend this paper in at least three directions. First,

researchers can perform a cross country analysis on the role of money as a

monetary policy objective. Second, an extension of this paper can evaluate

the role of money in the central bank’s objective function in the context of

the model put forth by Canova & Ferroni (2012), which is a version of the

medium-size structural macroeconometric model of Smets & Wouters (2007)

with money. Finally, in the spirit of Givens (2012), an additional study can

evaluate alternative ways to introduce optimal policies in models in which

money plays a potential role in explaining business cycles.
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APPENDIX A

Optimal interest rate response to the money growth rate

My goal here is to stress the point made in the introduction on the pitfalls

of interpreting Taylor rule coefficients as a barometer of the central bank’s

preference. I use the mean values of the priors in Table 1 to calibrate the

model and consider the case in which qµ = 0.75 as well as the alternative

specification with qµ = 0. I then compute optimal Taylor rules in a calibrated

version of the ALSN model.

The computed Taylor rules are: r̂t = 0.684r̂t−1+0.052ŷt+1.471π̂t+0.443µ̂t

for qµ = 0.75 and r̂t = 0.651r̂t−1 + 0.046ŷt + 1.466π̂t + 0.431µ̂t for qµ = 0.

In this calibrated version of the ALSN model, the optimal Taylor rules

imply an interest rate that responds to money growth. This result remains,

even in the case of no explicit concern for stabilizing the money growth rate

in the central bank’s loss function.

Svensson (2003) stressed the pitfalls in trying to infer what central banks

may care about from the coefficients of simple monetary policy rules. Since

the interest rate responds to money growth when the central bank’s objectives

do not include money growth stability, these optimal Taylor rules illustrate

his point.
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APPENDIX B

The ALSN Model

This appendix presents details of the model developed by Andrés et al.

(2009). The economy consists of a representative household and a continuum

of firms indexed by j ∈ [0, 1]. The model abstracts from capital accumulation

and features price stickiness.

• Households

The representative household maximizes the expected flow of utility given

by the expression:

E0

∞∑

t=0

βtat

[
Ψ

(
Ct

Ch
t−1

,
Mt

etPt

)
−
N
1+ϕ
t

1 + ϕ

]
−G(·)

The variable Ct stands for aggregate consumption,
Mt

Pt
represents real

money balances and Nt denotes hours worked. The preference shock is at and

the shock to the household’s demand for real balances is et. The parameter β,

restricted to be in the unity interval, is the discount factor. The parameter ϕ,

a positive number, is the inverse of the Frisch labor supply elasticity. Finally,

h is a parameter controlling the degree of habit persistence in consumption.

The preference specification allows for nonseparability between consump-

tion and real money balances, as well as habit persistence in consumption.

The function Ψ(·) summarizes all these features. Specifically, the intratem-

poral nonseparability between consumption and real money balances gives

rise to an explicit real money balance term in the equations describing the

supply and demand sides of the artificial economy.

In addition to the nonseparability channel, the presence of portfolio ad-

justment costs generates an alternative mechanism that gives money a role in
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the dynamic equations of the model. Moreover, the money demand equation

becomes a dynamic forward-looking equation in which expectations of future

interest rate matter.

Portfolio adjustment costs are probably small in magnitude. For this

reason, I log-linearize the model around a steady state in which these costs

are zero. In addition, the functional form for G(·) is compatible with small

costs11. The portfolio adjustment cost function G follows the specification

below.

G(·) =
d

2

{
exp

[
c

(
Mt

Pt
Mt−1

Pt−1

− 1

)]
+ exp

[
−c

(
Mt

Pt
Mt−1

Pt−1

− 1

)]
− 2

}

In each period the household faces the budget constraint given by the

equation:

Mt−1 +Bt−1 +WtNt + Tt +Dt

Pt
= Ct +

Bt
Rt
+Mt

Pt

The representative household enters the current period with money hold-

ings Mt−1 and bonds Bt−1, receiving lump-sum transfers Tt, dividends Dt

and labor income WtNt, where Wt stands for nominal wages. The household

purchases new bonds at nominal cost Bt
Rt
, where Rt denotes the gross nominal

interest rate between the current period t and the next t + 1. Finally, the

household will enter the next period with money holdings Mt.

11To quote Andrés et al. (2009): “An advantage of this portfolio adjustment cost
specification is that for a wide range of c and d values, the portfolio adjustment costs
incurred to carry out typical monetary transactions are trivial when converted into units
of resources surrendered by the representative agent (. . . ). Yet, at the same time, these
costs imply substantial effects on money demand dynamics. The effects on dynamics,
moreover, are supported by many existing empirical findings regarding money demand”
(p. 761)
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The choices variables for the household are consumption (Ct), hours (Nt),

real money holdings (Mt

Pt
) and bonds (Bt).

The representative household maximizes its expected utility subject to its

budget constraint. The first-order conditions for this optimization problem

are:

atN
ϕ
t = λt

Wt

Pt

λt = βEt

(
Rtλt+1

Πt+1

)

λt = Et


at

Ψ1

(
Ct
Cht−1

, mt
et

)

Ch
t−1

− hβ

(
Ct+1

Ct

)
at+1

Ψ1

(
Ct+1
Cht

,
mt+1
et+1

)

Ch
t




λt =

(
at

et

)
Ψ2

(
Ct

Ch
t−1

,
mt

et

)
−
∂G(mt,mt−1)

∂mt

− βEt

(
∂G(mt+1,mt)

∂mt

−
λt+1

Πt+1

)

I denote the Lagrange multiplier by λt. I also define two new variables:

mt =
Mt

Pt
and Πt+1 =

Pt+1
Pt

The terms Ψ1 and Ψ2 are the partial derivatives

of the function Ψ with respect to Ct
Cht−1

and mt
et
. The symbols ∂G(mt,mt−1)

∂mt
and

∂G(mt+1,mt)
∂mt

stand for the partial derivative of the portfolio adjustment cost

function G with respect to mt, when evaluated at t and t+ 1 .

The first equation defines labor supply. The combination of the second

and third expressions leads to the Euler equation. Finally, the blending of
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the second and fourth expressions yields the money demand equation.

The formulae for ∂G(mt,mt−1)
∂mt

and ∂G(mt,mt−1)
∂mt

are the following:

∂G(mt,mt−1)

∂mt

=
d

2





exp
[
c
(

mt
mt−1

− 1
)](

c
mt−1

)

+exp
[
−c
(

mt
mt−1

− 1
)](

− c
mt−1

)





∂G(mt+1,mt)

∂mt

=
d

2





exp
[
c
(
mt+1
mt

− 1
)](

− cmt+1
m2
t

)

+exp
[
−c
(
mt+1
mt

− 1
)](

cmt+1
m2
t

)





To derive equations (1) and (4), I log-linearize the second, third and fourth

first-order conditions. Before this step, I need to find steady-state figures for

output ( y), real money balances (m) and the gross nominal interest rate (r).

For this end, I impose the following restrictions on the first-order conditions:

Ct = Yt, at = at+1 = a, et = et+1 = e, zt = z, Nt = N , λt = λt+1 = λ,

Ct−1 = Ct = Ct+1 = y, mt−1 = mt = mt+1 = m and Πt+1 = Π = 1. The

exogenous variables are a, e and z. In addition, according to the aggregate

production function in steady-state12, N =
(
y

z

) 1
1−α and W

P
= (1− α)zN

−α
.

The equations characterizing the steady-state are:

a y
ϕ+α
1−α = (1− α)z

(1+ϕ)
1−α λ

r =
1

β

λyh = (1− βh)aΨ1

(
y1−h,

m

e

)

12The production function Yt(j) = ztN
1−α

t
(j) describes the technology for firm j. To

aggregate this function across firms, I assume that there is no price dispersion in steady-
state.
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aΨ2

(
y1−h,

m

e

)
= (1− β)eλ

The log-linearized versions of the second, third and fourth first-order con-

ditions are:

λ̂t = Etλ̂t+1 + r̂t − Etπ̂t+1

λ̂t =

(
1− βhρa
1− βh

)
ât −

ψ2
ψ1

(
1− βhρe
1− βh

)
êt + βφ1Etŷt+1

−φ2ŷt + φ1ŷt−1 +
ψ2
ψ1

(
1

1− βh

)
[m̂t − βhEtm̂t+1]

Ψ12y
1−h (ŷt − hŷt−1) +

(
Ψ22

m

e
− (1 + β)δ0

)
m̂t

+δ0m̂t−1 + βδ0Etm̂t+1 +Ψ2ât −

(
Ψ22

m

e
+Ψ2

)
êt

= Ψ2

(
λ̂t +

β

1− β
r̂t

)

By combining the second and third log-linearized first-order conditions,

one gets equation (1) of the main text, which is the Euler equation. The

second and fourth first-order conditions lead to equation (4), which is the

money demand schedule.

To simplify notation, I omitted the bivariate argument
(
y1−h, m

e

)
of Ψ2,

Ψ12 and Ψ22, which are the partial derivatives of Ψ
(
y1−h, m

e

)
. I discuss the

coefficients ψ1, ψ2, φ1, φ2 and δ0 in the main text. In addition, I define the

coefficients γ1 and γ2 in equation (4) by the following expressions:
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γ2(r − 1) =
Ψ2

Ψ2
ψ2
ψ1

(
1

1−βh

)
−Ψ22

m
e

γ1 = γ2

[
r
y

m

ψ2
ψ1

(
1

1− βh

)
+ (r − 1)φ2

]

• Firms and Price-Setting Behavior

The production function Yt(j) = ztN
1−α
t (j) describes the technology for

firm j. The variables Yt(j) and Nt(j) represent output and work-hours hired

from households. The technology shock is zt and the parameter (1 − α)

measures the elasticity of output with respect to hours worked. The aggregate

output is given by Yt =

(∫ 1

0

Y
ε−1
ε

t (j)dj

) ε
ε−1

, where ε is the elasticity of

substitution. The price charged by firm j is Pt(j) and the aggregate price

level is Pt.

Real marginal costs for firm j are MCr
t (j) =

z
1

α−1
t

1−α
Wt

Pt
Y

α
1−α

t (j) and aggre-

gate real marginal costs are MCt =
z

1
α−1
t

1−α
Wt

Pt
Y

α
1−α

t .

Using the demand for Yt(j), given by Yt(j) =
(
Pt(j)
Pt

)−ε
Yt, one gets the

following expression involving MCr
t (j) and MCt:

MCr
t (j) =MCt

(
Pt(j)

Pt

)− αε
1−α

Firms operate in a monopolistic competitive market and set prices in a

staggered fashion using the scheme proposed by Calvo (1983). According to

Calvo (1983), only a fraction of firms, given by (1−θ), is able to adjust prices.

Therefore, each period, these firms reset their prices to maximize expected

profits.
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Following, Christiano, Eichenbaum & Evans (2005), I introduce an index-

ation mechanism in which firms that do not set prices optimally at time t will

adjust their prices to lagged inflation, according to the equation Pt+τ (j) =

Pt+τ−1(j)(πt+τ−1)
κ, where the parameter κ indicates the degree of price in-

dexation and πt denotes inflation. This framework for price-setting behavior

leads to a hybrid specification for inflation dynamics. Thus, inflation is a

forward-looking variable, but some backward-looking component is neces-

sary to describe inflation dynamics.

When the Calvo mechanism allows a firm to adjust its price, it chooses the

new price P ∗t to maximize expected future profits. Hence, the price-setting

problem is the following:

Max
P ∗t

Et

∞∑

τ=0

(βθ)τ
λt+τ

λt

[(
P ∗t
Pt+τ

Πκt−1,t+τ−1 −MCr
t+τ (j)

)
Yt+τ (j)

]

The variable βτ λt+τ
λt
is the stochastic discount factor and Πt−1,t+τ−1 is the

accumulated inflation rate between t− 1 and t+ τ − 1.

Using the relationship betweenMCr
t (j) andMCt, the price-setting prob-

lem becomes:

Max
P ∗t

Et

∞∑

τ=0

(βθ)τ
λt+τ

λt





[
P ∗t
Pt+τ

Πκt−1,t+τ−1 −MCt+τ

(
P ∗t
Pt+τ

Πκt−1,t+τ−1

)− αε
1−α

]

(
P ∗t
Pt+τ

Πκt−1,t+τ−1

)−ε
Yt+τ





The first-order condition leads to the following equation:
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(
P ∗t
Pt

)1+ αε
1−α

=
ε

ε− 1

Et

∞∑

τ=0

(βθ)τ λt+τ
λt
MCt+τ

(
Πκt−1,t+τ−1
Πt,t+τ

)− ε
1−α

Yt+τ

Et

∞∑

τ=0

(βθ)τ λt+τ
λt

(
Πκt−1,t+τ−1
Πt,t+τ

)1−ε
Yt+τ

Next, I define p∗t =
P ∗t
Pt
and use the auxiliary variables X1t and X2t to

write the previous expression in its recursive formulation below.

(p∗t )
1+ αε

1−α =
ε

ε− 1

X1t

X2t

X1t = λtMCtYt + βθΠ
− κε
1−α

t EtΠ
ε

1−α

t+1 X1t+1

X2t = λtYt + βθΠ
κ(1−ε)
t EtΠ

ε−1
t+1X2t+1

The aggregate price level Pt evolves as follows:

Pt =
[
θ (Pt−1(πt−1)

κ)1−ε + (1− θ)(P ∗t )
1−ε
] 1
1−ε

The last four equations above characterize the non-linear Phillips curve.

The log-linear versions of the four previous equations are:

(
1 +

αε

1− α

)
p̂∗t = x̂1t − x̂2t

x̂1t = (1− βθ)(λ̂t + m̂ct + ŷt) + βθEt

[
x̂1t+1 +

ε

1− α
(π̂t+1 − κπ̂t)

]
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x̂2t = (1− βθ)(λ̂t + ŷt) + βθEt [x̂2t+1 + (ε− 1) (π̂t+1 − κπ̂t)]

p̂∗t =
θ

1− θ
(π̂t − κπ̂t−1)

The combination of the four expressions above leads to equation (2),

which is the new Keynesian Phillips curve.

To derive equation (3) of the main text, I log-linearize the expression

defining aggregate real marginal costs, which is MCt =
z

1
α−1
t

1−α
Wt

Pt
Y

α
1−α

t .

In households’ problem, the first expression in the set of first-order con-

ditions is atN
ϕ
t = λt

Wt

Pt
and, according to the production function, Nt =(

Yt
zt

) 1
1−α
. These two equations lead to the following expression for real wages:

Wt

Pt
= at

(
1

λt

)(
Yt

zt

) ϕ

1−α

Substituting the equation for Wt

Pt
in the formula for MCt, the following

alternative definition of real marginal costs obtains:

MCt = at
z

1
α−1

t

1− α

(
1

λt

)(
Yt

zt

) ϕ

1−α

Y
α

1−α

t

Log-linearizing the equation above yields the expression:

m̂ct = χŷt − λ̂t + ât − (1 + χ)ẑt

where χ = ϕ+α
1−α

.

To finally arrive at equation (3), I use the log-linearized version of the

second first-order condition in households’ problem to substitute out the

variable λ̂t.
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• The log-linear flexible-price equilibrium

Since the price-markup is constant under flexible prices, m̂ct = 0 in the

flexible-price equilibrium. In addition, there is no new Keynesian Phillips

curve due to instantaneous price adjustments, implying π̂t = 0 for all t.

The symbols ŷnt , r̂
n
t and m̂

n
t denote output, the interest rate and real money

balances in the flexible-price equilibrium. The equations describing this equi-

librium are:

(χ+ φ2)ŷ
n
t = φ1ŷ

n
t−1 + βφ1Etŷ

n
t+1 +

ψ2
ψ1

(
1

1− βh

)[
m̂n
t − βhEtm̂

n
t+1

]

−
ψ2
ψ1

(
1− βhρe
1− βh

)
êt +

(
βh

1− βh

)
(1− ρa) ât + (1 + χ)ẑt

r̂nt = −(φ1 + φ2)ŷ
n
t + φ1ŷ

n
t−1 + (βφ1 + φ2)Etŷ

n
t+1 − βφ1Etŷ

n
t+2

+
ψ2
ψ1

(
1

1− βh

)
m̂n
t −

ψ2
ψ1

(
1

1− βh

)[
(1 + βh)Etm̂

n
t+1 − βhEtm̂

n
t+2

]

−
ψ2
ψ1

(
1− βhρe
1− βh

)
(1− ρe) êt +

(
1− βhρa
1− βh

)
(1− ρa) ât

[1 + δ0(1 + β)] m̂
n
t = γ1ŷ

n
t − γ2r̂

n
t + [γ2(r − 1)(hφ2 − φ1)− hγ1] ŷ

n
t−1

− [γ2(r − 1)βφ1]Etŷ
n
t+1 + δ0m̂

n
t−1

+

[
ψ2
ψ1

(
βhγ2(r − 1)

1− βh

)
+ δ0β

]
Etm̂

n
t+1

−

(
βhγ2(r − 1)

1− βh

)
(1− ρa) ât

+

[
1− γ2(r − 1)

(
ψ2
ψ1

(
βhρe
1− βh

)
+ 1

)]
êt
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Tables and Figures

Table 1. Models with Optimal Policies

Parameters Prior

Shape

(mean, std.dev.)

Posterior Distribution

Mean

[90% Interval]

No Money Money – PA only Money – PA and CB

Gamma

(0.8, 0.1)

0.3525

[0.3177,0.3867]

0.4379

[0.3567, 0.5132]

0.4213

[0.3432, 0.4937]

Normal

(0.1, 0.1)

0

(calibrated)

-0.0625

[ -0.0931, -0.0274]

-0.0650

[ -0.0955, -0.0332]

Beta

(0.7,0.1)

0.9871

[0.9802, 0.9945]

0.9885

[0.9817, 0.9960]

0.9862

[0.9783, 0.9948]

Beta

(0.65, 0.1)

0.8785

[0.8581, 0.8997]

0.9622

[0.9431, 0.9796]

0.9442

[0.9230, 0.9710]

Beta

(0.5, 0.1)

0.9386

[0.9237, 0.9529]

0.6862

[0.5640, 0.8194]

0.7378

[0.6235, 0.8540]

Gamma

(1, 0.2)

1.5291

[1.1397, 1.9220]

0.9251

[0.6192, 1.2346]

0.8367

[0.5402, 1.1140]

Gamma

(0.5, 0.1)

0.4940

[0.3310, 0.6486]

0.4842

[0.3206, 0.6470]

0.4543

[0.3032, 0.5963]

Gamma

(0.2, 0.1)

0.1591

[0.0396, 0.2707]

0.3883

[0.2039, 0.5673]

0.4380

[0.2185, 0.6392]

Gamma

(3.5, 0.2)

0

(calibrated)

3.8140

[3.4838, 4.1600]

3.8207

[3.4649, 4.1550]

Gamma

(0.5, 0.4)

0.0071

[0.0001, 0.0157]

0.0101

[0.0017, 0.0190]

0.0212

[0.0027, 0.0410]

Gamma

(0.5, 0.4)

5.5817

[4.1767, 7.0083]

2.4070

[0.7411, 3.8239]

1.2548

[0.2062, 2.5515]

Gamma

(0.5, 0.4)

0

(calibrated)

0

(calibrated)

0.0999

[0.0214, 0.1724]

Beta

(0.5, 0.2)

0.3067

[0.1958, 0.4176]

0.7445

[0.6222, 0.8792]

0.6528

[0.4976, 0.8265]

Beta

(0.5, 0.2)

0.3163

[0.1095, 0.5217]

0.4224

[0.3496, 0.4987]

0.4690

[0.3841, 0.5565]

Beta

(0.5, 0.2)

0.5613

[0.2872, 0.8413]

0.7829

[0.5283, 0.9839]

0.7037

[0.4183, 0.9653]

Inverse Gamma

(0.1, 2)

0.0186

[0.0151, 0.0223]

0.0298

[0.0189, 0.0400]

0.0260

[0.0175, 0.0342]

Inverse Gamma

(0.1, 2)

0.0404

[0.0279, 0.0531]

0.0837

[0.0698, 0.0977]

0.0767

[0.0615, 0.0922]

Inverse Gamma

(0.1, 2)

0.0984

[0.0348, 0.1602]

0.4004

[0.0373, 0.8373]

0.3178

[0.0323, 0.6211]

Inverse Gamma

(0.1, 2)

0.0126

[0.0118, 0.0135]

0.0121

[0.0118, 0.0125]

0.0121

[0.0118, 0.0126]
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Table 2. Models with Taylor Rules

Parameters Prior

Shape

(mean, std.dev.)

Posterior Distribution

Mean

[90% Interval]

No Money Money – PA only Money – PA and CB

Gamma

(0.8, 0.1)

0.4117

[0.3390, 0.4796]

0.4201

[0.3457, 0.4908]

0.4050

[0.3330, 0.4705]

Normal

(0.1, 0.1)

0

(calibrated)

0.0332

[ 0.0041, 0.0657]

-0.0312

[ -0.0747, 0.0131]

Beta

(0.7,0.1)

0.9603

[0.9393, 0.9824]

0.9570

[0.9345, 0.9797]

0.9542

[0.9303, 0.9794]

Beta

(0.65, 0.1)

0.8670

[0.8204, 0.9166]

0.8676

[0.8232, 0.9126]

0.8472

[0.7927, 0.9033]

Beta

(0.5, 0.1)

0.6607

[0.5520, 0.7710]

0.6167

[0.4985, 0.7328]

0.5828

[0.4637, 0.7037]

Gamma

(1, 0.2)

1.0149

[0.6874, 1.3322]

1.0108

[0.6868, 1.3250]

0.9715

[0.6485, 1.2825]

Gamma

(0.5, 0.1)

0.4895

[0.3273, 0.6429]

0.4966

[0.3354, 0.6578]

0.4975

[0.3329, 0.6551]

Gamma

(0.2, 0.1)

0.1899

[0.0444, 0.3280]

0.1691

[0.0392, 0.2925]

0.3160

[0.0711, 0.5604]

Gamma

(3.5, 0.2)

0

(calibrated)

3.8668

[3.5177, 4.2088]

3.8673

[3.5248, 4.2191]

Beta

(0.7, 0.2)

0.5273

[0.3806, 0.6773]

0.5248

[0.3802, 0.6731]

0.5393

[0.3872, 0.6896]

Gamma

(0.5, 0.2)

0.2222

[0.0580, 0.3810]

0.2113

[0.0607, 0.3644]

0.3334

[0.0965, 0.5593]

Gamma

(1.5, 0.2)

1.4505

[1.1305, 1.7599]

1.4621

[1.1459, 1.7771]

1.4816

[1.1567, 1.8000]

Gamma

(0.5, 0.2)

0

(calibrated)

0

(calibrated)

0.6506

[0.2907, 1.0012]

Beta

(0.5, 0.2)

0.4864

[0.3307, 0.6380]

0.5162

[0.3716, 0.6599]

0.4342

[0.2781, 0.5922]

Beta

(0.5, 0.2)

0.3153

[0.1108, 0.5225]

0.5580

[0.4094, 0.7367]

0.5955

[0.4048, 0.8006]

Beta

(0.5, 0.2)

0.4943

[0.2036, 0.7798]

0.4916

[0.2030, 0.7796]

0.4400

[0.1565, 0.7200]

Inverse Gamma

(0.1, 2)

0.0217

[0.0159, 0.0271]

0.0226

[0.0164, 0.0284]

0.0212

[0.0158, 0.0265]

Inverse Gamma

(0.1, 2)

0.0406

[0.0275, 0.0530]

0.0669

[0.0392, 0.0911]

0.0604

[0.0304, 0.0895]

Inverse Gamma

(0.1, 2)

0.0766

[0.0281, 0.1261]

0.0748

[0.0287, 0.1221]

0.0625

[0.0260, 0.1002]

Inverse Gamma

(0.1, 2)

0.0120

[0.0118, 0.0124]

0.0120

[0.0118, 0.0124]

0.0120

[0.0118, 0.0124]
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Table 3. Model Comparison

Models Marginal Likelihood

Optimal Policy - No Money 1096.852355 0

Optimal Policy - PA Only 1252.842623 67.7457

Optimal Policy - PA and CB 1252.527630 67.6089

Taylor Rule - No Money 1192.358981 41.4780

Taylor Rule - PA Only 1276.607390 78.0666

Taylor Rule - PA and CB 1280,675023 79.8331

Note: PA stands for private agents and CB denotes Central Bank

Table 4.  Volatility and Persistence

Volatility (%)

and Persistence

Taylor Rules Optimal Policies Data

No Money Money(Best Fit) No Money Money(Best Fit)

1.5500 1.0700 0.2500 4.8400 0.9001

0.2800 0.2500 0.1100 0.3100 0.2409

1.4500 1.5700 0.0600 0.1700 0.5688

0.6472 0.5873 0.6033 0.4771 0.8667

0.5381 0.4596 0.6194 0.6593 0.5561

0.5365 0.4627 0.9881 0.9871 0.9588

Note: In each cell, posterior median. σ(.) denotes standard deviation and ρ(.) denotes the first autocorrelation
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Table 5. Posteriors for the weights in the loss function under alternative priors

Parameters Loose Prior Tight Prior Weight-specific Prior

0.0093

[0.0011, 0.0179]

0.1740

[0.0393, 0.3145]

0.0072

[0.0008, 0.0141]

3.6446

[1.0466, 6.2030]

0.7733

[0.4324, 1.1155]

2.3852

[0.7210, 3.8398]

0.0415

[0.0001, 0.0932]

0.2837

[0.1444, 0.4218]

0.0427

[0.0001, 0.0960]

Table 6. Comparing Taylor Rules

Models Marginal Likelihood

Standard Taylor Rule 1270.388252 0

Taylor rule with smoothing 1276.607390 2.7009

General Taylor Rule 1280.675023 4.4674
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Table 7. Optimal Policy: Estimation based on an artificial data set

Parameters Prior

Shape

(mean, std.dev.)

True Parameters

from the best

Taylor Rule

Model

(posterior mean)

Posterior Distribution

Mean

[90% Interval]

Estimation using an

artificial data set

Baseline Estimation

in Table 1

(PA and CB)

Gamma

(0.8, 0.1)

0.4050 0.3613

[0.3178, 0.3976]

0.4213

[0.3432, 0.4937]

Normal

(0.1, 0.1)

-0.0312 -0.0348

[-0.0399, -0.0298 ]

-0.0650

[ -0.0955, -0.0332]

Beta

(0.7,0.1)

0.9542 0.9798

[0.9737, 0.9863]

0.9862

[0.9783, 0.9948]

Beta

(0.65, 0.1)

0.8472 0.8861

[0.8752, 0.8978]

0.9442

[0.9230, 0.9710]

Beta

(0.5, 0.1)

0.5828 0.5417

[0.5141, 0.5696]

0.7378

[0.6235, 0.8540]

Gamma

(1, 0.2)

0.9715 0.4653

[0.3300, 0.5998]

0.8367

[0.5402, 1.1140]

Gamma

(0.5, 0.1)

0.4975 0.3066

[0.2099, 0.3991]

0.4543

[0.3032, 0.5963]

Gamma

(0.2, 0.1)

0.3160 0.8694

[0.7256, 1.0172]

0.4380

[0.2185, 0.6392]

Gamma

(3.5, 0.2)

3.8673 3.2695

[3.0430, 3.5186]

3.8207

[3.4649, 4.1550]

Gamma

(0.5, 0.4)

- 0.1098

[0.0666, 0.1506]

0.0212

[0.0027, 0.0410]

Gamma

(0.5, 0.4)

- 0.9430

[0.7140, 1.1598]

1.2548

[0.2062, 2.5515]

Gamma

(0.5, 0.4)

- 0.2615

[0.2056, 0.3170]

0.0999

[0.0214, 0.1724]

Beta

(0.5, 0.2)

0.4342 0.3121

[0.2684, 0.3551]

0.6528

[0.4976, 0.8265]

Beta

(0.5, 0.2)

0.5955 0.4130

[0.3707, 0.4563]

0.4690

[0.3841, 0.5565]

Beta

(0.5, 0.2)

0.4400 0.5363

[0.2523, 0.8185]

0.7037

[0.4183, 0.9653]

Inverse Gamma

(0.1, 2)

0.0212 0.0211

[0.0173, 0.0250]

0.0260

[0.0175, 0.0342]

Inverse Gamma

(0.1, 2)

0.0604 0.0769

[0.0709, 0.0832]

0.0767

[0.0615, 0.0922]

Inverse Gamma

(0.1, 2)

0.0625 0.1209

[0.0461, 0.1946]

0.3178

[0.0323, 0.6211]

Inverse Gamma

(0.1, 2)

0.0120 0.0151

[0.0149, 0.0154]

0.0121

[0.0118, 0.0126]
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Figure 1: Estimated Parameters under Optimal Policy 1 - Prior and Posterior
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Figure 2: Estimated Parameters under Optimal Policy 2 - Prior and Posterior
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Figure 3: Estimated Parameters under Optimal Policy 3 - Prior and Posterior
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Figure 4: Impulse Responses to preference shocks ea
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Figure 5: Impulse Responses to money demand shocks ee
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Figure 6: Impulse Responses to technology shocks ez
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Figure 7: Impulse Responses to monetary policy shocks er
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Figure 8: Parameters in the Loss Function under alternative priors
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