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Abstract
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The views expressed in the papers are those of the author(s) and do not necessarily reflect those of

the Banco Central do Brasil.

This paper presents a new algorithm, based on a two-part Gibbs sampler with
FFBS method, to recover the joint distribution of missing observations in a mixed-
frequency dataset. The new algorithm relaxes most of the constraints usually pre-
sented in the literature, namely: (i) it does not require at least one time series to be
observed every period; (ii) it provides an easy way to add linear restrictions based on
the state space representation of the VAR; (iii) it does not require regularly-spaced
time series at lower frequencies; and, (iv) it avoids degeneration problems arising
when states, or linear combination of states, are actually observed. In addition,
the algorithm is well suited for embedding high-frequency real-time information for
improving nowcasts and forecasts of lower frequency time series. We evaluate the
properties of the algorithm using simulated data. Moreover, as empirical applica-
tions, we simulate monthly Brazilian GDP, comparing our results to the Brazilian
IBC-BR, and recover what would historical PNAD-C unemployment rates look like
prior to 2012.
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1 Introduction

Many economic time series of developing and underdeveloped countries suffer from

issues preventing their information content to be fully explored. These common issues

usually arise from: (i) short length; (ii) measurement only available in low frequencies,

such as quarterly or annual; (iii) discontinuity due to changes in measurement methodol-

ogy into another; (iv) measurement or technical issues leading to randomly spaced missing

observations in time series; and (v) frequency switch when the frequency of observations

changes along the sample, e.g. series starts as annual, then change to quarterly after a

couple of years.

Short length is a common issue that might affect developed countries as well, but is

more often present in developing countries. In a nutshell, the problem arises when a time

series either ceases to be measured, or has only recently started to be measured. Under-

standing the inference limitations caused by low frequency time series is straightforward

due to the reduced number of observations available. The discontinuity problem arises

when a time series has its measurement method changed while not updating the method

for past observations. In this case, data properties might be significantly affected due to

the new measurement method, in such a way that observations obtained from the old and

new method must actually be considered as two different time series.

Randomly spaced missing observations may arise by either measurement flaws when

collecting and treating raw data, or by deliberately excluding observations that are con-

sidered outliers or not consistent with the effect of hypotheses one wants to measure and

test. Finally, series with frequency switches may be seen as a special case of series with

missing observations, except that spacing between observations is set from a discretionary

choice. For simplicity, we treat this case just like we treat randomly spaced missing obser-

vations.1 In the context of multivariate analysis, a problematic situation occurs when a

combination of the issues listed above leads to what is known as unequally spaced mixed-

frequency data sets, where the extreme case shows periods with no available observations

at all, i.e. all elements from the time series might be missing in given time.

Under mixed-frequency, multivariate framework, usual choices might compromise the

statistical inference, leading to wrong conclusions. For instance, the analyst might either

1See Prado and West (2010, Section 4.3.3) for a better discussion on series with discretionary spaced
missing observations.
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fill the gaps in time series with ad-hoc values, i.e. mechanical approaches without formal

statistical support, such as interpolations or trimming out observations in periods in which

one or more time series have missing observations. Alternatively, one might consider

reducing the time series frequency of the whole dataset in order to avoid dealing with

mixed-frequency issues. Both trimming out periods or reducing frequencies might lead

to the loss of relevant information, though. Hence, a problem arises in finding ways

to simultaneously explore the full information content available in the mixed-frequency

dataset, while avoiding the use of ad-hoc methods to fill information gaps.

In economics, the literature has evolved into the development of Bayesian Gibbs sam-

plers to recover the entire joint distribution of the missing observations, rather than

pin-pointing single values to fill the gaps. In this paper, we contribute to the literature

by bringing an effi cient and intuitive way to recover this joint distribution using a two-

part Gibbs sampler, built mostly upon recent important contributions to the literature on

mixed-frequency filtering by Schorfheide and Song (2014) and Eraker et al. (2014), and,

from the statistics literature, on the effi cient algorithm described in West (1996, 1997)

and West and Harrison (1997, Section 15.3.2).

We highlight the point that the literature in statistics has considered the problem of

recovering the entire joint distribution of missing observations way before the literature in

economics, with effi cient algorithms using Gibbs samplers, as the one developed by West

and detailed further on, developed during the 1990’s. Therefore, the main point of this

paper is to adapt and bring some of the early developments from the statistics literature

to applications in economics. That been said, our view is that the method proposed by

West (1996, 1997) is more effi cient, simpler and more intuitive than the ones proposed by

Schorfheide and Song (2014) and Eraker et al. (2014), even though generating about the

same results.

As in Schorfheide and Song (2014) and Eraker et al. (2014), we assume that a VAR

with unknown parameters is able to describe the dynamics of the multivariate time series,

if their missing values were all observed. The task of the Gibbs sampler is to recover the

joint distribution of the missing values and the unknown VAR parameters. As in West

(1996, 1997) and West and Harrison (1997, Section 15.3.2), our strategy for sampling

time series is using a data augmentation approach based on Carter and Kohn (1994) and

Fruhwirth-Schnatter (1994) – Fruhwirth-Schnatter (1994) calls this approach forward
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filtering, backward sampling (FFBS) algorithm, also used in Schorfheide and Song (2014).

This is one step of the Gibbs sampler, which takes sampled parameters and covariance

matrix from a previous step of the Gibbs sampler, based on a Bayesian VAR with a

modified Minnesota-type prior (see e.g. Doan et al. (1984) and Litterman (1986) for the

original Minnesota prior).

In its general form, the FFBS algorithm is straightforward to implement. An issue

arises, however, in models with AR components, or any other model in which consecutive

state vectors contain common components. In this case, linear combinations of elements

from current state are actually observed, and the basic FFBS algorithm degenerates.

From this point, we depart from Schorfheide and Song (2014) by proposing an algorithm

intended to perform FFBS for a VAR case, avoiding degeneration issues. The algorithm is

based onWest’s method on effi ciently sampling state vectors in ARmodels, adapted to our

VAR case. We also depart from Schorfheide and Song (2014) by allowing for irregularities

in the frequency of observations, generalizing the shape of the selection matrix introduced

by the authors for regularly-spaced mixed-frequency time series.

Eraker et al. (2014) also work on unevenly-spaced mixed-frequency time-series, but

do not benefit from using a state-space specification, which allows for additional linear

restrictions on the relation between observed time series and latent variables. Normally,

dealing with missing values in a state space framework, as the one used in our Gibbs

step for sampling missing observations conditional on the parameter set, is relatively easy

(see e.g. Prado and West (2010, Section 4.3.3) and Durbin and Koopman (2012, Section

4.10)). The approach is flexible enough for not requiring the existence of at least one time

series to be observed every period. Indeed, it works even when there are no observations

at particular periods. Embedding this approach, we also depart from Schorfheide and

Song (2014) and Eraker et al. (2014), for they require at least one completely observed

time series. Therefore, our approach benefits from the best features of both Schorfheide

and Song (2014) and Eraker et al. (2014) procedures.

The flexibility of not requiring the existence of at least one time series to be observed

every period comes extremely in handy when performing forecasts and backcasts, as the

algorithm only has to consider these exercises as an extended sample for which there is

no observation at all. In other words, the FFBS algorithm samples missing values in

forecast and backcast exercises. Therefore, our approach is effi cient, intuitive and well
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suited for dealing with all four common issues previously described, i.e. short length, low

frequencies, discontinuity, randomly spaced missing observations, and multivariate time

series with periods in which no observations are available.

The algorithm is also well suited for dealing with high-frequency real-time information,

in order to improve nowcasts and forecasts of lower frequency time series. An empirical

exercise in Section 5 shows the improvement in quarterly Brazilian GDP’s nowcasts as

real-time high-frequency information arrives, and compares the results to the Brazilian

IBC-BR. The exercise also highlights the role of a proper setup of the state space represen-

tation of the model, in order to establish the relationship between monthly and quarterly

observations. In another exercise, we use the algorithm to recover the joint distribution of

historical PNAD-C Brazilian unemployment rates prior to 2012, using information from

other surveys such as Annual PNAD and PME. The importance of the latter exercise is

due to the fact that PNAD-C is a new monthly time series, whose values are available

only from 2012 on.

The remainder of the paper is organized as follows. The model is described in Section

2. The Gibbs sampler, and details on how to recover the full joint distribution of the

missing observations are described in Section 3. Details on the effi cient FFBS algorithm

and Bayesian VAR are described in sections 3.1 and 3.2. We test the performance of

our approach with simulated data sets in Section 4. Two empirical exercises are shown

in Section 5, based on information of Brazilian GDP and unemployment. The empirical

exercises explore both the issue of regularity of missing information and use of linear

restrictions in the model. Section 6 summarizes the paper’s conclusions.

2 The model

We assume the existence of a sample Yob ≡
{
yob1 , ..., y

ob
T

}
of size T . At each period, yobt

is a
(
mob
t × 1

)
vector of observed endogenous variables, whose dimensionmob

t changes over

time due to irregularly-spaced mixed-frequency. This definition of mob
t does not exclude

even the possibility that, at certain periods, no observations are available, i.e. mob
t = 0.

In this context, define first yt as a (m× 1) vector of endogenous variables of interest,

whose dimension m ≥ mob
t (m > mob

t , if m
ob
t = 0) is time-invariant. Notice that it is

possible that the set of endogenous variables of interest might not be directly observed at
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all in the sample. For instance, yobt might contain moving averages of yt, which are affi ne

transformations of yt and its lagged values. In this case, yobt is not even a subset of yt.

The relation between yobt and yt is formally addressed in Section 3.1.

Our objective is then to infer the joint distribution of the (T ×m) sequence Y ≡

[y1, ..., yT ]′ of endogenous variables of interest. To fulfill this task, assume that the dy-

namics of yt can be represented by a V ARm (q):

yt = Φ1yt−1 + ...+ Φqyt−q + Φ̄cx̄ct + et , et
iid∼ N (0,Σe) (1)

where x̄ct is a (mc × 1) matrix of deterministic variables, such as the constant, trend

and seasonal dummies, Φ` is a (m×m) matrix of coeffi cients for ` ∈ {1, ..., q}, Φ̄c is a

(m×mc) matrix of coeffi cients, and Σe is a (m×m) positive definite covariance matrix.

Each equation has k ≡ mq + mc regressors, the VAR has mk coeffi cients, and the whole

system has mk +m2 parameters.

yt =
[
y1t · · · ymt

]′
et =

[
e1t · · · emt

]′
x̄ct =

[
x̄c;1t · · · x̄c;mct

]′
Φ` =

 Φ`;11 · · · Φ`;m1

...
Φ`;1m · · ·

...
Φ`;mm



Φ̄c =

 Φ̄c;11 · · · Φ̄c;m1

...
Φ̄c;1mc · · ·

...
Φ̄c;mmc



For analytical convenience, each part of the Gibbs sampler, described in Section 3,

considers different companion forms when dealing with the linear system. More details

are provided in Sections 3.1 and 3.2.

3 Gibbs sampling

This section describes the steps of a Gibbs algorithm to draw a sample of size S, given

the information set described by Yob, from the joint distribution of
(
Y,Φ|Yob

)
. Each

step of the sampler consists of two parts: (i) sample draws of Y from the conditional

distribution of
(
Y|Yob,Φ

)
, using Kalman filtering and a modified form of the forward

filtering, backward sampling (FFBS) algorithm, as described in Section 3.1; and (ii) sample
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draws of Φ from the conditional distribution of
(
Φ|Yob,Y

)
, using a Bayesian VAR, as

described in Section 3.2.

The sampler is initialized, in part (i) of step 0, by setting Φinit to imply a random walk

dynamics to Y, i.e. Φ` = 1
q
I(m×m), for ` ∈ {1, ..., q}, and Φ̄c = 0. The FFBS algorithm

of part (i) generates a smoothed path of Y0 from
(
Y|Yob,Φinit

)
to be used in part (ii),

where a Bayesian VAR generates the initial parameter set Φ0 from
(
Φ|Yob,Y0

)
, still at

step 0. From steps s = 1 to s = S, the Gibbs algorithm evolves as usual: (i) draw Ys

from
(
Y|Yob,Φs−1

)
; and (ii) draw Φs from

(
Φ|Yob,Ys

)
.

3.1 The dynamic linear model

In what follows, we characterize the V ARm (q) system (1) as a dynamic linear model

(DLM), as in Schorfheide and Song (2014), and describe the sequential updating, i.e.

Kalman (1960) filtering, equations.2 A companion form of the V ARm (q) system is:

yobt

Observation
Equation

= Ftzt ; Ft ≡MtΛz

zt

Transition
Equation

= G1zt−1 + ωt ; ωt
ind∼ N (G2x̄ct,Ωe)

(2)

where yobt is a
(
mob
t × 1

)
vector of observed endogenous variables, whose dimension mob

t

changes due to mixed-frequency or irregularly-spaced observations, Mt and Λz are gen-

eralizations of what was done in in Schorfheide and Song (2014), i.e. Mt is a
(
mob
t ×m

)
selection matrix and Λz is a (m×mq̄) transformation matrix,3 useful when the observed

variable is a known affi ne transformation of the states (e.g. 3-month moving averages,

or any other linear combinations), zt ≡
[
y′t, ..., y

′
t−q̄+1

]′
is a (mq̄ × 1) vector of states, G1

is a (mq̄ ×mq̄) matrix of coeffi cients for endogenous variables, G2 is a (mq̄ ×mc) ma-

trix of coeffi cients for exogenous variables, and Ωe is a (mq̄ ×mq̄) positive semi-definite
2Great references on dynamic linear models (DLM) and inference using the Kalman filter are Hamilton

(1994), Prado and West (2010) and West and Harrison (1997). For DLMs applications in macroeconomic
models, see Basdevant (2003).

3In this regard, Λz should be designed with care in order to avoid aliasing issues when we only observe
averages, or any other linear combination, of latent variables of interest. For instance, suppose that we
observe three quarterly time series yt = [y1t, y2t, y3t]

′, which actually aggregates or averages latent
monthly variables during each quarter, such as sectoral GDP’s. In this case, there are an infinite set of
possible monthly sectoral GDP time series that are consistent with the observed variables. Those sets
include monthly time series with unreasonable extremely large variances. In this case, the algorithm will
not converge to a unique stationary distribution.
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covariance matrix:

G1 =



Φ1 Φ2 · · · Φq̄−1 Φq̄

I 0 · · · 0 0

0 I · · · 0 0
...

...
. . . 0

...

0 0 · · · I 0



G2 =



Φ̄c

0m×mc

0m×mc
...

0m×mc



Ωe =



Σe 0 · · · 0

0 0 · · · 0
...

...
. . .

...

0 0 · · · 0



Note that q̄ does not necessarily matches q, the number of lags in the V ARm (q)

describing the dynamics of yt. For instance, suppose that yobt represents quarterly averages

(q̄ = 3) of monthly non-observed values of yt, whose dynamics is described by a V AR with

four lags (q = 4). Conversely, if the dynamics is better described by a V ARm (1), a similar

issue arises. Those cases are easily addressed as follows: (i) if q̄ < q, set q̄ = q and extend

Λz with zero matrices, i.e. Λz =
[
Λz, 0m×m(q−q̄)

]
; (ii) if q̄ > q, consider additional zero

matrices Φ¯̀ = 0m×m, for ¯̀∈ {q + 1, ..., q̄}.

In this context, Mt is a time-varying selection matrix where the number of rows is

adjusted to match the number of absent observations in each period. From this perspec-

tive, starting from an identity matrix M with size (m×m), Mt is set in each period by

eliminating m−mob
t rows of M, corresponding to non-observed variables of vector yobt .

Let Dt ≡
{
Dt−1, y

ob
t

}
denote the information set at each period t. If there are no

observed values at period t, i.e. yobt is an empty vector, then Mt is an empty matrix and

Dt = Dt−1.4

Consider the following initial prior Gaussian density for z0 is (z0|D0) ∼ N (µ0, C0).

Therefore, the Kalman filtering (KF) equations are:

a) Prior density for zt with information up to period (t− 1):

(zt|Dt−1) ∼ N (at, Rt)

at ≡ G1µt−1 +G2x̄ct ; Rt ≡ G1Ct−1G
′
1 + Ωe

4A better discution on models with missing and unequally spaced data can be found in e.g. Prado
and West (2010, Section 4.3.3) and Durbin and Koopman (2012, Section 4.10).
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b) One-step forecast of yobt with information up to period (t− 1):

(
yobt |Dt−1

)
∼ N (ft, Qt)

ft ≡ Ftat ; Qt ≡ FtRtF
′
t

c) Posterior density for zt with information up to period t:

(zt|Dt) ∼ N (µt, Ct)

If there are observations at period t:

µt ≡ at + Atυt ; Ct ≡ Rt − AtQtA
′
t ; υt ≡ yobt − ft ; At ≡ RtF

′
tQ
−1
t

Otherwise:

Dt = Dt−1 ; (zt|Dt) ≡ (zt|Dt−1) ; µt ≡ at ; Ct ≡ Rt

Our strategy for completing the series with mixed-frequency or irregularly-spaced ob-

servations is to use a data augmentation approach based on Carter and Kohn (1994)

and Fruhwirth-Schnatter (1994) to sample complete sequences of state variables. We also

follow Fruhwirth-Schnatter (1994) by calling this approach as forward filtering, backward

sampling (FFBS) algorithm. Let ZT ≡ [zT , zT−1, ..., z1] denote the whole sequence of state

vectors. The nature of the FFBS algorithm comes from exploring the Markov structure

of the evolution equation of any DLM, which allows us to write

Pr (ZT |DT ) = Pr (z1|z2,D1) ...Pr (zt|zt+1,Dt) ...Pr (zT−1|zT ,DT−1) Pr (zT |DT )

The proof is shown in the Appendix.

Therefore, the FFBS algorithm consists of sampling zT from Pr (zT |DT ), and sequen-

tially sampling zt from Pr (zt|zt+1,Dt) using equations directly derived from the Kalman

filter.

In a recent paper, similar to ours, Schorfheide and Song (2014) also use a data augmen-

tation approach based on Carter and Kohn (1994). We depart from Schorfheide and Song

(2014) by allowing for irregularities in the frequency of observations, instead of simple,

regularly-spaced mixed-frequency time-series. This extension, also carried out in Eraker

et al. (2014), is obtained by generalizing the shape of Mt matrix. Eraker et al. (2014),

on the other hand, do not benefit from using a state-apace specification, which allows for
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additional linear restrictions on the relation between observables and states, captured by

matrix Λz. Therefore, our approach benefits from the best features of both procedures.

We also depart from Schorfheide and Song (2014) and Eraker et al. (2014) by not

requiring the existence of at least one series whose values are observed in all periods. In

this regard, our approach is also well suited for the following cases: (i) data sets from

countries in which series are relatively short; (ii) new series, or series whose measuring

method changes without applying to previous periods.

In its general form, the FFBS algorithm is very easy to implement and requires in-

verting matrix Rt, i.e. the covariance matrix of (zt|Dt−1).5 An issue arises, however,

in models with AR components, or any other model in which consecutive state vectors

contain common components. In this case, linear combinations of elements from current

state are actually observed. This fact implies that there will be many instances in which

Rt is singular, and the basic FFBS algorithm degenerates.

Therefore, we also depart from those authors by proposing an algorithm intended to

perform FFBS for a VAR case, avoiding degeneration issues. It is based on West (1996,

1997) and West and Harrison (1997, Section 15.3.2) on effi ciently sampling state vectors

in AR models. We adapt West’s approach to our VAR case, detailed below.

3.1.1 Adapted FFBS Algorithm

The idea behind West’s approach comes from the structure depicted in eq. (3). Note

that, given a previously sampled vector zt+1, the backward sampling procedure implies

that there is only one element of vector zt yet to be sampled: the (m× 1) vector yt−q+1.

All we have to do is to sample values from the conditional distribution of (yt−q̄+1|zt+1,Dt)

and complete vector zt using the relevant elements from vector zt+1. The case in which

q̄ = 1, which does not fit the depicted structure, is easily addressed by imposing q̄ = 2

and defining Φ2 = 0(m×m).

z′t+1 = [ y′t+1 , y′t , y′t−1 , · · · , y′t−q̄+2 ]

l l l l

z′t = [ y′t , y′t−1 , · · · , y′t−q̄+2 , y′t−q̄+1 ]

(3)

5Indeed, for each t ∈ {(T − 1) , (T − 2) , ..., 1} and having already sampled zt+1, we would obtain the
conditional distribution (zt|zt+1,Dt) ∼ N (ht, Ht), where ht = µt+Bt (zt+1 − at+1), Ht = Ct−BtRt+1B

′
t

and Bt ≡ CtG′1R−1
t+1.
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Adapting West’s modification of the FFBS algorithm for sampling zt in our case is

straightforward. First, let z̃t ≡
[
y′t, ..., y

′
t−q̄+2

]′
denote the already sampled (m (q̄ − 1)× 1)

vector of common elements of zt+1 and zt, i.e. we partition both vectors as zt+1 =
[
y′t+1, z̃

′
t

]′
and zt =

[
z̃′t, y

′
t−q̄+1

]′
. In this context, let z̃j,t denote each singular element of z̃t for

j ∈ {1, ...,m (q̄ − 1)}.

For analytical simplicity, consider the sub-vector zj,t ≡
[
z̃′j:m(q̄−1),t, y

′
t−q̄+1

]′
where

z̃j1:j2,t ≡ [z̃j1,t, ...z̃j2,t]
′ for j2 ≥ j1 and z̃j1:j2,t ≡ empty for j2 < j1,6 and the following

partitions, for j ≤ i:

zj,t =

 z̃j,t

zj+1,t

 , µj,j,t =

 µ̃j,t

µj,j+1,t

 , Cj,j,t =

 σ̃2
j,t Σ′j,j+1,t

Σj,j+1,t Cj,j+1,t


where µj,i,t ≡ E

(
zi,t|z̃1:(j−1),t,Dt

)
, Cj,i,t ≡ V ar

(
zi,t|z̃1:(j−1),t,Dt

)
, µ̃j,t ≡ E

(
z̃j,t|z̃1:(j−1),t,Dt

)
,

σ̃2
j,t ≡ V ar

(
z̃j,t|z̃1:(j−1),t,Dt

)
and Σj,i,t ≡ Cov

(
zi,t, z̃j,t|z̃1:(j−1),t,Dt

)
. The partitions imply

that z̃j,t, µ̃j,t and σ̃
2
j,t are scalars.

The following steps describe the sampling strategy:

1. Sample a value of zT from (zT |DT ) ∼ N (µT , CT );

2. For each t ∈ {(T − 1) , (T − 2) , ..., 1}, sequentially sample values from the condi-

tional distribution of (yt−q̄+1|zt+1,Dt) and complete vector zt using the relevant

elements from vector zt+1. This is achieved by obtaining the distributions of

(yt+1|z̃t, yt−q̄+1,Dt) and (yt−q̄+1|z̃t,Dt). Also note, as shown in the Appendix, that

Pr (yt−q̄+1|zt+1,Dt) ∝ Pr (yt+1|z̃t, yt−q̄+1,Dt) Pr (yt−q̄+1|z̃t,Dt). Since zt =
[
z̃′t, y

′
t−q̄+1

]′
,

the first choice to retrieve Pr (yt−q̄+1|z̃t,Dt) would be using the KF distribution

(zt|Dt) ∼ N (µt, Ct) to directly obtain the conditional distribution of (yt−q̄+1|z̃t,Dt).

This method, however, involves inverting V ar (z̃t|Dt) which is often singular.7 There-

fore, based on West’s method, we effi ciently obtain the conditional distribution

(yt−q̄+1|z̃t,Dt) by sequentially conditioning on each scalar element z̃j,t of z̃t, reduc-

ing the dimension of the distribution by 1 at each stage. The steps are described

below:

(a) Since z1,t = zt, note that µ1,1,t = µt and C1,1,t = Ct.

6Note that z1,t = zt and z(m(q̄−1)+1),t = yt−q̄+1.
7The same reasons why Rt is eventually singular might cause V ar (z̃t|Dt) to be singular as well.
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(b) For j ∈ {1, ...,m (q̄ − 1)}, compute the distribution of
(
z(j+1),t|z̃1:j,t,Dt

)
:8

(
z(j+1),t|z̃1:j,t,Dt

)
∼ N

(
µ(j+1),(j+1),t, C(j+1),(j+1),t

)
µ(j+1),(j+1),t =

 µj,j+1,t + 1
σ̃2
j,t

Σj,j+1,t

(
z̃j,t − µ̃j,t

)
, if σ̃2

j,t > 0

µj,j+1,t , if σ̃2
j,t = 0

C(j+1),(j+1),t =

 Cj,j+1,t − 1
σ̃2
j,t

Σj,j+1,tΣ
′
j,j+1,t , if σ̃2

j,t > 0

Cj,j+1,t , if σ̃2
j,t = 0

(c) Since z(m(q̄−1)+1),t = yt−q̄+1, (yt−q̄+1|z̃t,Dt) is distributed as (yt−q̄+1|z̃t,Dt) ∼

N
(
µ̃t−q̄+1, C̃t−q̄+1

)
, where

µ̃t−q̄+1 = µ(m(q̄−1)+1),(m(q̄−1)+1),t , C̃t−q̄+1 = C(m(q̄−1)+1),(m(q̄−1)+1),t

3. Based on the already sampled vector z̃t+1 and exogenous vector x̄ct+1, compute the

partial residual

ẽt+1 ≡ yt+1 −
(
Φ1yt + ...+ Φq̄−1yt−q̄+2 + Φ̄cx̄ct+1

)
Note that Pr (ẽt+1|z̃t, yt−q̄+1,Dt) = Pr (yt+1|z̃t, yt−q̄+1,Dt), whose conditional distri-

bution is (yt+1|z̃t, yt−q̄+1,Dt) ∼ N (Φq̄yt−q̄+1,Σe).

4. Note that Pr (yt−q̄+1|zt+1,Dt) ∝ Pr (yt+1|z̃t, yt−q̄+1,Dt) Pr (yt−q̄+1|z̃t,Dt), as the Ap-

pendix shows. If C̃t−q̄+1 is not singular, all we have to do is to sample yt−q+1 from

(yt−q̄+1|zt+1,Dt) ∼ N
(
µyt−q+1, C

y
t−q+1

)
(4)

where

µyt−q+1 ≡
(

Φ′q̄Σ
−1
e Φq̄ +

(
C̃t−q̄+1

)−1
)−1(

Φ′q̄Σ
−1
e ẽt+1 +

(
C̃t−q̄+1

)−1

µ̃t−q̄+1

)
Cy
t−q+1 ≡

(
Φ′q̄Σ

−1
e Φq̄ +

(
C̃t−q̄+1

)−1
)−1

8If σ̃2
j,t = 0, then Σj,j+1,t = 0 and z̃j,t = µ̃j,t. In this case, the limiting value of

1
σ̃2j,t

Σj,j+1,t

(
z̃j,t − µ̃j,t

)
and 1

σ̃2j,t
Σj,j+1,tΣ

′
j,j+1,t are both zero. For coding purposes, there still might be some numerical instability

in cases where σ̃2
j,t is positive, but very small. In this case, the restriction σ̃

2
j,t > 0 might be translated

into something as, for instance, σ̃2
j,t > Toler · µ̃j,t, where Toler is a relative tolerance parameter.
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Up to this point, we closely followed West’s suggestions. There might be, how-

ever, an issue when sampling (yt−q̄+1|zt+1,Dt) based on the last result, i.e. there

might be cases in which C̃t−q̄+1 is singular. In this case, we propose a proce-

dure similar to what was done in (2.b.). Our suggestion is to sequentially sam-

ple each scalar element yj,t−q+1 of yt−q+1, for j ∈ {1, ...,m}, reducing the di-

mension of the distribution (yt−q̄+1|z̃t,Dt) by 1 at each stage. For that, consider

the sub-vectors y̌j,t ≡ yj:m,t−q+1 and ŷj,t ≡ y1:j,t−q+1 the conditional distribution

Pr
(
ỹj,t|ŷ(j−1), zt+1,Dt

)
∝ Pr (ẽt+1|z̃t, yt−q̄+1,Dt) Pr

(
ỹj,t|ŷ(j−1), z̃t,Dt

)
, where ỹj,t ≡

yj,t−q+1 is a simplifying notation, and the following partitions

y̌j,t =

 yj,t−q+1

y̌(j+1),t

 , µ̌j,j,t =

 µj,t−q+1

µ̌j,j+1,t

 , Čj,j,t =

 σ̌2
j,t Σ̌′j,j+1,t

Σ̌j,j+1,t Čj,j+1,t


where the means are µ̌j,i,t ≡ E

(
y̌i,t|ŷ(j−1), z̃t,Dt

)
and µj,t−q+1 ≡ E

(
ỹj,t|ŷ(j−1), z̃t,Dt

)
,

while the variances are σ̌2
j,t ≡ V ar

(
ỹj,t|ŷ(j−1), z̃t,Dt

)
, Čj,i,t ≡ V ar

(
y̌i,t|ŷ(j−1), z̃t,Dt

)
and Σ̌j,i,t ≡ Cov

(
y̌i,t, ỹj,t|ŷ(j−1), z̃t,Dt

)
. The partitions imply that yj,t−q+1, µj,t−q+1

and σ̌2
j,t are scalars. Therefore, take the steps described below:

(a) Since y̌1,t = yt−q+1, note that µ̌1,1,t = µ̃t−q̄+1 and Č1,1,t = C̃t−q̄+1.

(b) For each j ∈ {1, ...,m}, consider the jth (m× 1) vector Φj,q̄ in the partition

Φq̄ ≡ [Φ1,q̄, ...,Φj,q̄, ...,Φm,q̄], and sample yj,t−q̄+1 from:9

(
yj,t−q̄+1|ŷ(j−1), zt+1,Dt

)
∼ N

(
µ̌yj,t−q+1,

(
σ̌yj,t
)2
)

µ̌yj,t−q+1 =


(

Φ′j,q̄Σ
−1
e ẽt+1+(σ̌2

j,t)
−1
µj,t−q+1

Φ′j,q̄Σ
−1
e Φj,q̄+(σ̌2

j,t)
−1

)
, if σ̌2

j,t > 0

µj,t−q+1 , if σ̌2
j,t = 0

(
σ̌yj,t
)2

=


1

Φ′j,q̄Σ
−1
e Φj,q̄+(σ̌2

j,t)
−1 , if σ̌2

j,t > 0

0 , if σ̌2
j,t = 0

9For coding purposes, there still might be some numerical instability in cases where σ̌2
j,t is positive,

but very small. In this case, the restriction σ̌2
j,t > 0 might be translated into something as, for instance,

σ̌2
j,t > Toler · µj,t−q+1, where Toler is a relative tolerance parameter.
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where

µ̌(j+1),(j+1),t =

 µ̌j,j+1,t + 1
σ̌2
j,t

Σ̌j,j+1,t

(
yj,t−q̄+1 − µj,t−q+1

)
, if σ̌2

j,t > 0

µ̌j,j+1,t , if σ̌2
j,t = 0

Č(j+1),(j+1),t =

 Čj,j+1,t − 1
σ̌2
j,t

Σ̌j,j+1,tΣ̌
′
j,j+1,t , if σ̌2

j,t > 0

Čj,j+1,t , if σ̌2
j,t = 0

5. Sampled vector zt is obtained by concatenating

zt =
[
z̃′t, y

′
t−q̄+1

]′
(5)

Smoothing As for the smoothed distribution, retrieving it is also eventually subject

to inverting the covariance matrix Rt when using the standard method. However, we

propose modifying the FFBS algorithm to obtain the distribution, avoiding the issue. In

the spirit of the algorithm, all the way from t = (T − 1) to t = 1, we keep the means and

variances, instead of sampling the states, and adjust vectors and matrices accordingly. By

the end, we have retrieved the smoothed distribution. Note that the procedure is not the

same as keeping the means and variances at t = τ when performing the FFBS algorithm

for sampling the states at t = τ + 1 , for the auxiliary matrices and vectors will not be

the same.

Forecasts, backcasts and nowcasts When performing forecasts and backcasts, all the

algorithm has to do is to consider the extended sample for which there is no obervation

at all. Therefore, the FFBS algorithm will also sample missing values in forecast and

backcast exercises. The only requirement is that the VAR step, described in Section

3.2, must only consider the actual available sample period when sampling parameters

conditional on observables and missing values.

No additional care is needed in nowcast exercises, for the definition of nowcasts requires

at least one observed value to be available. Therefore, nowcasts are carried out on the

actual available sample period.
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3.2 Bayesian VAR

Following Canova (2007, chap. 10), the linear system can be represented in two com-

panion forms. The first one is defined as follows:

Y = XΦ + E (6)

where Y ≡ [y1, ..., yT ]′ is a (T ×m) matrix of variables, Φ ≡
[
Φ1, ...,Φq, Φ̄c

]′
denotes a

(k ×m) matrix of coeffi cients, X ≡ [x1, ..., xT ]′ is a (T × k) matrix of regressors, xt ≡[
y′t−1, ..., y

′
t−q, x̄

′
ct

]′
is a (k × 1) vector of regressors, and E ≡ [e1, ..., eT ]′ is a (T ×m)

matrix of error terms10. Note that each column of Y, Φ and E corresponds to equations

describing the dynamics of a unique variable sequence {yit}, for i ∈ {1, ...,m}:

X =



y1,1−1 · · · ym,1−1 · · · y1,1−q · · · ym,1−q x̄c,11 · · · x̄c,mc1
...

y1,t−1 · · ·
...

ym,t−1 · · ·
...

y1,t−q · · ·
...

ym,t−q

...
x̄c,1t · · ·

...
x̄c,mct

...
y1,T−1 · · ·

...
ym,T−1 · · ·

...
y1,T−q · · ·

...
ym,T−q

...
x̄c,1T · · ·

...
x̄c,mcT



Y =

 y1,1 · · · yi,1 · · · ym,1
...

y1,T · · ·
...
yi,T · · ·

...
ym,T



E =

 e11 · · · ei1 · · · em1

...
e1T · · ·

...
eiT · · ·

...
emT


Φ =



Φ1;11 · · · Φ1;i1 · · · Φ1;m1

...
Φ1;1m · · ·

...
Φ1;im · · ·

...
Φ1;mm

...
Φq;11 · · ·

...
Φq;i1 · · ·

...
Φq;m1

...
Φq;1m · · ·

...
Φq;im · · ·

...
Φq;mm

Φ̄c;11 · · · Φ̄c;i1 · · · Φ̄c;m1

...
Φ̄c;1mc · · ·

...
Φ̄c;imc · · ·

...
Φ̄c;mmc



Applying the vec (·) operator to both sides of equation (6), we obtain the second

companion form:11

y = xφ+ ε (7)

where y ≡ vec (Y) is a (Tm× 1) vector of endogenous variables, x ≡ (Im ⊗X) is a

(Tm× km) vector of regressors, φ ≡ vec (Φ) is a (km× 1) vector of coeffi cients, and

10Note that the VAR equation for a period t is yt = Φ′xt + et.
11See the Appendix for some results on matrix algebra and the vec (·) operator.
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ε ≡ vec (E) is a (Tm× 1) matrix of error terms.

Given the model and a proper mapping between the set of observable variables (Yob)

and endogenous variables (Y) provided above, the next sections describe the procedure

to obtain the joint distribution of
(
Y,Φ|Yob

)
by means of a Monte Carlo simulation.

3.2.1 Computing the likelihood function

Assuming that ε ∼ NTm (0,Σε), for Σe ≡ (Σe ⊗ IT ), the likelihood function is

p (y|φ,Σε) = |2πΣε|−
1
2 exp

[
−1

2
(y − xφ)′Σ−1

ε (y − xφ)

]

Let φml and Σml denote the maximum likelihood estimator of φ and its covariance

matrix:

φml ≡
(
Im ⊗ (X′X)−1 X′

)
y ; Σml ≡

(
Σe ⊗ (X′X)−1)

Using the definitions of x and Σε, note that the likelihood function can be written12

as follows:

p (y|φ,Σe) = |2π|−
Tm
2 |Σe|−

(T−k−m−1)+m+1
2 exp

(
−1

2
tr
(
Λ̄sΣ

−1
e

))
× |Σe|−

k
2 exp

(
−1

2
(φ− φml)

′Σ−1
ml (φ− φml)

)
(8)

where

Φml = (X′X)−1 X′Y ; Λ̄s ≡ (Y −XΦml)
′ (Y −XΦml) (9)

3.2.2 Joint prior and posterior

Given the form of the likelihood function, we consider that a natural conjugate joint

prior distribution for (φ,Σe) is a generalization of what Gelman et al. (2003) call the

Normal-Inverse-Wishart distribution. Thus the joint prior distribution is specified ac-

cording to the following hierarchical structure:

Σe ∼ W−1
m

(
δ0,Λ

−1
0

)
; (φ|Σe) ∼ Nkm (φ0,Σ0) ; Σ0 ≡ 1

σ0

(
Σe ⊗ Ĩk

)
12See the Appendix for more details.

18



where δ0 > (m+ 1) is the degrees of freedom of the Inverse-Wishart distribution (which

can be understood as the prior sample size for Σe), EΣe = Λ0/ (δ0 −m− 1) is the prior

estimate for Σe, σ0 is a scale parameter for the conditional Normal distribution (which

can be understood as the prior sample size for φ), φ0 is the prior estimate for φ, and Ĩk

is a (k × k) diagonal matrix whose diagonal terms satisfy ĨKK ∈ (0, 1], for K ∈ {1, ..., k}.

Note that the identity matrix Ik is a particular case of Ĩk. Moreover, this definition

allows for using a Minnesota-type prior (see e.g. Doan et al. (1984) and Litterman (1986)

for the original Minnesota prior).

It implies that the joint prior pdf p (φ,Σe) = p (Σe) p (φ|Σe) is proportional to:

p (φ,Σe) ∝ |Σe|−
(δ0+m+1)

2 exp

(
−1

2
tr
(
Λ0Σ−1

e

))
× |2πΣ0|−

1
2 exp

[
−1

2
(φ− φ0)′Σ−1

0 (φ− φ0)

]
(10)

Therefore, the joint posterior pdf p (φ,Σe|y) ∝ p (φ,Σe) p (y|φ,Σe) is proportional to:13

p (φ,Σe|y) ∝ |Σe|−
(δ0+T+m+1)

2 exp

{
−1

2
tr
[(

Λ0 + Λ̄s + ΛT

)
Σ−1
e

]}
× |2πΣT |−

1
2 exp

[
−1

2
(φ− φT ) ′Σ−1

T (φ− φT )

]
(11)

where

Σ−1
T ≡

(
Σ−1

0 + Σ−1
ml

)
=
(

Σ−1
e ⊗

(
σ0Ĩ

−1
k + X′X

))
φT ≡ ΣT

(
Σ−1

0 φ0 + Σ−1
mlφml

)
ΦT ≡ vec−1 (φT )

=
(
σ0Ĩ

−1
k + X′X

)−1 (
σ0Ĩ

−1
k

)
Φ0 +

(
σ0Ĩ

−1
k + X′X

)−1

(X′X) Φml

ΛT ≡ Φ′0

(
σ0Ĩ

−1
k

)
Φ0 + Φ′ml (X′X) Φml −Φ′T

(
σ0Ĩ

−1
k + X′X

)
ΦT

This means that the joint posterior distribution of (φ,Σe|y) is specified according to

the following hierarchical structure:

(Σe|y) ∼ W−1
m

(
δ0 + T,

(
Λ0 + Λ̄s + ΛT

)−1
)

; (φ|Σe,y) ∼ Nkm (φT ,ΣT )

13Details are shown in the Appendix.
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3.2.3 Specifying the joint prior distribution

As for the joint prior distribution, we propose the following variation of the Minnesota

prior:

Φ0`;ij =

 1 if ` = 1 and i = j

0 otherwise

Φ̄0c = 0m×mc

ĨKK =


K̃−α (harmonic decay) or

α1−K̃ (geometric decay)
if 1 ≤ K ≤ (k −mc)

1 otherwise

(12)

where K̃ ≡ int
(
K−1
m

)
+1, α > 0, K ∈ {1, ..., k}, ` ∈ {1, ..., q}, i ∈ {1, ...,m}, j ∈ {1, ...,m},

and m̄c ∈ {1, ...,mc}, and again k ≡ mq +mc.

For consistency, we assume that EΣe = Σ̄e, where EΣe = Λ0/ (δ0 −m− 1) and Σ̄e ≡

Λ̄s/ (T − 1). This assumption implies that

Λ0 =
(δ0 −m− 1)

(T − 1)
Λ̄s (13)

A diffuse prior, if chosen, requires low levels for δ0 > (m+ 1) and σ0 > 0. In the

limiting case δ0 → (m+ 1) and σ0 → 0, the posterior distribution implies the maximum

likelihood estimators:14

(Σe|y) ∼ W−1
m

(
m+ 1 + T,

(
Λ̄s

)−1
)

; (φ|Σe,y) ∼ Nkm

(
φml,Σ

−1
ml

)
for which Σ−1

ml = EΣe = Λ̄s/T , Σml ≡
(
Σe ⊗ (X′X)−1), φml ≡

(
Im ⊗ (X′X)−1 X′

)
y, and

Λ̄s ≡ (Y −XΦml)
′ (Y −XΦml).

4 Properties of mixed-frequency VAR: simulations

The most common framework for mixed frequency estimation is when the researcher

has available an information set with regularly spaced information in a complete panel.

As an example, one might be interested in estimating a model with inflation and interest

14If σ0 = 0 and δ0 = (m+ 1), we conclude that ΦT = Φml (or φT = φml), ΛT = Λ0 = Σ−1
0 = 0, and

ΣT = Σml.
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rates (usually measured at monthly frequency) and output (from the National Accounts

at quarterly frequency). Instead of aggregating information on inflation and interest

rates to quarterly frequency, in order to match output data, our framework allows a joint

estimation of model.

For the first exercise, assume that the dataset has four time series covering a sample

T of 200 periods at monthly frequency. In this exercise, N < 4 artificial series will have

equally distributed gaps along the time series (N will change with simulations). The VAR

model will obtain estimates of the missing observations and compare with the true value

of artificial dataset initially simulated. Time series for the exercise are simulated from the

following VAR at monthly frequency:

Yt = AYt−1 + Set

where

A =


0.900 0.010 −0.020 0.050

0.000 0.900 −0.113 −0.010

0.000 0.195 0.800 0.000

−0.269 0.000 0.000 0.700

 S =


0.01 0.00 0.00 0.00

0.00 0.01 0.00 0.00

0.00 0.00 0.01 0.00

0.00 0.00 0.00 0.01


Values on matrix A were selected in order to ensure the same long run variance for each

observed variable in vector Yt, given the lack of contemporaneous conditional correlation

given by matrix S. Alternative values for matrix S were tested, imposing some correlation

across observed variables. Results were qualitatively similar.

Table 1 shows the median of the RMSE across 1000 simulated time series, measured as

a proportion of the unconditional standard deviation of the series in the true VAR. A total

of six simulations are shown in each line. First, each group of two columns compute the

RMSE using the mean, the median and the mode of the simulations in the Gibbs sampling

as the forecast for the missing observation. For each group of columns, two simulations try

to disentangle the uncertainty from parameter estimation in the VAR when simulating

the missing observations: the columns labeled "True Values" report the RMSE of the

estimated VAR against the true values of the missing observations; the columns labeled

"True VAR" use the true values of parameters describing the VAR to simulate the missing
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Table 1: Median RMSE and Simulation of Missing Values

RMSE —Mean RMSE —Median RMSE —Mode
True
Values

True
VAR

True
Values

True
VAR

True
Values

True
VAR

T = 200; N = 1
F = Q 0.4181 0.1074 0.4182 0.1068 0.4531 0.2073
F = S 0.6592 0.4186 0.6572 0.4137 0.7966 0.6155
F = Y 0.9520 0.7655 0.9461 0.7592 1.1432 0.9899

T = 200; N = 2
F = Q 0.4143 0.0976 0.4143 0.0972 0.4414 0.1813
F = S 0.6706 0.4357 0.6634 0.4264 0.8381 0.6622
F = Y 1.1254 0.9445 1.0264 0.8336 1.8651 1.7677

T = 200; N = 3
F = Q 0.4301 0.0912 0.4293 0.0904 0.4555 0.1718
F = S 0.6677 0.3866 0.6630 0.3788 0.8505 0.6517
F = Y 1.6257 1.4690 1.1518 0.9336 6.6475 6.6008

observation. Table 1 also split the analysis in terms of number of observed time series

with missing values in the VAR (N) and the frequency of missing observations (Q, S and

Y for information in each quarter, semester and year, respectively), while keeping the

sample size, T = 200, fixed.

Table 1 shows three interesting results. First, as expected, the RMSE of simulated time

series of the mixed-frequency VAR does depend on the frequency of missing observations.

For all exercises shown in the table, changing the frequency of missing informations from

quarterly to yearly data increased the RMSE of the simulations, irrespective of the statistic

summarizing the forecast of missing values. Despite an huge increase in the RMSE when

using the mode of simulations in the Gibbs sampling with yearly information in three time

series of the VAR, all simulations showed similar variations in the RMSE when changing

the frequency of missing information in the model.

Second, also expected, the RMSE of simulated time series does dependent on the

number of time series with missing observations in the VAR. While this result does not

look significant when information is available at quarterly frequency, simulations with

semi-annual and, especially, annual data shows that increasing the number of time series

with missing observations increases the RMSE of simulations, hurting the performance of

the algorithm.

Finally, there is a significant gain in knowing the true values of parameters in the
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Table 2: Median RMSE and Simulation of Missing Values —T=400

RMSE —Mean RMSE —Median RMSE —Mode
True
Values

True
VAR

True
Values

True
VAR

True
Values

True
VAR

T = 400; N = 1
F = Q 0.4119 0.0817 0.4120 0.0819 0.4366 0.1616
F = S 0.6107 0.3431 0.6100 0.3424 0.6915 0.4753
F = Y 0.8119 0.5677 0.8081 0.5619 0.9963 0.8011

T = 400; N = 2
F = Q 0.4103 0.0750 0.4103 0.0750 0.4245 0.1343
F = S 0.6083 0.3340 0.6067 0.3324 0.6802 0.4543
F = Y 0.8692 0.6334 0.8516 0.6090 1.1470 0.9759

T = 400; N = 3
F = Q 0.4185 0.0616 0.4184 0.0615 0.4310 0.1231
F = S 0.6144 0.3049 0.6140 0.3049 0.6870 0.4327
F = Y 1.0238 0.7834 0.9577 0.6968 1.7854 1.6559

system, meaning that estimation problems should be carefully addressed in empirical ap-

plications. Comparing results from columns labeled "True Values" with those using the

true set of parameters of the VAR, labeled "True VAR", the gains in terms of RMSE

in knowing exactly the parameters of the model are significant, irrespective of the sta-

tistic summarizing the simulations in the Gibbs sampler and the frequency of missing

information.

Table 2 considers the case where the sample available, T, at monthly frequency is

twice the size of the benchmark exercise. Results show that the performance of the VAR

with missing data at quarterly frequency does not show significant improvement, unless

all parameters of the system of equations are known. The ratio between the RMSE and

the volatility of the simulated time series remains almost the same in both exercises with

missing values at quarterly frequency. On the other hand, simulations with observable

variables in each semester or in each year show a significant improvement, even considering

the uncertainty related to parameter estimation of the VAR.

5 Empirical Analysis

In this section, two exercises show the ability of MF-VAR to simulate time series of

economic indicators that might be useful for economic analysis. The two exercises explore
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some of the properties discussed in the previous section, while also showing the flexibility

of the procedure when describing the datasets. The first exercise provides estimates of

time series of real GDP for Brazil at monthly frequency, using a large set of observable

variables to build an indicator of economic activity at higher frequency. In this exercise,

estimates show the consequences of properly specifying the transformation matrix Λz in

empirical applications.

The second exercise tries to retrieve information from a large set of observable vari-

ables to build a time series for monthly unemployment rates based on the latest release

of the unemployment survey for Brazil —the so-called "Pesquisa Nacional por Amostra

de Domicílios Contínua" (PNAD-C, in Portuguese). The first results of this survey cover

the period between March-2012 and March-2015. Using a set of MF-VAR models with

different observable variables, including information from an annual version of PNAD, the

section explores the ability of the models to generate consistent estimates of unemploy-

ment rate if missing data is irregularly spaced.

5.1 Estimating real GDP at monthly frequency

One interesting application of mixed-frequency VARs is to build high-frequency esti-

mations of real gross domestic product using indicators of economic activity. Here, we use

a group of economic indicators to build 5-variable MF-VARs and analyze the properties of

the combination of the forecasts of these MF-VARs. These indicators include total indus-

trial production, industrial production of capital goods, retail sales, total exports, total

imports, energy consumption, energy consumption of manufacturing industry, the ratio

of the trade balance over the trade flow, oil production and steel production. All these

indicators are available at monthly frequency. The MF-VARs include seasonal dummies

and change the assumption about deterministic trends between no trend, linear trend or

a quadratic trend.

In empirical applications of the MF-VAR, it is important to properly characterize the

setup of matrix Λz in equation 2, relating observable variables at high- and low-frequency.

Figure 1 below shows the simulated path from one of the MF-VARs15 for the quarterly

15The MF-VAR has three lags, and includes, besides the log of GDP at quarterly frequency, sea-
sonal factors and a linear trend, the log of production of capital goods, retail sales, exports and energy
consumption.
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Figure 1: Quarterly GDP Change in High-Frequency —June/2000 to March/2015

growth rates of high-frequency estimates of (log-) real GDP16 under two assumptions for

matrix Λz: the blue line assumes a simple setup, where observed real GDP is directly

correlated with high-frequency observation in the last month of the quarter; the red line

sets a proper framework, with observed real GDP as the sum of simulated real GDP

in the three months of the quarter. The gray line shows an indicator of high-frequency

estimates of real GDP calculated by the Central Bank of Brazil —the so-called IBC-BR.

It is clear from the figure that a proper setup of matrix Λz allows a closer match between

the simulated path of the MF-VAR and the estimates provided by IBC-BR, as the real

GDP in levels tends to systematically overestimate seasonal movements early in every

year, while also missing the location of peaks in the middle of each year. The setup with

real GDP as a quarterly mean provides a better match with IBC-BR at both these points.

For the exercise, combined forecast of MF-VARs are compared with the forecasts of

a simple AR(1) process for the growth rate of (log-) real GDP with seasonal dummies

and a set of Bayesian VARs at quarterly frequency with the same observables used in

MF-VARs. The main objective of using Bayesian VARs to compare with MF-VARs is

16Data on real GDP used in this exercise was published by IBGE in the end of May 2015, with first
vintage of data for the first quarter of 2015. This exercise does not handle with "real time forecasting", as
a methodological change in GDP computation prevents a clear comparison between recent and previous
vintages of data.
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Table 3: Forecasting GDP with MF-VAR: RMSE —Dec/10 to Mar/15

RMSE Relative RMSE
Obs MF-VAR VAR AR(1) VAR AR(1)

t = 0 18 0.0083 0.0200 0.0109 2.40 1.31
t = 1 17 0.0170 0.0298 0.0157 1.76 0.92
t = 2 16 0.0256 0.0278 0.0189 1.08 0.74
t = 3 15 0.0298 0.0291 0.0256 0.98 0.86
t = 4 14 0.0341 0.0415 0.0277 1.22 0.81

to measure the effect of using high-frequency information to build forecasts, instead of

simply aggregating information at lower frequencies. The comparison with an AR(1)

process provides a benchmark in terms of forecasting ability of the MF-VAR. The MF-

VARs are arbitrarily set with three lags, in order to properly characterize the dynamics

between monthly and quarterly frequency data. Bayesian VARs at quarterly frequency,

on the other hand, due to the small sample size, are estimated with only one lag.

Table 3 compares the outcome of forecasts in the three models. In the table, t = 0

shows the properties of the so-called "nowcasting" in the MF-VAR, which is the forecast

for real GDP at a given time t, given that all information for other variables, except GDP,

is available for forecasting. It is worth noting that the additional information building

the "nowcast" affects only forecasts from the MF-VARs and the Bayesian VARs; for the

AR(1) process, the "nowcasting" is equivalent to a one-step-ahead forecast.

Table 3 shows the gains of using high-frequency information, instead of aggregating

data to lower frequencies. The performance of the MF-VAR is, in a worst case scenario,

similar to the Bayesian VAR, when forecasting three quarters ahead. In all other horizons

considered, the performance of the MF-VAR clearly dominates the Bayesian VAR. How-

ever, despite providing a good performance in terms of "nowcasting", both the MF-VAR

and the Bayesian VAR are not better than an univariate system estimated at quarterly

frequency. The main advantage of using the MF-VAR, thus, seems to be associated with

the ability of using high-frequency information to make inference about the current period.

5.2 Estimating unemployment rate with irregularly spaced data

One of the possible uses of MF-VARs is in the simulation of missing information in the

time series of a variable when there are other proxy variables to approximate the dynamics
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Table 4: Unemployment Surveys in Brazil

PME
(IBGE)

PED
(DIEESE)

PNAD
(IBGE)

PNAD-C
(IBGE)

Frequency Monthly Monthly Annual Monthly*
Coverage 6 metro areas 4 metro areas Brazil Brazil
Pop. Ratio
(2012)

0.25 0.15 1.00 1.00

Time Span
1999M05
2015M03

1999M05
2015M03

1999
2013

2012M03
2015M03

Observations
Major review
in 2001

Restricted
to same

metro areas

Missing censitary
years

(2000 and 2010)

Information
about

last quarter

(*) Information refers to the moving average of the quarter finished at a given month.

of the variable with missing information. Here, we present a set of MF-VARs designed to

estimate the missing values of unemployment rate in Brazil measured by a recent survey

of IBGE —"Pesquisa Nacional por Amostra de Domicílios Contínua" (PNAD-C) in Por-

tuguese. This survey shows estimates of unemployment rate in the previous quarter at

monthly frequency, covering almost four times the total population surveyed in the old

survey conducted by IBGE ("Pesquisa Mensal de Emprego" —PME). There is also an an-

nual survey from IBGE, called "Pesquisa Nacional por Amostra de Domicílios" (PNAD),

where information on employment is also collected, with similar coverage compared to

PNAD-C. Information on employment status in Brazil is very irregular. However, given

the role of labor markets for economic analysis, generating a time series of unemployment

based on PNAD-C constitutes a valuable piece of information. Table 4 summarizes the

main characteristics of four surveys on employment for Brazil.

In order to simulate time series for unemployment in Brazil based on PNAD-C, we

first assume that unemployment rates from PNAD-C and PNAD differ only by a mul-

tiplicative factor,17 which is retrieved by considering the only month for which we have

observations from both series, i.e. Sept. 2012.18 After that, we adjust the level of PNAD

annual observations and merge them with PNAD-C monthly observations. Given a linear

relation between the overlapping information between PNAD and PNAD-C, we set at

least one point of data for the period between 1999 and 2011 —the period before PNAD-

C results were published. After that, a set of four-variable MF-VARs were estimated

17Results do not change much when we assume an additive factor instead.
18Figures from PNAD evaluate employment situation on the last day of September in each year.
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using information from: PME and PED surveys, with measures of unemployment and

participation rates, CAGED data of formal employment and CNI data on employment

in manufacturing sector. MF-VARs included seasonal dummies and were estimated with

and without deterministic linear and quadratic trends. Estimations including a larger

number of observable variables were not performed due to the small sample size combined

with larger gaps in the information from PNAD-C. Also, in terms of restriction to variable

selection in the VARs, at least one of the unemployment time series was included in the

estimation, together with PNAD-C data. A total of 36 models were used to simulate the

time series of unemployment.

Final estimates based on the mean and the median for the time series of PNAD-

C are shown in figure 2, together with confidence bands based on the distribution of

simulations across models. As expected, confidence bands are larger when the gap between

information available at PNAD-C is also larger. Also as expected, confidence bands

increase during turning points of the simulated time series. Of course, as the analysis in

Section 4 suggest, as more data for PNAD-C become available, it should be possible to

obtain better estimates of the dynamics of the time series during these turning points. As

a consequence, we expect these confidence intervals to become smaller with the increase

in the amount of information from PNAD-C. We have also run an in-sample forecasting

exercise over the last year of the sample, in order to set weights across different models

based on the mean square error of the models. The final time series for unemployment

generated from this exercise, not shown in figure 2, is very close to the median of the

simulations across models.

The simulated time series follows a close path when compared to the actual time series

of PME and PED surveys. The main difference between these two surveys and the simu-

lated path of PNAD-C presented here is related to the gap between the minimum and the

maximum of each time series: while PME and PED, on average, showed unemployment

rates above 12% in the period between 1999 and 2004 —even reaching 19% in one of the

measures provided in PED —, the average of PNAD-C in the sample is set at 10.5%. On

the other hand, for the late part of the sample, while PME reached historical lows in

December of 2013 and December of 2014 of 4.3%, the minimum of PNAD-C —which, in

the sample, is an observable, not a simulation —was found in December, 2013, at 6.2%.

The main reason for this discrepancy is the use of annual information from PNAD for the
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Figure 2: Simulated Time Series: PNAD-C —May/1999 to April/2015

period between 1999 and 2011: without the support of such information, simulated paths

of PNAD-C would be closer to the mean between PME and PED for the early part of the

sample.

6 Conclusion

This paper presented a new effi cient algorithm to draw inference from the joint dis-

tribution of a dataset with missing information. The algorithm presented here is flexible

enough to accommodate most of the issues faced when dealing with irregularly spaced

datasets. It also allows for an easy setup of linear restrictions in observable variables,

irrespective of the presence of missing information in those time series. From this per-

spective, the implementation of the model uses most of the findings in early literature

on the subject, generalizing some results and applications for the framework of mixed-

frequency estimation of VAR models.

Both the analysis with simulated and real datasets show the flexibility of the frame-

work to properly handle datasets with an usual size observed in real world’s applications.

Despite results with simulated data suggest that some careful analysis of convergence of

the Gibbs sampler is necessary to ensure that simulated time series are being drawn from
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appropriate parameter values, the small volatility of simulations show that the algorithm

is a very useful tool to handle problems associated with missing information in large

datasets.

In terms of the empirical applications with real data, the main results show the impor-

tance of using high-frequency information to make inference on macroeconomic dataset

with missing values. The applications show the advantage of using high-frequency in-

formation in two different contexts: first, in terms of forecasting, MF-VARs using the

framework proposed here had a better performance than traditional Bayesian VARs esti-

mated using data at lower frequencies; second, the algorithm proposed here estimated past

trajectories of variables with missing information combining a large set of information,

generating simulations with relatively small dispersion around its mean.
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A Some results

Matrix Algebra: Recall that, for any matrices Ak×`, B`×m and Cm×n, the vec (·)
operator satisfies the following properties:

tr(A′B) = (vec(B))′vec(A) = (vec(A))′vec(B) vec(ABC) = (C′⊗A)vec(B)

vec(ABC) = vec(AB·C·In) = (In⊗AB)vec(C) vec(ABC) = vec(Ik·A·BC) = (C′B′⊗Ik)vec(A)

vec(AB)=vec(A·B·Im)=(Im⊗A)vec(B) vec(AB) = vec(Ik·A·B) = (B′⊗Ik)vec(A)

Recall that, for any matrices A, B, C and D, the Kronecker product satisfies (when it
makes sense) the following properties:

(A⊗B)(C⊗D) = (AC⊗BD) (A⊗B)−1 = (A−1⊗B−1) tr(A⊗B) = tr(A)·tr(B)

(A⊗B)′ = (A′⊗B′) |A⊗B| = |A|`|B|k if A is (k×k), and B is (`×`)

Maximum Likelihood Estimator - Multiv Gaussian Distribution: The esti-
mator comes from 0 = −
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Rewriting the Likelihhod Function: Note that:

p(y|φ,Σe) = |2πΣε|−
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Note also that

vec(Φml) = φml = (Im⊗(X′X)−1X′)y = (Im⊗(X′X)−1X′)vec(Y) = vec((X′X)−1X′Y)

vec(XΦml) = xφml = (Im⊗X)(Im⊗(X′X)−1X′)y = (Im⊗X(X′X)−1X′)y

= (Im⊗X(X′X)−1X′)vec(Y) = vec(X(X′X)−1X′Y)

Joint posterior pdf of the Bayesian VAR: We need to compute the following
summation terms:
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e ⊗(σ0Ĩk+X′X))vec(ΦT )

= vec(Φ0)′vec((σ0Ĩk)Φ0Σ−1
e ) + vec(Φml)

′vec((X′X)ΦmlΣ
−1
e )− vec(ΦT )′vec((σ0Ĩk+X′X)ΦTΣ−1

e )

= tr[(Φ′0(σ0Ĩk)Φ0 + Φ′ml(X
′X)Φml − Φ′T (σ0Ĩk+X′X)ΦT )Σ−1

e ] = tr[ΛTΣ−1
e ]
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where

Σ−1
T ≡ (Σ0

−1+Σ−1
ml) = Σ−1

e ⊗(σ0Ĩk+X′X)

φT ≡ ΣT (Σ−1
0 φ0 + Σ−1

mlφml) =
(
Im⊗(σ0Ĩk+X′X)

−1
(σ0Ĩk)

)
φ0+

(
Im⊗(σ0Ĩk+X′X)

−1
(X′X)

)
φml

ΦT ≡ vec−1(φT ) = (σ0Ĩk+X′X)
−1

(σ0Ĩk)Φ0 + (σ0Ĩk+X′X)
−1

(X′X)Φml

ΛT ≡ Φ′0(σ0Ĩk)Φ0 + Φ′ml(X
′X)Φml − Φ′T (σ0Ĩk+X′X)ΦT

Deriving the expression for ΦT goes as follows:

vec(ΦT ) ≡
(
Im⊗(σ0Ĩk+X′X)

−1
(σ0Ĩk)

)
vec(Φ0) +

(
Im⊗(σ0Ĩk+X′X)

−1
(X′X)

)
vec(Φml)

= vec
(
(σ0Ĩk+X′X)

−1
(σ0Ĩk)Φ0 + (σ0Ĩk+X′X)

−1
(X′X)Φml

)

Note also that

φT ≡ ΣT (Σ−1
0 φ0+Σ−1

mlφml) = (Σ−1
0 +Σ−1

ml)
−1

(Σ−1
0 φ0+Σ−1

mlφml)

= (σ0(Σ−1
e ⊗Ĩ−1

k )+(Σ−1
e ⊗(X′X)))

−1
(σ0(Σ−1

e ⊗Ĩ−1
k )φ0+(Σ−1

e ⊗(X′X))φml)

= (Σ−1
e ⊗(σ0Ĩ

−1
k +(X′X)))

−1
((Σ−1

e ⊗σ0Ĩ
−1
k )φ0+(Σ−1

e ⊗(X′X))φml)

=
(

Σe⊗(σ0Ĩ
−1
k +(X′X))

−1
)
((Σ−1

e ⊗σ0Ĩ
−1
k )φ0+(Σ−1

e ⊗(X′X))φml)

=
(
Im⊗(σ0Ĩ

−1
k +X′X)

−1
(σ0Ĩ

−1
k )

)
φ0+

(
Im⊗(σ0Ĩ

−1
k +X′X)

−1
(X′X)

)
φml

B Proofs

Proposition 1 The Markov structure of the evolution equation of any DLM implies

Pr (ZT |DT ) = Pr (zT |DT ) Pr (zT−1|zT ,DT−1) ...Pr (z1|z2,D1)

Proof. Note that Pr (ZT |DT ) can be expanded as follows:

Pr (ZT |DT ) = Pr (zT , ZT−1|DT ) = Pr (zT |DT ) Pr (ZT−1|zT ,DT )

= Pr (zT |DT ) Pr (zT−1, ZT−2|zT ,DT )

= Pr (zT |DT ) Pr (zT−1|zT ,DT ) Pr (ZT−2|zT−1, zT ,DT )

= Pr (zT |DT ) Pr (zT−1|zT ,DT ) Pr (zT−2, ZT−3|zT−1, zT ,DT )

= Pr (zT |DT ) ...Pr (zT−2|zT−1, zT ,DT )︸ ︷︷ ︸
Pr(zT−2|zt>(T−2),DT )

Pr (ZT−3|zT−2, zT−1, zT ,DT )

...

= Pr (zT |DT ) Pr
(
zT−1|zt>(T−1),DT

)
Pr
(
zT−2|zt>(T−2),DT

)
...Pr (z1|zt>1,DT )

Let now yobt>τ̄ ≡
[
yobτ̄+1, y

ob
T

]
and zt>τ̄ ≡ [zτ̄+1, zT ] denote the sets of all observable and

state variables for periods between τ̄ + 1 up to T . Recall that the observation equation
implies that, conditional on zt, yobt does not depend on past values of the state variable.
As shown below, the Markovian property copped with this fact implies let us show that
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Pr (zT−j|zt>T−j,DT ) = Pr (zT−j|zT−j+1,DT−j). Indeed:

Pr (zT−j|zt>T−j , DT ) = Pr
(
zT−j|zt>T−j , yobt>T−j , DT−j

)
=

Pr(zT−j , yobt>T−j |zt>T−j , DT−j)
Pr(yobt>T−j |zt>T−j , DT−j)

=
Pr(yobt>T−j |zT−j , zt>T−j , DT−j) Pr(zT−j |zt>T−j , DT−j)

Pr(yobt>T−j |zt>T−j , DT−j)
Due to Observ
Equation

=
Pr(yobt>T−j |zt>T−j , DT−j) Pr(zT−j |zt>T−j , DT−j)

Pr(yobt>T−j |zt>T−j , DT−j)
= Pr (zT−j|zt>T−j , DT−j)
= Pr (zT−j|zT−j+1 , zt>T−j+1 , DT−j)
=

Pr(zT−j , zt>T−j+1|zT−j+1 , DT−j)
Pr(zt>T−j+1|zT−j+1 , DT−j)

=
Pr(zt>T−j+1|zT−j , zT−j+1 , DT−j) Pr(zT−j |zT−j+1 , DT−j)

Pr(zt>T−j+1|zT−j+1 , DT−j)
Markovian
Property

=
Pr(zt>T−j+1|zT−j+1 , DT−j) Pr(zT−j |zT−j+1 , DT−j)

Pr(zt>T−j+1|zT−j+1 , DT−j)
= Pr (zT−j|zT−j+1 , DT−j)

Using our previous result, we conclude that

Pr (ZT |DT ) = Pr (zT |DT ) Pr (zT−1|zT ,DT−1) ...Pr (z1|z2,D1)

Proposition 2 The conditional density of (yt−q+1|zt+1,Dt) is proportional to

Pr (yt−q+1|zt+1,Dt) ∝ Pr (ẽt+1|z̃t+1, yt−q+1,Dt) Pr (yt−q+1|z̃t+1,Dt)

Proof.

Pr (yt−q+1|zt+1,Dt) = Pr (yt−q+1|yt+1, z̃t,Dt)
= Pr(yt+1,yt−q+1|z̃t,Dt)

Pr(yt+1|z̃t,Dt) = Pr(yt+1|z̃t,yt−q+1,Dt) Pr(yt−q+1|z̃t,Dt)
Pr(yt+1|z̃t,Dt)

conditioning first
term also on ẽt+1 = Pr(yt+1,ẽt+1|z̃t,yt−q+1,Dt)

Pr(ẽt+1|yt+1,z̃t,yt−q+1,Dt)
Pr(yt−q+1|z̃t,Dt)
Pr(yt+1|z̃t,Dt)

= Pr(yt+1|z̃t,yt−q+1,ẽt+1,Dt)
Pr(ẽt+1|yt+1,z̃t,yt−q+1,Dt)

Pr(ẽt+1|z̃t,yt−q+1,Dt) Pr(yt−q+1|z̃t,Dt)
Pr(yt+1|z̃t,Dt)

conditioned on ẽt+1, first term
does not depend on yt−q+1 = Pr(yt+1|z̃t,ẽt+1,Dt)

Pr(ẽt+1|yt+1,z̃t,Dt)
Pr(ẽt+1|z̃t,yt−q+1,Dt) Pr(yt−q+1|z̃t,Dt)

Pr(yt+1|z̃t,Dt)

Since terms Pr (yt+1|z̃t, ẽt+1,Dt), Pr (ẽt+1|yt+1, z̃t,Dt) and Pr (yt+1|z̃t,Dt) are not functions
of yt−q+1, they are constantans with respect to Pr (yt−q+1|zt+1,Dt). Therefore, we obtain:

Pr (yt−q+1|zt+1,Dt) ∝ Pr (ẽt+1|z̃t+1, yt−q+1,Dt) Pr (yt−q+1|z̃t+1,Dt)
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