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Monitoring Vulnerability and Impact Diffusion in Financial
Networks

Thiago Christiano Silva*

Sergio Rubens Stancato de Souza**

Benjamin Miranda Tabak***

Abstract

The Working Papers should not be reported as representing the views of the Banco Central
do Brasil. The views expressed in the papers are those of the author(s) and not necessarily
reflect those of the Banco Central do Brasil.

In this paper, we propose novel risk-related network measurements to identify the
roles that financial institutions play as potential targets or sources of contagion. We
derive theoretical properties and provide a clear systemic risk interpretation for the
proposed measures. Devised upon the notion of communicability in networks, we
introduce the impact susceptibility index, which indicates whether market partici-
pants are locally or remotely vulnerable. We show that this index can be used as
a financial stability monitoring tool and apply it to analyze the Brazilian financial
market. We find that non-banking institutions are potentially remote vulnerable in
certain periods, while banking institutions are not susceptible to indirect impacts. To
address the perspective of market participants as sources of contagion, we propose
the impact diffusion influence index, which captures the potential influence of finan-
cial institutions on propagating impacts in the network. We unveil the presence of
a portion of non-large banking institutions that is consistently more influential than
large banks in potentially diffusing impacts throughout the network. Regarding fi-
nancial system stability, regulators should identify the entities that play these two
roles, as they can render the system more risky.
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1 Introduction

One of the main lessons from the financial crisis of 2008-2009 is that financial sys-
tems are interconnected in a complex way. These interconnections form large financial
networks in which several types of financial institutions connect to each other by differ-
ent financial instruments, such as interbank lending, derivatives and other instruments.1

Although interconnectedness of financial institutions amplifies the propagation of insol-
vency, illiquidity and losses through the financial system, which may spillover to the real
economy exacerbating or even generating financial crisis, to date, there is no consensus
on how we can derive financial connectivity measures that can be useful for financial
regulation and surveillance.

A very relevant question is how the financial network topology influences the prob-
ability of contagion within the network and systemic risk. Allen and Gale (2000), Allen
et al. (2012) and Gai and Kapadia (2010) show that more clustered structures carry a
higher component of systemic risk. In contrast, Battiston et al. (2012a) show that the rela-
tionship between the probability of default, both individually and systemic, and connec-
tivity is U-shaped. Recent research has suggested a core-periphery structure for financial
networks (Lux (2015)). Hojman and Szeidl (2008) develop a model of network formation
and show that if the benefits from being connected exhibit decreasing returns to scale and
decay with the network distance then one can generate a core-periphery network. In a
recent paper, Silva et al. (2015) has shown that the Brazilian financial market has a core-
periphery structure that changes over time. Little is known on how these topologies imply
different levels of systemic risk. Therefore, determining network topologies that are more
prone to systemic risk still remains as an important question in the research agenda.2

Minoiu and Reyes (2013) show that connectivity is volatile, which implies that
network topology may be changing over time. In an interesting case study, Martı́nez-
Jaramillo et al. (2014) show that interbank exposures have changed for the Mexican case
after the collapse of Lehman Brothers. Therefore, one could expect network topology to
change substantially over time. In this case, monitoring how the network evolves over
time is crucial for the assessment of systemic risk and the likelihood of contagion in
different periods. Nonetheless, little is known on what measures would be useful for
monitoring these financial networks. This issue is of utmost importance as the failure
of financial institutions can have relevant implications for the real economy and hence

1A study commissioned from the International Monetary Fund, the Bank for International Settlements,
the Financial Stability Board and the G20 has found that size is not the only dimension that has to be
evaluated when determining systemic importance of financial institutions, although it is the most important
factor. The study finds that interconnectedness is the second most important factor in the determination of
the systemic importance (IMF et al. (2009)).

2See also Gai et al. (2011) which shows that complexity and concentration in financial networks may
amplify financial fragility.

4



far-reaching consequences.
Our paper contributes to the literature in four main ways. First, we propose two new

network measures that have clear systemic risk interpretation. Second, we derive theoret-
ical properties for these network measures. Third, we show how these measures evolve
over time using a unique dataset on complete exposures for the Brazilian financial mar-
ket. Fourth, we show how these measures can be useful for the surveillance of financial
networks. Therefore, these measures can be very useful in the design of better financial
regulation and monitoring of financial systems.

The empirical exercise provides some guidance on how the methodology works in a
financial environment dominated by universal banks (characteristic of the Brazilian bank-
ing system). Demirgüç-Kunt and Huizinga (2010) argue that after the crises the universal
banking model has emerged as a more desirable structure for financial institutions since
it is more resilient to adverse shocks due to risk diversification an increase of returns.
Therefore, an empirical exercise that evaluates the behavior of universal banks, from a
networks perspective, may provide some insights on their inherent risks.

The first risk-related network measurement that we propose is denominated impact
susceptibility. The computation of the impact susceptibility is built upon the concept of
network communicability, originally introduced by Estrada and Hatano (2008). In gen-
eral terms, the impact susceptibility is defined as how likely it is for a financial institution
(FI) to receive impacts originated from arbitrary points in the network. Thus, this mea-
surement gauges the potential contagion of market participants. The impact susceptibil-
ity computation relies on a weighted combination of shortest paths and walks of several
lengths that we compute using the vulnerability matrix constructed from the financial net-
work. A directed connection exists in the vulnerability matrix when the default of an
entity leads another institution into default. Hence, the vulnerability matrix captures the
notion of the importance of the FIs’ liabilities in relation to available capital buffers of
their neighborhood.

We use that matrix to build a graph that delineates the potential contagion paths
that may arise due to arbitrary defaults in the network. The impact susceptibility, thus,
measures the potential that these feasible contagion paths end up impacting FIs. The
motivation of using not only shortest paths, but also other longer paths is as follows. The
contagion transmission may not occur only through the shortest path between different
FIs. For example, it may cascade through longer paths in an isolated or additive manner,
using paths that are easier to “breakthrough” because of the presence of FIs with low
capital buffers. The impact susceptibility captures both types of contagion transmissions.

The impact susceptibility can also provide guidelines for the regulator by pointing
out potential candidates for a close surveillance. As such, we can also consider the im-
pact susceptibility as a financial stability-monitoring tool. In our work, we link the impact
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susceptibility coefficient of each bank to its potential of receiving impacts from the net-
work using a topological approach. We obtain theoretical results that show that, when the
impact susceptibility coefficient of an FI is one, the analysis of its local vulnerabilities
is roughly sufficient to determine whether or not that FI may lead to amplifications of
contagion routes. This is true because, in this situation, the FI communicability to other
vertices in the network, except to its direct neighbors, is zero. Opposed to that, when
the impact susceptibility of that FI is larger than one, we show that only assessing the
financial health of its neighborhood may not provide sufficient information as to whether
or not that entity will amplify contagion. This holds true because remote institutions can
communicate with these kinds of entities very easily. We relate this phenomenon to the
concept of remote vulnerability, which can be understood as the susceptibility of market
participants of receiving indirectly hits via contagion processes.

One of our main theoretical contributions in this work is to show that the impact
susceptibility of an FI is greater than one if and only if it is remotely vulnerable. Using
this result, potential good candidates for a close surveillance are those entities that are
remotely vulnerable, because distant defaults are likely to reach them. Note, however,
that this is a measure of potential for contagion, not of contagion itself, meaning that
whether or not the market participant will default depends on its current capability of
absorbing losses from its direct exposures.

In the Brazilian financial market, we find that non-banks are dominant over banks
in terms of impact susceptibility. We show that there are periods in which the impact
susceptibility of non-banking entities, such as credit unions, is greater than one, revealing
their remote vulnerability. Within these periods, we cannot simply evaluate the health
of these non-banking institutions by assessing their local vulnerability. This surveillance
strategy is insufficient because many potential contagion paths can ultimately affect these
non-banks in an indirect or aggregative manner. Even though the health of their neighbors
is also important to analyze, as they act as shields and can therefore repel the propagation
and amplification of contagion paths, it is not sufficient to assess whether or not these
neighbors will be able to absorb losses coming from other communicable players in the
network.

Still with respect to our findings connected with the impact susceptibility, we verify
that banking institutions have impact susceptibility indices smaller than one in the entire
period. This fact suggests that indirect and communicable neighbors cannot affect them.
In this way, the analysis of local vulnerabilities of these banking institutions is usually
sufficient to determine as to whether or not they may lead to the amplification of contagion
routes.

One natural extension of the impact susceptibility index is to transport its meaning
from the vertex-level to a network-level measurement. Using this idea, we introduce
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the notion of impact fluidity. We define the network impact fluidity as how potentially
easy can an impact travel throughout the network built up from the FIs’ vulnerabilities.
Domino-like effects due to an onset of a contagion process are more prone of happening in
networks with high impact fluidity. This holds true because, in this situation, FIs tend to be
very susceptible to receiving impacts from the network due to their high communicability.
Therefore, networks with small fluidity of potential impacts are safer than those with large
impact fluidity. We show that the network topology and the available capital buffers of
the FIs are the main contributors for establishing the impact fluidity of the network.

With regard to our findings related to the network impact fluidity, we observe that
the Brazilian financial market has low fluidity for the entire period. This characteristic
suggests that, on average, contagion processes only happen to entities that have direct
exposures to the defaulted neighbor. That is, indirect contagion chains are unlikely to
materialize. As such, the contagion routes are short, in general. Note, however, that
institution-wise surveillance is essential, as some institutions can be very susceptible to
potential impacts, while the impact fluidity of the network remains small. Nonetheless,
the network impact fluidity supplies a quick gist as to how the network members are
susceptible to random defaults occurring in the market.

Another interesting finding that drives attention is that the Brazilian financial mar-
ket, from 2008 to 2014, has the lowest impact fluidity index exactly in September 2008,
which is the period at the heart of the crisis. We relate the low impact fluidity to the fact
that FIs were less willing to provide liquidity to their counterparties in that period of tur-
moil. Hence, the number of exposures that could lead to a potential default substantially
decreased in that period.

Another contribution of this paper is the definition of a risk-related network mea-
sure that captures the notion of how influent one institution is in terms of diffusing impacts
over the network in the quantitative sense. Note that the impact diffusion influence is the
opposite perspective of the impact susceptibility, which in turn measures how susceptible
one institution is to potential impacts. We can understand the diffusion influence of an FI
q in terms of the variation it provokes on the communicability indices of all of the partic-
ipants when we remove q’s power of diffusing impacts in the network built up from the
vulnerability matrix. If the communicability decreases at a large extent, then that removed
FI plays an important role in diffusing impact throughout the network. Conversely, if its
removal slightly modifies the communicability between FIs, then it does not influence the
impact diffusion process in the network.

We theoretically show how to factor out the variations of the communicability in-
dices due to the removal mechanism into two terms that are intuitive and important from
a viewpoint of impact propagation. These terms are the influence exerted by q in starting
and in intermediating the impact propagation. We also provide guidelines for employing
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the diffusion influence indices as financial stability-monitoring tools. With this purpose,
we introduce the concept of remote contagiousness, which is the possibility of an FI q

to lead into default other network members that are not directly exposed to q. In addi-
tion, we show that, if q is remote contagious, then its impact diffusion influence must be
greater than one. This result enables us to find the most harmful entities in the network in
a systematic manner.

In financial networks, institutions with high impact diffusion influence have the po-
tential to propagate and amplify impact or losses to the network. This measure, however,
does not quantify how harmful these impact propagations can be to the entire financial
system. For instance, one institution can have large influence in propagating impacts,
but only to non-important institutions. A contrario sensu, one institution may have low
influence in propagating impact or losses and still have the potential to cause a devastat-
ing impact on the financial system. Therefore, we also define a weighted version of the
impact diffusion influence by modulating each potential impact to a corresponding proxy
of importance of the impacted institution. Note that, while the non-weighted version pro-
vides a quantitative measure of how many entities are impacted, the weighted version also
brings into play the importance of each of the impacted entities.

We find that banking institutions have larger impact diffusion influence than non-
banking institutions in the entire period. Specifically, we show that non-banking insti-
tutions are not at all active agents for diffusing impact in the network, as they typically
cannot communicate to anyone because they are solely investors in the financial network.

Another key finding of this work is that we unveil the presence of a portion of
non-large banking institutions that is more influential than large banks in diffusing impact
throughout the network. In terms of financial system stability, regulators must be aware of
these most influential entities, as they can render the system more risky. One factor that
contributes to this finding is that non-banking institutions prefer to create relationships
with non-large banks than with large banks. These non-banking institutions establish fi-
nancial relations with non-large banks probably because they offer high return rates at the
cost of higher risks. In this context, the impact diffusion influence correctly captures this
notion that some non-large banks are candidates of potentially diffusing more impact than
large banks. Finally, we also show that the large banks’ distribution of impact diffusion
influence is roughly uniform, while the distribution of impact diffusion influence exerted
by non-large banks is highly skewed. This suggests the presence of different classes of
non-large banks, which we define in terms of their contribution to the overall systemic
risk of the financial network.
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1.1 Notation

In order to analyze the network, we extract some network measures from the graph
G = (V ,E ) constructed from the borrowing and lending relationships established by
members of the financial market. To build up such network, let V denote the set of
vertices (FIs) and E , the set of edges. The cardinality of V , N = |V |, represents the
number of vertices or FIs in the network. The matrix L expresses the liabilities matrix
(weighted adjacency matrix), in which the (i, j)-th entry corresponds to the liabilities of
the FI (vertex) i towards j. We define the set of edges E by the following filter over L:
E = {Li j > 0 : (i, j)∈ V 2}. In our analysis, there is no netting between i and j.3 As such,
if an arbitrary pair of FIs owe to each other, then L will present two directed independent
edges linking each other in opposite directions. An interesting property of maintaining
the gross exposures in the network is that, if an FI defaults, its debtors remain liable for
their debts. We also define the matrix of exposures or assets between the FIs as A = LT ,
where T is the transpose operator. In this paper, when we do not mention the type of
network that we are using, it is assumed to be the liabilities matrix L.

1.2 Organization

The structure of the remainder of the paper is as follows. In Section 2, we describe
the methodology employed in our analysis. In Section 3, we provide meta-information
about the Brazilian financial network. In Section 4, we discuss the main results and
findings. Finally, in Section 5, we draw some conclusions about the obtained results.

2 Methodology

In this paper, we move forward in the complex network and systemic risk literature
by contributing with three new risk-related network measurements: impact susceptibility,
network impact fluidity, and the impact diffusion influence (weighted and non-weighted
versions). The proposed measures are global indicators, as they make use of all of the
relationships contained in the network to derive information. In addition, we provide
clear systemic-risk interpretations for each of those indicators.

We start by presenting the communicability concept, opening way to understanding
our proposed measures. Afterwards, we detail the contributions of this work.

3We do not net out pairwise liabilities so as to maintain consistency with the Brazilian law, because
financial compensation is not always legally enforceable.
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2.1 Relevant background: communicability concept

In this section, we review the communicability concept in complex networks, which
we use to build up our risk-related network measures in this paper. Communicability is
defined for every pair of vertices p∈ V and q∈ V . In essence, the communicability from
p to q quantifies how easily vertex p can communicate with q by means of a combination
of shortest paths and random walks with varying lengths. The communicability concept
first appeared in the work of Estrada and Hatano (2008). Mathematically, Estrada and
Hatano (2008) define the communicability of vertex p to q as:

Gpq(M) =
1
s!

Ppq + ∑
k>s

1
k!
(Mk)pq = (eM)pq, (1)

in which Ppq denotes the number of paths with the shortest length from p to q; s is the
length of such paths; and M is the binary adjacency matrix obtained from liabilities matrix
L. The term M(k)

pq is the (p,q)-th element of the kth power of matrix M, which gives the
number of walks of length k from p to q along the liabilities adjacency matrix M, where
k > s. The communicability of Gpq and Gqp may be different for directed graphs, such as
for the financial market network. A large Gpq reveals that p can reach q by several routes.
Conversely, when Gpq is small, there are few possibilities for p to reach q.

For a financial system network, the communicability Gpq is a measure of the po-
tential contagion transmitted from p to q, which takes into account the network topology.
The onset of a default on p may propagate to q by several paths, either by their shortest
ones or through other longer walks. For example, there could be a fragile long path of
FIs with insufficient capital to absorb the default of p, in a way that the shock propagates
through this route towards q. It is worth noting that a large Gpq does not imply a default
of q when p defaults; rather, it simply indicates that q’s assets are prone to being impacted
in many different ways. On the other extreme, if Gpq is small, p’s default may not impact
q at all, as there is a small number of possible paths from p to q through which a potential
shock can propagate.

2.2 Risk-related network analysis

In this section, we present the main contributions of this work. Note that all of our
proposed measures gauge potential contagion in the network.

2.2.1 Impact susceptibility

The original liabilities matrix L representing the financial network is not a repre-
sentative matrix for evaluating possible contagion routes among pairs of FIs, in that it
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only takes into account pairwise exposures. A more depictive network would be one that
allowed for computing how well an FI would be able to absorb impacts coming from its
exposures. The vulnerability index, which we define as the FI’s exposures to its capital
buffer ratio, exactly conveys that type of information. With that consideration in mind, we
first define a truncated and binary version of the vulnerability matrix V in the liabilities
sense, denoted here as V̄, as follows:

V̄i j =

1, if Li j
E j
≥ 1,

0,otherwise.
(2)

Observe that V̄i j = 1 only when bank i’s liabilities towards j surpasses j’s capital
buffer. This configuration illustrates the situation in which the default of i can lead to
a subsequent default of j, as j is highly exposed to its neighbor i. Conversely, V̄i j = 0
whenever j can absorb the losses in case i defaults.4 Note now that the graph topology
represented by V̄ quantifies the possible contagion paths delineated by the current condi-
tions and exposures of the market participants.

The graph V̄ not only provides information of direct contagion, but indirect con-
tagion once we take higher powers of V̄. For instance, the entry (V̄k)i j ∈ N indicates
the quantity of contagion paths of length k that starts from i and are transmitted to j due
to high vulnerabilities of other FIs. The contagion transmission, however, may not only
occur through the shortest path between different FIs. That is, it may cascade through
longer paths in an isolated or additive manner, using, for instance, paths that are easier
to “breakthrough” because of the presence of members having low capital buffers. The
computation of the communicability index in (1) exactly provides this information, once
we take as input the truncated vulnerability matrix in (2) instead of the original graph M.
We define the institution q’s impact susceptibility, here symbolized as Sq, as:

Sq(G(V̄)) =


1

k(in)q (V̄)
∑p∈V

p6=q
Gpq(V̄), when k(in)q (V̄)> 0

0, otherwise
, (3)

where k(in)q (V̄) is the number of counterparties to which q is directly exposed and can
lead it to default, i.e., it is the number of counterparties p such that Gpq(V̄) > 0. Sq is a
linear combination of the communicabilities of all of the other market participants p ∈ V

to q, except q itself. Note that we have explicitly informed that the communicability is
calculated based on the truncated vulnerability matrix V̄, using the notation Gpq(V̄). We

4Note that we could also introduce stress between banks by fixing V̄i j = min
(

Li j
E j
,1
)

.
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have removed the elements in the main diagonal of the communicability matrix G(V̄)

because they do not convey a measure of intercommunicability between pairs of different
FIs. Instead, Estrada and Rodrı́guez-Velázquez (2005) show that the i-th entry of the main
diagonal represent the subgraph centrality or self-communicability of the FI i. In brief
terms, the subgraph centrality measures the importance of a vertex by taking into account
the number of closed subgraphs of which that vertex is member. Here, in contrast, we are
interested in quantifying how easily pairs of FIs can communicate.

We now provide some useful concepts and mathematical derivations that allow us
to better understand the properties of the impact susceptibility index.

Definition 1. Remote vulnerability: we say that institution q is remotely vulnerable when

∃p ∈ V and k > 1 : (V̄k)pq > 0.

Remark 1. Besides being remotely vulnerable to its indirect neighbors, FI q can be re-

motely vulnerable to its direct neighbors p whenever there exists an indirect path from

p to q. The left panel of Fig. 1 shows an example of remote vulnerability coming from

an indirect neighbor. The right panel in Fig. 1 shows a situation in which q is remotely

vulnerable to FI 2 via the possible contagion path “2⇒ 1⇒ q.” In this case, all of the

members in the path are direct neighbors of q.

q

2

3

4

1

q

2

1

q is remotely vulnerable to
indirect neighbors 3 and 4

q is remotely vulnerable to
direct neighbors 1 and 2

Figure 1: Illustrations that show situations in which q is remote vulnerable.

Definition 1 states that remote vulnerability of q can be understood in terms of the
existence of paths linking another arbitrary institution p to q in an indirect manner. We
move forward in this concept by relating it to our impact susceptibility index in the next
demonstrations.

Lemma 1. If institution q is a singleton, then it cannot be remotely vulnerable.

Proof. If q is singleton, then (V̄k)pq = 0, ∀p ∈ V and k ∈N. Hence, q cannot be remote
vulnerable. �

Lemma 2. If p is a direct neighbor of q, p 6= q, then Gpq(V̄)≥ 1.

12



Proof. We can express the communicability definition in (1) in terms of a matrix expo-
nential. Rewriting the matrix exponential as a power series, we get:

(eV̄)pq =
∞

∑
k=0

(V̄k)pq

k!
= (I)pq +(V̄)pq +

(V̄2)pq

2!
+ . . . , (4)

where I is the identity matrix. As p 6= q, the first term in the RHS of (4), the identity matrix
element (I)pq has a zero value. The second term, (V̄)pq results in 1 as q is a neighbor of
p by hypothesis. The order-k term yields non-zero entries if there exists paths of length k

from p to q. Putting these facts in together in (4), we get:

(eV̄)pq = Ipq + V̄pq +Rpq

= 0+1+Rpq

= 1+Rpq ≥ 1 (5)

where Rpq represents the residual sum of the paths of length k > 1 from p to q, whose
expression is:

Rpq =
∞

∑
k=2

(V̄k)pq

k!
. (6)

From (6), we see that Rpq ≥ 0, because that expression is composed of an infinite
weighted linear combination of high-order matrix powers. As the vulnerability matrix
possesses only non-negative entries, if we take high-order powers of it, we always get
non-negative numbers.

�

Corollary 1. The equality of Lemma 2 (Gpq(V̄) = 1) only holds when Rpq = 0 in (5).

According to (6), this can only happen when no paths of length k≥ 2 exist between p and

q. Conversely, it can only exist paths of unitary length linking p to q. In this case, such

path is the direct exposure of q to p (or direct liability of p towards q).

Lemma 3. If Gpq(V̄)> 1, then q is remotely vulnerable.

Proof. Invoking Lemma 2, the strict inequality only holds in the case Rpq > 0 in (5). In
accordance to (6), this is true when paths of length k≥ 2 exist between p and q. Hence, q

must be remotely vulnerable. �

Theorem 1. Sq > 1 if and only if q is remotely vulnerable.
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Proof. We first note that q cannot be singleton. Otherwise, from Lemma (1), q would not
be remotely vulnerable. Therefore, with no loss of generality, we assume that q is not
singleton, i.e., k(in)q > 0.

Initially, we prove that the RHS of Theorem 1 implies the LHS: if q is remotely
vulnerable, then Sq > 1. We start the proof by manipulating algebraically the expression
in (3). These steps are valid for proving both ways of the theorem. The derivation of the
referred equation is given as follows:

Sq(V̄) =
1

k(in)q (V̄)
∑

p∈V
p6=q

Gpq(V̄)

⇔ Sq(V̄) =
1

k(in)q (V̄)
∑

p∈V
p6=q

(
Ipq + V̄pq +

∞

∑
k=2

(V̄k)pq

k!

)

⇔ Sq(V̄) =
1

k(in)q (V̄)
∑

p∈V
p6=q

(
V̄pq +

∞

∑
k=2

(V̄k)pq

k!

)
. (7)

Note that:

k(in)q (V̄) = ∑
p∈V
p6=q

V̄pq = ∑
p∈V

V̄pq (8)

Plugging (8) into (7) results in:

Sq(V̄) =
1

k(in)q (V̄)

k(in)q (V̄)+ ∑
p∈V
p6=q

∞

∑
k=2

(V̄k)pq

k!


⇔ Sq(V̄) = 1+

1

k(in)q (V̄)
∑

p∈V
p6=q

∞

∑
k=2

(V̄k)pq

k!
(9)

⇔ Sq(V̄) = 1+
1

k(in)q (V̄)
∑

p∈V
p6=q

Rpq (10)

We assume, by hypothesis, that q is remotely vulnerable to at least one FI p. Hence,
∃p ∈ V and k > 1 : (V̄k)pq > 0. In other words, Rpq > 0, for some p. Incorporating this
fact into (10) yields Sq(V̄)> 1, and the first part of the proof is complete.

Observe that Sq(V̄) ≥ 1 whenever q is not singleton. This is a lower bound for
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connected institutions in the graph.
Now, we prove that the LHS of Theorem 1 implies the RHS. Using the hypothesis

of the LHS of Theorem 1, we get:

Sq(V̄)> 1

⇔ Sq(V̄) = 1+
1

k(in)q (V̄)
∑

p∈V
p6=q

Rpq > 1

⇔ ∑
p∈V
p6=q

Rpq > 0 (11)

Equation (11) only holds when there exists at least one path of length k > 1 between
any p ∈ V , p 6= q, and q, i.e., when q is remotely vulnerable to p. Using Lemma 3, we
conclude that q is remote vulnerable and the proof is complete. �

Note that (3) assumes a non-continuous interval of values. If entity q is invulnerable
to any other entities, then k(in)q (V̄) = 0, i.e., q is singleton in the vulnerability matrix and
no other FI can communicate with q. In this situation, q’s susceptibility for impacts is
Sq(V̄) = 0. When q is not singleton, the range of values assumed by the impact suscepti-
bility index is Sq(V̄) ∈ [1,Gmax

N ], where Gmax
N is the maximum communicability between

any pairs of vertices in a graph with N vertices. Note that the communicability reaches
its maximum value in complete graphs. According to Estrada et al. (2008), Gmax

N is given
by:

Gmax
N =

1
Ne

(
eN−1

)
, (12)

that is, the maximum communicability Gmax
N → ∞ as N→ ∞.

Equation (3) provides important indicative information as to whether FI q may be
impacted in the event of the default of any FIs in the network. If Sq(V̄) is large, the
probability that a default of a randomly chosen FI p reaches FI q is higher, whereas if
Sq(V̄) is low, that probability is comparatively lower. The impact susceptibility Sq(V̄)

alone does not determine contagion risk, but rather provides subsidies to systematically
identify whether the presence of vulnerable FIs may render the system more or less risky.

2.2.2 Network impact fluidity

In this section, we introduce another novel proposed network measurement. The
potential fluidity of an impact in the network F(V̄) is given by:
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F(V̄) =
1
N ∑

q∈V
Sq(V̄), (13)

i.e., we quantify the potential fluidity in terms of average total impact susceptibility in
the network. It is worth nothing that the network impact fluidity, despite being in a sim-
ilar format, is not equal to the total communicability concept introduced by Benzi and
Klymko (2013), in the sense that, in our measure, the impact susceptibilities are weighted
adaptively according to the number of investors of the FIs in accordance with (3).

The idea behind such index is as follows. When most FIs have large impact sus-
ceptibility, it is easier that shocks suffered by a randomly chosen FI to propagate to other
FIs along the network. In other terms, the vulnerability network formed by the FIs favors
the fluidity of impacts in the network and, hence, F(V̄) is large. In contrast, when most
of the FIs have small impact susceptibility, few contagion routes exist that ultimately lead
to them. In this case, the network retains most of the impact at the vicinity of where the
default or original impact happened. As such, F(V̄) is small.

The fluidity of the network can vary mainly due to two reasons: capital buffer and
network topology. Figure 2a shows a network with low network impact fluidity, as the
FIs in the left side are totally incommunicable with FIs located at the right side. This is
because FI 1 acts as a shield in preventing the propagation of impacts from one side to
another, as it has a large available capital buffer. Note, however, that if FI 1’s capital buffer
diminishes, the impact fluidity of the network can largely increase, as Fig. 2b reveals.
Another factor that can lead to the increase of F(V̄) is the network topology. Figure
2c shows an example in which the introduction of a new FI permits the transmission of
shocks from the left to the right side. In practical terms, the shocks always escape from
the most vulnerable FI, in case, FI 8, due to its low capital buffer. In any case, note that
the network topology plays a crucial role in both situations. For instance, we can have
several FIs with very low capital buffers and still do not have high impact fluidity. This
is the case when none of those FIs invests in the market, i.e., they are not exposed to any
network members.

2.2.3 Impact diffusion influence

In this section, we detail another contribution of this work, which is the impact
diffusion influence index. We have devised hitherto measures of how likely one vertex
in a network can be susceptible to impacts occurring on other arbitrary vertices in the
network. Now, we take the opposed perspective and construct a measure that shows
the potential influence exercised by an FI on the diffusion or propagation of impacts in
the network. Observe that, while the susceptibility conveys the concept of how exposed
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Figure 2: Illustrative networks with different network impact fluidities. The numbers inside the blue glowing
rectangles symbolize the FI’s capital buffer. The numbers near the edges portray exposures of the FIs near
the arrows.

one member of the network is in relation to the remainder participants, the influence on
the impact diffusion process suggests how harmful one member of the network is to the
others.

The diffusion influence of an FI q can be understood in terms of the variation it
provokes on the communicability indices between all of the participants when q’s power
of diffusing impacts is removed from the network that is built up from the vulnerability
matrix. This can be effectively performed by deleting the out-edges emanating from q.
This type of filtering transforms q in a sink vertex in the network, for every path that
reaches q must end in there. Figure 3 presents an schema of the vertex removal mechanism
and how the vulnerability matrix changes when we want to compute the impact diffusion
influence of vertex q ∈ V .

The reasoning behind that procedure is as follows. If q is responsible for diffusing
a significant portion of impact throughout the network, then its removal will reduce the
overall network impact fluidity, causing the impact susceptibility and communicability of
all of the FIs to diminish considerably. In contrast, if q diffuses impact to the network
only to a small extent, then the network impact fluidity will remain almost unaltered. In
this scenario, the impact susceptibilities and communicabilities of all of the FIs in the
network will suffer slight modifications in relation to their original values.

In this context, we express the potential influence that q exerts on diffusing impact
to the network, here denoted as Iq(V̄), as:

Iq(V̄) =
1

k(out)
q (V̄)

∑
p∈V

∑
r∈V
r 6=p

[
Gpr(V̄)−Gpr(V̄(q−))

]
, (14)
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where k(out)
q (V̄) is the number of counterparties exposed directly to q that can be lead to

default by a q’s default. V̄(q−) denotes the modified truncated vulnerability matrix, in
which all of the out-edges that emanates from q are removed (recall Fig. 3). The factor[
Gpr(V̄)−Gpr(V̄(q−))

]
indicates the communicability index of walks from p to r that

visit q. This term is evaluated by first computing the communicability index of p to r

in the original vulnerability network. From that, we subtract the fraction of that com-
municability that is not due to a path that has q along the way. Consequently, Equation
(14) effectively quantifies the shortfall occurred in the pairwise network communicabil-
ity, when q’s power of diffusing impacts is disabled. In addition, observe that we do
not compute self-communicability indices as they do not convey the notion of forward
propagation of impacts.

q

2

3

4

6

5

7

1

Original vulnerability matrix

q

2

3

4

6

5

7

1

Modified vulnerability matrix

Figure 3: Illustrative process detailing the vertex removal mechanism used to compute the impact diffusion
influence. Vertex q is set to be removed. The bolded red edges are removed because q is in one their
endpoints.

With a close inspection of (14), the terms inside the summation can be conveniently
factored out into two groups that are intuitive and important from a viewpoint of impact
propagation, which are: the influence exerted by q in starting impact propagation and that
related to q intermediating that propagation. The next Theorem provides the mathematical
derivations.

Theorem 2. Iq(V̄) can be decomposed into two orthogonal and complementary terms:

Iq(V̄) = I(start)
q (V̄)+ I(inter)

q (V̄), (15)

where I(start)
q (V̄) quantifies the potential influence of q on starting impacts and I(inter)

q (V̄)

indicates the same for impacts that do not start at q, but necessarily pass through it in the

chaining effect. In this second term, q acts as a potential intermediator by transmitting

the impact, in principle, to its direct neighbors.

The two terms in (15) are given by:
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I(start)
q (V̄) =


1

k(out)
q (V̄)

∑p∈V
p6=q

Gqp(V̄), if k(out)
q (V̄)> 0

0, otherwise
(16)

I(inter)
q (V̄) =


1

k(out)
q (V̄)

∑p∈V
p6=q

∑ r∈V
r/∈{q,p}

[
Gpr(V̄)−Gpr(V̄(q−))

]
, if k(out)

q (V̄)> 0,

0, otherwise
(17)

Proof. The strategy is to start off from (14) and analyze the communicabilities matrices to
reach (15). Let G(V̄) and G(V̄(q−)) represent the original and modified communicability
matrices, respectively. The modified communicability matrix is evaluated by transforming
q into a sink vertex. As such, they can be represented by:

G(V̄) =



g11 g12 . . . g1N
...

... . . . ...
gq1 gq2 . . . gqN

...
... . . . ...

gN1 gN2 . . . gNN


, G(V̄(q−)) =



g′11 g′12 . . . g′1N
...

... . . . ...
0 0 . . . 0
...

... . . . ...
g′N1 g′N2 . . . g′NN


,

(18)

where gpr and g′pr are the communicability indices from p to r evaluated from the orig-
inal and modified communicability matrices. Note that the q-th row of G(V̄(q−)) must
be a zero row, because the diffusion power of q is effectively disabled in the modified
vulnerability matrix.

The difference of both matrices in (18) is given by:

G(V̄)−G(V̄(q−)) =



∆g11 ∆g12 . . . ∆g1N
...

... . . . ...
gq1 gq2 . . . gqN

...
... . . . ...

∆gN1 ∆gN2 . . . ∆gNN


, (19)

where ∆gpr = gpr−g′pr. Note that in the q-th row, we simplify ∆gqr = gqr−0 = gqr,∀r ∈
V . Attempting to approach the functional form in (14), we divide (19) by k(out)

q (V̄) and
remove the self-communicability entries ∆gpp,∀p ∈ V , as follows:
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1

k(out)
q (V̄)

[
G(V̄)−G(V̄(q−))−G(self)(V̄)

]
=

1

k(out)
q (V̄)



0 ∆g12 . . . ∆g1N
...

... . . . ...
gq1 gq2 . . . gqN

...
... . . . ...

∆gN1 ∆gN2 . . . 0


,

(20)

where G(self)(V̄) is the matrix with zero-valued entries except its main diagonal, which
assumes the values G(self)

pp (V̄) = ∆gpp,∀p ∈ V . This matrix is introduced to remove the
self-communicabilities entries from the term G(V̄)−G(V̄(q−)).

Note that we can obtain (14) from (20) by simply summing over all of the matrix
entries in (20). The summation of these terms can be performed in a formal way using
the following matricial expression:

Iq(V̄) =
1

k(out)
q (V̄)

1T
[
G(V̄)−G(V̄(q−))−G(self)(V̄)

]
1 (21)

where 1 is a vector with dimension N×1, and T is the transpose operator.
With a matricial representation of Iq(V̄), we are now able to decompose its con-

stituents terms. First, the influence of q on starting a impact diffusion process is related to
its communicability to the remainder of the network. This information can be extracted
from the summation of the terms in the q-th row in the expression (20):

I(start)
q (V̄) =

1

k(out)
q (V̄)

[
gq1 +gq2 + . . .+gqN

]
(22)

=
1

k(out)
q (V̄)

∑
p∈V
p6=q

Gqp(V̄), (23)

which retrieves (16).
The remainder of the rows in the factor

[
G(V̄)−G(V̄(q−))−G(self)(V̄)

]
in (20),

i.e., rows in the set {1,2, . . . ,q−1,q+1, . . . ,N}, account for the influence of q on the role
of intermediating the impact diffusions that start from other vertices in the network. That
is:
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I(inter)
q (V̄) =

1

k(out)
q (V̄)

[
∆g12 + . . .+∆g1N + . . .+∆g(q−1)N +∆g(q+1)1 + . . .+∆gN(N−1)

]
(24)

=
1

k(out)
q (V̄)

∑
p∈V
p6=q

∑
r∈V

r/∈{q,p}

[
Gpr(V̄)−Gpr(V̄(q−))

]
, (25)

which retrieves (17) and the proof is complete. �

The potential impact exerted by q on initiating a diffusion process is related to
how ease q can reach others in the network. This feature is effectively translated by the
communicability index, which captures both shortest and longer paths in the vulnerability
network. In contrast, the intermediation role of q on diffusing impacts is related to how
it influences the communicability indices of other pairs of FIs. If its removal causes the
communicability from p to q to reduce in a significant manner, then q’s influence on the
paths from p to q is important. However, if the communicability is slightly or not modified
at all, then q does not play the role of intermediator of impacts of p to q.

In financial networks, institutions with high impact diffusion influence have the
potential to propagate impact or losses to a large number of FIs in the network. This
measure, however, does not inform how harmful these impact propagations can be to the
financial system. For instance, one institution can have large influence in propagating
impacts, but only to non-important institutions. On the other hand, one institution may
have low influence in propagating impact or losses and still have the potential to cause a
devastating impact on the financial system.

Similar to what we have performed for the impact susceptibility, we derive some
mathematical formulae to better understand the properties of the impact diffusion influ-
ence.

Definition 2. Remote contagious: we say that institution q is remotely contagious when

∃p ∈ V and k > 1 : (V̄k)qp > 0.

Lemma 4. I(start)
q > 1 if and only if q is remotely contagious.

Proof. Once we transpose the communicability matrix G(V̄), the same steps followed
in proving Theorem 1 can be straightforwardly applied to demonstrate the sufficient and
necessary conditions of Lemma 4. �

Theorem 3. If q is remotely contagious, then Iq > 1.

Proof. From (15), we know that Iq = I(start)
q + I(inter)

q . Employing the hypothesis that q

is remote contagious into Lemma 4, we find that I(start)
q > 1. Thus, the inequality Iq > 1
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always holds, because I(inter)
q ≥ 0. Hence, q must be remote contagious and the proof is

complete. �

Remark 2. The converse of Lemma 3 is not always true. This is because q can contribute

to the diffusion process by both starting and intermediating it. In this process, I(start)
q ≤ 1

and I(inter)
q ≤ 1 and Iq > 1 can still hold in a way that q is not remote contagious.

2.2.4 Weighted impact diffusion influence

The impact diffusion influence evaluated in (15) assesses how hazardous one entity
can be to other in a quantitative manner: the more entities it can lead to default, direct
or indirectly, the higher is its influence. The index, however, does not take into account
the importance or value of each of the institutions that are potentially led to default. It is
rather intuitive to give larger weights in the impact propagation process to those exposures
that lead institutions that are more important. In line with that, we propose a weighted
impact diffusion influence measurement as follows:

I(w)
q (V̄,P(value)) =

1

k(out)
q (V̄)

∑
p∈V

∑
r∈V
r 6=p

[
Gpr(V̄)−Gpr(V̄(q−))

]
·P(value)

r , (26)

where P(value) is a proxy for the value or importance of all of the financial institution in
the market. Note that Iq(V̄) = I(w)

q (V̄,P(value)) when P(value) = [1, . . . ,1], i.e., the weighted
influence indicator reduces to the original non-weighted influence index once the impor-
tance of all banks is set in a uniform manner.

We reinforce that the importance in (26) is attributed to the final destination reached
by the walks, instead of their starting point. This allows one to compute a proxy for the
extent of the damage potentially caused by a given institution.

3 Data

In this paper, we use a unique Brazilian database with supervisory data.5 From
this database, we take quarterly information on Brazilian domestic financial market expo-
sures, supervisory variables and balance sheet statements. We use accounting information
to evaluate the FIs’ capital buffers from March 2008 through December 2014. This infor-
mation is vital to compute some network measurements, such as the impact susceptibility
and its derived measures.

5The collection and manipulation of the data were conducted exclusively by the staff of the Central Bank
of Brazil.
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Following Souza et al. (2015), we define the capital buffer of an FI as the FI’s total
capital (Tier 1 + Tier 2 capitals) that exceeds 8% of its risk-weighted assets (RWA). In
Brazil, the capital requirement is 13% or 15% for specific types of credit unions and 11%
for other FIs, including banks. Most FIs hold positive capital buffers (their regulatory
capital exceeds the requirement). FIs that are not compliant with this requirement are
warned by the Supervision and must present a plan to recover compliance in a given
period. If the plan is not credible or not feasible, the Authority intervenes. We set 8%
RWA as a reference for the computation of capital buffers as we assume that if an FI holds
less than what is recommended by the Basel Committee on Banking Supervision (BCBS),
i.e., 8% of its RWA, it will take longer to raise its capital to an adequate level and will
likely suffer an intervention.

Although exposures among FIs may be related to operations in the credit, capital
and foreign exchange markets, here we focus solely on unsecured operations in the money
market. The money market comprises operations on private securities. We have informa-
tion on operations with private securities that is provided by the Cetip6: interfinancial
deposits, debentures and repurchase agreements collateralized by debentures issued by
leasing companies of the same financial conglomerate7. In this work, we term the last
financial instrument as “repo issued by the borrower financial conglomerate.” Figure 4
portrays the total amount of active operations established between members of the finan-
cial network from 2008 to 2014. Noticeably, we see that the amount of interfinancial
deposits prevails over operations related to debentures and repos issued by the borrower
financial conglomerate. The total amount invested in this market by its participants varies
from R$28.09 billion to R$61.98 billion in the period analyzed, corresponding to 1.5% of
the FIs’ total assets and 14% of their aggregated Tier 1 Capital.

We use exposures among financial conglomerates and individual FIs that do not
belong to a conglomerate. Intra-conglomerate exposures are not considered. They can
be either banking or non-banking financial institutions. Banking FIs can be commercial
banks, investment banks, savings banks and development banks. Credit unions represent
non-banking institutions. Banks and non-banks are classified by size according to the
same methodology applied to their groups, i.e., the group of banks and the group of non-

6Cetip is a depositary of mainly private fixed income, state and city public securities and other securities
representing National Treasury debts. As a central securities depositary, Cetip processes the issue, redemp-
tion and custody of securities, as well as, when applicable, the payment of interest and other events related
to them. The institutions eligible to participate in Cetip include commercial banks, multiple banks, sav-
ings banks, investment banks, development banks, brokerage companies, securities distribution companies,
goods and future contracts brokerage companies, leasing companies, institutional investors, non-financial
companies (including investment funds and private pension companies) and foreign investors.

7Recall that repurchase agreements are technically secured operations. However, since the borrower
in this type of repo guarantees the operation using collateral of a leasing company of the same financial
conglomerate, the collateral bears the same credit risk of the borrower financial conglomerate. Thus, in
practical terms, the financial operation turns out to be unsecured.
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Figure 4: Total amount of active operations established between members of the financial network in the
studied period. The y-axis is in log-scale.

banks. We use a simplified version of the size categories defined by the Central Bank
of Brazil in the Financial Stability Report published in the second semester of 2012 (see
BCB (2012)), as follows8: 1) we group together the micro, small, and medium banks
into the “non-large” category, and 2) the official large category is maintained as is in our
simplified version. Therefore, instead of four segments representing the banks’ sizes, we
only employ two.

For each pairwise exposure between financial conglomerates or individual institu-
tions, we remove the share that is guaranteed by the Brazilian Credit Guarantee Fund
(FGC)9. Among the types of financial institutions that we are employing in our analysis,
only credit unions are not registered members in the FGC. All of the financial instru-
ments that we are using are covered by the FGC. Until May 2013, the FGC guarantees
up to R$70 thousand for each deposit holder against each registered institution. After that
date, due to Resolution 4222 published by the National Monetary Council, that amount
increased to R$250 thousand. Say that the liability of p to q at time t is Lpq(t). If p is not
a credit union, then we adjust that liability to max

[
0,Lpq(t)−FGC(t)

]
, where:

8The Financial Stability Report ranks FIs according to their positions in a descending list ordered by
FIs’ total assets. The Report builds a cumulative distribution function (CDF) on the FIs’ total assets and
classifies them depending on the region that they fall in the CDF. It considers as large FIs that fall in the
0% to 75% region. Similarly, medium-sized FIs fall in the 75% to 90% category, small-sized, 90% to 99%
mark, and those above are micro-sized.

9The Credit Guarantee Fund, whose legal establishment is authorized by the Resolution 2197 emitted
by the National Monetary Council, is a private institution responsible for the protection of checking/saving
account holders and investors against registered financial institutions in case of intervention, liquidation or
bankruptcy.
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FGC(t) =

70,000, if t < May/2013,

250,000, otherwise.
(27)

Figure 5a displays the evolution of the total number of participants in the financial
market. Non-large banks are the majority in the entire period. Large non-banks and non-
large non-banks are present in similar quantities in the sample. The number of large banks
is the minority and remains roughly constant throughout the period. Although the pro-
portions of the analyzed segments, which are divided into banks and non-banks and size
groups as defined above, remain roughly the same, the total number of FIs does change.
In special, the number of FIs consistently grows until March 2013, date in which it suffers
a considerable drop due to a reduction in the number of large non-banks. Afterwards, we
can verify again the upward trend on the number of FIs. Figure 5b presents the mean cap-
ital buffer for the same categories of FIs. We can see that large banks have much higher
capital buffers than the other entities, which reflects their size differences.
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Figure 5: Evolution of several features extracted from the Brazilian financial network. We discriminate the
trajectories by size (large or non-large) and type of entity (banking or non-banking).

4 Results

In this section, the main findings of the paper are discussed using our proposed
risk-related measurements on the Brazilian financial market. Recall that we build up
this financial market using interfinancial deposits, debentures, and repos issued by the
borrower financial conglomerate among banking and non-banking institutions.
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4.1 Impact susceptibility

We investigate the contribution of the network structure to the fragility of the fi-
nancial system. To do this, we compute the impact susceptibility of each bank, so that
we can identify which banks are more prone to default as a consequence of defaults of
other randomly chosen banks. We note that institutions with higher impact susceptibility
indices (much higher than 1) should be monitored strictly, specially if they also have high
impact diffusion influence.

Figures 6a and 6b display the impact susceptibility coefficient for large and non-
large FIs in the financial market from 2008 to 2014. These figures make clear that
non-banking institutions are dominant with respect to the average impact susceptibil-
ity throughout the studied period. We distinguish the areas denoting remote and local
vulnerabilities. We observe that every remotely vulnerable entity must also be locally
vulnerable.

In addition, Figure 6a shows that large banks have zero impact susceptibility indices
for almost the entire interval. As such, they are not susceptible to individual defaults
because they have a combination of sufficiently high capital buffers (recall Fig. 5b) and
relative small exposures to the financial network. In this way, their connectivity is sparse
in the vulnerability matrix domain. Nevertheless, there is a single point in which the
impact susceptibility of large banks is non-zero: in December 2008. Out of the six existent
large banks in that period, one pair of large banking institutions has a large exposure
between one another that can potentially lead the creditor side into default if the liability
is not honored by the debtor. This explains the positive average impact susceptibility of
1/6≈ 0.17 for large banks in December 2008. Large banks, in all of the other periods, are
essentially singletons10 in the vulnerability network.

Figure 6b exhibits a similar picture for non-large banks: very low, but still positive,
impact susceptibility values. In addition, for all of the banking institutions we find that
the impact susceptibility is less than one, revealing that these entities, in general, are not
prone of being remotely impacted from an indirect and communicable neighbor. That is,
they are only locally vulnerable. In this way, the analysis of their local vulnerability is
generally sufficient to determine as to whether or not they may lead to the amplification
of contagion routes.

Still in Figs. 6a and 6b, we see that non-banking institutions are prevalent in terms
of impact susceptibility values when we compare against banking institutions. Having in
mind that non-banks are almost purely investors in the Brazilian financial market, they
are likely to be more exposed than the others. Note that there are periods in which the
impact susceptibility is greater than one. For large non-banks, they are: during the first

10A singleton vertex is defined as a vertex with no out- and in-edges.
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quarter of 2011 and from the second semester of 2013 to the first quarter of 2014. For
non-large non-banks: from the fourth quarter of 2010 to the first quarter of 2010 and from
the fourth quarter of 2013 to the first quarter of 2014. Within these regions, the financial
healthiness of these non-banking institutions cannot simply be evaluated by their local
vulnerability. They are remotely vulnerable. Even though the health of their neighbors
remains important for a first analysis, as they act as shields and can therefore repel the
propagation and amplification of contagion paths, it is not sufficient to assess whether
or not these entities with high impact susceptibility will be able to absorb losses coming
from arbitrary players in the network.
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(a) Impact susceptibility of large FIs
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(b) Impact susceptibility of non-large FIs

Figure 6: Trajectory of the average impact susceptibility of large and non-large FIs for static snapshots of
the financial network in different periods.

In order to get a better glimpse of the discussed results, we show the networks
constructed from the truncated vulnerability matrices for September 2008 and December
2013 in Figs. 7a and 7b, respectively. Recall that in the vulnerability matrix an edge
from p to q exists only if the default of p forces q into default. We choose the network
snapshot for September 2008 because it is a date at the heart of the subprime crisis. We
also display the network snapshot for December 2013 in that it is an interesting point in
which the impact susceptibility of non-banking institutions is larger than one, according
to Figs. 6a and 6b.

These figures pictorially clarify the reason non-banking institutions own the largest
impact susceptibilities: the majority of the potential contagion paths end up in them for
both periods. They are, thus, leaves or sinks in the graph. This is in line with their
investors-only market profiles previously described. Furthermore, we see that it is much
more usual potential vulnerabilities of non-banking institutions to non-large banks than
to large banks. In September 2008, one non-large bank can potentially lead six large
non-banks and another non-large bank institution to default. In contrast, this scenario is
accentuated by a large extent in December 2013, in which there is a non-large bank that
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(a) Vulnerability network in September 2008

(b) Vulnerability network in December 2013

Figure 7: Vulnerability networks of the Brazilian financial market computed for two dates. An edge from i
to j exists if i’s default lead j to default as well. The circles denote banking institutions, while the squares,
non-banking institutions. The green color portrays domestic private institutions; the red color, government-
owned institutions; the blue color, private with foreign control institutions; and the black color, private with
foreign participation institutions. The vertices’ sizes are proportional to the corresponding institutions’
sizes.

can potentially impact more than 20 non-banking institutions in a direct hit, and even
more indirectly.

In December 2013, we see a higher frequency of pairs of non-large banks leading
one another to default than in September 2008. This is one of the reasons non-banking in-
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stitutions have an average impact susceptibility greater than one, as these vulnerable pairs
of banking institutions almost always communicate with non-banking entities. Hence, the
latter can be indirectly impacted in a domino-like effect if the indirect, but communicable,
banking institution defaults. As such, non-banking institutions must be aware not only of
the health on their immediate vicinities, but also of indirect neighbors.

4.2 Network impact fluidity

Given the topology of the vulnerabilities network associated to the financial system,
the network impact fluidity measures the network’s potential contagion intensity. Put
differently, it gauges how far a default of an FI can reach, on average, leading other
FI into default. Thus, domino-like effects due to a contagion process are more prone of
happening in networks with high impact fluidity. This holds true because, in this situation,
FIs tend to be very susceptible to receiving impacts from the network due to their high
communicability. Note, however, that the network impact fluidity measures the potential
impact and not the realized loss that really occurs. The latter depends on how the agents
behave, and how high the capital buffers are of the institutions when the incident occurs.

Figure 8 exhibits the trajectory of the network impact fluidity evaluated on the
Brazilian financial market from 2008 to 2014. Observe that the fluidity remains below
the mark of one in the entire period, suggesting that, on average, contagion processes
only happen to entities that have direct exposures to the defaulted neighbor. That is, con-
tagion processes in an indirect manner are unlikely. As such, the contagion routes are
short in general. Note, however, that institution-wise surveillance must be performed, as
some entities can be very susceptible to impacts, while the impact fluidity of the network
is small. Nonetheless, the network impact fluidity supplies a quick gist as to how the
network members are susceptible to random defaults occurring in the market.

Looking back at Figs. 7a and 7b, which shows the vulnerability networks in Septem-
ber 2008 and December 2013, respectively, one fact that drives attention is of the signif-
icantly larger quantity of edges in December 2013 than in September 2008. In fact, the
densities of the vulnerability networks in September 2008 and December 2013 are 0.11%
and 0.18%, respectively.11 In principle, this observation evidences that the network im-
pact fluidity in December 2013 is much higher than in September 2008, as we can see
from Fig. 8. In fact, the network in September 2008 marks the lowest network impact
fluidity in the studied period. One reason for that stems from a regulatory resolution

11Contrasting to that, the densities formed by the liabilities networks in September 2008 and December
2013 amount to 1.85% and 1.25%. This means that, even though there are more pairwise relationships
between institutions, the lent and borrowed amounts are smaller. This fact further strengths the argument
that impact fluidity in networks is not necessarily correlated to the density of the liabilities network. Instead,
it both depends on the network topology and the FIs’ capital buffers, for they may provide fragility or
robustness to the system.
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published by the National Monetary Council12 and accessory regulations emitted by the
Central Bank of Brazil that came into effect in July 200813. That resolution modified the
computation of the capital requirements of financial institutions. In special, the resolu-
tion largely broadened the risk coverage of supervised institutions by the Central Bank of
Brazil. As a result, we observe an increase of the tier 1 capital share of the available cap-
ital buffers of FIs. This may explain in part the reason of the robustness of the Brazilian
financial market in September 2008, which is captured by its low network impact fluidity
in the referred period.
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Figure 8: Trajectory of the network impact fluidity for static snapshots of the financial network in different
periods.

4.3 Impact diffusion influence

Opposed to the impact susceptibility that measures if a bank may default as a con-
sequence of the default of others, the impact diffusion influence measures the potential
influence of an institution on the impact propagation over the network. That is, the more
institutions it can potentially propagate impacts to, the larger is its exerted influence. In
addition, the impact diffusion influence of an institution is composed of two orthogonal
terms: the potential influence that it exerts when it starts the diffusion process, i.e., when
it is the first institution in the propagation chain, and when it acts as an intermediator
by being part of a contagion chain originated by another institution. Figures 9a and 9b
exhibit the average impact diffusion influence of institutions when they play the role of

12The National Monetary Council is the major institution of the Brazilian National Financial System. It is
in charge of formulating monetary and credit policies, aiming at the preservation of the Brazilian monetary
stability, and the promotion of economic and social development.

13The reader is referred to BCB (2008) for more information. The resolution number published by the
National Monetary Council is 3.490, which was first published in August, 29th, 2007.
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starters in the diffusion process for large and non-large institutions, respectively. In turn,
Figs. 9c and 9d depict the impact diffusion influence for large and non-large institutions,
respectively, when they act as intermediators in the diffusion process. Summing up both
contributions, Figs. 9e and 9f portray the total impact diffusion influence of large and
non-large institutions, respectively, in the Brazilian financial market from 2008 to 2014.

An interesting finding is that impact diffusion influence exerted by large banks is
solely due to its potential influence on starting a diffusion process. In this way, they do
not act as potential intermediators in an ongoing contagion process. This is an interesting
property that provides robustness for the Brazilian financial market. One reason is that
the network presents very strong patterns of disassortative mixing and core-periphery
structure,14 in such a manner that almost all of the non-large institutions are likely to be
directly connected to a large banking institutions. In this configuration, the large bank
can stop the propagation process at the initial phase of the contagion process. Hence,
contagion chains are expected to be small. Another advantage of this setup is that large
banks often have very large capital buffers (recall Fig. 5b), in such a way that it is very
unlikely for a contagion process to propagate through them.

In contrast to that, the impact diffusion influence imposed by non-large banking
institutions is due to their routes as starters and intermediators in a potential diffusion
process in the network. In special, we see two prominent peaks happening for both dif-
fusion influence terms in the first half of 2011 and from the fourth quarter of 2013 to the
first quarter of 2014. We can get a gist as to why there is a peak of the impact diffusion
influence for non-large banks in December 2013 by looking at Fig. 7b, which shows the
vulnerability network at that period. In that occasion, there is a non-large bank that can
lead to default more than twenty non-banking institutions. Moreover, such non-large bank
is susceptible to be impacted by several other banking institutions. This setup skyrock-
ets the impact diffusion influence indices for institutions that are communicable to that
specific non-large bank. Hence, the appearance of that contrasting peak.

We can see that non-banking institutions are not the main actors in diffusing impacts
over the network, as they typically cannot communicate to anyone. In fact, inspecting
Fig. 7, they correspond to leaf vertices most of the time, because they are “dead-end”
vertices. In special, the impact diffusion influence is zero for non-large non-banks in the
entire period. Large non-banks, notwithstanding, have zero impact diffusion influence
from September 2008 to September 2012. After that point, the average influence index
is small, but remains positive until December 2014, specially because of the impact dif-
fusion influence that measures how important they are as intermediates in the diffusion
process. The region ranging from the fourth quarter of 2012 to the third quarter of 2013

14See Silva et al. (2015) for a qualitative discussion on the network topology of the Brazilian financial
network.
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shows that a few large non-banking institutions have non-zero values for intermediating
diffusion processes. (The average is low because most of those institutions have inter-
mediating diffusion process influences equal to zero.) Examples of these features can be
visually noticed in the vulnerability networks depicted in Fig. 7. For instance, inspecting
the vulnerability network in September 2008 in Fig. 7a, it is clear that non-banking insti-
tutions are incommunicable to the remainder of the network. Diverging from that, looking
at the vulnerability network in December 2013 exhibited in Fig. 7b, we do see few non-
banking institutions that can possibly lead other FIs into default, mostly non-large banks.
As such, they can potentially inflict damage to others; hence, the positive impact diffusion
influence.

Returning to Fig. 9, we notice that banking institutions have larger impact diffusion
influence than non-banking institutions in the entire period. Interestingly, the influence of
large banks in potentially propagating impacts is, on average, of the same magnitude order
of those of non-large banks. However, by inspecting the data, on one hand, we verify that
all of the large banks have similar non-zero influence. On the other hand, the distribution
of impact diffusion influence exerted by non-large banks is highly skewed. For instance,
looking at Fig. 7, we can see that some non-large banks play central roles in diffusing
impacts, and, in many cases, these roles are much more central than that of large banks.
One argument to support that is that the vulnerability network in December 2013 has a
non-large bank that can diffuse potential impact to more than twenty non-banking insti-
tutions in a direct hit. The large bank that potentially can inflict more damage, however,
only affects seven other institutions.

In order to check for this skewness, we plot in Fig. 10 the average impact diffusion
influence of large banks against the top M(t) non-large banks, where M(t) represents
the number of large banks existent in the network at time t (recall Fig. 5a). Note that
these top non-large banks influence much more in the process of diffusing impact over
the network as the vulnerability networks in Fig. 7 clearly show. We see that non-banking
institutions prefer to create relationships with non-large banks than with large banks. Non-
large banks are often more demanded by them probably because they offer high return
rates at the cost of higher risks. In view of that, our proposed index for measuring impact
diffusion influence correctly captures this notion that top non-large banks are candidates
of potentially diffusing more impact than large banks.

Figure 11 provides another subsidy to confirm the skewness of the distribution com-
prising the diffusion influences exerted by non-large banks. Numerically, a large portion
of the non-large banks have zero impact diffusion influence in the studied period, which
contributes to diminishing their corresponding average influence index. It is clear that,
on average, more than 90.20% of non-large banks do not take part in diffusing potential
impacts throughout the network. In contrast, however, there is a small quantity of non-
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Figure 9: Trajectory of the average impact diffusion influence and its constituent parts (start and interme-
diate factors) for static snapshots of the financial network in different periods.

large banks, which appear in the vulnerability networks depicted in Fig. 7, that is more
influential than the average impact diffusion influence exerted by large banks. In the pe-
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Figure 10: Comparison of the average impact diffusion influence of large banks and the top M(t) non-large
banks, where M(t) is the number of large banks at instant t.

riod, this portion of most influential non-large banks is composed, on average, of 3.92%
of the non-large banks. There is a reminiscent of non-large banks that have a smaller, but
non-zero, impact diffusion influence than the average of large banks. They account, on
average, for just 5.88% of the non-large banks. In terms of surveillance on the financial
system, regulators must be aware of the these most influential entities, as they can ren-
der the system more risky. In the Brazilian financial market, they are very few, but may
potentially harm the system as an entirety in the sense of the impact diffusion influence
index.

4.4 Weighted impact diffusion influence

The impact diffusion influence gives an equal importance for all of the impact dif-
fusing institutions in the network. However, in general, causing the default of a large bank
is much more catastrophic than of a non-large non-bank in terms of overall assets losses.
That considered, providing a measure of value or importance to each of the institutions
is essential, as we are able to get quantitative instead of only qualitative information as
the non-weighted influence index supplies. Thus, we use, as a proxy for importance, the
liabilities that banks have on the financial market, i.e., we employ P(value)

p = s(out) in (26),
as we are working with the liabilities matrix. We use liabilities instead of assets because,
whenever an FI defaults, it may not be able to honor all its creditors. In fact, the recovery
rate is effectively zero for its creditors in the short-run.

In order to get a better grasp of the magnitude of the weighted impact diffusion
influence, we opt to report it using a normalized version of (26) as:
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Figure 11: Fractions of (i) “Most influential:” non-large banks that are more influential than the average
influence exerted by large banks; (ii) “Zero:” non-large banks that have no influence in diffusing impact in
the network; (iii) “Positive but less influential:” non-large banks that have a smaller, but non-zero, impact
diffusion influence than the average influence of large banks.

Ī(w)
q (V̄,s(out)) =

I(w)
q (V̄,s(out))

∑i∈V s(out)
i

. (28)

i.e., we report the potential influence in terms of the total liabilities within the financial
network. Note, however, that the values in the y-axis cannot truly be seem as monetary
values, because the communicability index may possibly contain attenuated cycles in its
computation. It is rather an approximate potential value of the impact caused by entities
and serves as a comparison measure to verify who is more prevalent against others in
potentially causing harm to the financial system.

We can compute the average weighted impact diffusion influence over all the net-
work to obtain a measure of the average potential reach of an institution’s default along
the network. We use as weights the total liabilities of the institutions, which gives more
weight to the influence of the larger institutions. Thus, to compare the impact diffusion
influence for size and type categories of institutions, we perform the average weighted
impact diffusion influence computations separately for each of those groups of institu-
tions. Figures 12a and 12b exhibit the average weighted impact diffusion influence of
institutions when they play the role of starters in the diffusion process for large and non-
large institutions, respectively. Similarly, Figs. 12c and 12d depict the weighted impact
diffusion influence for large and non-large institutions, respectively, when they act as in-
termediators in the diffusion process. Summing up both contributions, Figs. 9e and 9f
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portray the total weighted impact diffusion influence of large and non-large institutions,
respectively, in the Brazilian financial market from 2008 to 2014. We find that, on average,
large banks are about five times more influent than large non-banks, and that non-banking
institutions are far less influent than banking ones.

Figure 13 shows the weighted influence of non-large banks that are more influen-
tial, less influential but with positive values of diffusion influence and non-large banks
with zero weighted diffusion influence. Again, we confirm the skewness of the distribu-
tion comprising the weighted diffusion influences exerted by non-large banks. We can
verify how the weight in the influence can alter the overall results by comparing Figs. 13
and 10 that portray the weighted and non-weighted influences, respectively. We can see
that, while the non-weighted diffusion influence exerted by the most influential non-large
banking institutions remains consistently above of large banks in the non-weighted ver-
sion, this behavior does not extend to the weighted version. In special, we can see that the
weighted influence exerted by large banks in the second and third quarters of 2011, in the
last quarter of 2013, and in the last semester of 2014 surpasses that of the most influential
non-large banks. This suggests that, in these periods, non-large banks influence a larger
quantity of other FIs than large-banks. These influenced FIs, however, often do not have
large quantities of liabilities in the financial market. Therefore, their importance is effec-
tively reduced by our proxy. In those periods, large banks, in contrast, influence a smaller
quantity of FIs that are, on average, more important as they present expressive liabilities
in the financial network.

5 Conclusion

In this work, we have investigated the roles FIs play within the Brazilian finan-
cial market using an approach based on complex networks. One prominent advantage
of employing network-based theory is that it is able to capture topological and structural
characteristics of the players’ relationships from the data representation itself.

In this paper, we have proposed four new measures of potential contagion in a fi-
nancial network: impact susceptibility, network impact fluidity, and weighted and non-
weighted impact diffusion influence. We derive theoretical properties for the impact sus-
ceptibility and impact diffusion influence that permit us to understand how FIs are prone
or susceptible to random systemic events in the network. We observe that these mea-
surements are applied to the network “as-is,” not requiring any initial external shock to
their computation. This interesting feature contrasts with other developed measures in
the literature, like the Eisenberg and Noe (2001)’s fictitious default algorithm and the
Battiston et al. (2012b)’s DebtRank measure, that do require those initial shocks. There-
fore, one complication of using these measures is how one should design these shocks.
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(a) Weighted start impact diffusion
influence of large FIs
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influence of non-large FIs
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(c) Weighted intermediate impact diffusion
influence of large FIs
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(d) Weighted intermediate impact diffusion
influence of non-large FIs
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(e) Weighted impact diffusion influence
of large FIs
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Figure 12: Trajectory of the average weighted impact diffusion influence and its constituent parts (start
and intermediate factors) for static snapshots of the financial network in different periods.

Our measures, opposed to those, gauge potential contagion exempting us from the need
of applying exogenous shocks: they extract the inherently built-in risk of the financial
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Figure 13: Comparison of the average weighted impact diffusion influence of large banks and the top M(t)
non-large banks, where M(t) is the number of large banks at instant t.

relationships.
Using the impact susceptibility, for the period ranging from 2008 to 2014, we find

that banking institutions are barely susceptible to indirect impacts, while non-banking
ones are, on average, susceptible to them in the first quarter of 2011 and from the second
half in 2013 to the first in 2014. Silva et al. (2015) find that non-banking institutions
are rather exposed to banking institutions than to non-banking ones. Given that banking
institutions are well capitalized and are barely susceptible to indirect impacts, we can say
that the Brazilian financial system is rather stable.

We employ the network impact fluidity to assess how much exposed is the Brazilian
financial market network to the onset of contagion chains, finding that the appearance of
those chains are unlikely and that, if those emerge, they have short path lengths. We
have also found that the lowest impact fluidity index happens in September 2008. We
relate this low impact fluidity to the fact that FIs were less willing to provide liquidity to
their counterparties in that period of turmoil. Hence, the number of exposures that could
contribute to potential defaults substantially decreased in that period.

We use the impact diffusion influence to gauge the influence of financial institutions,
as shocks sources or transmitters, and discover the presence of a portion of non-large
banking institutions that is consistently more influential than large banks in potentially
diffusing impacts throughout the network. That is a tool that financial system monitors
and regulators can use to identify financial institutions that should receive more attention
in times of crisis.
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