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Abstract

The Working Papers should not be reported as representing the views of the Banco Central
do Brasil. The views expressed in the papers are those of the author(s) and not necessarily
reflect those of the Banco Central do Brasil.

In this paper, we provide a detailed analysis of the roles FIs play within the inter-
bank market using a network-based approach. We investigate how the interbank net-
work evolves with respect to different types of market participants. For this analysis,
we employ several well-known complex network measures that extract topological
characteristics of the interbank network. We use the weighted clustering coefficient
to assess the substitutability of FIs for the lending and borrowing perspectives and
find that large banking institutions are counterparties that are easily substitutable. In
addition, we verify that the interbank network presents a high disassortative mixing
pattern, suggesting that highly connected FIs are frequently connected to others with
very few connections. This finding is in line with the fact that interbank networks
often show a core-periphery structure. We also investigate the presence of the “rich-
club” effect on the network and find that it is strongly present in the community com-
prising the large banking institutions, as they normally form near-clique structures.
Since they often play the role of liquidity providers in the interbank market, this
interconnectedness effectively endows the network with robustness, as participants
that are with liquidity issues can easily substitute counterparties that are liquidity
suppliers.
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1 Introduction

The subprime crisis highlighted the important role played by money markets in
providing liquidity for the banking system. The lack of liquidity can hamper a financial
institution’s (FI’s) maturity transformation performance. If it funds long-term assets with
short-term liabilities, and for some reason, cannot rollover these liabilities, it may be
unable to repay its creditors. If those creditors are facing the same liquidity shortage, this
may begin a cascade of repayment failures. Consequently, those FIs under stress may
be forced to sell less liquid assets for cash, in order to settle their repayments, suffering
losses and worsening their situation. If this process spreads along the financial system,
it can trigger a confidence crisis and reduce the ability of the banking system to perform
its financial intermediation role, affecting the real sector. Network topology is one of the
factors that can favor the propagation described above and, thus, the consequences that
follow.

In this work, we intend to characterize the Brazilian interbank network from 2008
to 2014 in terms of complex network measurements, providing economic meaning for
these measurements whenever possible. Complex networks are a research area that lies
at the intersection between graph theory and statistical mechanics, which endows it with
a truly multidisciplinary nature (da F. Costa et al. (2005)). As highlighted by Newman
(2010), one prominent advantage of employing network-based theory is that it is able to
capture topological and structural characteristics of the data relationships. In this work,
we take advantage of the characteristics provided by the networked representation of the
interbank market to describe it in a structural and systematic way.

Using classical network analysis tools, we find that the degree measures of the in-
terbank market participants show that the most connected FIs are large banks and that
non-large banks are less connected than the others, but still participate in the market both
as borrowers and lenders. In contrast, non-banks of all sizes are mostly borrowers that
have, on average, zero lending relationships.

We use weighted clustering coefficients to assess the substitutability of FIs from the
point of view of the observed network structure. We find that large banks usually possess
larger clustering coefficients than non-banks, which indicates that they present a relevant
non-sparse network structure in their surroundings. In other words, their neighborhood
may invest in several other counterparties. Consequently, these large banks are more
substitutable than large non-banks.

The analysis of the assortativity shows that the network present strong disassorta-
tive mixing patterns. This fact indicates a financial system in which highly connected
FIs are frequently connected to others with very few connections. The joint analysis of
assortativity and degree measures suggests that links between non-banks and banks are
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far more typical than links among non-banks. In addition, the strong disassortative trace
displayed by the Brazilian interbank market suggests the presence of a network with a
core-periphery structure. In such kind of network, the peripheral vertices only connect
to the core, and the core is allowed to connect to the remainder of the network, acting
as intermediators in the interbank borrowing and lending processes. In fact, Fricke and
Lux (2015) show that the underlying network generating process for interbank markets is
better approximated by a core-periphery network generation model than by other classical
network formation approaches.

Even though the disassortative pattern shown by the Brazilian interbank market
suggests the existence of a core-periphery structure, that network measurement only takes
into account the degree correlations between market participants. That is, it does not
confirm the existence of a well-defined network core, in which its members are strongly
interconnected. We can extract this type of information using another kind of network
measure called “rich-club” coefficient. This index verifies the existence of the “rich-club”
phenomenon, which refers to the tendency of FIs with several interbank operations to
be tightly connected to each other. In fact, we find a strong “rich-club” effect for the
community of FIs with large degrees. This core community is mainly composed of large
banking institutions in the network.

Since large banking institutions often play the role of liquidity providers in the in-
terbank market and are also members of a network core, their strong interconnectedness
between themselves and the remainder of the peripheral network effectively gives robust-
ness to the interbank network, as participants that are with liquidity issues can easily
substitute one liquidity provider to another. This finding is in line with our conclusion
that large banking institutions are easily substitutable because they present large cluster-
ing coefficient values.

From a policy-making point-of-view, it is desirable to have indicators that could be
employed to identify the proper time to take macroprudential actions. However, to the
extent of our knowledge, there are no works in the literature defining critical values for
network measures that could be used to trigger macroprudential policy actions. This ab-
sence can be partly explained by the inherent complexity of the issue. One aspect of this
issue is that there are other contagion channels and circumstances that interfere with the
direct exposures channel we study here. For instance, market and funding liquidity issues,
procyclicality issues leading to spirals of constraints or losses, market confidence issues
or access to credit facilities that may help FIs to overcome the situation. The simultaneity
of these processes requires complex models in which the direct contagion channel is just
one of the many risk factors. In this context, it seems that vulnerability-based network
measures, i.e., those that relate exposures to loss-absorbing buffers, would be useful in
a decision-making process related to macroprudential actions. At the present stage, that
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decision would need to consider other risk factors and would also require judgement. An
example of macroprudential measures decision making under these complexities is BCBS
(2010), who recommends the following to national authorities operating the countercycli-
cal buffer: “Authorities are expected to apply judgement in the setting of the buffer in their
jurisdiction, often using the best information available to gauge the build-up of system-
wide risk.” This recommendation can be applied to some of the other macroprudential
tools, and conveys that the available information about systemic risk, be it derived from
network measures or not, cannot be (yet) the exclusive criterium to define actions to be
taken, regarding the operation of macroprudential tools.

1.1 Literature and related works

Complex networks have emerged as a unified representation of complex systems
in various fields of science. They are employed to model systems that display nontrivial
topology and are composed of a large amount of vertices (Newman (2010); Silva and Zhao
(2015)). The recent increasing interest by the community in network-based methods is
partly because networks are ubiquitous in nature and everyday life, as a myriad of systems
are inherently represented by them. Examples include the Internet, the World Wide Web,
biological neural networks, social networks, food webs, metabolic networks, and financial
networks. Albert and Barabási (2002) highlight that the complex network representation
of the data permits the unification of the structure, dynamics, and functions of a system
that it represents. In this way, networks are excellent tools for evaluating the topological
structures of systems with complex interactions. Albert and Barabási (2002) provide a
comprehensive review on structure and dynamics of complex networks, while da F. Costa
et al. (2005) focuses on network measurements.

The set of financial operations in a market is a complex system that is naturally
represented by networks or graphs. The literature often studies two types of networks
related to these operations (Castro Miranda et al. (2014)): payments systems and the
interbank market. In this work, we focus on the interbank market. The appealing of such
market is reinforced by the influential papers of Allen and Gale (2000) and Freixas et al.
(2000), who advocate that a relevant channel of financial contagion is the overlapping
claims that institutions have on one another. As Allen and Gale (2000) draws attention to,
the default of a given market participant can lead to a domino-like series of subsequent
defaults based on exposures to the defaulting entity. This fact highlights the strict and
important relation between network topology and financial stability.

Following these papers, several works have investigated how the network structure
affects the systemic risk and stability of a financial system. For instance, Elliott et al.
(2014) study cascades of failures in a network of interdependent financial organizations,
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analyzing how discontinuous changes in asset values, due to defaults and shutdowns, trig-
ger further failures, and how this depends on network structure. In turn, Acemoglu et al.
(2015) investigate the relationship between the financial network structure and the likeli-
hood of systemic failures due to contagion of counterparty risk, and show that contagion
within the interbank market exhibits a form of phase transition. If the shocks that affect
FIs are small, high financial network densities enhance financial stability. However, if
shocks magnitudes increase beyond a certain point, dense interconnections improve their
propagation, leading to a more fragile financial system. Hence, the study of the interbank
market structure and its evolution stands as an important issue in the field.

Nier et al. (2007) investigate how the structure of the financial system relates to
systemic risk by varying the key parameters that define the structure of the financial sys-
tem, such as level of capitalization, the degree to which banks are connected, the size of
interbank exposures and the degree of concentration of the system. They show that the
effect of the degree of connectivity is non-monotonic, that is, initially a small increase in
connectivity increases the contagion effect; but after a certain threshold value, connectiv-
ity improves the ability of a banking system to absorb shocks. The relationship between
network structure and robustness is also studied by Li and He (2012), Lee (2013) and
Georg (2013). Battiston et al. (2012) investigate endogenous factors of increasing sys-
temic risk through the contagion channel formed by credit exposure interconnections. A
comprehensive review of this topic is performed by Upper (2011).

This study is here conducted using complex network measurements to characterize
the Brazilian interbank network. Cajueiro and Tabak (2008) present an early applica-
tion of such techniques to study the Brazilian interbank market, where they show that the
Brazilian interbank market possesses weak evidence of community structure, high het-
erogeneity and that this market is characterized by money centers having exposures to
many banks. In contrast, Boss et al. (2004) provide an empirical analysis of the network
structure of the Austrian interbank market, where they show that the interbank network
presents community structure that exactly mirrors the regional and sectoral organization
of the actual Austrian banking system. Moreover, they show that the Austrian interbank
network has low clustering coefficient and a relatively short average shortest path length.

Several other works investigate how different network measures can contribute to
evaluating the systemic risk. Tabak et al. (2014) show that the directed clustering coef-
ficient may be used as a measure of systemic risk in complex networks. Papadimitriou
et al. (2013) identify core banks as those entities with the largest degrees that are present
in a minimum spanning tree constructed from the correlation of the assets return variable.
With this respect, the authors make a clear distinction between big and core banks in the
sense that the latter are central in the network as they are shown to be crucial for network
supervision.
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1.2 Contributions

The contributions of this work are twofold. First, we systematically report how
the Brazilian exposures network evolves with respect to several network measurements,
such as: in- and out-degrees, degree distribution, clustering coefficient, assortativity, rich-
club coefficient, among many others. Second, we provide economic interpretation for
these network measurements, in a way that we can understand the features of a financial
network using only these complex network descriptors. In contrast to graphs that can-
not be easily compared with each other1, these measurements can be easily comparable
throughout time, permitting us to make assertions regarding the evolution of the financial
network. Moreover, only the Brazilian payments system has been investigated in the lit-
erature (cf. Castro Miranda et al. (2014)). In contrast, in this paper, we investigate the
network structure of the Brazilian interbank network.

1.3 Notation

In the process of analyzing the network, we extract some network measures from
the graph G = (V ,E ) constructed from the borrowing and lending relationships of the
interbank market members. To build up such network, let V denote the set of vertices
(FIs) and E , the set of edges. The cardinality of V , N = |V |, represents the number of
vertices or FIs in the network. The matrix L represents the liabilities matrix (weighted
adjacency matrix), in which the (i, j)-th entry represents the liabilities of the FI (vertex)
i towards j. The set of edges E is given by the following filter over L: E = {Li j >

0 : (i, j) ∈ V 2}. In our analysis, there is no netting between i and j2. As such, if an
arbitrary pair of FIs owe to each other, then two directed independent edges linking each
other in opposed directions will emerge. An interesting property of maintaining the gross
exposures in the network is that, if an FI defaults, its debtors remain liable for their debts.
We also define the matrix of exposures or assets between the FIs as A = LT , where T is
the transpose operator. In this paper, when we do not mention the type of network that we
are using, it is assumed to be the liabilities matrix L.

1.4 Organization

The remainder of the paper is structured as follows. In Section 2, the methodology
employed in our experiments is elucidated. In Section 3, we provide meta-information

1The problem of verifying whether two graphs are similar is classified as a graph isomorphism problem
in graph theory. Köbler et al. (1993) indicates this task as an NP-problem and, hence, intractable for large-
scale graphs, such as complex networks.

2Pairwise liabilities are not netted out so as to maintain consistency with the Brazilian law, because
financial compensation is not always legally enforceable.
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about the exposures interbank network data set. In Section 4, the main results are dis-
cussed. Finally, in Section 5, we draw some conclusions about the obtained results.

2 Methodology

In this section, we present the network measurements that are employed in this
work to extract topological information of the interbank network. In this paper, we ana-
lyze networks using classical network measurements borrowed from the complex network
theory. In addition, we classify all of the employed network measurements with respect
to the type of information they depend on, which can be:

• Strictly local measures: they are related to the inherent characteristics of the vertex
itself. In this way, measures qualified as strictly local do not take into account the
neighboring nor global features.

• Quasi-local measures: they take into account the neighborhood’s structural or topo-
logical characteristics to render information. Considering a reference vertex, the
neighborhood may be its direct neighbors, or indirect neighbors. In the last case,
the indirection must be limited. If it were unlimited, the measure would be classi-
fied as global, rather than quasi-local.

• Global measures: they make use of all of the relationships contained in the network
to derive information.

For every network measure, we also provide subsidies to help in understanding its
economic meaning in the context of interbank markets.

2.1 Degree (strictly local measure)

The degree or valency of a vertex i ∈ V , indicated by ki, is related to its connectiv-
ity, or number of links, to the remainder of the network. In directed graphs, this notion
can be further decomposed into the in-degree, k(in)i , and out-degree, k(out)

i , such that the
identity ki = k(in)i +k(out)

i holds. The domain of ki correspond to the discrete-valued inter-
val {0, . . . ,2(N−1)}. When ki = 0, we say that vertex i is a singleton vertex. Conversely,
when ki is sufficiently large, we say that vertex i is a hub.

The in-degree of the vertex i is defined as k(in)i = ∑ j∈V 1{L ji>0}, where 1{A} repre-
sents the Heaviside function that yields 1 if the logical expression A evaluates to true, and
0, otherwise. In the liabilities network L, the in-degree represents the number of FIs in
which participant i has invested (is exposed to). Hence, it can be regarded as a measure
of investment diversification. With a similar reasoning, the out-degree of the vertex i is
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defined as k(out)
i = ∑ j∈V 1{Li j>0}. The out-degree symbolizes, in a network of liabilities,

the number of creditor FIs participant i has (they are exposed to i). As such, it can be an
indicator of funding diversification.

2.2 Strength (strictly local measure)

The strength of a vertex i ∈ V , indicated by si, represents the total sum of weighted
connections of i towards its neighbors. Likewise the degree, the notion of strength can
be further decomposed into the in-strength, s(in)i , and out-strength, s(out)

i , such that the
identity si = s(in)i + s(out)

i holds. The domain of si corresponds to the continuous interval
[0,∞).

The in-strength of the vertex i is defined as s(in)i = ∑ j∈V L ji. In a network of liabili-
ties, the in-strength represents the amount of money that an FI has invested in that market,
providing an indicator of total exposure of that entity to a specific market segment. Thus,
the in-strength can be seem as a measure of activeness from the investment perspective or
lending dependency on the interbank market segment.

In contrast, the out-strength of the vertex i is defined as k(out)
i = ∑ j∈V Li j. Hence, it

is a signal of activeness from the funding perspective of FIs or borrowing dependency on
the interbank market segment. In a network of liabilities, the out-strength symbolizes the
amount of money an FI has received from players of that market segment.

Finally, it is worth noting that the strength is a generalization of the degree measure
for weighted networks. When we are dealing with non-weighted networks, the strength
reduces to the degree concept.

2.3 Link distribution (strictly local measure)

The link distribution can be defined both in terms of the borrowing and lending
perspectives. The link distribution may further be decomposed in degree- or strength-
based distributions. The former is defined as the histogram of the vertices’ out-degrees
(borrowing or funding) and in-degrees (lending or investment). The strength distribu-
tion follows the same reasoning for the degree distribution, but here we use the vertex
strength indicator. In the interbank network, the link distribution is helpful for evaluating
the concentration of relationships of the market represented by the network. A possible
application of this analysis is to suggest the existence of money centers. Changes in the
distribution itself also carry information on changes in the market players’ characteristics.
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2.4 Weighted clustering coefficient of vertices (quasi-local measure)

The clustering coefficient is a measure of the extended degree to which vertices
in a graph tend to cluster together, which quantifies the number of loops of order three
(transitivity). Originally designed for non-weighted networks, it has been extended and
adapted to weighted directed networks, as is the case of the interbank market network.
The weighted clustering coefficient of a vertex i ∈ V is given by (Barthélemy et al.
(2005)):

CCi =
1

si(ki−1) ∑
( j,k)∈V 2

Wi j +Wik

2
Ai jAikA jk, (1)

in which CCi ∈ [0,1]; Wi j is the edge weight from i to j; Ai j = 1{Wi j>0}. When CCi→ 1,
vertex i presents dense topological structures in the vicinities in the sense of triangular
modules. In contrast, when CCi → 0, it only contains sparse structures, possibly with
long linear chains of vertices.

In the context of interbank markets, the clustering coefficient can be conceptualized
both for the borrowing and lending perspectives. From the borrowing perspective, the
edge weights in (1) are set to Wi j = Li j, and the strengths si are set to s(out)

i . From the
lending perspective, we fix Wi j = (LT)i j and si = s(in)i . A high CCi means that bank i is
easily substitutable because the neighborhood of bank i has other nearby options to invest
in (lending perspective) or borrow from (borrowing perspective). This is because neigh-
bors of i communicate with each other as well. Conversely, if CCi is small, few options
are available for the neighbors of i, implying that bank i is important in the neighbor-
hood because its removal would drastically reduce the investment or funding alternatives
in the nearby network surroundings. Consequently, CCi can be seen as a measure of the
diversification of the counterparties of i.

2.5 Weighted clustering coefficient of the network (global measure)

Equation (1) quantifies the clustering coefficient of a single vertex. The idea can be
extended to the entire network by averaging the weighted clustering coefficient over all
of the network vertices, that is (Newman (2003b)):

CC =
1
N ∑

i∈V
CCi, (2)

in which CC assumes the same domain of CCi, i.e., CC ∈ [0,1], because (2) is a convex
combination of terms in the region [0,1]. A financial system network with low CC has
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several entities with singular properties, i.e., they are not easily substitutable. Conversely,
if CC is high, almost all of the participants have alternative options to invest in or borrow
from and, therefore, the majority of FIs are substitutable.

2.6 Criticality (quasi-local measure)

Criticality is a measure of the impact of an FI on its neighbors if it defaults. It is the
sum of the vulnerabilities of its creditors regarding their exposures to the FI and is given
by:

Ci = ∑
j∈V

Vji = ∑
j∈V

Li j

E j
, (3)

where E j indicates the available resources or capital buffer of bank j ∈ V and Vji is the
vulnerability of entities j to i. The vulnerability Vji measures the impact on j if i defaults.
The local importance of an FI in terms of the criticality index is not directly related to
its size; rather, it represents its creditors’ vulnerabilities, measured by their exposures to
capital buffer ratios.

2.7 Assortativity (global measure)

Assortativity is a network-level measure that, in a structural sense, quantifies the
tendency of vertices to link with similar vertices in a network. The assortativity coeffi-
cient r is computed as the Pearson’s correlation of degrees of vertices in each connected
pair. We compute the correlation between out- and in-degrees of links between debtor
and creditor FIs. Positive values of r indicate that the network’s pairs of vertices have ver-
tices in the endpoints with similar degrees, while negative values indicate endpoints with
different degrees (Newman (2003a)). In general r ∈ [−1,1]. When r = 1, the network
has perfect assortative mixing patterns, while, it is completely disassortative in the case
r = −1. Negative assortativity is often correlated with the existence of money centers in
financial networks. Considering that iu and ku are the degrees of the two vertices at the
endpoints of the u-th edge of a non-empty graph G, and that l = |E | is the number of
edges of G, the network assortativity r is evaluated as follows (Newman (2002)):

r =
l−1

∑u∈E iuku−
[

l−1

2 ∑u∈E (iu + ku)
]2

l−1

2 ∑u∈E (i2u + k2
u)−

[
l−1

2 ∑u∈E (iu + ku)
]2 . (4)

According to Silva and Zhao (2012), understanding the assortative mixing patterns
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in complex networks is important for interpreting vertex functionality and for analyzing
the global properties of the networks’ components. Concerning the interbank market
network, assortativity is important for the following reasons:

• When the network indicates high disassortative mixing, i.e., r → −1, the major-
ity of FIs connect with other entities with dissimilar degrees. Considering that, in
these types of networks, only a few FIs have several connections (money centers),
the onset of a default in these money centers directly affects a large portion of the
network vertices. In this configuration, all of their neighbors that are vulnerable
may, in turn, default, leading to the beginning of a contagion process throughout
the network. Since there are many highly connected money centers, the network di-
ameter tends to be small, favoring the spread of the contagion process. Now if an FI
with small degree defaults, it will probably affect money centers in a direct manner.
Since their capital buffers are high, they are likely to absorb all loses coming from
that defaulted entity. As such, the chaining effect of subsequent defaults is retained
by money centers.

• When the network indicates high assortative mixing, i.e., r → 1, we expect that
two types of clusters or communities will emerge in the interbank network: com-
munities of high- and low-degree vertices. In each community, there will be more
edges connecting each pair of FIs of the same group than edges cross-connecting
different communities. We expect that the network will not present money centers,
in the sense that they are a few highly connected FIs. The high-degree community
tend to be an almost complete (clique) graph, because the number of large insti-
tutions is small and they almost connect to all of their similar pairs. With regard
to the low-degree community, because there is only a small quantity of edges per
each vertex, it is expected that the network structure will present long linear chains
of FIs (large network diameter), so that each FI in the group will exhibit very low
diversification. If a member of the high-degree community defaults, it will affect all
of the connected high-degree neighbors and also a few low-degree vertices, which
are more likely to be vulnerable given their lower diversification. Additionally,
because the low-degree community has long linear paths of less-diversified FIs,
if they are vulnerable (have low capital buffers and larger exposures), there is a
higher probability that the process will cascade through the neighbors in a domino
effect, onsetting a process of contagion with long paths. On the other hand, if a
default occurs in a member of the low-degree community, then it is very unlikely
that it will propagate to the money center cluster. However, depending on the FI’s
vulnerability, the same domino effect that was previously described may occur in
the low-degree community. In any case, financial networks very frequently do not
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present positive assortativity.

• When the network does not indicate edge attachment preferences in a global sense,
we expect the graph will have a slight mixture of assortative and disassortative
trends in its various different regions. During the calculation of the assortativity,
these terms are canceled out, resulting in r ≈ 0. In this configuration, we do not
expect to encounter communities in the strong sense, as in the previous case.

2.8 Rich-club coefficient (global measure)

The rich-club coefficient measures the structural property of complex networks
called “rich-club” phenomenon. This property refers to the tendency of high degree ver-
tices (hubs) to be tightly connected to each other, forming clique or near-clique structures.
This phenomenon has been discussed in several instances in both social and computer sci-
ences. Essentially, nodes with a large number of links - usually known as rich nodes - are
much more likely to form dense interconnected subgraphs (clubs) than low degree nodes.
Considering that E>k is the number of edges among the N>k vertices that have degree
higher than a given threshold k, the rich-club coefficient is expressed as Zhou and Mon-
dragon (2004):

φ(k) =
2E>k

N>k (N>k−1)
, (5)

where the factor N>k(N>k−1)/2 represents the maximum feasible number of edges that can
exist among N>k vertices. We note that, while the network assortativity captures how
connected similar nodes are in terms of degree connectivity, the rich-club coefficient can
be viewed as a more specific notation of associativity, where we are only concerned with
the connectivity of nodes beyond a certain richness metric. For example, if a network
consisted of a collection of hubs and spokes, where the hubs were well connected, such
a network would be considered disassortative. However, due to the strong connectedness
of the hubs in the network, the network would demonstrate a strong rich-club effect.

For financial networks, the rich-club coefficient of a network is useful as a heuristic
indicator of the robustness of a network. A high rich-club coefficient implies that the hubs
are well connected, and global connectivity is resilient to the removal of random hubs.
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3 Data

In this paper, we use a unique Brazilian database with supervisory data3. From this
database, we take quarterly information on Brazilian domestic interbank market expo-
sures, supervisory variables and balance sheet statements. We use accounting informa-
tion to evaluate the FIs’ capital buffers for the period from March 2011 through December
2014, in addition to September 2008. This information is vital to compute some network
measurements, such as the impact susceptibility and its derived measures.
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Figure 1: Properties of the interbank network. (a) Total amount registered in the interbank market per
financial instrument. (b) Interbank market assets compared to the overall cross-border payments balance.
The overall cross-border balance information is extracted from the Time Series Management System, whose
series code is 8266, maintained by the Central Bank of Brazil.

Although exposures among FIs may be related to operations in the credit, capital
and foreign exchange markets, here we focus solely on operations in the money market.
The money market comprises operations with public, especially federal, securities, and
private securities. Both types of operations are registered and controlled by different in-
stitutions. We have information on operations with private securities provided by Cetip4:
interfinancial deposits, debentures and repos collateralized with securities issued by the
borrower FI. These operations are unsecured and their trajectories in the money market
are given in Fig. 1a. We can see the amount of interfinancial deposits is prevalent against
debentures and repos in the period. We note that we consider the repos from our sample as
unsecured because the collateral is issued by the own borrower. The total amount invested
in this market by its participants varies from US$19.33 billion to US$33.77 billions in the
period analyzed (without considering September 2008), corresponding to 1.5% of the FIs’

3The collection and manipulation of the data were conducted exclusively by the staff of the Central Bank
of Brazil.

4CETIP is an open capital company that offers services related to registration, custody, trading and
settlement of assets and bonds.
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Figure 2: Evolution of several features extracted from the Brazilian interbank network. We discriminate
the trajectories by size (large or non-large) and type of entity (banking or non-banking).

total assets and 14% of their aggregated Tier 1 Capital. In Fig. 1b we compare the total
interbank market assets with the net cross-border flows. There is cross-border inflow in
the period, i.e., the foreign-exchange reserves are changing each month. We note that the
correlation between total interbank market assets and cross-border inflow in the period is
0.38 and that the total amount flowing in the interbank market is much higher than the
payments over the cross-border balance.

We use exposures among financial conglomerates and individual FIs that do not
belong to a conglomerate. Intra-conglomerate exposures are not considered. They can
be either banking or non-banking financial institutions. Banking FIs can be commer-
cial banks, investment banks, savings banks and development banks. The non-banks are
credit cooperatives, credit unions and brokers/dealers. Banks and non-banks are classi-
fied by size according to the same methodology applied to their groups, i.e., the group
of banks and the group of non-banks. We use a simplified version of the size categories
defined by the Central Bank of Brazil in a Financial Stability Report (see BCB (2012)),
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as follows5: 1) we group together the micro, small, and medium banks into the “non-
large” category, and 2) the official large category is maintained in our simplified version.
Therefore, instead of four segments representing the banks’ sizes, we only employ two.

Figure 2a displays the evolution of the number of interbank participants in the ana-
lyzed period. Non-large banks are the majority in the entire period. Large non-banks and
non-large non-banks are present in similar quantities in the sample. The number of large
banks is the minority and remains roughly constant throughout the period. Although the
proportions of the analyzed segments, which are divided into banks and non-banks and
size groups as defined above, remain roughly the same, the total number of FIs does
change. In special, the number of FIs consistently grows until March 2013, date in which
it suffers a considerable drop due to a reduction in the number of large non-banks. After-
wards, we can verify again the upward trend on the number of FIs.

Figure 2b shows the share of interbank assets for each segment. We note that large
banks have a higher average market share. The seven largest banks hold more than 60%
of the assets, which suggest they have a role as funds providers in the market. Figure 2c
presents the mean capital buffer for the same categories of FIs. Large banks also have
much higher capital buffers, which also reflect size differences.

Figure 2d shows the FIs’ average leverage by category. For the interbank market, we
define leverage as the ratio of the sum of the FI’s interbank liabilities to its capital buffer.
It may be seen as a measure of dependence of FIs on this market for funding purposes. In
spite of being funds providers, large banks are not leveraged in this market because their
liabilities are significantly lower than their capital buffers. Observe that non-large banking
institutions are the most leveraged entities in this market. As such, they are active funders
in the interbank network. Therefore, they are important from the systemic risk viewpoint,
as they are exposed to that market. In turn, non-banking institutions present low leverage
in the interbank market. This is because they operate in the interbank market mainly as
investors. Thus, if they default, the interbank market will not suffer relevant losses. In
any case, when an FI defaults, the network topology plays a crucial role in how losses are
absorbed or propagated. For this matter, the reader is referred to the work in Souza et al.
(2015), in which this propagation process is analyzed in the Brazilian interbank market.

5In the original version, to classify FIs (conglomerates and individual institutions) into size categories,
one initially classifies them according to the descending order of their total assets. Beginning from the
FI with the highest total assets through the FI with the lowest, for each FI, one computes the ratio of the
cumulative total assets along the list to the sum of the institution’s (banking or non-banking) total assets.
The FIs with ratios ranging from 0% to 75% inclusive are classified as large. Similarly, those with ratios
ranging from 75% to 90%, inclusive are considered medium-sized; those whose ratios range from above
90% to 99% inclusive are considered small, and those with ratios ranging from above 99% to 100% are
micro-sized.
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Figure 3: Behavior of the average in- and out-degree of large and non-large FIs in the interbank market.

4 Results

In this section, we use the network measures presented above to gather information
on the interbank market network.

4.1 Degree

We first use degree measures to obtain information on the roles played by the mar-
ket participants. Figures 3a and 3b present the average in-degree of large and non-large
participants in the interbank market, while Figs. 3c and 3d display the out-degree of large
and non-large participants. Since we are evaluating these measures using the liabilities
matrix L, the in-degree of FI i represents the number of investors it has in the market. In
contrast, the out-degree of FI i denotes the number of counterparties that are funding i.
These measures, hence, give a sense of investment and funding diversifications.

According to Fig. 3, large banks are the most connected FIs, taking both creditor
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Figure 4: Cumulative distribution function (CDF) of the individual exposure values in the interbank market
network in five different periods. The x-axis is in log-scale and the y-axis in linear-scale. The CDF is only
computed for investments greater than 0.1 million, since they account for more than 98.3% of the operations
in the interbank market.

and debtor positions in the market with about the same number of network links. The most
connected large banks are linked to approximately 25% of market participants, clearly
characterizing their money center role. Banks are more active on the market than non-
banks, in that their in-degrees and out-degrees are higher than those of non-banks. We
also note that non-banks are usually investors in this market and do not diversify, for their
in-degrees are almost always less than two in the analyzed period. In addition, their out-
degree is zero, meaning that they do not receive funding in this market. Considering also
that they are among the most vulnerable FIs, we can conclude that if they suffer asset
losses from the interbank market and default as a consequence, the resulting losses will
necessarily propagate to other markets, and not to the interbank market because no players
are exposed to them.

4.2 Link distribution

We now consider the distribution of pairwise investment values so as to verify the
concentration of borrowing relationships in the financial system and also to check for the
possible occurrences of significant changes of these distributions along time. To obtain
this information, we use the cumulative distribution function (CDF) of the in-strength (to-
tal interbank investment) for the interbank market network in five distinct periods, where
September 2008 (crisis period) is included. Figure 4 shows this analysis, in such a man-
ner that we can compare the investments distribution of the network from the crisis period
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Figure 5: Trajectory of the network assortativity for static snapshots of the interbank network in different
periods.

against other periods. Note that the pairwise exposures in September 2008, on average,
are smaller than those in the other four periods. In the other extreme, the network presents
the largest pairwise exposures in December 2012. As time progresses from September
2008 onwards, we see that the CDF moves downwards, showing that the exposure values
between FIs increase, on average. This phenomenon is maintained until December 2012,
time in which the CDF starts to now move upwards, revealing that the average pairwise
exposures begin again to decrease in magnitude.

4.3 Assortativity

Figure 5 depicts the trajectory of the network assortativity from 2008 to 2014. This
chart shows that the interbank market network is disassortative because r < 0. This indi-
cates a financial system in which highly connected FIs are frequently connected to oth-
ers with very few connections. The joint analysis of assortativity and degree measures
suggests that links between non-banks and banks are far more usual than links among
non-banks. This is consistent with the presence of money centers in the network. We
can see two distinctive behaviors in the network assortativity in Fig. 5: 1) a tendency to
become more disassortative from March 2011 to September 2012, and 2) a tendency to
become more assortative from December 2012 to December 2012. We also note that in
September 2008 and in the second semester of 2013 the network presents a less disassor-
tative mixture than the other periods. This means that the money centers are slightly more
interconnected to each other and less connected to non-large FIs. These, in turn, are also
more interconnected to each other (similar pairing).

20



0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
ic

h−
C

lu
b 

C
oe

ffi
ci

en
t

09
/2

00
8 

03
/2

01
1 

06
/2

01
1 

09
/2

01
1 

12
/2

01
1 

03
/2

01
2 

06
/2

01
2 

09
/2

01
2 

12
/2

01
2 

03
/2

01
3 

06
/2

01
3 

09
/2

01
3 

12
/2

01
3 

03
/2

01
4 

06
/2

01
4 

09
/2

01
4 

12
/2

01
4  

 

k = 5
k = 10
k = 20
k = 30

Figure 6: Trajectory of the rich-club coefficient for static snapshots of the interbank network in different
periods.

4.4 Rich-club coefficient

Figure 6 portrays the trajectory of the rich club coefficient in the Brazilian interbank
market evaluated for the degree thresholds k ∈ {5,10,20,30} from 2008 to 2014. We note
that, on average, as the degree threshold gets larger, we see a more consistent “rich-club”
effect in the network. For instance, when k = 5, the rich-club coefficient assumes low
values because almost all of the banking institutions are taken into the consideration.
Because non-large entities tend to connect mostly to large entities due to the high disas-
sortative mixing pattern in the network, the rich-club effect is low. However, as we filter
institutions by raising the degree threshold k, only more connected entities are considered.
We note that, when k ≥ 20, only entities with several operations in the interbank market
are eligible in the evaluation of the rich-club coefficient in (5). These, in turn, are com-
posed of the large banking institutions, as we can see from the in- and out-degree shown
in Fig. 3. Because of the large values of the rich-club coefficient, these large entities
present the “rich-club” effect and therefore tend to form near-clique structures (complete
graphs). Since they often play the role of liquidity providers in the interbank market, this
phenomenon effectively gives robustness to the interbank network, as participants that
are with liquidity issues can easily substitute one liquidity provider to another. Interest-
ingly, we see that, during the crisis in September 2008, the “rich-club” formed by all of
the institutions with more than 30 operations is a complete graph (clique). We also note
that for k = 30, the rich-club coefficient has roughly the same trajectory of the network
assortativity. Thus, it seems that, specially about the half of 2012, part of the assortativity
decrease observed was due to the decrease in the number of connections between large
FIs.
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(b) Borrower CC of non-large FIs
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Figure 7: Trajectory of the weighted clustering coefficient of FIs for static snapshots of the interbank
network in different periods.

4.5 Weighted clustering coefficient of FIs

Another point in financial stability analysis is the resilience of the financial system
to the removal of an FI, which is also an overall measure of the diversification of its
counterparties. To obtain this information, we analyze the network weighted clustering
coefficient. We note that to compute the clustering coefficient of an FI, we can consider
clusters formed from the perspectives of its borrowing or lending relationships, i.e., the
computation is related to the FI’s out- or in-strength, respectively.

Figures 7a and 7b display the average clustering coefficient (CC) of large and non-
large financial institutions from the borrower perspective. According to Figure 7a, large
banks usually possess higher clustering coefficients than non-banks, revealing that they
present a relevant non-sparse network structure in their surroundings, in the sense that
their lenders communicate with each other. Moreover, large banks are more substitutable
than large non-banks because of their large CC. That means that their neighbors can
choose other counterparties to fund themselves. In contrast, according to Fig. 3, large
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non-banks play roughly the role of investors. Most of the time, their average out-degree
is zero, meaning that they are connected to the network by inward links (investment rela-
tionships). These non-banking FIs usually invest (in-degree) in two large banks, which, in
turn, have high in- and out-degrees. Therefore, they contribute to increasing the borrower
CC of large banks.

In Fig. 7b, which shows the CC for non-large institutions, we see the same picture:
banks have higher clustering coefficients than non-banks due to the their higher average
out-degrees and their tendency to relate to large banks, which in turn are the most di-
versified FIs. Looking at the interbank market, we can see that each of the non-large
banks typically borrows from two or more large banks and also takes investments from
non-banking institutions.

Figures 7c and 7d display the average clustering coefficient of large and non-large
financial institutions from the lender perspective. Large non-banks have higher clustering
coefficient than large banks from this perspective. The reason behind that is as follows.
First, they have very few, but not zero, investments6. Moreover, considering that they
often invest in large banks and that the graph component comprising only large banks is
almost a clique (complete graph), there will be some kind of relationship between the two
invested large banks with high probability. Therefore, large non-banks will form much
of the potential triangles between the (often two) counterparties7 and, as a result, will
present a high clustering coefficient.

A similar panorama happens with the clustering coefficient from the lender perspec-
tive for non-large institutions, as Fig. 7d reveals. In this case, the large banks CC value is
not as high as the large non-banks, because non-large non-banks often invest in more than
two counterparties (recall Fig. 3b). As the number of counterparties increase, the number
of potential triangles between counterparties exponentially increase as well, the tendency
is that non-large non-banks to have a smaller value of the CC.

4.6 Weighted clustering coefficient of the network

Figures 8a and 8b present the weighted clustering coefficient of the network from
the borrowing and lending perspectives, respectively. We note a downward trend in both
perspectives, meaning that members in the network are becoming harder to be substituted.
Given an FI i, this happens because neighbors of i are less likely to be interconnected if
the clustering coefficient of i is low. This is true because, in this scenario, on average,
there are less triangular structural patterns in the network. The decrease in the network

6In reality, from Fig. 3a (investment diversification) and 3c (funding diversification), we see that non-
banking institutions do not take funds from the money market. Instead, they act solely as investors in this
market segment.

7In this case, only two triangles are possible. If the communication between the invested counterparties
is bidirectional, then the large non-bank will have maximum clustering coefficient.
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Figure 8: Trajectory of the weighted clustering coefficient of the network for static snapshots of the inter-
bank network in different periods.

weighted clustering coefficient can also be related to the diminish of the number of active
operations in the money market, as we can see from the downwards trends of the in- and
out-degree of FIs in Fig. 3.

4.7 Criticality

We now analyze the criticality (cf. (3)), which is a network measure that can be
used as a quasi-local importance indicator of participants in the interbank network. For
a given FI, this equation takes into account only the vulnerabilities of that FI’s direct
neighbors. We present mean criticalities by FI size category in Figs. 9a and 9b. On
average, large banks have a higher number of creditors (cf. Fig. 3); thus, even if they are
not especially vulnerable individually, the sum of the vulnerabilities tends to be higher.
Non-large banks present lower criticality than large banks, because they have a smaller
number of creditors on average. Non-banking institutions show zero average criticality
as their average number of creditors in the interbank market is zero, because they do not
take funds in the money market. According to this criterion, an FI may have only small
vulnerable FIs as counterparties and be critical; however, the FI’s impact on the entire
financial system will not be important.

5 Conclusion

In this work, we have investigated the roles FIs play within the Brazilian interbank
market using an approach based on complex networks. One prominent advantage of em-
ploying network-based theory is that it is able to capture topological and structural charac-
teristics of the players’ relationships from the data representation itself. Using a classical
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Figure 9: Trajectory of the network criticality for static snapshots of the interbank network in different
periods.

network analysis approach on the Brazilian interbank market from 2008 to 2014, we have
seen that the network presents strong disassortative mixing along the entire studied pe-
riod. This characteristic suggests that highly connected FIs are frequently connected to
others with very few connections. This observation is consistent to the fact that interbank
networks frequently have money centers, which act as hubs to non-large institutions. Us-
ing this fact together with the link distribution, we have seen that connections between
non-banking and banking institutions are far more typical than links among pairs of non-
banking institutions. Furthermore, we have employed the weighted clustering coefficient
as an FI substitutability indicator, showing that large banks are more substitutable than
large non-banks in the borrowing perspective. Employing the classical criticality mea-
sure, we have seen that large banking institutions are more critical to the remainder of
the FIs. In special, we have seen that, during the crisis, the criticality of large banking
institutions achieves its maximum value in the studied period.

We have also studied the “rich-club” effect on the Brazilian interbank network.
We have found a strong presence of the “rich-club” property in the community formed
by the large banking institutions, as they tend to form near-clique structures (complete
graphs). Since they often play the role of liquidity providers in the interbank market,
this phenomenon effectively gives robustness to the interbank network, as participants
that are with liquidity issues can easily substitute their counterparties that are liquidity
providers. Moreover, we have seen that the “rich-club” coefficient assumed its maximum
theoretical value in September 2008, showing that the core entities in the “rich-club”
formed a complete graph.

In this paper, we have focused on topological measures that take into account the
linkages, either weighted or not, between FIs, with only a glimpse on vulnerability mea-
sures, such as criticality. A natural development from this point is to quantify, given an
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FI’s vulnerabilities, how vulnerable and harmful that FI is to the financial system, spe-
cially if these features have only local reach or if they also reach indirect neighbors. This
is left for future work. Furthermore, this paper deals with one contagion channel, the
direct contagion channel. The study of interactions between this channel and others will
also enrich our comprehension on contagion risk in financial systems, improving the in-
formation that can be used by the decision making process related to the operation of
macroprudential tools.
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