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Abstract 

The Working Papers should not be reported as representing the views of the Banco Central 

do Brasil. The views expressed in the papers are those of the author(s) and do not 

necessarily reflect those of the Banco Central do Brasil. 

Business and financial cycles’ interactions are important to Monetary and 
Macroprudential Policies. The Countercyclical Capital Buffer (CCB) 
proposed by the Basel Committee on Banking Supervision (BCBS) 
assumes that the financial cycle is four times longer than the business one 
with direct impacts over its main indicator, the credit-to-GDP gap. This 
paper addresses the issue of estimating credit and business cycles’ length 
using Bayesian Structural Time Series Models of unobserved components 
(STM) and Singular Spectrum Analysis (SSA) followed by Fourier-based 
Spectral Analysis. The results, considering 28 countries, suggest that 
financial cycles, measured by the credit-to-GDP gap, could indeed be 
longer than the business one, but definitely shorter than the one implied in 
the cut-off frequency used by the BCBS. We find that most countries in 
the sample have financial cycles between 13 and 20 years, but there is a 
smaller group of countries whose estimates are close to those of the 
business cycle, i.e., 3 to 7 years. Finally, we estimate q-ratios objectively 
using STM and find that a HP smoothing factor that closely relates to the 
gain functions of our estimated state space form is HP(150).  
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1. Introduction

There is an extensive literature covering several aspects of business cycles 

including its duration through a wide range of alternative estimation procedures. The 

OECD estimates that the business cycle duration ranges between 5 to 8 years. 

Regarding the financial cycle, Drehmann et al. (2010) propose the distance between 

financial crises as a definition. To the authors, these figures range from 5 to 20 years 

with a cross-country median around 15 years. However, Drehmann et al. (2011) suggest 

that the financial cycle should be considered four times longer than the business cycle 

when it comes to anticipating credit crises. As a consequence, they put forward a 

possible credit cycle metric consisting of a one-sided Hodrick-Prescott (HP) filter 

credit-to-GDP gap estimated using a lambda factor of 400k for quarterly data. We will 

denote this filter HP(400k). Such metric is suggested to be a leading indicator to 

Macroprudential Policy decisions concerning the Countercyclical Capital Buffer (CCB) 

(BSBC, 2010). 

Because the HP is a high-pass filter, such calibration implies that periods longer 

than roughly 39.5 years are considered trend components, while all other higher 

frequency components are considered cyclical components (Iacobucci and Noullez, 

2004, Ravn and Uhlig, 2002). One should notice that very long periodic (low 

frequency) components are being regarded as cycle movements. In most countries, the 

available quarterly credit series is shorter than the implicit “cut period”, making the gap 

estimates possibly biased. Also, because a one-sided filter is being put forward by the 

Committee, all gap estimates are subject to end-point bias (Mise et al., 2005). 

To overcome these issues, we fit trend and cycles using Singular Spectrum 

Analysis (SSA) and Structural Time Series Models (STM). We also adopt Fourier-

based spectral analysis and parametric techniques (ESPRIT) to estimate cycles’ length. 

In both SSA and STM, the estimates are not (or at least are less) biased when the series 

are short or at the end-points. More importantly, the more representative spectral 

component, cycle frequency, is being estimated objectively. Another benefit of using 

Bayesian STM is exploring the information contained in its posterior joint distribution, 

which pinpoints the degree of uncertainty around the parameters and the state of the 

cycle in any given point in time.   
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To the best of our knowledge, this is the first paper to use these techniques to 

estimate objectively financial cycles’ length and access possible limitations of 

HP(400k) as a financial cycle metric. Based on our results, we suggest HP(150) as 

another alternative to more accurately describe financial trends and cycles.     

2. Literature Review

The literature on financial cycles’ length is relatively scarce. Drehmann et al. 

(2010) propose the distance between financial crises as a definition and use the credit-

to-GDP gap as a leading indicator to anticipate these events.  

Drehmann et al. (2012) use analysis of turning points and the Christiano-

Fitzgerald filter (Christiano and Fitzgerald, 2003) to analyze the financial cycle and its 

relation with business cycle in 7 countries. They find financial cycles averaging 16 

years and considered such duration after and before 1998, finding 20 years for the 

former and 11 years for the latter. 

Claessens et al. (2009 and 2011) and Mendoza and Terrones (2008) also 

evaluate interactions between credit and business cycles, as well as the length and 

severity of financial cycles and their synchronization among countries. Bordo and 

Haubrich (2009),   Laeven and Valencia (2008, 2010), Reinhart and Rogoff (2009) and 

Drehmman et al. (2011) contribute identifying major periods of credit distress that can 

be related to busts. Dell'Ariccia et al. (2012) is more concerned with policy responses to 

credit booms and Che and Shinagawa (2014) with financial stability across different 

stages of the financial cycle.   

Financial cycles have also been proxied by equity indexes, credit spreads 

(Claessens et al., 2009 and 2011), credit growth (Che and Shinagawa, 2014) and several 

other macroeconomic and financial variables (Drehmman et al., 2011). Lown and 

Morgan (2006) take an alternative approach looking at opinion surveys from loan 

officers.  In this paper, we take credit-to-GDP as a proxy just as in BCBS (2010) and 

take the expressions credit and financial cycles as perfect substitutes.     

Trend-cycle decomposition is fundamental in macroeconomics. Nonetheless, de-

trending methods may lead to spurious cycles and misleading results (e.g. Nelson and 

Kang, 1981, Harvey and Jaeger, 1993 and Cogley and Nason, 1995). In other words, it 

is important to evaluate if the leading gap estimate put forward by the Basel Committee, 
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i.e., HP(400k), is not resulting in spurious financial cycles as illustrated in Harvey and

Jaeger (1993) and Harvey and Trimbur (2003) in the classic investment cycle example. 

There are also other structured alternatives to more robustly estimate cycles (see 

Areosa, 2008).  

Drehmann et al. (2011) suggest credit-to-GDP gap, estimated with HP(400k), as 

a financial cycle metric. Their conclusion is based on better tracking crisis performance 

as compared to other variables and alternative HP smoothing parameters.  

They also support setting the smoothing parameter ���� to 400k following Ravn

and Uhlig (2002) conversion formula (1):  

���� = �� ∙ �	�� (1) 

where �	�� = 1600 is the value for quarterly sampled series (this value was suggested 

by Hodrick and Prescott, 1997 for the US GDP) and s is the new sampling frequency 

relative to one quarter (1/4 for annual and 3 for monthly, for example). That is to say, s 

is no longer 1 but 4 leading to ���� = 4� ∙ 1600 = 400�. Using s=4 implies that the 

credit cycle could be four times longer than the business one (see Drehmann et al., 2010 

and 2011). 

Setting the ����	to 400k has other implications though. An ad hoc cut-off period 

(Tc) of 39.5 years is implied.  Thus, only extremely low frequency components are 

indeed cut-off by the filter (see Iacobucci and Noullez, 2004 and formula 21,2). 

�� = ��4�
arcsin	����/�2  (2) 

In this paper, we adopt a different strategy than Drehmann et al. (2010) and 

Drehmann et al. (2011) and look into a more refined country-by-country assessment of 

credit cycles’ length. Moreover, we estimate objectively the signal-to-noise (q) ratio that 

feeds the Hodrick and Prescott (1997) filter looking into an alternative specification of 

1 This formula may be obtained as the point where the frequency response of HP filter reaches 0.5 
2 The frequency response of HP filter is not a step function, but it is clearly a high-pass filter (supposing the output of 
the filter is the cycle, not the trend). 
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the HP filter that more closely relates to the gain functions of our state space models 

(Harvey, Jaeger, 1993; Harvey, Trimbur, 2008). 

 

  3. Data and Methodology 

 
The data we use for credit aggregates is the same provided by and publicly 

available from the BIS website (see Dembiermont et al., 2013 for more details on this 

database). The quarterly GDP is extracted from the OCDE database3. Following BCBS 

(2010) and Dembiermont et al. (2013), we use a broader definition of credit to account 

for risks that may be originated outside the banking system.  

We use two alternative methods to evaluate length and amplitude of financial 

cycles. We adopt a model-free technique called Singular Spectral Analysis (SSA) for 

trend extraction and, as a parametric alternative, we calibrate Bayesian Structural Time 

Series Models (STM). In the first case, spectral analysis is carried out on the residuals to 

identify significant periodic components and, in the latter, cyclical components are 

directly estimated in the state equations.  

 

3.1 Non-parametric approach to estimate financial cycle´s length 

The main tool used in this paper for non-parametric estimation of the credit 

cycle’s length is spectral analysis. However, economic series frequently have trends, 

causing difficulties to estimate periodic components and leading to the need of de-

trending tools.  

We use Singular Spectrum Analysis (SSA) also known as “Caterpillar” SSA or 

simply SSA to de-trend series. This model-free procedure is very well suited for short 

and noisy time series (Golyandina et al., 2001, Golyandina and Zhigljavsky, 2013). 

After de-trending the series, we estimate the main periodicities using four alternative 

techniques: raw and smoothed periodograms (Bloomfield, 2000), multitapering spectral 

estimation (Thomson, 1982), and SSA combined with the estimation of signal 

parameters via rotational invariance techniques (ESPRIT) algorithms (Roy and Kailath, 

1989; Golyandina and Zhigljavsky, 2013). 

 

 

                                                 
3 For Brazil, we use quarterly GDP available at Central Bank of Brazil website. We also construct the broad credit to 
non-financial private sector series using data available at the same source. 
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Singular Spectrum Analysis 

SSA decomposes the time series in additive components that can be interpreted 

as trend, periodicities and noise (Golyandina and Zhigljavsky, 2013). We choose this 

de-trending method to go around more subjective issues usually embedded in band-pass 

(e.g. Christiano-Fitzgerald) or high-pass filters (e.g. Hodrick-Prescott) such as defining 

an ad hoc cut-off frequency or smoothing parameter. The procedure is less dependent 

on calibration issues, but sufficiently sensitive for complex trend extraction4 

(Golyandina et al., 2001). 

The Basic SSA is comprised of two stages, namely, decomposition and 

reconstruction. The former uses singular value decomposition (SVD) of a trajectory 

matrix constructed from the time series, and the latter groups the elements of this SVD 

to reconstruct the components of the time series (see Appendix A and Golyandina et al. 

(2001) for more details). 

In general, the concept of trend is not closely defined in the literature and there 

is some degree of subjectivity in its definition. Chatfield (1996) defines trend as “a 

long-term change in the mean”, considering it as an additive component of the time 

series which describes its global changes. For our purposes, trend is some rough 

movement of the series, without periodic components, which is smooth and accounts for 

most of the variance of the original times series. 

Figure 1 presents, as an example, the logarithm of an annual real GDP series 

from Brazil between 1996 Q4 and 2013 Q2. The SSA trend was estimated aggregating 

the two main eigentriples on window length L = 20. In other words, the trend (T) = 

!"# + !"% 	and cycle (C) = !"& +…+ 	!"(  (see appendix A for notation and details). We 

follow Golyandina et al. (2001) on grouping strategy. 

 

                                                 
4 There is a certain degree of subjectivity in selecting the L windows and the number of eigentriples in the 
reconstruction step. However, there are objective ways to minimize this ad hoc nature (see more on Appendix A).  
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Figure 1: Log of real GDP from Brazil (black) and trend extracted with SSA (red). 

In Figure 2, the residual of this extraction is plotted together with the cycles 

extracted using STM and the HP filter (� = 1600). In this case, the three methods 

present relatively similar results and show a clear cyclical behavior. 

Figure 2: Brazil’s business cycle extracted through singular spectrum analysis (SSA), Hodrick-Prescott 
filter (HP) and structural time series model (STM). 
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After de-trending, a more straightforward parametric alternative related to SSA 

called ESPRIT is used to estimate cycles’ length as well as three other Fourier-based 

spectral estimation alternatives such as raw and smoothed periodograms, and 

multitapering. 

3.1.1 ESPRIT 

ESPRIT is an algorithm for high resolution spectral estimation which exploits 

the subspace properties of the signal. This characteristic connects ESPRIT with SSA, 

because the latter includes the construction of a subspace which approximates the 

subspace generated by the signal (Roy and Kailath, 1989; Golyandina and Zhigljavsky, 

2013). Following our previous example, we use the total least squares ESPRIT (TLS-

ESPRIT) algorithm for period length estimation (Figure 3). The results point to a 3.2 

years period for our example. 

Figure 3: Signal extraction from Brazil’s business cycle. TLS-ESPRIT shows a component of the signal with a 3.2 
years period. The signal extracted from residuals is the red curve. 

3.1.2. Spectral estimation: raw and smoothed periodograms, and multitapering 

Spectral analysis to estimate main periodicities (frequencies) in numerical 

sequences is commonly used in Engineering, Physics and Geosciences by means of raw 

Sequential SSA on Brazil GDP Residuals

Time

2000 2005 2010

-0.02

-0.01

0.00

0.01

0.02

Main periodicity: 3.2 years 

10



and smoothed periodograms, as well as multitapering techniques. There is vast literature 

covering the use of these techniques and related references in Economics, e.g. Granger 

(1964) and Hamilton (1994) among others. 

However, the use of raw periodograms creates some problems such as the high 

variance of spectral estimates (Priestley, 1981; Bloomfield, 2000). In this paper, we use 

it as benchmark altogether with the suggested corrections, namely: smoothing and 

tapering (windowing). The smoothing is carried out with a modified Daniell window of 

length 3. 

Additionally, it is possible to have confidence bands on smoothed spectral 

estimation, raising the possibility of a hypothesis test (Bloomfield, 2000). The null 

hypothesis may be the spectrum of some process, and we refer to it as “null continuum”. 

For most applications, the null continuum is simply a white noise process, which has a 

constant spectrum (Priestley, 1981). But, for our purposes, a “red noise” null continuum 

is more suitable, because economic time series are often characterized by strong 

positive autocorrelations and have a typical spectral shape (Granger, 1966, Levy and 

Dezhbakhsh, 2003). As AR(2) processes may show pseudo-periodic behavior 

(Anderson, 1976), we fit an AR(2) model to each series and use its theoretical spectrum 

as our null continuum. More details on Appendix B. 

Thomson (1982) criticizes the use of smoothed periodograms. He argues that, as 

the raw periodogram is an inconsistent estimate of spectrum in the sense that its 

variance does not decrease with the sample size, the procedures of tapering (for bias 

control) and smoothing (for variance control) are necessary, but pose some problems for 

the estimates. To the author, tapering reduces bias, but also reduces variance efficiency, 

while smoothing is unsatisfactory, unless there is reason to believe that the underlying 

spectrum is smooth. Additionally, as smoothing operates on raw spectrum estimates, 

phase information present in the original data is not used, making line detection less 

efficient. 

As an alternative, Thomson (1982) proposes a Multitaper Method (MTM) that 

we also implement here. This procedure uses multiple pairwise orthogonal tapers to 

obtain statistically independent spectral estimates of the underlying spectrum from the 

same sample. The final spectrum estimate is obtained through a weighted average of the 

independent estimates. 
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He also proposes a statistical test for spectral line significance, called Harmonic 

F-test, which is a test for line component significance against a smooth “locally white” 

spectral background. We use it as our test for periodicities on MTM estimates5.  

3.2 Bayesian Structural Time Series Model (STM) 

Structural time series models could be formulated directly in terms of its 

unobserved components (Koopman et al., 2009). Harvey and Jagger (1993) strongly 

suggest the use of these models to both represent stylized facts about macroeconomic 

series and assess limitations of alternative ad hoc methods. The authors also 

demonstrate that the HP filter can easily create spurious cycles and illustrate how 

structural time series analysis can be used to detect cyclical, trend, and seasonal 

components (Harvey and Trimbur, 2003; Harvey and Trimbur, 2008). We use a similar 

approach to estimate trend and cycle components. 

Harvey (1989) describes our full model in terms of a measurement equation (3) 

and state equations (4 to 7), where *+	represents a local level, 	,+ the cyclical state 

vector, and -+		a white noise:  

.+ =	*+ + 	,+ + -+,		-+	~12340, 567) (3) 

The state vector (4) represents the trend component and (5) the slope component 

that feeds into the trend component, where 	8+ represents the slope, 9+		a white noise for 

local level and :+		the slope vector residual. Observe that 5;	7  is set to zero, because we

specify a smooth trend (Koopman et al., 2009a).  

μ= = μ=�� 	+ 	β=�� + η=,		η=	~NIDC0, σE	7 = 0F (4) 

β= = 	β=�� + ζ=,		ζ=	~NIDC0, σH	7F (5) 

In our model, the typical cyclical state component (6) proposed by Harvey 

(1989) is actually replaced by the (7) from Harvey and Trimbur (2003): 

5 The test assumes a highly concentrated spectral line against a smooth spectrum, but it is not well suited for time 
series with “red noise” background and quasi-periodic components (See Mann and Lees, 1996). 
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 I ,+,+∗K = 	L I MN��� �OP��−�OP�� MN���K I ,+��,+��∗K + R S+S+∗T	,	U = 1,…� (6) 

 

where �� is the frequency in radians, in the range [0, π], S+ and S+∗ are two mutually 

uncorrelated white noise disturbances with zero means and common variance 5V7. The 

cycle period is 2π/�� and this stochastic cycle becomes an AR(1) if �� is 0 or π 

(Koopman et al., 2009b). It is important to highlight that the cycle is stochastic only in 

terms of amplitude. 

Harvey and Trimbur (2003) extend this framework to cyclical (smoother) 

processes of order k, specified as ,+ =	,+4W). In that case, for j = 1,…, k: 

 

 X ,+4Y),+∗4Y)
Z = 	L I MN��� �OP��−�OP�� MN���K X ,+��4Y)

,+��∗4Y)
Z + X ,+4Y��),+∗4Y��)

Z	,	where (7) 

 

	X ,+4^),+∗4^)
Z
	
=	 IS+S+∗K are two mutually uncorrelated white noise disturbances with zero 

means and common variance 5V7. 

A higher k leads to more pronounced cut-offs of the band-pass gain function at 

both ends of the range of cycle frequencies centered at ��, rendering smoother cycles. 

We follow Harvey and Trimbur (2003) and Harvey et al. (2007) and test several k 

orders of the cycle for robustness.  

The signal-to-noise (q-ratio) in this model can be expressed in (8), 

 

 _ = 5`	7567 + 5a7  (8) 

 

where 5a7  is the variance of the state component ,, closely related to 5V7 and L . 
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Harvey et al. (2007) extend this framework for Bayesian estimation of five of 

these parameters, b = c5`	7 , 5V7, 	567, L, �� , d	.The posterior distribution can be accessed 

using (9):  

f4b|.) = h4b; .)f4b),          (9) 

 

where the likelihood function h4b; .) is evaluated using the Kalman Filter.  

Similarly, the marginal likelihood j4.)	is described in (10) and Bayes factors 

are computed as the ratio of marginal likelihoods for different model specifications 

{h4b; .)f4b)} , a convenient way to choose between them.  

 

j4.) = 	m h4b; .)f4b)nb                 (10) 

 

The constant of proportionality is naturally not available analytically; as a 

consequence Markov Chain Monte Carlo (MCMC) methods are a suitable way to 

sample parameter drawings from the posterior.   

To Harvey et al. (2007), there are two great advantages in adopting the MCMC 

algorithm to STM: 1) avoid fitting implausible models and 2) investigate parameter 

uncertainty in the posterior distribution of the components. Moreover, the MCMC 

produces draws from the joint posterior both of the trend and cyclical components that 

we are interested in investigating. We follow the same computational procedure in this 

work (see also Koop and Van Dijk, 2000 and Durbin and Koopman, 2002 for details on 

the simulation smoother).     

As in Harvey et al. (2007), we are interested in the �� parameter and we set a 

beta prior distribution for the quarterly frequency parameter �� with mode on 2�/20 for 

the business cycle (5 years) and three sets of “spreads” to account for different levels of 

informativeness about the shape of the distribution. For the widest prior (5o *o⁄ ) = 

40%, for the intermediate (5o *o⁄ ) =13% and for the sharp (5o *o⁄ ) = 4% (see Figure 

4). We set non-informative flat distributions to all other four parameters. The parameter 

L is also truncated to lay in the interval [0,1] as expected in the model. These are the 

same priors used by Harvey et al. (2007).  
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For the financial cycle, we rely on Drehmann et al. (2010) and set the prior mode 

of �� to meet the median distance between crisis, 15 years, i.e., 2�/60. However, as the 

degree of uncertainty is higher in the financial cycle than in the business one, we choose 

even wider priors than the original ones proposed by Harvey et al. (2007). We set our 

wider priors in a way that could (if necessary) encompass the business cycle. These 

priors are (5o *o⁄ ) =100%, (5o *o⁄ ) =70% and (5o *o⁄ ) =40% (see Figure 4).    

 

Figure 4: Beta priors for business and financial cycles 

 

4. Results 

In this section, we present several financial cycles’ length estimates using 

univariate structural time series models (STM) and spectral analysis for 28 countries. 

The credit-GDP gap is the adopted financial cycle proxy. We also use STM to evaluate 

the business cycles’ of these countries replicating Harvey et al. (2007) and taking 

logarithm of GDP as proxy.  

Regarding SSA (session 4.1), we use the procedure detailed in Appendix A to 

decompose and reconstruct all series in the sample and run spectral analysis in their 

residuals (Appendices B and C).  

Regarding STM (session 4.2), we first analyze the sensitivity of the parameters 
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looking at marginal likelihoods and finally we focus on posterior means and overall 

distribution of the parameters and state estimates to draw conclusions about main 

cycles’ length, amplitude, and variances. Most of our analysis focuses on the financial 

cycle. However, we rely on cross-country median estimates to better explore some 

differences between the business and financial cycle. Naturally, this kind of parameter 

comparison cannot be carried out objectively in the non-parametric techniques.  

 

4.1 SSA and Spectral Analysis 

In this session, we use “Caterpillar” SSA as a de-trending method and estimate 

main periodicities in the residuals using spectral decomposition over raw and smoothed 

periodograms, and MTM. We evaluate 28 countries credit-to-GDP series in this 

exercise.   

Table 1 shows the main periodicities detected with all methods. We show only 

significant results at 5% (against a “red noise”) for the Smoothed Periodogram and 

significant results at 5% (against a local white noise) for the Multitaper F-test (see 

Appendices B and C, and Thomson, 1982 for more details). In all these methods, we 

present the main significant periodicities on a spectral neighborhood, i.e., the highest 

significant peak on a Smoothed Periodogram, the highest peak on a Raw Periodogram 

and the highest F-statistic on MTM. The ESPRIT results represent those close to the 

neighborhood of the other estimations6. We present detailed results concerning these 

estimates in Appendix D. 

 

                                                 
6 As the ESPRIT results do not have a statistical significance test, we use the proximity to spectral estimates to 
choose the results of interest. Note that, in some cases, there is just one estimate. 
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Country Raw 

Periodogram

Smoothed 

Periodogram

MTM F-test ESPRIT Mean

Australia 18 18 21.3 19 19.1
Austria 10 10 9.8 10.3 10.0
Belgium 8.4 8.4 9.1 9.5 8.9
Brazil 6 6 7.1 9.4 7.1
Canada 15 10 16 15.4 14.1
Czech_Republic 4 NA 3.8 3.9 3.9
Denmark 18 18 18.3 26.4 20.2
France 15 15 16 17.1 15.8
Finland 11.2 11.2 11.6 8.4 10.6
Germany 18 18 16 17.5 17.4
Hungary 2.9 1.4 2.9 3.3 2.6
Korea 15 11.2 14.2 13.5 13.5
Indonesia 3.4 3.4 4 4 3.7
Ireland 9 NA 9.1 13.5 10.5
Italy 16.9 8.4 14.2 15.8 13.8
Japan 16.7 NA 21.3 19 19.0
Mexico 8.4 8.4 9.1 10 9.0
Netherlands 12 NA 18.3 18.7 16.3
Norway 24 NA 21.3 18.4 21.2
Poland 6.7 NA 9.1 8 7.9
Portugal 13.5 13.5 14.2 16.7 14.5
South_Africa 16.7 NA 18.3 9.4 14.8
Spain 9 7.5 8 8.8 8.3
Sweden 16.9 11.2 18.3 19.1 16.4
Switzerland 10.8 10.8 11.6 11.3 11.1
Turkey 13.5 NA 10 17.6 13.7
United_Kingdom 22.5 15 16 18.2 17.9
United_States 20.8 20.8 21.3 17.9 20.2

Median 13.5 11.0 14.2 14.5 13.8  
Table 1: Main periodicities (years) for each method over 28 countries sample. NA means that the highest peak was 

not significant 

 
Notice on Table 1 that results are approximately similar for different approaches. 

Some countries showed more ambiguous results, e.g., Denmark, Sweden, Norway, 

Japan, South Africa, Italy, and Turkey. But, for all countries, at least three different 

estimates show relatively close results. One should bear in mind mentioned limitations 

such as spectral resolution and leakage effects (see also Appendices A to C).  

Observe on Figure 5 the concentration of periodicities of over 15 years. 

Nonetheless, it is also possible to identify a smaller group (around 9 countries) with 

mean periodicities below 10 years.  Significant periodicities close to the business cycle 

range can also be found for most of these countries in the Periodograms (see more on 

Appendix D). We focus our analysis in longer periodic components though. 

In some countries we failed to estimate significant lower frequency components. 

For instance, Brazil, Indonesia, Czech Republic, and Hungary have mean frequency 

domains close to those expected in a business cycle. These are also countries with short 

series. Naturally, the availability of only short series compromise the estimation of low 

frequency domains and this is an issue impossible to go around.  However, series’ 

length is not the main factor driving our estimates. Hungary, for instance, has series just 

as long as Poland, but a cycle two times larger. Poland slightly exceeds the 7.5 years 
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boundary that we consider for the business cycle range. On the opposite side, Spain has 

a mean frequency pointing to 8.3 years, while countries with series just as long, such as 

France, Ireland, and Finland are over 10 years figures. Turkey, with smaller series, is 

also above the 13 years figures (Appendix E2 has information on the credit series length 

as well as STM estimates).  

  

 
        
 

4.2.1 STM for Business Cycle 

We estimated posterior means of the five aforementioned parameters =
c5`	7 , 5V7, 	567, L, ��d	, 	5a7  (variance of amplitude), q-ratio, and the marginal likelihood, 

M(y), for the 28 countries. The period is simply 2�/�� (in quarters). We present it 

altogether with Highest Posterior Densities (HPD) for 2�/�� in years for simplicity. We 

estimate the model for every country using four orders of cycles, k ={1,..,4}, and the 
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Figure 5. Histogram of estimated periodicities 
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three sets of priors detailed before. Individual results are available upon request. 

Variance terms are multiplied by 107. 

Table 2 presents the cross-country median estimates. Note that  �� mean and, as 

consequence, period mean estimates do not seen to be influenced by our set of priors. In 

line with literature, L and 5V7 diminish as cycle order (k) increases, but also have no 

effects on the period density (Harvey and Trimbur, 2003).  

 
k Prior Type qr	s  qts 	qus v wx M(y) 	qys  Q ratio HPD 

(10%) 

Period 

(years) 

HPD 

(90%) 

1 Intermediate 73 379 86 0.77 0.32 251.0 1896 0.14 4.2 4.9 5.8 

1 Sharp 74 388 83 0.77 0.32 251.0 1673 0.13 4.7 5.0 5.3 

1 Wide 78 365 94 0.78 0.36 250.7 1719 0.15 3.0 4.8 6.9 

2 Intermediate 64 214 158 0.57 0.32 254.1 2179 0.15 4.2 5.0 5.9 

2 Sharp 63 215 160 0.58 0.32 254.1 2252 0.14 4.7 5.0 5.3 

2 Wide 71 213 154 0.56 0.35 253.8 2519 0.17 3.1 5.0 7.5 

3 Intermediate 90 154 185 0.43 0.32 254.3 2293 0.17 4.2 5.0 5.9 

3 Sharp 88 157 188 0.43 0.32 254.4 2853 0.19 4.7 5.0 5.3 

3 Wide 99 153 182 0.42 0.36 253.9 2265 0.21 3.0 4.9 7.4 

4 Intermediate 103 114 199 0.35 0.32 253.9 3081 0.22 4.2 5.0 5.9 

4 Sharp 103 115 199 0.35 0.32 253.9 2760 0.22 4.7 5.0 5.3 

4 Wide 110 111 196 0.34 0.36 253.4 2825 0.27 2.9 4.9 7.3 

Table 2. Cross-country median estimates across priors and business cycle orders7 

 
The marginal likelihood M(y) across model specifications was found maximum 

in 13 of the 28 countries in cycles of order k=2. In other words, this specification 

usually renders the preferred model (Kass and Raftery, 1995). Results are in consonance 

with Harvey et al. (2007).  We present individual and more detailed results only for 

wide priors and cycles of order k=2 in Appendix E1. All others are available upon 

request.  

Figure 6 illustrates, using the UK Output, the posterior densities of all four 

parameters for which flat priors are used. The red curve is a Kernel density estimate. 

Figure 7 illustrates �� and  2�/�� (in quarters) as well as marginal posterior densities of 

the slope and cyclical components, 8+,z and ,+,z, of the UK Output in 2013Q4. Note 

that High Posterior Densities (HPD) for  �� are directly obtained from our data. We 

present these same results in period densities for simplicity. In the case of the UK, mean 

estimates for Period point to a 6.11 years business cycle, with HPD bands stemming 

                                                 
7 We use the OX language described by Doornik (1999) and SSFpack 3.0 from Timberlake Consultants to 
estimate all these figures. The original codes of Harvey et al.(2007) were kindly made available to us by 
the authors. Graphs and local Gaussian kernels were generated using STAMP and OxMetrics 6.01 (see 
more on Koopman et al., 2000).       
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from 3.99 to 8.32 years. This mean estimate points to a one year larger than average 

cycle as compared to other countries in the sample (Appendix E1). The UK Output gap 

mean is still at the negative side in 2013Q4, but very close to zero. It is straightforward 

to calculate the probability that this figure is effectively below the trend, 78.8%, as 

opposed to 25.8% on 2006, before the crisis effects hit the real economy. The UK 

Output gap mean has been mostly on the negative side since 2010.           

Figure 6. Marginal posterior densities of v,qts	, qr	s 		{|}	qus for n=2, with wide prior for UK GDP.
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Figure 7.  UK Marginal posterior densities of  wx (Top left) and  s~/wx (in quarters – Top right) for n=2 with wide 
informative prior on wx.  (Bottom) Marginal posterior densities of the slope and cyclical components, ��,� and y�,�, 
for 2013Q4.  	
 

 

4.2.2 STM Financial Cycle 

Following the same dynamics, Table 3 presents cross-country median results for 

our four alternative specifications of the model and the three prior sets that we elaborate 

for the financial cycle.  We also present results when a flat prior is used for ��. 

 
n Prior Type qr	s  qts 	qus v wx M(y) 	qys  Qc ratio HPD 

(10%) 

Period HPD 

(90%) 

1 Intermediate 168 1986 286 0.83 0.16 421.5 30395 0.04 5.3 13.0 24.1 

1 Sharp 159 2017 279 0.83 0.14 421.6 27114 0.04 6.9 13.9 23.5 

1 Wide 175 1942 291 0.81 0.20 421.4 21798 0.05 3.9 11.6 24.3 

2 Intermediate 187 1346 532 0.54 0.15 421.6 17580 0.06 5.5 14.6 27.9 

2 Sharp 183 1398 533 0.55 0.13 421.7 14911 0.05 6.9 15.1 26.1 

2 Wide 193 1262 533 0.53 0.19 421.4 14385 0.07 4.1 13.5 29.5 

3 Intermediate 205 1000 646 0.38 0.16 421.5 8978 0.13 5.3 14.1 27.2 

3 Sharp 198 1019 651 0.38 0.14 421.5 9551 0.12 6.9 14.8 25.6 

3 Wide 215 964 639 0.37 0.20 421.3 7388 0.14 3.8 12.7 28.1 

4 Intermediate 230 741 770 0.32 0.16 421.3 8537 0.15 5.2 13.8 26.8 

4 Sharp 222 751 740 0.32 0.14 421.4 8366 0.14 6.8 14.6 25.3 

4 Wide 246 736 728 0.30 0.21 421.2 6792 0.16 3.7 12.4 27.5 

1 Flat 235 1503 350 0.78 0.37 422.1 10642 0.09 2.4 7.1 13.7 

2 Flat 251 987 548 0.47 0.65 418.6 6032 0.22 1.3 7.5 18.4 

3 Flat 330 633 623 0.31 0.84 420.0 4208 0.30 0.9 5.5 13.5 

4 Flat 372 432 683 0.26 1.05 424.5 3168 0.34 0.7 4.3 10.5 

Table 3.  Cross-country median estimates across priors and financial cycle orders 
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It is important to highlight some aspects of Tables 2 and 3. First, 	45a7) is on 

average six times lower in the business cycle than in the financial one, reflecting the 

higher amplitude of the latter. Moreover, the variance of the state equation residuals is 

also higher for the slope, 45`	)7 , and the cycle, 	45V7), reflecting the greater uncertainty on 

the state estimates. Figures 8 and 9 illustrate these aspects for the UK. Notice the slope 

and cycle densities of credit-to-GDP on 2013Q4 as compared to those of the business 

cycle (Figure 6 and Figure 7)  

 

 
Figure 8. Marginal posterior densities of v, qts	, qr	s 		{|}	qus for n=2, with wide prior for UK credit/GDP. 
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Figure 9. UK Marginal posterior densities of  wx (Top left) and  s~/wx (in quarters – Top right) for n=2 

with wide informative prior on wx.  (Bottom) Marginal posterior densities of the slope and cyclical 
components, ��,� and y�,�, for 2013Q4. 

 
Once again, the marginal likelihood M(y) across model specifications is 

maximized in cycles of order k=2. This smoothed cycle was the preferred specification 

in 12 out of 28 countries. As a consequence, we choose the wide prior with cycle of 

order k=2 as our favorite model specification. The last rows of Table 3 pretty much 

illustrate the rationale to be using priors on ��. Observe that our mean period estimates 

collapse to the business cycle. Moreover, we find cyclical components that should be 

treated as seasonal or irregular in the lower bound HPDs. These are good examples of 

implausible models that Harvey et al. (2007) and ourselves are trying to avoid with 

Bayesian estimates. 

To our understanding, the business cycle is the “strongest” cyclical component 

in the series and we need some (prior) knowledge about these longer cycles to help us 

estimate the lower frequencies we are interested in. Observe that the variance we set in 

our wide prior is large enough to accommodate the business cycle in case any single of 

the 28 countries’ data in our sample cannot fit a financial cycle. We report individual 

data on Table 4 and more detailed information on Appendix E2. 
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Our cross-country mean period estimate is 13 years with a minimum of 7 years 

and a maximum of 17. However, HPD bands would stem in a 4 to 27 years range to 

fully account for parameter uncertainty on density estimates in 10% to 90% quantiles 

(Table 4). Our sharper prior would produce a tighter range, 7 to 26 years (Table 3).  

 
Country HPD (10%) Period HPD (90%) Country HPD (10%) Period HPD (90%)

Australia 3.96 13.00 28.42 Korea 5.41 16.32 32.34
Austria 4.36 14.88 30.92 Mexico 3.70 11.56 23.94
Belgium 4.15 13.83 30.20 Netherlands 3.94 12.90 27.91
Brazil 3.37 8.08 14.67 Norway 4.62 14.43 29.92
Canada 5.84 16.73 32.14 Poland 3.57 8.65 15.52
Czech_Republic 3.67 8.53 15.37 Portugal 3.82 13.28 29.09
Denmark 4.41 14.08 30.17 South_Africa 5.60 17.12 32.58
Finland 3.82 13.66 29.43 Spain 3.56 12.58 27.85
France 4.47 14.77 30.52 Sweden 5.18 15.89 31.62
Germany 5.34 15.17 30.50 Switzerland 4.11 13.52 29.60
Hungary 3.45 8.20 14.91 Turkey 3.65 10.15 20.05
Indonesia 3.34 7.07 11.80 United_Kingdom 4.60 14.54 30.44
Ireland 3.86 13.43 29.77 United_States 4.83 15.85 31.92
Italy 4.10 13.11 28.13 Min/Max Period

Japan 4.11 13.34 28.16 Mean 4.24 13.02 26.71

7.07   /   17.12

 
Table 4. Period density estimates (in years) 

 
In Table 4 and Figure 10, we can clearly notice some countries where mean 

period density estimates lay closer to the figures of the business cycle than the average 

estimates for the financial one. In particular, Brazil, Czech Republic, Hungary, 

Indonesia, and Poland stand out with mode estimates for Period significantly below 15 

years. These are also countries with shorter credit-to-GDP series (see Appendix E2 for 

more information). 

 

 

Figure 10. STM mean period estimate 
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Figures 11 and 12 illustrate the cyclical and slope state equations for the UK 

respectively; the confidence intervals are quantiles extracted from the posterior joint 

distributions. As in Figure 9, it is possible to observe that both the slope and cycle’s 

mode are on the negative side in 2013Q4. Cycle density is actually very much 

concentrated on the zero bound (Figure 9), as opposed to mean cycle amplitudes close 

to 8.5% in 2009Q1 (Figure 11).   

Naturally, our cycle density estimates are not comparable to those of the 

HP(400k), because our stochastic slope  component is very different from  the almost 

linear one embedded in HP(400k). Observe in Figure 11 that HP(400k) cycle has higher 

amplitudes than the estimated one.        

 

 
Figure 11.  UK financial gap with cycle order (k=2) and wide priors and HP(400k) gap in points-lines 
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Figure 12. UK credit/GDP quarterly growth 

 
The q-ratio we are estimating with STM, qc, can relate directly to the gain 

function of the Hodrick-Prescott filter (Hodrick and Prescott, 1997; Harvey and 

Trimbur, 2008). However, the minimum figure we could observe for qc on Appendix E2 

is 0.02. If we match the gain function of HP filter and our estimated STM (that rendered 

qc= 0.02) at the point where gain equals 0.5, we arrive at q=0.006567 or HP(152.27). 

For simplicity, HP(150). If we match all countries parameters individually, results 

would lay bellow this figure, but differences are negligible (Figure 13). See Appendix 

E2. 

 

 
Figure 13. Gains for an estimated STM with qc=0.02,ρ=0.6 and λc=0.154; HP(400k); HP(1600) and our 

“matched” HP(150) 
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Notice that our estimates point in the opposite direction of Drehmann et al. 

(2011). The rationale to increase lambda factors (or decrease q) is illustrated in Harvey 

and Jaeger (1993) and Harvey and Trimbur (2003) with the Investment function. 

“Investment and GDP are assumed to have a common trend, but it is an established 

stylized fact that the variance of the cycle in investment is greater than that of GDP. 

Thus the signal-noise ratios in the individual series must be different. “A factor of 

around 20 to 30 for the ratio of the investment to the GDP cycle emerges”. As a 

consequence, HP(32k) is suggested to better proxy the Investment gap (Harvey and 

Trimbur, 2008).   

Nonetheless, our results suggest that the innovations of the slope component 

capture too much variance from the data to consider a common slope with GDP and 

such a responsive high amplitude cycle.8   

In other words, a model that best fit these series should more quickly adjust to 

innovations of the slope component as the one implied in HP(400k). Moreover, the 

filtered embedded in our STM has higher cut-off frequencies. Even higher than the 

typical business cycle (Figure 13).   

 Drehmann et al. (2011) heavily support HP(400k) gap in its anticipating power 

of banking crisis, an argument hard to beat when financial stability is the ultimate goal 

of Macroprudential Policy. We note though that the slope component can possibly be 

more appealing to anticipate these events. From Figure 12, it is possible to observe that 

nominal credit is outpacing nominal GDP growth substantially since 1998 in the UK. 

Another aspect worth noting is the degree of uncertainty around the state of the cycle in 

Figure 11. From a probabilistic standpoint, Figure 12 more clearly points that nominal 

credit has outpaced GDP growth significantly since 2002.   

STM provides a convenient framework to investigate early warnings as filtered 

estimates of the states can easily be accessed to represent one-sided estimates (see more 

on Harvey, 1989, Harvey and Trimbur, 2003). However, examining these aspects, as in 

Drehmann et al. (2011), is left for further studies.  

 

 

                                                 
8 From equation (8), it is straightforward to observe that, everything else constant, the higher is	5a7, the 
smaller is q.  However, the increase in 5`	7 is non-negligible when one observes the business cycle as 
opposed to the financial one. 
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4.3 All-in-all cycles’ length  

 

Figure 14 summarizes our results in terms of financial cycles’ length. We 

consider five techniques, i.e., all four alternative spectral estimates as well as mean of 

the results of STM.   

Observe that most countries in our sample have cycles in the range of 13 to 20 

years. A second smaller group of countries with cycles shorter than 10 years can also be 

identified. Periodicities very close to those of the business cycle can be found in Brazil, 

Indonesia, Czech Republic, and Hungary. However, we note that the business cycle is 

indeed present in all our results either in STM with flat estimates or SSA (see Appendix 

D for more details).   

The business cycle, estimated for the same group of countries using STM, lay in 

the 3 to 7.5 years range (Appendix E1) with a mean on 5 years. The financial cycle in 

STM would lay in 4 to 30 years with a mean on 13 years (Table 3) and cross-country 

median on 13.5 years (Table 2). Cross-country minimum and maximum mean estimates 

lay in the 7 to 17 years interval. Using Spectral Analysis, median cross-country 

estimates across the four techniques we use lay in the 11 to 14.5 years, with a mean on 

13.8 years.     

 

 
Figure 14: Histogram summarizing all results, highlighting each technique. 

 

 

 

0

5

10

15

20

25

30

35

40

3.9 4.3 4.8 5.4 6.3 7.4 8.9 11.4 15.6 25.0

N
u

m
b

er
 o

f 
E

st
im

a
te

s

Periodicities (years)

TLS-ESPRIT Smoothed Periodogram MTM F-test Raw Periodogram STM

28



5. Final Remarks 

 

We evaluate credit cycles and business cycles’ length over several countries 

using non-parametric de-trending techniques known as SSA followed by spectral 

analysis and Bayesian STM. To the best of our knowledge, this is the first paper looking 

into cross-country financial cycle length estimates using these techniques. 

We focus on objectively estimate periodic components and q-ratios that could 

help Policy Makers and researchers to better understand the duration of these cycles and 

more consistently and coherently fit financial cycles. 

We could find financial cycles averaging 13.8 years using Spectral Analysis and 

13 years investigating the posterior estimates of the period parameter 2�/�� in 

Structural Time Series Models. In the last case, we use wide priors on  �� to estimate 

these longer periodic components.     

Most countries in our sample present significant periodic components in the 

range of 13 to 20 years, but a group with shorter than 10 years cycles could be clearly 

detected. Moreover, both spectral analysis and STM (with flat priors) point to shorter 

periodic components even when longer ones are also detected, suggesting that the 

business cycle (3 to 7.5 years) is an important driver of the credit one. In some 

countries, it is the most significant one. 

Finally, our results suggest that the credit-to-GDP gap estimated using HP(400k) 

as proposed by Drehmann et al. (2011) to be a leading Macroprudential Policy indicator 

may be mispecified as a throughout representation of the credit cycle.  The gain 

function of our STM relates more closely to the one of HP(150), where the slope 

component captures more variance from the original series. The use of this class of 

model or HP(150) to anticipate crisis is left for further studies.     

  

29



 
 
6. References 

 

ANDERSON, O.D. (1976): “Time series analysis and forecasting: the Box-Jenkins 

approach”, Butterworths, London, 182 p. 

AREOSA, M. (2008): “Combining Hodrick-Prescott Filtering with a Production 

Function Approach to Estimate Output Gap”, Working Paper No. 172, Central 

Bank of Brazil (August 2008). 

BARAJAS, A., DELL’ARICCIA, G. and LEVCHENKO, A.  (2008): “Credit Booms: 

The Good, the Bad, and the Ugly”, Unpublished manuscript, International 

Monetary Fund (Washington, DC). 

BASEL COMMITTEE ON BANKING SUPERVISION (BCBS) (2010a): “Guidance 

for national authorities operating the countercyclical capital buffer”. December. 

BASEL COMMITTEE ON BANKING SUPERVISION (BCBS) (2010b): 

“Countercyclical capital buffer proposal”. July. 

BLOOMFIELD, P. (2000): “Fourier analysis of time series: an introduction”, second 

edition: New York, John Wiley & Sons, Inc., 261 p. 

BORDO, M. D. and HAUBRICH, J. G.  (2009): “Credit crises, money, and 

contractions: A historical view”, Working Paper 0908, Federal Reserve Bank of 

Cleveland. 

CANOVA, F. (1998): “Detrending and Business Cycles Facts”, Journal of Monetary 

Economics, 41: 475-512. 

CHATFIELD, C. (1996). “The analysis of time series: An introduction”. Chapman & 

Hall/CRC. 

CHE, N. X. and SHINAGAWA, Y (2014): “Financial Soundness Indicators and the 

Characteristics of Financial Cycles”, IMF Working Paper WP/14/14. 

CHRISTIANO, L.J. and FITZGERALD, T.J.  (2003): “The Bandpass filter”, 

International Economic Review 44(2), 435-465. 

CLAESSENS, S, KOSE, M A and TERRONES, M E (2009): "Financial cycles: What? 

How? When?", IMF Working Paper WP/11/76. 

CLAESSENS, S, KOSE, M A and TERRONES, M E (2011): "How do business and 

financial cycles interact?", IMF Working Paper WP/11/88. 

30



 

COGLEY, T., and NASON, J. M.  (1995): “Effects of the Hodrick-Prescott filter on 

trend and difference stationary time series: implications for business cycle 

research”, Journal of Economic Dynamics and Control 19, 253-78. 

Committee on Global Financial Stability (CGFS) (2012): “Operationalizing the 

selection and application of macroprudential instruments”, Report (restricted), 

October. 

DELL'ARICCIA, G, IGAN, D., LAEVEN, L, TONG, H., BAKKER, B. and 

VANDENBUSSCHE, J.  (2012): “Policies for Macrofinancial Stability: How to 

Deal with Credit Booms”, IMF Staff Notes, June. 

DEMBIERMONT, C, DREHMANN, M. and MUKSAKUNRATANA, S.  (2013): 

“How much does private sector really borrow – a new database for total credit to 

the private non-financial sector” BIS Quarterly Review, March. 

DOORNIK, J.A (1999): “Ox: An Object-Oriented Matrix Programming Language”. 

Timberlake Consultants Press, London.  

DREHMANN, M., BORIO, C., GAMBACORTA, L., JIMÉNEZ, TRUCHARTE, C.  

(2010): “Countercyclical capital buffers: exploring options”, BIS Working 

Papers, no 317. 

DREHMANN, M., BORIO, C., and TSATSARONIS, K. (2011): “Anchoring 

countercyclical capital buffers: the role of credit aggregates”, BIS Working 

Papers, no 355. 

DREHMANN, M., BORIO, C., and TSATSARONIS (2012), K: “Characterizing the 

financial cycle: don’t lose sight of the medium term!”, BIS Working Papers, no 

380. 

DURBIN, J. and KOOPMAN, S.J. (2002): “A simple and efficient simulation 

smoother”. Biometrika 89, 603-16.  

GOLYANDINA, N., NEKRUTKIN, V. and ZHIGLJAVSKY, A.  (2001): “Analysis of 

Time Series Structure: SSA and related techniques”, Chapman and Hall/CRC. 

ISBN 1584881941. 

GOLYANDINA, N. and ZHIGLJAVSKY, A.  (2013): “Singular Spectrum Analysis for 

time series”, Springer Briefs in Statistics. Springer. 

GRANGER, C. W. J. and HATANAKA, M.  (1964): “Spectral Analysis of Economic 

Time Series”, Princeton University Press, Princeton, New Jersey. 

31



GRANGER, C. W. J. (1966): “The typical spectral shape of an economic variable”, 

Econometrica 34 (1), 150-161. 

HAMILTON, J. D. (1994): “Time series analysis”, Princeton University Press, 

Princeton, New Jersey. 

HARVEY, A. C. (1989): “Forecasting, Structural Time Series Models and the Kalman 

Filter”, Cambridge University Press, Cambridge. 

HARVEY, A. C. and JAEGER, A.  (1993): “Detrending, stylized facts and the business 

cycle”, Journal of Applied Econometrics 8, 231-247. 

HARVEY, A. C. and TRIMBUR, T.  (2003): “General model-based filters for 

extracting cycles and trends in economic time series”, Review of Economics and 

Statistics, 85, 244–255. 

HARVEY, A. C., TRIMBUR, T. and VAN DIJK, H. (2007): “Trends and cycles in 

economic time series: A Bayesian approach”, Journal of Econometrics 140, 618-

649.  

HARVEY, A. C. and TRIMBUR, T.  (2008): “Trend estimation and the Hodrick-

Prescott filter”, J. Japan Statist. Soc., Vol. 38, No. 1, pp. 41-49. 

HODRICK, R.J. and PRESCOTT, E.C.  (1997): “Postwar US business cycles: an 

empirical investigation”, Journal of Money, Credit, and Banking, 29(1):1-16, 

1997. 

IACOBUCCI, A and NOULLEZ, A. (2004): “A Frequency selective filter for short-

length time series”. In: Spectral Analysis for Economic Time Series. OFCE 

Special Edition. 

KASS, R.E., RAFTERY, A. E. (1995): “Bayes Factors”. Journal of American Statistical 

Association, 90, 773-795.  

KOOP, G., and VAN DIJK, H. (2000) "Testing for integration using evolving trend and 

seasonals models: A Bayesian approach." Journal of Econometrics, 97,Is,2,261-

291. 

KOOPMAN, S.J., SHEPARD, N. and DOORNIK, J. (2008): “Ssfpack 3.0: Statistical 

Algorithms for Models in State Space Form”. Timberlake Consultants Press.  

KOOPMAN, S.J., HARVEY, A. C., DOORNIK, J. and SHEPARD, N. (2009a): 

“STAMP 8.2: Structural Time Series Analyser, Modeller and Predictor”, 

Timberlake Consultants Press.. 

32



KOOPMAN, S.J., OOMS, M. and HINDRAYANTO, I. (2009b): “Periodic Unobserved 

Cycles in Seasonal Time Series with an Application to U.S. Unemployment”, 

Oxford Bulletin of Economics and Statistics 2009, Volume 71, Pages 683-713. 

LAEVEN, L. and VALENCIA, F (2008): “Systemic Banking Crisis: a New Database”.  

IMF Working Paper WP/08/224. 

LEVY, D. and DEZHBAKHSH, H.  (2003): “On the Typical Spectral Shape of an 

Economic Variable”, Applied Economics Letters, Vol. 10, No. 7, pp. 417-423. 

LOWN, C. and MORGAN, D. (2006): “The credit cycle and the business cycle: new 

findings using loan officer opinion survey”, Journal of Money, Credit and 

Banking, 38(6), 1575-97. 

MANN, M. E. and LEES, J. M.  (1996): “Robust Estimation of Background Noise and 

Signal Detection in Climatic Time Series”, Climate Change, 33, 409-445. 

MENDOZA, E. G. and TERRONES, M E (2008): “An anatomy of credit booms: 

evidence from macro aggregates and micro data”, IMF Working Paper 

WP/08/226.   

MISE, E., KIM, TH. and NEWBOLD, P. (2005): “On sub optimality of the Hodrick-

Prescott filter at time series endpoints”, Journal of Macroeconomics 27, pp.53-

67. 

NELSON, C. R. and KANG, H. (1981): "Spurious Periodicity in Inappropriately 

Detrended Time Series", Econometrica, Econometric Society, vol. 49(3), pages 

741-51, May. 

PERCIVAL, D.B. and WALDEN, A.T. (1993): “Spectral Analysis for Physical 

Applications: Multitaper and Conventional Univariate Techniques”. Cambridge 

University Press, Cambridge, UK. 

PEREIRA DA SILVA, L.A. and HARRIS, R.E.  (2012): “Sailing through the Global 

Financial Storm: Brazil's recent experience with monetary and macroprudential 

policies to lean against the financial cycle and deal with systemic risks”. 

Working Paper No. 290, Central Bank of Brazil (August 2012). 

PRIESTLEY, M. B. (1981): “Spectral Analysis and Time Series”, Academic Press, 

London. 

RAVN, M., and UHLIG, H.  (2002): “On adjusting the HP-filter for the frequency of 

observations”. Review of Economics and Statistics, vol. 84 (2), pp 371–376. 

33



REINHART, C. and ROGOFF, K. (2009): “This time is different: Eight centuries of 

financial folly, Princeton and Oxford. Princeton University Press.   

ROY, R., and KAILATH, T.  (1989): “ESPRIT: estimation of signal parameters via 

rotational invariance techniques”. IEEE Transactions on Acoustics, Speech, and 

Signal Processing, 37(7), 984–995. July. 

SLEPIAN, D. (1978): “Prolate spheroidal wavefunctions, Fourier analysis, and 

uncertainty: the discrete case”. Bell System Tech. J., 57, 1371–1429. 

THOMSON, D. J (1982): “Spectrum estimation and harmonic analysis”. Proceedings of 

the IEEE Volume 70, Number 9, pp. 1055–1096. 

THOMSON, D.J. (1990): “Quadratic-inverse spectrum estimates: applications to 

Paleoclimatology”, Phys. Trans. R. Soc. London. 332, 539–597. 

TRIMBUR, T. M. (2006): “Properties of higher order stochastic cycles”. Journal of 

Times Series Analysis 27(1), 1-17.  

 

 

 

  

34



Appendix A – Singular Spectral Analysis (SSA) 

 

Decomposition 

 

Consider a real valued time series ! = 4�̂ , ��, … , ����) of length N. The first 

step on decomposition stage is the embedding procedure. It maps the original time 

series to a sequence of multidimensional lagged vectors in the following way: let L 

(window length) be an integer between 0 and N. The embedding procedure creates 

� = 1 − h + 1 lagged vectors �� = 4����, �� , … , �����7)z , 1 ≤ O ≤ �, and defines them 

as columns of the L-trajectory matrix: 

 

 � = 4��Y) = � �̂ ⋯ ����⋮ ⋱ ⋮���� ⋯ ����
� (A1) 

 

Note that ��Y = ���Y�7 so that the elements of each anti-diagonal are the same, 

that is to say that X is a Hankel matrix. 

The next step on the decomposition stage is the singular value decomposition of 

the trajectory matrix X. Let � = ��� and denote by �� ≥ �7 ≥ ⋯ ≥ �� ≥ 0 the 

eigenvalues of S taken in decreasing order and denote by ��, �7, … , �� the 

corresponding system of orthonormal eigenvectors. Let n = max	{O; �� > 0}. Then, 

defining �� = ���� ���� , 1 ≤ O ≤ n, the singular value decomposition of X may be 

written as 

 

 � = �� + �s +⋯+ �� (A2) 

 

where �� = �������zand the collection C���, ��, ��zF is called the ith eigentriple of the 

decomposition. 

 

Reconstruction 

After the decomposition stage, we proceed to reconstruct the components of the 

time series. First, we group the components of the sum (A2) through a partition of the 

set of indices {1, … , n}, composed by m disjoint subsets 2�, … , 2�. Letting 2 =
cO�, … , O�d, the resultant matrix �" = ��# +⋯+ �� is the matrix corresponding to the 
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grouping I. Computing this for each grouping 2�, … , 2� leads to the following 

decomposition of X: 

 

 � = �"# + �"% +⋯+ �"¡ (A3) 

 

Finally, we transform this matrix decomposition into time series decomposition 

through the process of diagonal averaging. In other words, taking the averages of the 

anti-diagonals elements of each matrix to find the decomposition of the time series F. 

Doing this for each matrix in (A3) leads to the decomposition of the time series: 

 

 ! = !"# + !"% +⋯+ !"(  (A4) 

 

where !"¢is the k-th component of (A3) diagonal averaged. 

The process depends on the choice of two parameters: the window length L and 

the grouping 2�, … , 2�. There are some principles for those choices, but there is not yet a 

fully satisfactory automated way to do it. Such principles lay over the concept of 

separability (see Golyandina et al. 2001 for details). 
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Appendix B – Raw and smoothed periodograms 

 
 

The raw periodogram is defined as: 

 

 2Y = 141 £¤�+¥��¦§+
�

+¨�
£
7
 

(B1) 

 

where xt is the time series, N is the series length, −©���
7 ª ≤ « ≤ ©�7ª, and �Y = �Y

� . We 

use a scale suitable for a quarterly sampled series, such that the period in years may be 

easily calculated as �Y = �
¦§. 

Tapering the series with a split cosine bell in 10% of the data at the beginning 

and the end is found to reduce leakage. Moreover, we pad the series with zeroes so that 

the length becomes the next integer number which can be obtained as a product of 

powers of 2, 3 and 5. Padding allows Fast Fourier transform to be computed quickly and 

it also improves the resolution of the spectrum, at the expense of lower stability of the 

spectral estimate. Finally, smoothing is done with a modified Daniell window of length 

3. According to Bloomfield (2000), this suggested smoothing should be done because 

the raw periodogram is quite unstable (see Bloomfield (2000) for further information on 

these issues). 

Periodicities extracted from smoothed periodograms may not be significant (at 

least for practical standards). To overcome this issue, we need a null hypothesis for 

spectral peaks. A common approach is the null continuum, e.g., the theoretical spectrum 

of an AR(2) – red noise – becomes the null. This null is well suited for our problem 

because economic series have strong autocorrelation and it is necessary to distinguish 

between peaks caused by real periodicities and those caused by the natural 

autocorrelation structure of the time series (Granger, 1966; Levy and Dezhbakhsh, 

2003). 

The confidence bands are computed considering that the periodogram estimates 

are independent and exponentially distributed. So, the spectral estimate using the 

Daniell window is approximately χ2 distributed. The degrees of freedom are dependent 
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of the span of the Daniell filter, as well as the process of padding and tapering (see 

Bloomfield (2000) for further details). 

In Figures B1 and B2, we examine the residuals from trend extraction of UK 

broad credit series with the smoothed periodogram. 

 

 
Figure B1: Residuals of trend extraction using SSA on UK broad credit series. The parameters are L=81 and grouping 
1st and 4th eigentriples. 
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Figure B2: Smoothed periodogram of UK broad credit residuals. The red line is the AR(2) null continuum, the blue 
lines are 95% confidence bands and the green lines highlights the significant frequencies. The correspondent periods 
are 15 and 11.2 years. Note that those relatively different periods are neighbors, a consequence of the bad spectral 
resolution at low frequencies. 

 
Observe that the lower (blue) band is exceeded by the null continuum, red curve, 

in the peaks corresponding to periodic components of 15 and 11.2 years for this series. 

Note that these are neighbor frequencies of the frequency domain. Therefore, probably 

there is a leakage effect affecting our results and the true periodicity lies somewhere 

between these figures. Leakage is a problem difficult to overcome in relatively short 

series, because the spectral resolution at low frequencies strongly depends on the series 

length. As a consequence, we present several results and point out a conservative 

domain for our estimates. 
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Appendix C – Multitapering Method (MTM) 

 

 

The spectrum estimate based on a smoothed periodogram is criticized by 

Thomson (1982). He argues that, as (B1) is an inconsistent estimate of the spectrum, in 

the sense that its variance does not decrease with the sample size, the procedures of 

tapering, for bias control, and smoothing, for variance control, are necessary, but pose 

some problems for the estimates. 

Tapering reduces bias, but reduces variance efficiency, while smoothing is 

unsatisfactory, unless there is reason to believe that the underlying spectrum is smooth. 

Further, as smoothing operates on raw spectrum estimates, phase information present in 

the original data is not used, which makes line detection less efficient. 

We follow Thomson (1982) in an alternative multitapering method (MTM) with 

slightly different conventions.  The time series is assumed to have length N and is 

represented by {�+}, U = 0, … ,1 − 1. The method is based on Cramér spectral theorem: 

Theorem (Cramér): Let xt be a second order stationary process with zero mean 

and spectral distribution function !4�). Then, 

 

 �+ = ¬ ¥7­�®+n¯4°)�/7
��/7  (C1) 

 

for all t, where n¯4�) is an orthogonal incremental process. Also, the random 

orthogonal measure has the following properties: 

 

 ±²n¯4�)³ = 0 (C2) 

   

 n!4�) = ´4�)n� = ±²|n¯4�)|7³ (C3) 

 

where ´4�) is defined as the spectral density function of the process. 

In the theorem above, it is assumed a unity sampling rate for the process. Define 

the Fourier transform of the observations {�+}, U = 0,… ,1 − 1: 

 24�) = ¤ �+¥�7­�µ+,
���

+¨^
		− 12 ≤ � ≤ 12 (C4) 
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Note that, since (C4) may be inverted to recover the data, no information is lost 

in the process and we may use interchangeably {�+} and 24�) as data. Plugging (C1) 

into (C4) gives the basic integral equation (Thomson 1982, 1990): 

 

 24�) = ¬ ¶sin²1�4� − °)³�OP²�4� − °)³ ¥­�4µ�®)4���)· n¯4°)�/7
��/7  (C5) 

 

The figures in brackets are a modified Dirichlet kernel (see Thomson 1990; 

Percival and Walden 1993) and (C5) can be interpreted as a convolution describing the 

“smearing” or “frequency mixing” of the true n¯4�) projected onto 24�) due to the 

finite length of {�+}. The main idea is view (C5) as an integral equation for n¯4°) with 

the goal of obtaining approximate solutions whose statistical properties are close to 

those of n¯4�). 
As (C5) represents a projection of an infinite stationary process onto a finite 

sample, it does not have an inverse. The multitaper spectrum estimate is an approximate 

least-squares solution to (C5) that uses an eigenfunction expansion. 

The approximate solution is achieved by eigenfunction expansion of n¯4�) over 

a limited bandwidth. The expansion uses basis functions known as discrete prolate 

spheroidal wave functions, also known as Slepian functions. The Fourier Transform of 

these Slepian functions are known as discrete prolate spheroidal sequences (DPSS) or 

Slepian sequences (Thomson 1982 and Slepian 1978). Those sequences maximize 

spectral concentration over a given bandwidth W. Also, the DPSS are orthonormal in 

time domain and frequency domain, and in frequency domain the orthogonality holds in 

the whole and inner intervals (Slepian 1978). The estimation uses K Slepian sequences 

as tapers to obtain k components: 

 

 W̧4�) = ¤ �+¹W4U)¥�7­�µ+		
���

+¨^
 (C6) 

 

So we obtain K spectral estimates: 
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 º́W4�) = | W̧4�)|7 (C7) 

 

Finally, calculate a weighted average spectrum to obtain the multitaper spectrum 

estimate: 

 

 º́4�) = ∑ nW7 º́W4�)		�+¨^∑ nW7	�+¨^  (C8) 

 

The weighting process is known as adaptive weighting and further details are 

available in Thomson (1982) and Percival and Walden (1993). 

For calculation of the spectral estimate, it is necessary to determine the 

parameters W and K. We have chosen NW=4 (N is the length of the series) and K=8 for 

our estimations, which is a common practice in the literature. 

There is also a test for line significance in this approach. It assumes a local 

continuous spectrum in each point and it estimates its variance. Comparing this 

estimation of background spectra with the power in the line component leads to an F 

variance-ratio test with 2 and 2K-2 degrees of freedom, known as harmonic F-test 

(Thomson 1982). We assume a confidence of 95% for line detection within this 

approach. As an example, see the graph below showing the F-test for United States 

credit-to-GDP gap spectrum. 
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Figure C1: Harmonic F-test statistic for US credit-to-GDP ratio spectrum. Note the 21.3-18.3 years cycle, lying above 

the 95% confidence. This is a possible credit cycle. Also note the large peak at 1 year line. This is an obvious 

seasonal component. 

The results for credit-to-GDP gap in the United States show significant 

periodicities at some points. We highlight 21.3 and 18.3 years lines as a possible credit 

cycles. Note that this kind of cycle is not exactly periodic and there are also leakage 

effects, so the resolution of the peak will not be perfect. Some remarks are also 

necessary: these peaks represent the F statistic value, so its height means statistical 

significance, not practical significance. For example, the 21.3 years peak has a spectral 

value much larger than the 1 year peak, meaning that its contribution for the variance of 

the series is more significant economically, despite its lower F value. 

0.0 0.5 1.0 1.5 2.0

1

2

5 

10

US credit-to-GDP ratio periodicity test

Frequency

95%

*

*

*

**
*

*

*

* *

*

*
**

*

*

**

*

* *

*

*

*

** *

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

* *

*

*

*

*

*

* **

*
*

*

*

*
*

*

*

*

*

*

*

*

*

*

*

*

*

**

*

*

*

*

*

*
*

*

**

*

*

*

*

*

*

*

*

21.3 years

18.3 years 

1 year

43



Appendix D – Tables SSA 

 

Below we present the full results for financial cycle’s length estimation. Tables 

D1 to D4 are organized as follows: above the thick black line are the parameters of SSA 

trend extraction (L and grouping) and the cycle’s length estimated for each country 

using the smoothed periodogram and the MTM F-test for periodicities. We highlight 

with (*) the results for smoothed periodogram significant at 5% level against an AR(2) 

null continuum. All MTM F-test results showed are significant at 5% level against a 

local white noise (see Appendix C and Thomson (1982) for more details). 

Below the thick black line are the sequential SSA parameters and ESPRIT 

results. If the sequential L is the same as the window length showed on second line, this 

means that we are actually using only Basic SSA, grouping additional eigentriples for 

periodicities detection with TLS-ESPRIT. 
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Credit/GDP gap Brazil Canada France Germany Turkey UK US Australia Austria 

Window length (L) no. 

of quarters 
33 65 84 60 50 75 61 75 35 

Trend Grouping 1, 2 1 1, 3 1 1 1 1 1 1 

Smoothed 
Periodogram 

6* 15 15* 18* 27 22.5 20.8* 18* 10* 
9 20 22.5 13.5* 13.5 15* 15.6* 27 12.5 

F-test 
8 16 18.3 16 16 21.3 21.3 21.3 10.7 

7.1 1.3 16 1 12.8 18.3 18.3 18.3 9.8 

Sequential L 33 118 84 104 50 83 122 105 96 
Residuals Grouping 3, 4, 5, 6 1, 2, 3, 4 2, 4, 5, 6 1, 2 2, 3 1, 2 1, 2 1, 2 1, 2 

SSA - ESPRIT 
9.4 15.4 9.2 17.5 17.6 18.2 17.9 19 10.3 

3.7 10.1 17.1 NA NA NA NA NA NA 
Table D1: Financial cycle periodicities estimated on credit/GDP gap. 

Credit/GDP gap 

(cont.) 
Belgium South Africa Indonesia Italy Japan Netherlands Norway Spain Sweden 

Window length (L) no. 

of quarters 
25 98 12 40 75 40 92 84 64 

Trend Grouping 1 1, 2, 3 1 1 1, 2 1 1 1, 2, 3 1 

Smoothed 
Periodogram 

8.4* 16.7 3.4* 16.9 16.7 12 16 9* 16.9 
11.2 12.5 4.5 33.8 25 18 24 7.5* 11.2* 

F-test 
9.8 18.3 4 16 21.3 18.3 21.3 8.5 18.3 
9.1 16 3.6 14.2 18.3 11.6 18.3 8 16 

Sequential L 64 98 26 64 95 70 92 84 64 

Residuals Grouping 1, 2 4 a 14 1, 2 1, 2 1, 2 
1, 2, 3, 4, 5, 6, 

7, 8 
2, 3, 4, 5 4, 5 2, 3, 4, 5 

SSA - ESPRIT 
9.5 9.4 4 15.8 19 3.8 10.8 8.8 9.5 
NA 19.8 NA NA NA 18.7 18.4 NA 19.1 

Table D2: Continuation of table D1. 
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Credit/GDP gap 

(cont.) 

Czech 

Republic 
Denmark Finland Hungary Ireland Korea Mexico Poland Portugal 

Window length (L) no. 

of quarters 
38 108 86 20 85 88 66 20 108 

Trend Grouping 1, 2, 3 1 1, 2, 3 1, 2, 3 1, 2, 3 1, 2 1, 2, 3 1 1, 2, 3 

Smoothed 
Periodogram 

4 18* 11.2* 1.4* 9 11.2* 8.4* 0 13.5* 
2.9 27 9* 1.3 7.5 15 6.8* 0 10.8* 

F-test 
3.8 18.3 11.6 2.9 9.1 14.2 9.1 9.1 14.2 
0.8 1.9 10.7 2.8 8.5 12.8 8.5 8 12.8 

Sequential L 38 128 86 20 85 88 66 20 108 
Residuals Grouping 4, 5, 6, 7, 8, 9 2, 3, 4, 5, 6, 7 4, 5, 6, 7, 8, 9 4, 5, 6, 7 4, 5, 6, 7 3, 4 4, 5 2, 3 4, 5 

SSA - ESPRIT 
3.9 26.4 8.4 3.3 13.5 13.5 10 8 16.7 

1.9 10.7 12.7 1.4 4.2 NA NA NA NA 
Table D3: Continuation of table D1. 

Credit/GDP gap 

(cont.) 
Switzerland 

Window length (L) no. 

of quarters 
108 

Trend Grouping 1, 2, 3 

Smoothed 
Periodogram 

10.8* 
9* 

F-test 
11.6 
10.7 

Sequential L 108 
Residuals Grouping 5 a 14 

SSA - ESPRIT 
11.3 
NA 

Table D4: Continuation of table D1 
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Appendix E – Tables STM  

Country  Length Zeta Var Kappa Var Eps var Rho Lambda log m(Y) Psi Var Q ratio HPD (10% ) Period HPD (90% )

Australia 217 19 341 286 0.57 0.3 628.406 1,603  0.01 3.72 5.68 7.95
Austria 105 40 46 1 0.73 0.479 383.939 1,870  0.23 2.46 3.56 5.09
Belgium 77 38 91 6 0.70 0.366 257.341 1,943  0.28 3.05 4.71 6.90
Brazil 73 51 731 223 0.51 0.368 175.416 2,889  0.03 2.95 4.75 7.12
Canada 213 36 268 60 0.59 0.293 679.484 1,619  0.04 3.79 5.83 8.13
Czech_Republic 73 255 80 23 0.54 0.36 216.448 2,367  2.79 2.96 4.86 7.32
Denmark 97 105 228 447 0.48 0.345 248.825 1,280  0.13 3.10 5.07 7.46
Finland 97 319 200 255 0.48 0.348 250.273 91,264  0.58 3.07 5.03 7.47
France 217 28 145 444 0.47 0.333 631.862 560  0.04 3.16 5.26 7.76
Germany 93 53 267 85 0.63 0.303 269.303 3,095  0.13 3.70 5.64 7.94
Hungary 77 189 153 36 0.59 0.364 223.621 2,017  0.93 2.99 4.80 7.23
Indonesia 97 460 983 303 0.54 0.346 218.347 6,737  0.25 3.05 5.06 7.49
Ireland 69 311 671 1364 0.33 0.369 134.832 111,126  0.14 2.86 4.79 7.32
Italy 133 47 114 59 0.64 0.31 434.088 1,454  0.18 3.60 5.52 7.77
Japan 81 77 515 139 0.57 0.342 209.316 3,324  0.08 3.16 5.09 7.46
Korea 177 47 962 368 0.64 0.297 441.227 7,792  0.01 3.82 5.71 8.01
Mexico 85 153 742 60 0.63 0.343 213.602 7,606  0.10 3.15 5.06 7.48
Netherlands 105 88 95 45 0.48 0.352 337.458 577  0.53 3.02 4.97 7.38
Norway 145 53 366 480 0.31 0.372 387.27 613  0.05 2.86 4.75 7.24
Poland 77 99 226 296 0.41 0.359 199.39 1,023  0.16 2.98 4.89 7.34
Portugal 77 95 190 121 0.45 0.357 215.334 852  0.25 3.01 4.91 7.38
South_Africa 217 36 165 265 0.70 0.282 643.84 2,671  0.04 3.95 6.00 8.16
Spain 77 64 10 11 0.54 0.352 276.404 807,160,000  2.43 3.08 4.95 7.28
Sweden 85 120 147 169 0.64 0.327 233.484 5,232  0.35 3.37 5.26 7.53
Switzerland 137 55 100 25 0.60 0.323 469.414 938  0.26 3.28 5.41 7.89
Turkey 65 702 1930 624 0.55 0.361 118.346 203,211  0.21 3.01 4.86 7.29
United_Kingdom 237 47 167 264 0.66 0.279 706.003 2,282  0.06 3.99 6.11 8.32
United_States 269 17 333 93 0.70 0.263 837.597 4,177  0.01 4.43 6.34 8.41

Cross-country Mean Min Mean Max

3.56 5.17 6.34

HPDs [0.1-0.9] Mean 3.27 5.17 7.50

HPDs [0.1-0.9] Median 3.09 5.06 7.47

Table E1.  Business Cycles estimates, order 2, wide prior 
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Country  Length Zeta Var Kappa Var Eps var Rho Lambda log m(Y) Psi Var Q ratio HPD (10% ) Period HPD (90% )

Australia 216 156 976 240 0.49 0.198 556.963 3,793  0.06 3.96 13.00 28.42
Austria 216 67 599 511 0.50 0.173 566.845 6,857  0.04 4.36 14.88 30.92
Belgium 173 272 1528 975 0.55 0.187 374.919 10,600  0.06 4.15 13.83 30.20
Brazil 73 207 166 220 0.40 0.257 189.412 74,929  0.45 3.37 8.08 14.67
Canada 216 136 1627 412 0.64 0.138 514.532 19,081  0.02 5.84 16.73 32.14
Czech_Republic 76 345 1254 545 0.55 0.241 157.775 18,373  0.15 3.67 8.53 15.37
Denmark 216 406 2433 1215 0.55 0.178 438.511 15,072  0.05 4.41 14.08 30.17
Finland 173 866 3140 313 0.55 0.194 352.228 21,669  0.11 3.82 13.66 29.43
France 177 127 362 352 0.57 0.17 480.543 6,083  0.12 4.47 14.77 30.52
Germany 216 44 458 572 0.60 0.154 573.695 3,907  0.02 5.34 15.17 30.50
Hungary 76 2482 23499 6365 0.50 0.254 67.6696 108,466  0.05 3.45 8.20 14.91
Indonesia 56 151 252 301 0.41 0.274 133.125 16,695,600  0.24 3.34 7.07 11.80
Ireland 171 2302 3621 9516 0.49 0.198 222.023 351,430  0.13 3.86 13.43 29.77
Italy 216 100 517 1015 0.52 0.193 527.571 3,210  0.04 4.10 13.11 28.13
Japan 197 178 3188 520 0.43 0.19 415.066 7,995  0.03 4.11 13.34 28.16
Korea 176 463 2405 685 0.65 0.145 369.255 43,544  0.07 5.41 16.32 32.34
Mexico 133 126 54 75 0.45 0.212 429.753 759,790  0.75 3.70 11.56 23.94
Netherlands 212 109 1564 347 0.41 0.198 511.552 3,640  0.03 3.94 12.90 27.91
Norway 216 387 7845 507 0.55 0.171 382.433 38,104  0.02 4.62 14.43 29.92
Poland 76 415 914 156 0.56 0.241 174.642 13,662  0.30 3.57 8.65 15.52
Portugal 216 744 2096 2152 0.45 0.199 408.936 16,523  0.12 3.82 13.28 29.09
South_Africa 196 88 630 343 0.64 0.139 520.17 11,934  0.05 5.60 17.12 32.58
Spain 176 384 285 762 0.42 0.213 427.725 3,444,750  0.30 3.56 12.58 27.85
Sweden 212 798 1782 2478 0.67 0.15 393.895 88,692  0.12 5.18 15.89 31.62
Switzerland 216 129 1269 634 0.54 0.191 511.921 6,358  0.03 4.11 13.52 29.60
Turkey 105 145 1181 1013 0.41 0.224 226.241 4,736  0.05 3.65 10.15 20.05
United_Kingdom 204 396 1685 906 0.52 0.171 440.966 13,697  0.10 4.60 14.54 30.44
United_States 248 113 182 214 0.66 0.157 743.231 11,258  0.17 4.83 15.85 31.92

Cross-country Mean Min Mean Max

7.07 13.02 17.12

HPDs [0.1-0.9] Mean 4.24 13.02 26.71

HPDs [0.1-0.9] Median 4.10 13.47 29.52

Table E2. Financial Cycles estimates, order 2, wide prior 
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