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This paper addresses the issue of how individual bank interconnectivity and the
interbank network topology impact on Brazilian banking efficiency between 2007
and 2013. We use several network measures to analyze the effects of bank intercon-
nections on cost, profit and risk-taking efficiency. The results suggest that inter-
connections matter for bank efficiency. We find that interconnectivity can increase
cost and risk-taking inefficiency levels. We also find that the density of the network
topology can reduce profit and risk-taking inefficiency levels.
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1 Introduction

Bank efficiency has been on the top of the research agenda in the past decades
(Berger et al. [2009],Duygun et al. [2013]). The degree of bank efficiency is important
to assess as it may influence risk taking, systemic risk, banking spreads and the
soundness of the financial system (Tabak et al. [2013]). On the other hand, since the
recent financial crisis there is an ongoing discussion on how banks are interconnected
and how these interconnections may pose systemic risk.

This paper analyzes whether connectivity in the interbank market, measured
using complex network tools, has an impact on bank efficiency. We focus on Brazilian
banks due to data availability. We analyze the effect on efficiency of specific features
of bank interconnections, such as centrality and dominance measures. We study the
effects of bank individual network characteristics and also the effects of the network
topology on bank efficiency. Since Allen and Gale [2000] it is widely recognized that
bank topology matters for systemic risk (see also Cajueiro and Tabak [2008] and
Lenzu and Tedeschi [2012]). We show that banking network topology also matters
for bank efficiency, which can be a conduit for systemic banking risk.

The use of network theory to understanding the relationship in financial market
is not new. De Masi et al. [2010] and De Masi and Gallegati [2012] use network
theory to help understand better the network structure of loans from bank to firms
in Italy and Japan. Fujiwara et al. [2009] model credit network fragility and describe
changes in time in the topology of loans network between banks and large firms in
Japan. However, this is the first paper that relates network measures from interbank
activities to banking efficiency.

Interbank markets may affect efficiency through different channels. The main
funding source for banks is provided by deposits, which generally incur in low funding
costs. Interbank funding sources can be seen as an additional important funding
source. It can be used to manage banks liquidity needs over time and to increase
resources that are available to invest in profitable opportunities. Interbank funding
can increase or reduce bank cost and profit efficiency. It depends on the cost and
for what goal banks use this source of funding.

The use of interbank funding implies that banks may be connected through a
network of financial claims. The recent financial crisis has shown that this network
topology is relevant in evaluating systemic risks as a shock to a specific bank may
affect its neighbors, which may lead to a domino contagion effect. Several papers
have shown that these networks can help explain why banks have a special role in
the economy and they have to be supervised to deal with the emergence of systemic
risk (Cajueiro and Tabak [2008]).

Interbank networks and their specific characteristics can have a major impact on
the banking sector (Allen and Gale [2000]). As such the network topology, such as
how dense the network is, can affect bank cost and profit efficiency. If the network
is concentrated in specific banks, then these banks may have too-interconnected-to-
fail or too-big-to-fail characteristics, which affects their funding costs and investment
opportunities, which in its turn affect their efficiency. In this case it should also affect
overall bank efficiency. Individual bank characteristics in the network should also
be related to bank efficiency. If a bank is highly connected in the network then it
can diversify its borrowing and should suffer less from negative shocks to interbank
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lending as it can spread its funding risks. On the other hand, if the bank spreads its
lending in the interbank market it can also diversify its investments, which should
have an implication on its associated risk and bankruptcy risks.

We can estimate efficiency of financial institutions using parametric or non-
parametric approaches. We opted for parametric approach, stochastic frontier, since
we are interested in modeling cost and profit efficiency and evaluating how these net-
work topology and interbank measures affect this efficiency. We follow the Sealey
and Lindley [1977] intermediation approach, which treats banks as intermediaries
that collects funds from savers and transforms those funds into earning assets, such
as loans.

Overall, we also implement a translog risk-taking model to evaluate banks risk
taking efficiency. We expect that the use of interbank funding and the relative
importance of banks within the network should explain not only bank cost and
profit efficiency but more importantly its risk-taking efficiency. Therefore, efficient
banks should be lending/borrowing in interbank markets and increasing their output
production without increasing their risk-taking. Furthermore, with the model it is
possible to pinpoint banks that are taking excessive risk-taking with regards to their
counterparts, which is relevant for bank supervision.

This paper contributes to the bank efficiency literature by exploring the role
of inter-connectivity on efficiency. To the best of our knowledge there is virtually
no research on the impact of connectivity on efficiency. We employ methods from
network theory to develop inter-connectivity measures to evaluate their impact on
bank efficiency. Banks that are highly interconnected can have access to several
sources of external finance and as such could potentially benefit and have lower
funding costs, which would increase their efficiency if compared to banks that have
low inter-connectivity.

We also calculate the power law of the banking interbank network and test
whether the density of the network can explains inefficiency levels (see Gabaix [2009]
and Li and Zhuang [2010] for power law usage in finance and banking). We find
that power law exponents can explain inefficiency levels.

We also contribute using a new approach to bank efficiency. If a bank is seen
as too interconnected to fail it may incur in lower costs in the interbank market.
Thus, we should expect that interconnectivity help explain bank inefficiency through
the cost channel. Possibly, there is also a profit channel, since a reduction or an
increase in costs could impact on bank profitability. In both cases, banks that
are highly interconnected could be seen as special banks with implicit guarantees.
These implicit guarantees could impact on banks efficiency. These banks seen as
special could also incur in more risk to produce the same products than other banks.
Therefore, it is possible that risk-taking also impact on bank efficiency.

We investigate this possibility using as dependent variable in our model the
individual bank risk-taking measure known as the Z-Score (Laeven and Levine [2009]
and Boyd and Runkle [1993]). We then use a translog function to model the Z-Score.
In this case, the interpretation is how banks can produce services and outputs given
the inputs they have and perform well with lower risk-taking. Banks in the frontier
are banks that produce more services, given the inputs they use, and have lower risk-
taking levels, and therefore are financially sound. Overall, our results suggest that
individual bank interconnections matter for cost and risk-taking efficiency. We find
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that higher inter-connectivity can increase bank inefficiency. Also banking network
topology helps explain bank inefficiency levels.

A concern regarding the results is the possibility of potential endogeneity may
bias our results. We expect that bank interconnections impact on bank efficiency.
However, it is possible that the causality occurs in the opposite direction. Banks
that are more efficient can incur in lower costs and have higher profits. Hence, they
possible face excess of liquidity. To deal with this situation they can offer funding
to banks with a deficit of liquidity by means of the interbank market. Consequently,
they became more interconnected. We address this endogeneity issue regressing
bank inefficiency levels on one-lag measures of interconnectivity. The results are
virtually the same obtained when endogeneity problem is not considered.

The remainder of the paper is structured as follows. Section 2 presents the
methodology, the inter-connectivity measures and the sample, whereas section 3
presents the empirical results. Section 4 concludes the paper.

2 Methodology and Data

In this section, we specify the model as well as the variables we used to estimates
the efficiency for Brazilian banks. We also present the definition of network measures
used as a proxies for bank’s inter-connectivity.

2.1 Measuring efficiency

The most common approaches to estimate efficiency are nonparametric and para-
metric techniques. Nonparametric techniques generally focus on technological op-
timization rather than economic optimization (Sun et al. [2013]). In this paper,
we are interest in the economic optimization and some of its inter-connectivity de-
terminants. Thus, we apply the well known parametric technic Stochastic Frontier
Analysis (SFA) proposed simultaneously by Aigner et al. [1977] and Meeusen and
Van den Broeck [1977]. Moreover, we follow the Sealey and Lindley [1977] inter-
mediation approach, which treats banks as intermediaries that collect funds from
savers and transforms those funds into earning assets, such as loans.

Two different economic efficiency concepts are usually employed to measure the
efficiency of financial institutions: the cost and profit efficiency. On the one hand,
cost efficiency is the most used efficiency criterion in the literature. In particular,
considering that both banks produce the same output under the same conditions,
cost efficiency measures how close to the minimum cost a bank is, where this mini-
mum is determined by banks with the ”best practices” in the sample (Berger et al.
[2009]). On the other hand, profit efficiency is considered more informative than
cost efficiency. Some researchers argue that cost efficiency offer a partial vision of
the bank, since it does not considered the revenues (Maudos et al. [2002]). The
profit maximization requires that goods and services be produced at minimum cost
and, at the same time, the revenues be maximized. Besides cost and profit frontiers,
Fang et al. [2011] and Tabak et al. [2012] estimate risk-taking efficiency frontier to
evaluate bank competition. We follow this literature and analyze the impact of in-
terconnections on bank efficiency by means of cost, profit and risk-taking efficiency
frontiers.
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We employ the Z − score measure as proxy for risk-taking. This measure is
used in many studies evaluating bank risk-taking behavior, which corroborates its
acceptance in the literature (Mercieca et al. [2007], Laeven and Levine [2009], and
Houston et al. [2010], Demirgu-Kunt and Huizinga [2013]). The Z − score is de-
fine as Z − score = (ROA + CapitalRatio)/σRoA, where RoA is return on assets,
CapitalRatio is the equity to assets ratio, and the over line stands for average. The
Z-score measures the number of ROA standard deviations that a bank’s RoA plus
its leverage have to decrease in order for the bank to became insolvent. In other
words, the Z − score is inversely proportional to the bank’s probability of default.

In order to investigate the impact of the bank inter-connectivity on the ineffi-
ciency, we employed the model proposed by Battese and Coelli [1995], which incor-
porates the possibility that the mean of the inefficiency levels can be estimated and
explained by a set of environmental variables simultaneously. The Battese and Coelli
[1995] specification avoids the bias of a two-step approach that considers the effi-
ciency half-normally distributed in the first step, while in the second step efficiency
is considered normally distributed and dependent of explanatory variables.

We estimate efficiency levels by means of the commonly-used translog functional
form for the cost, profit and risk-taking functions. For convenience, we show only
the cost function:

ln(C/w2z)it = β0 +
3X

j=1

βj ln(yj/z)it +
1

2

3X

j=1

3X

k=1

βjk ln(yj/z)it ln(yk/z)it

+ α1 ln(w1/w2)it +
1

2
α11 ln(w1/w2)it ln(w1/w2)it

+
3X

k=1

θj ln(yj/z)it ln(w1/w2)it

+ year dummiest − uit + vit. (1)

where i, t index the bank and year, respectively, j = k = 1, 2, 3 index the three
output variables, and βjk ≡ βkj. C represents the bank’s total costs. The are three
outputs (y): total loans net of non-performing loans, liquid assets and total deposits;
two input prices (w): interest expenses to total deposits and non-interest expense to
fixed assets; and one fixed input (z): total earning assets. The normalization of the
cost function by bank’s total earning assets (z) reduces the heteroscedasticity and
allows banks of any size to have comparable residual terms from which the ineffi-
ciency levels are estimated. The normalization by the last input price (w2) ensures
price homogeneity. The vit is a random error that incorporates both measurement
error and luck and uit term is associated with a bank’s inefficiency level. We also
include time dummies to account for changes in technology or in the economic and
regulatory environments.

Following Battese and Coelli [1995], the inefficiency effect uit is specified as:

uit = δ0 + δitxit + δtbt +mit (2)

where the random variable mit is defined by the truncation of the normal dis-
tribution with zero mean and variance σ2, such that the point of truncation is
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−δ0− δitxit− δtbt. The vector xit represents the explanatory variables for the bank’s
inefficiency and the vector bt represents the network topology measures.

The equations (1) and (2) are estimated simultaneously by the maximum likeli-
hood method using the implementation presented by Belotti et al. [2013].

Cost, profit and risk-taking efficiency frontiers are estimated similarly. There is,
however, a problem in applying the natural logarithm of profit in equation 1, since
this variable can take negative values. In order to solve this problem we follow Bos
and Koetter [2011] who employ an additional independent variable - the Negative
Performance Indicator (NPI) - that takes the value of 1 when profit is positive and
it is equal to the absolute value of profit, when this variable take values below zero.
At the same time, the dependent variable for profit frontier is defined equal to the
value of the variable profit if it is positive and 1 otherwise.

2.2 Network measures for bank’s inter-connectivity

In this subsection, we present the measures to characterize the individual bank
inter-connectivity and the market network topology. We adapt complex network
measures to characterize bank interconnections in the loan interbank market.

We represent the debt relationships between banks as a network or a graph. A
network N is composed of a set of nodes V and a set of edges E between these
nodes. |V | is the number of nodes, and |E| is the number of edges. Ei are the edges
leaving from or arriving at node i. A network is directed if the direction of each
edge is significant (that is, the edge i → j is different from i ← j); otherwise, it is
an undirected network. For the directed case, Ii is the set of edges that end at node
i, and Oi is the set of edges that begin at node i.

A network can have values or other attributes associated with its nodes or edges.
For simplicity, we will assume that a weighted network has values called weights
associated with each edge. Formally, let Wi,j be the weight of the edge from node i
to node j, such that Wi,j > 0 if there is an edge from i to j, and 0 otherwise. If the
network is undirected, Wi,j = Wj,i.

In this paper, we employ a directed network. An edge leaving from node i and
arriving at node j with weight Wi,j means that bank i lend to bank j an amount of
Wi,j.

The degree of a node i is the number of edges that end or originate at i. For a
directed network, the in-degree is number of edges arriving at i, and the out-degree
is the number of edges that begin at i. In an undirected network, the degree of a
node is the same as its in-degree and its out-degree. In a directed network, a node’s
degree is the sum of its in-degree and its out-degree.

A path is a set of nodes linked by edges. The length of a path is the number of
edges between its first and last nodes. If the network is weighted, the weight of the
path is the sum of the weights of all edges along the path. A loop is a path where
the same node appears more than once.

2.2.1 Basic centrality measures

Centrality is a measure of the importance of a node within the network. For
our purposes, we consider normalized measures where each value is divided over
the maximum possible value for such a measure. This facilitates the comparison of
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networks of different sizes. For instance Degree centrality simply uses the degrees
of a node as a measure of importance, that is, how connected a node is. In our
formulation, the value is normalized over all possible connections such that the
degree centrality CD(i) of i is CD(i) = |Ei|

|V |−1
.

Betweenness centrality measures how many paths are shortest if they pass through
a certain node. Given σ(s, t) as the number of shortest (s, t)-paths (paths from s
to t) and σ(s, t|v) as the number of shortest paths from s to t that pass through v

(v 6= s, t), the betweenness centrality CB(v) of v is given by
P
s,t∈v

σ(s,t|v)
σ(s,t)

.
Closeness centrality measures the average distance of a node from every other

node in the network. It is the inverse of the sum of distance from a node v to every
other node u in the network, normalized by the number of nodes in the network.
That is, the closeness centrality Cc(v) of v is given by Cc(v) = |V |−1P

u6=v
d(u,v)

, where

d(u, v) is the length of the shortest path from u to v.

2.2.2 Dominance

Dominance is a network centrality measure introduced by VanDenBrink and
Gilles [2000] that takes into account the weights of each edge. For the interbank
loan network, we define dominance (β(i)) as a function of i as follows:

β(i) =
X

j

W (i, j)

λ(j)
(3)

where λ(j) =
P
iW (i, j) and W (i, j) is the value of loans from i to j.

In an interbank loan network, we can think of dominance in both directions: the
dominance of a lender (i.e., a bank that lends more) or the dominance of a borrower
(i.e., a bank that borrows more).

All the network measures mentioned above proxy the inter-connectivity of a
bank in the interbank market. However, each one captures different features of the
interrelation among the banks. Measures from weighted network like lender domi-
nance, borrower dominance and weighted betweenness centrality take into account
the volume of the loans. The measures outdegree and indegree are similar to lender
dominance and borrower dominance in the sense that they considered the direction
of the loans. The difference among these two set of measures is that the former do
not take into account the volume of the loans. Thus, in our analysis we will also
refer lender and borrow dominance as weighted outdegree and weighted indegree,
respectively. The measures considering only the edges closeness and betweenness
are proxies for direct interconnection and indirect interconnection.

Indegree is the number of creditors that a bank has in a given time, while outde-
gree is the number of debtors. Banks that have higher indegree or borrower measures
are those that presents many interbank liabilities. On the other hand, banks more
exposed in the interbank market present higher outdegree or lender measures. Fur-
thermore, banks that present higher in-measures, such as indegree and borrower
(weighted indegree) are most systemic relevant. If they fail they may trigger failure
cascades within the interbank market, generating a sequence of failures (Castro Mi-
randa et al. [2014]).

On the other hand, banks that present higher out-measures, such as outdegree
and lender (weighted outdegree) are considered to be money centers (Freixas et al.
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[2000] and Cajueiro and Tabak [2008]). If these banks suffer losses and cease to
operate within the interbank market they may also disrupt the funding flows, which
may worsen funding conditions to other banks.

During the recent financial crisis international financial markets were frozen. In
this case, many banks incur in funding problems and may not be able to replace these
funds curtailing loans and investments which end up worsening financial conditions.
These amplifying channel can endanger the economy and has detrimental effects on
financial system efficiency.

Bank efficiency can be seen as the production of outputs or services by banks
at the lower possible costs, or generating high profits or low risk-taking. When the
interbank market fails to function properly bank efficiency is reduced with negative
impacts on both outputs and inputs.

While the measures unweighted or weighted indegree and outdegree take into
account bank interconnection from the liabilities or assets side, degree measures
the bank inter-connectivity considering both aspects. Banks with higher degree are
those more interconnected in the interbank market, and therefore, play a especial
role for financial stability. Borio et al (2010) argue that interconnectivity is an
essential feature that we have to considerate to infer which banks are systemically
important.

Banks with higher betweenness measures are banks that can be considered as
financial intermediaries. These banks have many inflows and outflows. Therefore,
they are important in the network. If these banks suffer distress they may propagate
it to other banks.

Banks with high closeness centrality measure are banks that are in a short dis-
tance to other banks. These banks can be affected with a higher likelihood in a
contagion run or shocks. These banks have to be monitored in the event of disrup-
tion in interbank markets.

2.2.3 Clustering coefficient of a network

The clustering coefficient is a measure of the density of the network around a
node, that is, the given i ↔ j and k ↔ j, how likely it is that there is an edge
i ↔ k1. Formally, the clustering coefficient of node i is a count of all triangles
formed between nodes of the network that include i over the maximum possible
number of such triangles given i’s degree. The standard clustering coefficient is
calculated for undirected networks , however since direction matters in the networks
that are studied in this paper we use the clustering coefficient for directed networks
derived by Fagiolo [2007] and used in Tabak et al. [2014].

Let A be the incidence matrix for the directed network N , dini the in-degree of
node i, douti the out-degree of i and dtoti = dini +douti the total degree of i. Furhermore
let d↔i =

P
j 6=i aijaji = A2

ii the number of bilateral edges between i and each j2. The
clustering coefficient of i is:

CD
i (A) =

(A+ AT )3
ii

2 [dtoti (dtoti − 1)− 2d↔i ]
(4)

1See Newman [2010].
2The number of nodes such that both i→ j and j → i are in the network.
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The clustering coefficient of a network is the average of the clustering coefficient
of all its nodes. A high clustering coefficient indicates a more dense network, with
many highly connected nodes. The clustering coefficient is the probability that two
banks, which lend to each other, have a common counterparty.

2.2.4 Scale-free degree distribution of the interbank network

A network is scale-free if its degree distribution follows a power-law such that the
probability of a node having degree k is given by a equation of the form P (k) = βk−α.
A network with a power-law degree distribution is much more likely to have very
highly connected nodes, and the upper tail of the degree distribution is ”fatter” with
more highly connected nodes than would be expected from a Erdös-Rény random
graph or a small-world network model3. A higher value of α will indicates that the
very highly connected nodes are fewer, or alternatively, that extreme connectivity
is more concentrated.

It is possible that only the tail of the network degree’s distribution follows a power
law, that is, P (k) = βk−α is valid only for k > kmin for some kmin that is either
exogenously defined or estimated together with the α parameter. The maximum-
likelihood method by Clauset et al. [2009] finds both parameters endogenously, and
provides a Komolgorov-Smirnov goodness-of-fit test.

Santos and Cont [2010] argue for a scale-free characterization of the Brazilian
interbank network in the 2007-2008 period. They apply the maximum likelihood
estimation method due to Clauset et al. [2009] and find that the degree distribution
of the Brazilian interbank network follows a power law such that the Probability
of a node having P (k) = βk−α, with α averaging around 2.5461 from June, 2007
through November, 2008.

The coefficient of the power law can be interpreted as the inverse probability
that network has banks more interconnected. If the alpha increases then the banks
that are more connected have a higher number of interconnections and there are
less banks that have more connections. This implies that connections at the tail of
the connectivity have become more concentrated. Therefore, banks that are highly
connected have become more systemically relevant.

Banking systems with a very high alpha may have a few banks that are too inter-
connect to fail. As the alpha increases we have a high concentration of connectivity
in the interbank market.

2.3 Data

We use an unique data set from Central Bank of Brazil data base, which includes
all interconnections among banks and their economic conglomerate4. Our sample
is an unbalanced panel which includes 102 Brazilian banks that operates in the
interbank market over the period from 2007 to 2013, totaling 669 observations.

As proxy for bank cost, we use total expenses and for profit, we use profits
before tax. The Z − score, as defined earlier, is proxy for risk-taking. We include

3See Barabasi and Albert [1999].
4The collection and manipulation of the data were conducted exclusively by the staff of the

Central Bank of Brazil.
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inter-connectivity measures calculated from network measures and control variables
as explanatory variables to fit inefficiency, as described in the equation 2. Next we
define these explanatory variables. First we include the equity to assets ratio (ETA)
to assess for the influence on shareholders capital on the ability of banks to optimize
their resources and maximize their profits. We use the non-performing loans to total
loans as proxy for bank asset quality (variable NPL). We expect that banks that
have assets of bad quality have lower efficiency, due to higher expected losses. It is
well established in the literature that bank size matters to measure efficiency (For
instance, see Maudos et al. [2002], Berger et al. [2009], Maudos et al. [2005]). Thus,
we include the logarithm of total assets as proxy for bank size (Size) in the equation
2. We add two different dummies for ownership (foreign and state-owned) to assess
the differences of inefficiency across different bank ownership types. As mentioned
before, we incorporate year dummies to avoid any bias that may arise due to changes
in bank performance due to technological progress or changes in the economic and
regulatory environments. Finally, we include the individual bank inter-connectivity
and network topology measures as explanatory variables of inefficiency.

In order to study the effects of individual bank interconnections, we cluster
three sets of inter-connectivity measures depending on their features. First, we es-
timate the proposed approach adding the weighted measures: borrower or weighted
indegree, lender or weighted outdegree and weighted betweenness. In the second
estimation we include the inter-connectivity measures that take into account only
the number of loans, but not their volumes: closenness, betweenness and degree. In
order to analyze the different effects of bank lending and borrowing, we estimate
a model including the two components of the degree measure: the indegree and
outdegree measures.

We also study the effects of the interconnection level of the system on bank
efficiency adding the power law exponent as measure for network features.

The equation 2 is estimated using the logarithm of the variables plus one, except
for the dummies. Table 1 presents the descriptive statistics of the variables for both
equations 1 and 2.

Place Table 1 about here

3 Empirical Results

In this section, we present the results of the regressions of cost, profit and risk-
taking inefficiency level on several independent variables. Our main goal is to de-
termine if inter-connectivity among banks and network topology have any effect on
their efficiency.

In order to study the impact of bank interconnections and interbank market
network topology on bank inefficiency, we fit five models using cost, profit and risk-
tanking translog functions. The first one does not include network measures. It is
only for comparison purposes and robustness check. The second one assesses only
the effect of network topology on bank inefficiency. Models 3 to 5 include individual
interconnectivity and network topology measures. Model 3 presents the weighted
measures: borrower or weighted indegree, lender or weighted outdegree and weighted
betwenness. Model 4 includes the inter-connectivity measures that take into account
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only the number of loans, but not their volume: closenness, betweenness and degree.
In order to analyze the different effects of bank lending and borrowing, we estimate
model 5 including the two components of the degree measure: the indegree and
outdegree measures. Model 3 to 5 also study the effects of network features on bank
inefficiency adding the power law exponent as measure for network topology.

Tables 2, 3 and 4 present the results for cost, profit and risk-taking inefficiency,
respectively. Non-performing loans, equity to assets ratio and size are statistically
significant in explaining inefficiency levels. We find that the coefficient of the NPL
variable is statistically significant and positive in cost models. This suggests that an
increase in risk NPL is positively associated to bank cost inefficiency. Furthermore,
in line with Tabak et al. [2012] and Tabak et al. [2013] we find that large banks have
lower inefficiency. This can explain, at least partially, the recent wave of mergers
and acquisitions that have happened in the Brazilian banking system. There seems
to be economies of scale.

Place Tables 2, 3 and 4 about here

The equity to asset ratio (ETA) is significant and positively associated to cost
inefficiency. On the other hand, it is significant and negatively related to profit and
risk-tanking inefficiency. These results indicates that a bank has higher cost to keep
a higher equity to assets ratio. However, these costs can be compensated in some
way and the bank can achieve higher profit and risk-taking efficiency. Bank type
seems to matter to explain bank inefficiency. We find that state-owned banks are on
average more cost inefficient than their counterparts for the period under analysis.
On the other hand, foreign banks are on average more risk-taking inefficient.

Our main interest is on the coefficients for connectivity and for network topol-
ogy and how they affect bank inefficiency. The coefficient on Borrower (Weighted
indegree) is statistically significant and positive related to cost and risk-taking inef-
ficiency. This suggests that banks that have a larger number of borrowing intercon-
nections are relatively inefficient. The coefficient on Lender (Weighted outdegree)
is statistically significant and negative associated to risk-taking inefficiency. On the
other hand, indegree and outdegree coefficients are statistically significant and, re-
spectively, negative and positively related to both cost and risk-taking inefficiency.
These results suggest that not only the interconnection type matters (as a lender
or as a borrower), but also that the volume of the loans has an opposite effect. For
instance, a bank could reduce its cost and risk-taking inefficiency having a higher
number of creditors (indegree). However, depending on the volume of the loans
(Windegree), the bank could increase its cost and risk-taking inefficiency. The re-
sults also suggest the higher the direct interconnections (degree) the higher the cost
and risk-taking inefficiency. The financial intermediation role of the bank (between-
ness) has different impact on cost and risk-taking inefficiency. The former increase
as the number of intermediation chains of the bank are larger; the latter decrease
with the number of intermediation.

These results suggest that individual interconnectivity can increase cost and
risk-taking bank inefficiency. On the other hand, the results suggest that these
bank features do have not impact on profit inefficiency. It seems that banks partici-
pate of the interbank market to manage liquidity instead of searching for profitable
investments opportunities.
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The coefficient of the power law exponent is statistically significant in the profit
and Z-Score frontiers, and has negative sign (Tables 3 and 4). Therefore, increases
in concentration of connectivity decrease profit and risk-taking inefficiencies. This
suggest that there may be economies of scale that originate in the interbank market
and affect bank inefficiency.

A 1% increase in the alpha coefficient reduces profit inefficiency in about 4%, on
average. It also reduces risk-taking inefficiency in about 9%, on average.

We also test the effects of a non-weighted directed clustering coefficient (Clustering)
network measure. In this case, the coefficient is statistically significant for the Z-
Score specification at the 1% significance level and has positive sign. This suggests
that more dense networks will be more inefficient with higher risk taking (Tables 5,
6 and 7).

Place Tables 5, 6 and 7 about here

As robustness check, we account for possible remaining heteroscedasticity prob-
lems modeling a heteroscedastic stochastic frontiers as proposed by Hadri et al.
[2003]. We also fit models correcting for double heteroscedasticity, using the inter-
connections measures to explain the one side error term and the control variables of
bank features to explain random error. It is important to highlight that all models
produce the same qualitative results. However, we choose the models without het-
eroscedasticity due to the fact that they are more general and more robust, since
few heteroscedastic models produce non trivial numerical maximization problems.

A concern regarding the results is the possibility of potential endogeneity may
bias our results. It is possible that banks that have efficiency problems try to
circumvent this issue using the strategy of be more interconnected at the interbank
market. We address this endogeneity concerns fitting the models 2 to 5 considering
the one lag interconnectivity measures as explanatory variables for bank cost, profit
and risk-taking inefficiency. The results of this robustness check are presented from
table 8 to table 13. We can see that the results are even more strong. We consistently
find that more concentrated network reduces profit and risk-taking inefficiencies,
while more dense network increase both profit and risk-taking inefficiencies. The
results considering individual bank interconnectivity measures are virtually the same
obtained before (Tables 2 to 7).

Place Tables 8, 9 and 10 about here

Place Tables 11, 12 and 13 about here

Overall, our results suggest that interconnections matter for bank efficiency
levels. This is the first paper that relates network measures from interbank activities
to banking efficiency.

We estimate the bank-level efficiency from the regressions presented in Tables 2,
3 and 4 using the definition proposed in Battese and Coelli [1988]. The bank-level
efficiency is estimated as E[exp(−u)|εit], onde εit = vit − uit. Table 14 presents
the cost, profit, risk-taking average efficiency levels. Efficiency obtained from model
1, that does not include interconnectivity nor network measures, are higher than
efficiency levels obtained from the other models. These results are consistent with

14



the analysis above in which we claim that interconnections in the interbank market
seems to increase bank inefficiency. However, a higher maximum level of efficiency
obtained from some models that include interconnectivity and network measures,
suggest that some banks could have efficiency gains due to interconnections. This
is an issue for further research.

Place Table 14 about here

Figures 1, 2 and 3 present the evolution of cost, profit, risk-taking efficiency
levels over the years. These efficiency levels are obtained from the models presented
in tables 2, 3 and 4. Overall, as we can see in the figures 1, 2, and 3, bank efficiency
levels decrease in 2009 and in 2010, probably due to effects of the international
financial crisis. All the models produce very similar patterns of efficiency evolution
over the time.

Place Figures 1, 2 and 3 about here

4 Conclusion

To the best of our knowledge this is the first paper that studies how interbank
network measures explain banking efficiency. We use a translog cost, profit and risk-
taking equation to model bank efficient. Our results imply those interconnections
are relevant predictors of bank efficiency. Furthermore, we unveil the role of network
topology on bank efficiency and present important empirical results.

The main result that we have obtained is that network topology matters for
explaining bank efficiency. There are several differences if we are modeling cost or
profit efficiency and with regards to risk-taking efficiency. It seems that profit and
risk-taking efficiency are more affected by the network topology than cost efficiency.

Our results are important for the development of policies that aim at increasing
bank efficiency. These results are also relevant for the design of proper macropru-
dential policies that target reducing excessive risk-taking.
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Table 1: Summary Statistics

Variables Mean Std.Dev. Min. Max.

Cost and Profit (in R$ million) and Z − score
Total profits 564 2,295 -3,603 21,261
Total costs 4,062 13,431 3 90,252
log(Z − score) 3.18 1.04 -1.74 6.04

Output quantities (in R$ million)
Total loans (y1) 16,348 60,741 0.217 588,423
Total deposits (y2) 14,383 54,753 0.001 487,447
Liquid assets (y3) 6,634 20,744 1.046 166,994

Fixed input (in R$ million)
Earning assets (z) 22,983 80,117 0.003 709,751

Input prices
Unit interest cost of deposits (w1) 28.2 350.5 0 7,093.5
Unit price of physical inputs (w2) 4.5 8.0 0.1 86.4

Control variables
Leverage (ETA) 0.207 0.159 0.017 0.983
Asset Quality (NPL) 0.034 0.054 0 0.686
Log(Assets) (Size) 21.644 2.168 17.211 27.638

Individual Interconnectivity measures
Lender dominance (Woutdegree) 1.300 3.509 0 29.032
Borrower dominance (Windegree) 1.128 2.336 0 23.076
Weighted betweenness centrality (Wbetween) 0.033 0.070 0 0.538
Closeness centrality (Closeness) 0.405 0.164 0 0.832
Degree centrality (Degree) 0.089 0.092 0 0.519
Indegree centrality (Indegree) 0.092 0.129 0 0.805
Outdegree centrality (Outdegree) 0.182 0.211 0 1.259
Betweenness centrality (Between) 0.010 0.030 0 0.234

Network Interconnectivity measures
Non-weighted direct clustering (Clustering) 0.496 0.077 0.934 .0609
Power Law exponent (Alpha) 2.197 0.223 0.1932 2.576

Power law goodness of fit statistics
Kmin 0.054 0.020 0.033 0.089
N 0.612 0.093 0.472 0.727
P-value of Komolgorov-Smirnov test 0.001 0.001 0.000 0.002
Log-likelihood 87.342 15.845 60.048 102.593

Kmin is the lower bound, in percentage, from which the Power Law holds. N is the percentage of
observations for which the Power Law holds.
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Table 2: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining cost inef-
ficiency using Power Law exponent as measure of network
topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Cost inefficiency (u)

ETA 10.61*** 10.61*** 6.914*** 8.602*** 9.716***
(2.339) (2.338) (0.991) (1.821) (2.063)

NPL 0.246*** 0.242*** 0.114*** 0.199*** 0.210***
(0.071) (0.071) (0.025) (0.055) (0.060)

Size -0.784** -0.775** -0.412*** -0.905*** -0.874***
(0.311) (0.308) (0.094) (0.301) (0.308)

Foreign -0.816* -0.812* -0.132 -0.215 -0.216
(0.467) (0.465) (0.181) (0.373) (0.400)

State-owned 2.010** 1.992** 1.680*** 2.770*** 2.984***
(0.922) (0.914) (0.354) (0.919) (1.020)

Alpha 2.129 0.331 0.948 1.218
-2.92 (1.212) (2.363) (2.594)

Windegree 0.655***
(0.206)

Woutdegree 0.0806
(0.228)

Wbetweenness 2.493
(1.728)

Degree 8.511**
(4.172)

Closeness -0.12
(1.226)

Betweenness 18.72*
(11.200)

Indegree -15.99*
(8.942)

Outdegree 14.01**
(5.607)

Constant 12.15** 9.478 6.508*** 13.78** 12.14**
(5.396) (6.047) (2.267) (5.675) (5.834)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -262.9 -262.6 -257.6 -255.4 -257.4

This table shows the panel regressions for cost inefficiency using the model proposed by
Battese and Coelli [1995]. Model 1 analyzes cost inefficiency without any measure for
inter-connectivity. Model 2 analyzes the impact of network topology, measured by the
Power Law exponent, on cost inefficiency. Models 3 - 5 analyze the impact of network
topology and individual bank inter-connectivity on cost inefficiency: model 3 uses weighted
network measures(borrower (Windegree), lender (Woutdegree) and weighted betweenness
(Wbetweenness)) as proxies for individual bank inter-connectivity; model 4 uses
unweighted network measures (Degree, Closeness and Betweenness ) as proxies for
individual bank inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 3: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining profit inef-
ficiency using Power Law exponent as measure of network
topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Profit inefficiency (u)

ETA -4.572*** -4.521*** -4.162*** -4.327*** -4.121***
(1.154) (1.010) (0.970) (1.019) (1.020)

NPL -0.0188 -0.0212 -0.0195 -0.0233* -0.0208
(0.014) (0.013) (0.013) (0.014) (0.014)

Size -0.055 -0.0532 -0.0241 -0.0363 -0.000857
(0.042) (0.040) (0.057) (0.054) (0.059)

Foreign 0.437*** 0.430*** 0.428*** 0.443*** 0.445***
(0.160) (0.152) (0.150) (0.163) (0.164)

State-owned -0.494 -0.480* -0.47 -0.479 -0.505
(0.313) (0.290) (0.288) (0.304) (0.312)

Alpha -4.354* -4.445* -4.376* -4.537*
-2.492 (2.500) (2.499) (2.497)

Windegree 0.187
(0.150)

Woutdegree -0.136
(0.168)

Wbetweenness -1.716
(1.300)

Degree 1.55
(1.534)

Closeness -0.589
(0.589)

Betweenness -4.783
(3.743)

Indegree -3.576
(2.388)

Outdegree 1.612
(1.623)

Constant 3.184*** 8.215*** 7.705** 7.903** 7.208**
(0.989) (3.058) (3.203) (3.171) (3.199)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -974.7 -973.2 -971.2 -971.8 -971.4

This table shows the panel regressions for profit inefficiency using the model proposed by
Battese and Coelli [1995]. Model 1 analyzes profit inefficiency without any measure for
inter-connectivity. Model 2 analyzes the impact of network topology, measured by the
Power Law exponent, on profit inefficiency. Models 3 - 5 analyze the impact of network
topology and individual bank inter-connectivity on profit inefficiency: model 3 uses
weighted network measures(borrower (Windegree), lender (Woutdegree) and weighted
betweenness (Wbetweenness)) as proxies for individual bank inter-connectivity; model 4
uses unweighted network measures (Degree, Closeness and Betweenness ) as proxies for
individual bank inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 4: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining risk-taking
inefficiency using Power Law exponent as measure of network
topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Risk-taking inefficiency (u)

ETA -12.62*** -17.05*** -10.15*** -12.16*** -10.64***
(4.049) (4.837) (3.218) (4.310) (4.036)

NPL 0.113* 0.724*** 0.102 0.122 0.103
(0.064) (0.216) (0.068) (0.095) (0.097)

Size -0.866*** -0.768*** -0.724*** -1.037*** -0.903***
(0.238) (0.219) (0.210) (0.254) (0.279)

Foreign 0.883*** 1.208*** 0.818*** 1.311*** 1.169***
(0.339) (0.398) (0.310) (0.426) (0.428)

State-owned -12.84 -23.26 -9.951 -23.16 -12.24
(14.310) (21.720) (12.590) (32.740) (22.850)

Alpha -9.336** -5.416 -6.521 -6.726
(3.890) (3.316) (4.104) (4.327)

Windegree 0.746**
(0.324)

Woutdegree -1.197**
(0.465)

Wbetweenness 3.522
(2.613)

Degree 13.05***
(4.637)

Closeness 4.215*
(2.241)

Betweenness -57.32**
(26.360)

Indegree -12.86**
(5.043)

Outdegree 10.76***
(3.712)

Constant 20.59*** 31.52*** 23.67*** 29.25*** 28.17***
(5.032) (7.688) (6.835) (8.126) (9.444)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -951.5 -946.6 -943.5 -934.9 -943.2

This table shows the panel regressions for risk-taking inefficiency using the model proposed
by Battese and Coelli [1995]. Model 1 analyzes risk-taking inefficiency without any measure
for inter-connectivity. Model 2 analyzes the impact of network topology, measured by the
Power Law exponent, on risk-taking inefficiency. Models 3 - 5 analyze the impact of
network topology and individual bank inter-connectivity on risk-taking inefficiency: model
3 uses weighted network measures(borrower (Windegree), lender (Woutdegree) and
weighted betweenness (Wbetweenness)) as proxies for individual bank inter-connectivity;
model 4 uses unweighted network measures (Degree, Closeness and Betweenness ) as
proxies for individual bank inter-connectivity; Model 5 uses two components of degree
separately ( Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 5: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining cost ineffi-
ciency using unweighted direct clustering as measure of net-
work topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Cost inefficiency (u)

ETA 10.61*** 10.58*** 6.914*** 8.588*** 9.668***
(2.339) (2.338) (0.979) (1.816) (2.050)

NPL 0.246*** 0.243*** 0.116*** 0.200*** 0.210***
(0.071) (0.071) (0.025) (0.055) (0.060)

Size -0.784** -0.780** -0.414*** -0.909*** -0.877***
(0.311) (0.308) (0.093) (0.301) (0.306)

Foreign -0.816* -0.819* -0.134 -0.207 -0.211
(0.467) (0.467) (0.180) (0.373) (0.399)

State-owned 2.010** 2.002** 1.675*** 2.788*** 2.993***
(0.922) (0.916) (0.350) (0.922) (1.017)

Clustering -1.674 1.083 -0.684 -1.224
(4.254) (1.734) (3.559) (3.754)

Windegree 0.663***
(0.204)

Woutdegree 0.0754
(0.228)

Wbetweenness 2.559
(1.723)

Degree 8.588**
(4.168)

Closeness -0.0584
(1.268)

Betweenness 18.68*
(11.180)

Indegree -15.92*
(8.866)

Outdegree 14.06**
(5.579)

Constant 12.15** 12.73** 6.506*** 15.21*** 14.10**
(5.396) (5.671) (1.808) (5.357) (5.510)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -262.9 -262.8 -257.5 -255.4 -257.5

This table shows the panel regressions for cost inefficiency using the model proposed by
Battese and Coelli [1995]. Model 1 analyzes cost inefficiency without any measure for
inter-connectivity. Model 2 analyzes the impact of network topology, measured by weighted
direct clustering, on cost inefficiency. Models 3 - 5 analyze the impact of network topology
and individual bank inter-connectivity on cost inefficiency: model 3 uses weighted network
measures(borrower (Windegree), lender (Woutdegree) and weighted betweenness
(Wbetweenness)) as proxies for individual bank inter-connectivity; model 4 uses
unweighted network measures (Degree, Closeness and Betweenness ) as proxies for
individual bank inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 6: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining profit inef-
ficiency using using unweighted direct clustering as measure
of network topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Profit inefficiency (u)

ETA -4.572*** -4.655*** -4.216*** -4.413*** -4.176***
(1.154) (1.170) (1.063) (1.138) (1.121)

NPL -0.0188 -0.0213 -0.0193 -0.0236* -0.0207
(0.014) (0.014) (0.013) (0.014) (0.014)

Size -0.055 -0.0563 -0.0259 -0.038 -0.000113
(0.042) (0.043) (0.059) (0.057) (0.061)

Foreign 0.437*** 0.444*** 0.438*** 0.454*** 0.452***
(0.160) (0.162) (0.156) (0.170) (0.171)

State-owned -0.494 -0.519 -0.493 -0.514 -0.533
(0.313) (0.323) (0.307) (0.325) (0.330)

Clustering 3.22 3.577 3.57 3.603
(3.617) (3.777) (3.650) (3.616)

Windegree 0.189
(0.153)

Woutdegree -0.133
(0.172)

Wbetweenness -1.809
(1.348)

Degree 1.587
(1.591)

Closeness -0.692
(0.623)

Betweenness -4.746
(3.871)

Indegree -3.543
(2.447)

Outdegree 1.544
(1.659)

Constant 3.184*** 1.838 1.089 1.381 0.426
(0.989) (1.792) (2.019) (1.933) (2.061)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -974.7 -974.3 -972.3 -972.8 -972.6

This table shows the panel regressions for profit inefficiency using the model proposed by
Battese and Coelli [1995]. Model 1 analyzes profit inefficiency without any measure for
inter-connectivity. Model 2 analyzes the impact of network topology, measured by the
unweighted direct clustering (Clustering), on profit inefficiency. Models 3 - 5 analyze the
impact of network topology and individual bank inter-connectivity on profit inefficiency:
model 3 uses weighted network measures(borrower (Windegree), lender (Woutdegree) and
weighted betweenness (Wbetweenness)) as proxies for individual bank inter-connectivity;
model 4 uses unweighted network measures (Degree, Closeness and Betweenness ) as
proxies for individual bank inter-connectivity; Model 5 uses two components of degree
separately ( Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 7: Panel regressions on the relative importance of inter-
connectivity in the interbank market determining risk-taking
inefficiency using unweighted direct clustering as measure of
network topology

Variables Model 1 Model 2 Model 3 Model 4 Model 5

Risk-taking inefficiency (u)

ETA -12.62*** -14.94** -11.16*** -12.05*** -17.00***
(4.049) (7.516) (3.620) (4.144) (4.498)

NPL 0.113* 0.199 0.128 0.11 0.490***
(0.064) (0.240) (0.081) (0.070) (0.161)

Size -0.866*** -0.979*** -0.831*** -1.047*** -0.952***
(0.238) (0.264) (0.219) (0.240) (0.265)

Foreign 0.883*** 1.016** 0.948*** 1.307*** 1.605***
(0.339) (0.451) (0.346) (0.406) (0.439)

State-owned -12.84 -28.74 -14.38 -21.78 -26.43
(14.310) (36.720) (16.690) (31.620) (32.940)

Clustering 13.97** 13.62*** 10.65** 18.03***
(6.569) (5.240) (4.844) (5.083)

Windegree 0.996**
(0.399)

Woutdegree -1.244**
(0.511)

Wbetweenness 3.267
(2.785)

Degree 13.07***
(4.517)

Closeness 3.16
(2.003)

Betweenness -46.67**
(23.780)

Indegree -17.06***
(5.978)

Outdegree 14.87***
(4.383)

Constant 20.59*** 17.48*** 14.01*** 17.89*** 15.37***
(5.032) (4.873) (3.943) (4.017) (4.911)

Observations 669 669 669 669 669
Number of Banks 102 102 102 102 102
Log Likelihood -951.5 -946.1 -939.4 -933.7 -936.7

This table shows the panel regressions for risk-taking inefficiency using the model proposed
by Battese and Coelli [1995]. Model 1 analyzes risk-taking inefficiency without any measure
for inter-connectivity. Model 2 analyzes the impact of network topology, measured by
unweighted direct clustering (Clustering), on risk-taking inefficiency. Models 3 - 5 analyze
the impact of network topology and individual bank inter-connectivity on risk-taking
inefficiency: model 3 uses weighted network measures(borrower (Windegree), lender
(Woutdegree) and weighted betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree, Closeness and
Betweenness ) as proxies for individual bank inter-connectivity; Model 5 uses two
components of degree separately ( Indegree and Outdegree ) as proxies for individual
bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent significance levels
respectively.
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Table 8: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining cost inefficiency using Power Law exponent as
measure of network topology (Robustness test)

Variables Model 2 Model 3 Model 4 Model 5

Cost inefficiency (u)

ETA 10.86*** 9.462*** 8.941*** 9.746***
(2.472) (2.184) (1.989) (2.094)

NPL 0.232*** 0.195*** 0.190*** 0.194***
(0.066) (0.053) (0.051) (0.051)

Size -0.649** -0.651*** -0.733*** -0.713***
(0.276) (0.242) (0.269) (0.257)

Foreign -0.345 -0.075 0.192 0.201
(0.419) (0.337) (0.334) (0.349)

State-owned 2.190** 2.490*** 2.923*** 3.062***
(0.913) (0.819) (0.937) (0.959)

Lag(Alpha) 1.185 0.364 0.378 0.368
(2.765) (2.208) (2.077) (2.217)

Lag(Windegree) 0.718*
(0.429)

Lag(Woutdegree) -0.117
(0.536)

Lag(Wbetweenness) 6.972*
(3.885)

Lag(Degree) 9.165**
(4.080)

Lag(Closeness) 0.364
(1.178)

Lag(Betweenness) 11.24
(9.847)

Lag(Indegree) -13.16*
(7.643)

Lag(Outdegree) 13.27**
(5.261)

Constant 8.171 9.679** 11.12** 10.30**
(5.565) (4.756) (4.817) (4.854)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -203.9 -199.3 -196.6 -197.9

This table shows the panel regressions for cost inefficiency using the model
proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of network
topology, measured by the Power Law exponent, on cost inefficiency. Models 3 -
5 analyze the impact of network topology and individual bank
inter-connectivity on cost inefficiency: model 3 uses weighted network
measures(borrower (Windegree), lender (Woutdegree) and weighted
betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 9: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining profit inefficiency using Power Law exponent
as measure of network topology (Robustness test)

Variables Model 2 Model 3 Model 4 Model 5

Profit inefficiency (u)

ETA -4.146*** -3.805*** -3.849*** -3.588***
(0.736) (0.749) (0.750) (0.778)

NPL -0.0241* -0.0241* -0.0246* -0.0217*
(0.013) (0.013) (0.013) (0.013)

Size -0.014 0.0206 0.0232 0.0649
(0.035) (0.053) (0.048) (0.056)

Foreign 0.383*** 0.381*** 0.359** 0.359**
(0.133) (0.139) (0.143) (0.144)

State-owned -0.604*** -0.570** -0.641** -0.669***
(0.228) (0.237) (0.249) (0.253)

Lag(Alpha) -4.314*** -4.391*** -4.244*** -4.336***
(0.919) (0.914) (0.913) (0.928)

Lag(Windegree) 0.281*
(0.152)

Lag(Woutdegree) -0.329**
(0.166)

Lag(Wbetweenness) -0.044
(1.192)

Lag(Degree) 1.397
(1.392)

Lag(Closeness) -0.646
(0.541)

Lag(Betweenness) -5.831*
(3.348)

Lag(Indegree) -4.132**
(2.083)

Lag(Outdegree) 1.64
(1.476)

Constant 7.822*** 7.110*** 7.050*** 6.148***
(1.345) (1.562) (1.516) (1.595)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -818.1 -815.4 -815.9 -814.9

This table shows the panel regressions for profit inefficiency using the model
proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of network
topology, measured by the Power Law exponent, on profit inefficiency. Models 3
- 5 analyze the impact of network topology and individual bank
inter-connectivity on profit inefficiency: model 3 uses weighted network
measures(borrower (Windegree), lender (Woutdegree) and weighted
betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 10: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining risk-taking inefficiency using Power Law expo-
nent as measure of network topology (Robustness test)

Variables Model 2 Model 3 Model 4 Model 5

Risk-taking inefficiency (u)

ETA -12.51*** -9.673*** -11.54*** -9.028***
(3.760) (2.237) (3.803) (2.197)

NPL 0.162* 0.109** 0.163* 0.102**
(0.089) (0.045) (0.091) (0.045)

Size -0.952*** -0.857*** -1.206*** -0.942***
(0.233) (0.181) (0.234) (0.210)

Foreign 0.900** 0.940*** 1.637*** 1.264***
(0.356) (0.291) (0.474) (0.338)

State-owned -12.7 -3.809 -19.33 -2.972
(22.100) (2.516) (29.800) (2.630)

Lag(Alpha) -6.893* -6.875** -9.384** -8.523***
(3.714) (2.915) (4.032) (3.233)

Lag(Windegree) 1.218***
(0.338)

Lag(Woutdegree) -0.678*
(0.388)

Lag(Wbetweenness) 0.175
(2.644)

Lag(Degree) 18.23***
(5.366)

Lag(Closeness) 4.296**
(2.050)

Lag(Betweenness) -49.39**
(24.140)

Lag(Indegree) -17.12***
(4.896)

Lag(Outdegree) 14.95***
(3.629)

Constant 30.63*** 28.11*** 35.72*** 30.89***
(7.732) (5.552) (7.585) (6.442)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -792.4 -784.3 -771.5 -778.3

This table shows the panel regressions for risk-taking inefficiency using the
model proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of
network topology, measured by the Power Law exponent, on risk-taking
inefficiency. Models 3 - 5 analyze the impact of network topology and
individual bank inter-connectivity on risk-taking inefficiency: model 3 uses
weighted network measures(borrower (Windegree), lender (Woutdegree) and
weighted betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 11: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining cost inefficiency using unweighted direct clus-
tering as measure of network topology (Robustness
test)

Variables Model 2 Model 3 Model 4 Model 5

Cost inefficiency (u)

ETA 10.86*** 9.467*** 8.929*** 9.735***
(2.466) (2.183) (1.991) (2.086)

NPL 0.233*** 0.196*** 0.190*** 0.195***
(0.066) (0.053) (0.051) (0.051)

Size -0.652** -0.650*** -0.732*** -0.712***
(0.277) (0.242) (0.271) (0.257)

Foreign -0.343 -0.0731 0.194 0.204
(0.419) (0.336) (0.333) (0.348)

State-owned 2.194** 2.488*** 2.921*** 3.059***
(0.916) (0.818) (0.944) (0.957)

Lag(Clustering) -0.433 0.398 -0.137 0.0245
(5.011) (3.962) (3.776) (3.953)

Lag(Windegree) 0.724*
(0.428)

Lag(Woutdegree) -0.125
(0.536)

Lag(Wbetweenness) 7.038*
(3.898)

Lag(Degree) 9.196**
(4.081)

Lag(Closeness) 0.359
(1.203)

Lag(Betweenness) 11.2
(9.820)

Lag(Indegree) -13.19*
(7.636)

Lag(Outdegree) 13.30**
(5.255)

Constant 9.764* 9.936** 11.61** 10.71**
(5.194) (4.353) (4.731) (4.578)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -204 -199.3 -196.6 -197.9

This table shows the panel regressions for cost inefficiency using the model
proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of network
topology, measured by weighted direct clustering, on cost inefficiency. Models 3
- 5 analyze the impact of network topology and individual bank
inter-connectivity on cost inefficiency: model 3 uses weighted network
measures(borrower (Windegree), lender (Woutdegree) and weighted
betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 12: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining profit inefficiency using using unweighted di-
rect clustering as measure of network topology (Ro-
bustness test)

Variables Model 2 Model 3 Model 4 Model 5

Profit inefficiency (u)

ETA -4.075*** -3.908*** -3.907*** -3.753***
(0.806) (0.748) (0.788) (0.746)

NPL -0.0217* -0.0214* -0.0220* -0.0192
(0.013) (0.012) (0.012) (0.012)

Size -0.0225 0.000186 0.00273 0.0374
(0.040) (0.051) (0.049) (0.051)

Foreign 0.350*** 0.362*** 0.347** 0.347***
(0.131) (0.129) (0.138) (0.133)

State-owned -0.533** -0.477** -0.537** -0.550**
(0.226) (0.227) (0.242) (0.236)

Lag(Clustering) 11.15*** 10.53*** 10.26*** 10.14***
(4.275) (3.135) (3.929) (3.091)

Lag(Windegree) 0.279**
(0.140)

Lag(Woutdegree) -0.309**
(0.154)

Lag(Wbetweenness) -0.0271
(1.112)

Lag(Degree) 1.574
(1.309)

Lag(Closeness) -0.581
(0.507)

Lag(Betweenness) -5.709*
(3.124)

Lag(Indegree) -4.094**
(1.932)

Lag(Outdegree) 1.779
(1.372)

Constant -1.074 -1.321 -1.157 -1.913
(2.299) (1.774) (2.116) (1.730)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -821.6 -818.8 -819.3 -818.5

This table shows the panel regressions for profit inefficiency using the model
proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of network
topology, measured by the unweighted direct clustering (Clustering), on profit
inefficiency. Models 3 - 5 analyze the impact of network topology and
individual bank inter-connectivity on profit inefficiency: model 3 uses weighted
network measures(borrower (Windegree), lender (Woutdegree) and weighted
betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 13: Panel regressions on the relative importance
of inter-connectivity in the interbank market deter-
mining risk-taking inefficiency using unweighted direct
clustering as measure of network topology (Robustness
test)

Variables Model 2 Model 3 Model 4 Model 5

Risk-taking inefficiency (u)

ETA -12.84*** -10.13*** -11.72*** -9.273***
(3.815) (2.406) (3.332) (2.240)

NPL 0.167* 0.117** 0.149** 0.101**
(0.092) (0.050) (0.075) (0.045)

Size -0.973*** -0.893*** -1.202*** -0.942***
(0.239) (0.192) (0.238) (0.207)

Foreign 0.927** 1.006*** 1.589*** 1.280***
(0.368) (0.314) (0.449) (0.348)

State-owned -12.82 -3.84 -25.68 -2.778
(21.080) (2.565) (63.240) (2.260)

Lag(Clustering) 11.16* 12.27** 10.53** 12.94***
(5.825) (4.991) (5.075) (4.983)

Lag(Windegree) 1.301***
(0.364)

Lag(Woutdegree) -0.632
(0.400)

Lag(Wbetweenness) -0.124
(2.736)

Lag(Degree) 17.40***
(5.160)

Lag(Closeness) 4.020**
(1.987)

Lag(Betweenness) -51.38**
(25.410)

Lag(Indegree) -17.09***
(4.999)

Lag(Outdegree) 14.81***
(3.653)

Constant 18.77*** 16.09*** 20.91*** 16.04***
(4.536) (3.800) (4.117) (3.933)

Observations 567 567 567 567
Number of Banks 102 102 102 102
Log Likelihood -792.4 -783.9 -773.8 -778.9

This table shows the panel regressions for risk-taking inefficiency using the
model proposed by Battese and Coelli [1995]. Model 2 analyzes the impact of
network topology, measured by unweighted direct clustering (Clustering), on
risk-taking inefficiency. Models 3 - 5 analyze the impact of network topology
and individual bank inter-connectivity on risk-taking inefficiency: model 3 uses
weighted network measures(borrower (Windegree), lender (Woutdegree) and
weighted betweenness (Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network measures (Degree,
Closeness and Betweenness ) as proxies for individual bank
inter-connectivity; Model 5 uses two components of degree separately (
Indegree and Outdegree ) as proxies for individual bank inter-connectivity.

Standard errors in parentheses; *** , ** , * stand for 1, 5 and 10 percent
significance levels respectively.
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Table 14: Bank efficiency level

Models Mean Std.Dev. Min. Max.

Cost efficiency level

Model 1 0.6960 0.2276 0.0049 0.9539
Model 2 0.6956 0.2279 0.0049 0.9538
Model 3 0.6252 0.2438 0.0052 0.9740
Model 4 0.6844 0.2308 0.0047 0.9576
Model 5 0.6928 0.2289 0.0050 0.9548

Profit efficiency level

Model 1 0.2859 0.1904 0.0064 0.8212
Model 2 0.2793 0.1943 0.0048 0.8545
Model 3 0.2720 0.1930 0.0045 0.8571
Model 4 0.2846 0.1953 0.0048 0.8542
Model 5 0.2882 0.1967 0.0051 0.8578

Risk-taking efficiency level

Model 1 0.5125 0.2404 0.0047 0.9222
Model 2 0.6726 0.2323 0.0106 0.9666
Model 3 0.5046 0.2441 0.0042 0.9207
Model 4 0.5523 0.2478 0.0051 0.9559
Model 5 0.5213 0.2425 0.0048 0.9326

This table shows the mean bank-level cost, profit and
risk-taking efficiency estimated as defined in Battese
and Coelli [1988], i.e. efficiency E[exp(−u)|e], via the
models presented in Tables 2, 3, and 4. Model 1
analyzes bank inefficiency without any measure for
inter-connectivity. Model 2 analyzes the impact of
network topology, measured by the Power Law
exponent, on bank inefficiency. Models 3 - 5 analyze the
impact of network topology and individual bank
inter-connectivity on bank inefficiency: model 3 uses
weighted network measures(borrower (Windegree),
lender (Woutdegree) and weighted betweenness
(Wbetweenness)) as proxies for individual bank
inter-connectivity; model 4 uses unweighted network
measures (Degree, Closeness and Betweenness ) as
proxies for individual bank inter-connectivity; Model 5
uses two components of degree separately ( Indegree
and Outdegree ) as proxies for individual bank
inter-connectivity.
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Figure 1: Cost efficiency levels over the years
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Figure 2: Profit efficiency levels over the years
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Figure 3: Risk-taking efficiency levels over the years
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