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Microfounded Forecasting�

Wagner Piazza Gaglianoney

João Victor Isslerz

Abstract

The Working Papers should not be reported as representing the views of the Banco

Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily re�ect those of the Banco Central do Brasil.

In this paper, we propose a microfounded framework to investigate a panel
of forecasts (e.g. model-driven or survey-based) and the possibility to improve
their out-of-sample forecast performance by employing a bias-correction de-
vice. Following Patton and Timmermann (2007), we theoretically justify the
modeling of forecasts as function of the conditional expectation, based on the
optimization problem of individual forecasters. This approach allows us to re-
lax the standard assumption of mean squared error (MSE) loss function and,
thus, to obtain optimal forecasts under more general functions. However, dif-
ferent from these authors, we apply our results to a panel of forecasts, in order
to construct an optimal (combined) forecast. In this sense, a feasible GMM
estimator is proposed to aggregate the information content of each individual
forecast and optimally recover the conditional expectation. Our setup can
be viewed as a generalization of the three-way forecast error decomposition
of Davies and Lahiri (1995); and as an extension of the bias-corrected aver-
age forecast of Issler and Lima (2009). A real-time forecasting exercise using
Brazilian survey data illustrates the proposed methodology.
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1 Introduction

Constructing accurate forecasts of macroeconomic variables is crucial for policymak-

ers, �rms and consumers. In particular, reliable in�ation forecasts are of utmost

importance for monetary policy and it is no surprise that a considerable academic

literature investigates a vast amount of in�ation forecasts and forecasting methods.

According to Ang et al. (2007), economists use four main methods to forecast

in�ation. The �rst method is atheoretical, using time series models of the ARIMA

variety. The second method builds on the economic model of the Phillips curve,

leading to forecasting regressions that use real activity measures. Third, forecast

in�ation can be constructed by using information embedded in asset prices, in par-

ticular the term structure of interest rates. Finally, survey-based measures use in-

formation from agents (consumers or professionals) directly to forecast in�ation. In

this sense, the authors �nd that true out-of-sample survey forecasts (e.g. Michigan;

Livingston) outperform a large number of out-of-sample multivariate time series

competitors.

In the same line, Faust and Wright (2012) argue that subjective forecasts of

in�ation seem to outperform model-based forecasts in certain dimensions, often by

a wide margin. The authors discuss some reasons why the subjective forecasters

outperform most conventional models, pointing out to the choice of boundary values

and the fact that professional forecasters quite often have access to econometric

models and add expert judgment to these models.

The purpose of this paper is to propose a microfounded framework to investigate

a given set of in�ation forecasts (e.g. model-driven or survey-based) and the possi-

bility to improve their out-of-sample forecast performance by employing an average

forecast bias-correction device. The combination of forecasts is long used to diversify

out the risk of large forecast errors.1 This approach, �rst put forward by Bates and

Granger (1969), has been shown to reduce forecast uncertainty of individual models

1Regardless of how one combine forecasts, if the series being forecasted is stationary and er-
godic, and there is enough diversi�cation among forecasts, one should expect that a weak law-of-
large-numbers (WLLN) applies to well-behaved forecast combinations. The reason why forecast
combination, in general, works well is because it takes advantage of the principle of risk diversi�-
cation: idiosyncratic forecast errors vanish because of the WLLN works as the number of forecasts
being combined increases without bounds. Timmermann (2006) uses such a risk diversi�cation
argument to defend pooling of forecasts.
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in a variety of studies (see Hendry and Clements, 2002; Stock and Watson, 2006;

Capistrán and Timmermann, 2009).

In particular, Granger and Ramanathan (1984) investigate optimal forecast com-

bination under mean squared error (MSE) loss. The authors propose to estimate

optimal weights from an ordinary least squares (OLS) regression of the variable of in-

terest on a vector of forecasts plus an intercept to account for model (additive) bias.

Palm and Zellner (1992) discuss whether �to pool or not to pool� forecasts using

a two-way decomposition of the forecast error. Davies and Lahiri (1995) develop a

three-way decomposition, although focusing on rationality instead of forecast combi-

nation (see also Lahiri et al., 2013). More recently, Issler and Lima (2009) propose an

optimal forecast-combination, where forecasts of di¤erent models or survey results

comprise the cross-sectional dimension in a panel data approach. In their context,

the optimal forecast using a MSE risk function can be consistently estimated using

a bias-corrected average forecast (BCAF).

Regardless of the forecast combination scheme, the focus of the existing literature

often relies on the identi�cation of the conditional expectation of the series being

forecasted. If yt is the series of interest and h is the forecast horizon, then, what

is to be identi�ed is the latent variable Et�h (yt), where Et�h (�) is the conditional

expectation operator using all information available (observable or not) up to period

t�h. In other words, the information content of every individual model (or forecast)

is aggregated to optimally recover the conditional expectation.

In this paper, we tackle this issue by using a microfounded setup. We theo-

retically justify the modeling of individual forecast as a function of the conditional

expectation, based on the individual optimization problem of forecasters, which,

in turn, depends on the individual loss function and the data-generating process

(DGP) of yt. Here, we follow the work of Patton and Timmermann (2007), in the

sense of investigating forecast optimality under more general loss functions (other

than the usual MSE). However, di¤erent from these authors, we apply our results

to a whole set of forecasts, in order to construct an optimal forecast combination

scheme. In our setup, we assume that each individual forecaster provides a signal

about Et�h (yt), and we use these signals, under mild conditions, to generate an

optimal (combined) forecast.

5



This way, our approach allows us to derive a signal-extraction model from "�rst

principles", instead of (ad hoc) assuming a relationship between the individual fore-

cast and the conditional expectation. Furthermore, our setup enables us to extend

the standard signal-extraction approach focused only on additive bias (e.g. Issler

and Lima, 2009). Our contribution is, thus, to investigate di¤erent cases regard-

ing the loss and DGP, and to reveal the resulting relationship between the optimal

forecast and the conditional expectation in such cases (e.g. in the presence of an

asymmetric loss function). In this paper, we also discuss model identi�cation of the

extended approach and propose consistent estimators for the suggested model. As a

result, we provide tools to better understand the dynamics of survey-based forecasts

and the related forecast revision process.

The rest of the paper is divided as follows. Section 2 presents a discussion on

bias-correction devices and introduces a microfounded-based framework to study

the forecast error decomposition under risk functions more general than the usual

MSE. Section 3 presents a real-time forecasting exercise with data from a survey

of Brazilian in�ation expectations using the methods proposed here, comparing the

(pseudo) out-of-sample performance of di¤erent bias-correction approaches. Section

4 concludes.

2 Econometric Setup

2.1 The bias-corrected average forecast (BCAF)

There are many potential sources of forecast bias available in the literature, besides

the traditional argument of model misspeci�cation (or parameter uncertainty). For

instance, forecasters may have economic incentives (e.g. strategic behavior, compe-

tition or reputational concerns) to make biased forecasts (Laster et al., 1999; Otta-

viani and Sorensen, 2006; Batchelor, 2007). In turn, biased forecasts can arise under

asymmetric loss functions over forecast errors (Elliott et al., 2008; Capistrán and

Timmermann, 2009). On the other hand, informational rigidities can play an im-

portant role regarding the behavior of forecasters (Mankiw and Reis, 2010; Coibion

and Gorodnichenko, 2012).
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In this paper, we follow the "asymmetric loss" approach in order to better under-

stand the source of a time-invariant bias.2 The techniques discussed in this section

are appropriate for forecasting a weakly stationary and ergodic univariate process

fytg using a large number of forecasts that will be combined to yield an optimal

forecast in the mean-squared error (MSE) sense (in next section, we relax such

assumption allowing for a more general class of loss functions).

These forecasts could be the result of using several econometric models that need

to be estimated prior to forecasting, or the result of using no formal econometric

model, for instance, as the result of an opinion poll on the variable in question

using a large number of individual responses. We can also imagine that some (or

all) of these poll responses are generated using econometric models, but then the

econometrician that observes these forecasts has no knowledge of them (e.g. survey

of forecasts).

We label forecasts of yt, computed using conditioning information sets lagged

h periods, by fhi;t, i = 1; 2; : : : ; N . Therefore, fhi;t are h-step-ahead forecasts of yt,

formed at period (t� h) ; andN is either the number of models estimated to forecast

yt or the number of respondents of an opinion poll regarding yt.

Forecasts fhi;t are initially assumed to be approximations to the optimal forecast

Et�h (yt) as follows:3

fhi;t = Et�h (yt) + khi + "hi;t, (1)

where khi is the individual model time-invariant bias for h-step-ahead prediction and

"hi;t is the individual model error term in approximating Et�h (yt), where E
�
"hi;t
�
= 0

for all i, t and a given h. In addition, one can always decompose the series yt into

Et�h (yt) and an unforecastable component �ht , such that Et�h
�
�ht
�
= 0, as it follows:

yt = Et�h (yt) + �ht . (2)

Combining (1) and (2) yields the well known two-way decomposition, or error-

2Although there might be evidence of time-varying bias in some surveys, we assume along this
paper that forecast bias is time-invariant.

3Recall that the conditional mean is an optimal forecast under a particular loss function (MSE)
and some mild conditions on the data-generating process of yt. More general loss functions will be
considered in next section, in order to explain the forecast bias as the outcome of the individual
optimization problem.
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component decomposition, of the forecast error fhi;t�yt (Wallace and Hussain, 1969;

Fuller and Battese, 1974):

fhi;t � yt = �hi;t i = 1; 2; : : : ; N (3)

�hi;t = khi + �ht + "hi;t, where �
h
t = ��ht :

Notice that by construction, the framework in (3) speci�es explicit sources of

forecast errors (see Issler and Lima, 2009) that are found in both yt and fhi;t. The term

khi is the time-invariant forecast bias of model i (or of respondent i). It captures the

long-run e¤ect of forecast-bias of model i, or, in the case of surveys, the time invariant

bias introduced by respondent i. Its source is fhi;t. The term �ht arises because

forecasters do not have future information on y between t� h+1 and t. Hence, the

source of �ht is yt, and it is an additive aggregate zero-mean shock a¤ecting equally

all forecasts. The term "hi;t captures all the remaining errors a¤ecting forecasts, such

as those of idiosyncratic nature and others that a¤ect some but not all the forecasts

(a group e¤ect).

From the perspective of combining forecasts, the components khi ; "
h
i;t and �

h
t play

very di¤erent roles. If we regard the problem of forecast combination as one aimed at

diversifying risk, i.e., a �nance approach, then, on the one hand, the risk associated

with "hi;t can be diversi�ed, while that associated with �ht cannot. On the other

hand, in principle, diversifying the risk associated with khi can only be achieved if a

bias-correction term is introduced in the forecast combination, which reinforces its

usefulness.

Based on the previous two-way decomposition of the forecast error, Issler and

Lima (2009) propose non-parametric consistent estimates for the components khi , �
h
t

and "hi;t. They show that (under a set of mild conditions) the feasible bias-corrected

average forecast (BCAF) given by 1
N

NX
i=1

fhi;t � cBh , where cBh = 1
N

PN
i=1
bkhi , obeys:

plim
(T;N!1)seq

 
1

N

NX
i=1

fhi;t � cBh

!
= yt + �ht = Et�h (yt) ; (4)

where plim
(T;N!1)seq

is the probability limit using the sequential asymptotic setup of
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Phillips and Moon (1999). The authors show that feasible BCAF is an optimal

forecasting device under a mean-squared error (MSE) risk function. Notice that bias

correction (in this setup) is essentially a form of intercept correction. Intuitively,

if khi > 0, model i will consistently over predict the target variable yt and it is

reasonable to correct its forecasts downwards by the same amount as khi .

2.2 Under a more general risk function

In this section, we theoretically justify the presence of a slope coe¢ cient associated

to the conditional expectation in model (1), due to the presence of more general risk

functions, such as asymmetric ones, as it follows:

fhi;t = �hi Et�h(yt) + khi + "hi;t: (5)

To do so, we investigate the optimization problem solved by individual fore-

casters, and analyze several assumptions for both the loss function and the data-

generating process (DGP) of yt, which might result in the previous equation. Indeed,

departures from the standard MSE loss have been investigated in previous studies.

For instance, in the context of forecast combination, Elliott and Timmermann (2004)

argue that it is the combination of asymmetry in both the loss function and DGP

that is required for optimal weights to di¤er from the MSE weights.

The novelty in this paper is to study these potential asymmetries in order to

improve forecast performance by using a feasible bias-correction device applied to a

whole set of forecast horizons. In this sense, we next investigate the relationship be-

tween the optimal forecast and the conditional expectation, based on the following

cases: (1) Loss function and DGP both known by individual i (analytical relation-

ship, in which DGP is assumed to be fully parametric or following a location-scale

model); (2) Loss known but parameters of the DGP are unknown by individual i

(i.e. estimated relationship); and (3) Loss and DGP unknown (GMM estimation by

the econometrician, who only observes yt and fhi;t).

9



Case 1: Loss and DGP known

Firstly, assume that there is an amount of individuals i forecasting yt conditional on

Ft�h. Each individual chooses an optimal forecast efhi;t by minimizing its respective
expected loss function Li.

Assumption A1 (Loss function) Li depends solely4 on the forecast error eit;t�h �

yt � efhi;t, that is, Li = L(eit;t�h)

Following Granger and Newbold (1986), it is a fairly natural criterion, given

a loss function, to choose the forecast efhi;t so that the conditional expected loss is
minimized. In this sense, de�ne the optimal (point) individual forecast of yt as:

efhi;t � argmin
f

E
�
Li(yt; f) j Ft�h

�
(6)

where f 2 R are all possible choices of the i� th forecaster and E(: j Ft�h) denotes

the conditional expectation given Ft�h. A natural assumption about the shape of

the agent�s loss function, which is unknown to the econometrician, is that if one

forecasts without error, then no forecast cost arises, but if there is an error, then

the larger it is the greater will be the loss function value, as it follows:

Assumption A2 (Loss function - shape) The loss function exhibits the following

properties: (i) Li(0) = 0; (ii) Li(ei) is continuous, homogeneous and non-

negative 8ei 2 R; and (iii) Li(ei) is monotonic non-decreasing (for ei > 0 or

ei < 0), and di¤erentiable at least twice almost everywhere.

In practical terms, the symmetry of the loss function might be a restrictive

hypothesis to be considered by an econometrician. Granger and Newbold (1986,

p.125) provide two examples of situations where nonsymmetrical cost functions arise.

In these cases, it would be interesting to check if the agent forecast is optimal under

a broader class of loss functions. A simple way to consider an asymmetric function,

and account for some "degree of asymmetry", is given by the following assumption:

4This is the same Assumption L1 of Patton and Timmermann (2007). According to the authors,
although it rules out certain loss functions (e.g., those which also depend on the level of the
predicted variable), many common loss functions are of this form.
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Assumption A3 (Loss function - asymmetry) The loss function Li(ei) can be de-

composed as Li(ei) = gi(ei)h
i(ei), where gi(ei) is a non-negative and sym-

metric function about ei = 0; gi0(ei) and gi00(ei) exist almost everywhere;

hi(ei) =

8<: �i1 ; ei < 0

�i2 ; ei > 0
where f�i1; �i2g are positive constants.

Assumption A4 (DGP - stationarity and regularity of cdf) The univariate time

series yt is a weakly stationary and ergodic process and the conditional cu-

mulative distribution functions (cdf) of yt given Ft�h (denoted by Ft;t�h(�) or

Ft(� j Ft�h)) are absolutely continuous, with continuous densities ft;t�h uni-

formly bounded away from 0 and 1 at the points F�1t;t�h(�); 8� 2 (0; 1).

The additional assumptions A2 and A3 are made to investigate the shape of the

loss function and are usually adopted in the literature (e.g. Granger and Newbold,

1986; Patton and Timmermann, 2007). Note that A3 is a simple generalization

of the symmetric case, in which �1 = �2. A3 is quite general, covering a great

deal of loss functions commonly mentioned in the literature, such as: mean squared

error (MSE), mean absolute error (MAE), asymmetric linear (Lin-Lin), asymmetric

quadratic, among many others. A4 is just a technical assumption about the DGP

of yt.

Proposition 1 (Asymmetric Loss) If A1-A4 hold, then: (i) If �1 6= �2 then Ft;t�h( efhi;t) 6=
0:5, where Ft;t�h is the conditional cdf of yt; (ii) If �1 > �2 then efhi;t < Medt�h(yt);

(iii) If �1 < �2 then efhi;t > Medt�h(yt), where Medt�h(yt) is the conditional me-

dian of yt; and (iv) for two forecasters i and j such that �
i
1=�

i
2 < �j1=�

j
2 < 1, then,efhi;t > efhj;t > Medt�h(yt):

Proposition 1 states two important results: (i) asymmetric loss functions generate

departures of the optimal forecast from the central tendency (e.g. median) of the

conditional distribution of yt; and (ii) for the same DGP, the higher the degree of

asymmetry in the loss function the greater will be the distance between the optimal

forecast and the conditional median.

Corollary 2 (Symmetric Loss) If A1-A4 hold, and �1 = �2, then efhi;t =Medt�h(yt).
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In other words, if �1 = �2, then, the optimal forecast is equal to the conditional

median of yt. Moreover, by considering additional assumptions on the DGP of yt,

we obtain the well-known optimality result of the conditional mean, due to Granger

(1969, Theorem 2).

Corollary 3 (Granger (1969): Optimality of the Conditional Mean) If A1-A4 hold

and the conditional density function (pdf) of yt is a unimodal, continuous and

symmetric function about its conditional mean Et�h(yt) =
1R
�1
ytft;t�h(y)dy, and if

�1 = �2 then efhi;t = Et�h(yt).
Note that an optimal forecast obtained, for instance, from a symmetric loss

function such as MSE implies that efhi;t = Et�h(yt). In fact, the classical result of

Granger (1969), in which the optimal forecast equals the conditional mean of yt

under a MSE loss function, can be viewed as a special case of Proposition 1.

The exact relationship between the optimal forecast�s percentile level � i, in re-

spect to the cdf of yt, and the parameters f�1; �2g can be obtained if one considers

a more restrictive assumption on the class of loss functions. The next corollary

presents an example.

Corollary 4 (Granger and Newbold (1986): Linear loss function) If A1-A4 hold

and the loss function is the Lin-Lin function, i.e., L(ei) =

8>>><>>>:
��1ei ; ei < 0

0 ; ei = 0

�2ei ; ei > 0

, in

which f�1; �2g > 0, then, efhi;t = F�1t;t�h(� i) in which � i = �2=(�1 + �2).

Under a symmetric loss function such as MSE, the only forecast that is unbiased5

is the optimal forecast given by efhi;t = Et�h(yt). However, under an asymmetric

loss function, it is natural to expect that the optimal forecast will di¤er from the

respective conditional mean. Intuitively, an asymmetric loss with, say, �1 > �2

indicates that the negative forecast errors are more costly to the forecaster than

the positive ones. Thus, an individual forecaster will choose an optimal forecast

that corresponds to some low quantile of yt (i.e., � i < 0:5) and therefore it is quite

5See Granger and Newbold (1986, p.144).
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natural to expect that positive errors are more likely to be observed in historical

data, which explains the forecast bias.

Granger (1969) argues that symmetry of both the loss function and the condi-

tional density of yt is not a su¢ cient condition for the optimum predictor to be

equal to the conditional mean. In fact, the author provides a counter-example in

which the conditional mean would be sub-optimal under symmetric functions (both

loss and the pdf). In order to better understand the relationship between the opti-

mal forecast and the conditional mean, more assumptions on the DGP and/or the

loss function are required. In this sense, next Proposition analytically reveals, for

illustrative purposes, this relationship for selected parametric forms of the pdf of yt.

Proposition 5 (DGP - parametric pdfs) If A1-A4 hold and the conditional pdf of

yt is: (i) Gaussian, Two-piece normal, or Logistic, then, efhi;t = khi + Et�h(yt); (ii)

Log-normal or Weibull, then, efhi;t = �hi Et�h(yt); (iii) Beta(a=1,b>0), then, efhi;t =
khi + �hi Et�h(yt); (iv) Beta(a>0,b=1), then, efhi;t = �hi �(Et�h(yt); � i), in which � is

the non-linear function exp( ln(� i)
Et�h(yt)

) and � i � Ft;t�h( efhi;t).
In a more realistic route, Proposition 6 assumes a location-scale model for the

DGP of yt and shows that, in this case, the optimal forecast is a linear function

(i.e. intercept and slope) of the conditional mean. This class of DGPs is very

convenient since it can naturally be investigated through the lens of a quantile

regression framework with linear conditional quantiles.6

Assumption A5 (DGP - location-scale) The DGP of yt follows a location-scale

model, with conditional mean and variance dynamics de�ned as yt = X 0
t;t�h�+�

X 0
t;t�h

�
�t, in which (�tjFt�h) � i:i:d: F�;h (0; 1), where F�;h (0; 1) is some

distribution with zero mean and unit variance, which depends on h but does

not depend on Ft�h; Xt;t�h 2 Ft�h is a m � 1 vector of covariates (which

includes the intercept, and that can be predicted using information available at

time t�h) and � = [�0; �1; :::; �m�1] and  = [0; 1; :::; m�1] are m�1 vectors

of parameters. Without loss of generality, assume that X 0
t;t�h = (1; xt;t�h) is a

2� 1 vector and � = (�0; �1)0 ;  = (0; 1)
0 :

6The linear quantile regression setup could be further extended to consider models with depen-
dency and mixing conditions (e.g. Cai and Xiao, 2012; Galvao and Wang, 2013). We leave this
route as a suggestion for future research.
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The class of DGPs covered by A5 is very broad and includes most common

volatility processes with time-varying variance (e.g. ARCH and stochastic volatil-

ity). Notice that no parametric structure is placed on F�;h and the covariate a¤ects

both the location and the scale of the conditional distribution of yt.

Moreover, A5 implies that: (i) Q� (yt j Ft�h) = �0(�) + �1(�)xt;t�h for some

� 2 [0; 1]; and (ii) E(yt j Ft�h) = Et�h(yt) = �0 + �1xt;t�h; where Q� (:) is the

conditional quantile of yt, [�0(�);�1(�)] depends on (�; ), Li and F�;h (0; 1); and

�j �
1R
0

�j(�)d� for j = f0; 1g: The previous expressions for both the conditional

quantiles and the conditional expectation of yt (under A5) will be next explored to

deliver a linear connection between the optimal forecast and the conditional mean.

Proposition 6 (Location-scale model) If A1-A5 hold, then: (i) the optimal forecast

is a linear function of the conditional mean of yt, so that efhi;t = khi +�
h
i Et�h(yt); (ii)

in the absence of scale e¤ects on the DGP (1 = 2 = ::: = m�1 = 0) it follows that

�hi = 1 and, thus, efhi;t = khi + Et�h(yt).

Case 2: Loss known but parameters of DGP unknown

So far, we have assumed that the DGP of yt is known to the individual i forecasting

yt, although (in practice) only its own loss function would be known. In other words,

an optimal forecast of the form efhi;t = khi + �hi Et�h(yt) would (in practice) be not

feasible. Nonetheless, individuals might approximate the optimal forecast by using

its �nite sample (and feasible) counterpart fhi;t = bkhi + b�hi bEt�h(yt), which can be
estimated by using available data. This way, an optimal forecast "approximation

error" "hi;t � fhi;t � efhi;t might arise, as illustrated in some examples presented in the
Appendix. Now, de�ne cBh � 1

N

NX
i=1

bkhi ; b�h � 1
N

NX
i=1

b�hi and consider the additional
assumption:

Assumption A6 [bkhi ; b�hi ] � [b�0(� i)�c�0c�1 b�1(� i); b�1(� i)c�1 ], where b�(� i) � [c�0(� i);c�1(� i)]
are standard estimators for the linear quantile regression of yt onto [1;xt;t�h],

and b�j is computed over a discrete grid of equidistant quantiles � i 2 [� 1; � 2; :::; �K ];
such that b�j � 1

K

PK
k=1 b�j(� k)�� k, for j = f0; 1g:
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Proposition 7 If A1-A6 hold then: (i) the optimal (feasible) forecast of yt condi-

tioned on Ft�h is of the form: fhi;t = khi +�
h
i Et�h(yt)+"hi;t, where "hi;t accounts for �nite

sample parameter uncertainty; (ii) [bkhi ; b�hi ] are consistent estimators for [khi ; �hi ]; (iii)
the Extended BCAF (Bias Corrected Average Forecast), given by 1

N

NX
i=1

fhi;t�cBhc�h , as-

ymptotically converges to the conditional mean of yt: plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc�h
!
=

Et�h (yt).

Therefore, we showed that the relationship between the optimal forecast and

the conditional mean is linear (intercept and slope) in several cases. It is worth

mentioning that standard linear models, for instance, used for in�ation forecasting

(e.g. Phillips curve, autoregression, stochastic volatility or some factor models) can

be nested into the previous location-scale speci�cation (Stock and Watson, 1999;

Faust and Wright, 2012).

For di¤erent DGPs (other than the previously considered), one can assume that:

(i) the optimal forecast efhi;t is a linear combination of the conditional mean, such
that efhi;t = khi + �hi Et�h(yt); and (ii) the observed forecast fhi;t can be viewed as a

linear approximation of the individual optimal forecast efhi;t, such that the following
equation holds:

fhi;t =
efhi;t + "hi;t = khi + �hi Et�h(yt) + "hi;t (7)

or, equivalently,

fhi;t = khi + �hi (yt + �ht ) + "hi;t: (8)

More general setups of the loss and the DGP of yt are (of course) possible,

although leading to (potential) non-linear relationships between the optimal pre-

dictor and the respective conditional mean, possibly embodied with non-tractable

expressions of di¢ cult practical use. In next section, we discuss model identi�cation

and the joint estimation of coe¢ cients khi and �
h
i within a generalized method of

moments (GMM) setup.
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Case 3: Loss and DGP unknown

Now, consider that an econometrician only observes a survey of individual forecasts

fhi;t and the target variable yt, but has no information at all about the DGP and

the individual loss functions. In this case, a panel framework can be employed to

estimate the model coe¢ cients and construct our extended bias-corrected average

forecast, which is later showed to be optimal under the MSE loss function. The

econometric model is the following:

fhi;t = khi + �hi Et�h(yt) + "hi;t (9)

where t = 1; :::; T ; i = 1; :::; N ; h = 1; :::; H. The question here is how to jointly

estimate the parameters khi and �hi within a 3-dimensional (N � T � H) panel

setup? Following Issler and Lima (2009), one can always decompose the series yt

into Et�h(yt) and an unforecastable component �ht , such that Et�h(�
h
t ) = 0, so that:

yt = Et�h(yt) + �ht (10)

Recall that �ht = ��ht . Thus, it follows that:

fhi;t = khi + �hi (yt + �ht ) + "hi;t (11)

Now, de�ne vhi;t � �hi �
h
t + "hi;t and assume that E("hi;t j Ft�h) = 0. This way, it

follows that E
�
vhi;t j Ft�h

�
= 0 and that:

E
��
fhi;t � khi � �hi yt

�

 zt�s

�
= 0 (12)

for all i = 1; :::; N and h = 1; :::; H, where zt�s 2 Ft�h is a vector of instruments,

such that s > h. The previous group of equations can be used as moment condi-

tions (within a GMM setup) with 2NH parameters and (at least) 2NH moment

conditions, provided that dim(zt�s) > 2.
Nonetheless, as long as N ! 1 the amount of parameters to estimate also

diverges. Since our focus here is to construct a bias-correction device based on the

aggregate estimates cBh and b�h, one could reduce the problem dimensionality (e.g.
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Driscoll and Kraay, 1998) by assuming (for instance) the following set of H moment

conditions:

plim
(T;N!1)seq

 
1

NT

NX
i=1

TX
t=1

vhi;t

!
= 0: (13)

However, we follow here a di¤erent route, and estimate the 2H parameters of

interest (cBh and b�h) via GMM based on the two following setups:

Model 1 based on the individual (disaggregated) forecasts fhi;t and the following

moment conditions:

E
��
fhi;t �Bh � �hyt

�

 zt�s

�
= 0 (14)

for all i = 1; :::; N and all h = 1; :::; H:

Model 2 based on the average forecast f
h

t � 1
N

NX
i=1

fhi;t and the following moment

conditions:

E
h�
f
h

t �Bh � �hyt

�

 zt�s

i
= 0 (15)

for all h = 1; :::; H.

Notice that both models can be identi�ed by using standard GMM estimates, as

long as dim(zt�s) > 2 and s > h. We next verify more formally the conditions neces-

sary to construct an optimal forecast device and generate a proxy for the conditional

expectation of yt. De�ne �
h
i = [k

h
i ; �

h
i ]
0 and consider the following assumptions:

Assumption A7 (�hi ; �
h
t ; "

h
i;t) are independent of each other for all i and t and a

given h.

Assumption A8 �hi is an identically distributed random vector in the cross-sectional

dimension i, but not necessarily independent, i.e.,

�hi � i.d.(�h;��h); (16)

where �h = [Bh; �h]0 and ��h =

24 �2
kh

k;�

k;� �2
�h

35 such that �2
kh
;�2

�h
;
��k;��� <

1. In the time-series dimension �hi has no variation (i.e. vector of �xed

parameters), but it is a random vector in the cross-section dimension.
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Assumption A9 The aggregate shock �ht is a stationary and ergodic moving av-

erage (MA) process of order at most h � 1, with zero mean and variance

�2
�h
<1.

Assumption A10 Let "ht =
�
"h1;t; "

h
2;t; ::: "

h
N;t

�0
be a N � 1 vector stacking the er-

rors "hi;t associated with all possible forecasts. Assume that the vector process�
"ht
	
is covariance-stationary and ergodic for the �rst and second moments,

uniformly on N , and that Et�h
�
"hi;t
�
= 0 for all i and t and a given h. Fur-

thermore, we follow Issler and Lima (2009) and also assume that

lim
N!1

1

N2

NX
i=1

NX
j=1

��E �"h0i;t"hj;t��� = 0: (17)

Because the forecasts are computed h-steps ahead, forecast errors "hi;t can be

serially correlated. Assuming that "hi;t is weakly stationary is a way of controlling

its time-series dependence. It does not rule out errors displaying conditional het-

eroskedasticity, since the latter can coexist with the assumption of weak stationarity.

Assumption A11 plim
N!1

����� 1N
NX
i=1

�hi

����� <1
Assumption A12 plim

(T;N!1)seq

b�hi = �hi ; where b�hi are consistent GMM estimates,

based on the moment conditions E
��
fhi;t � khi � �hi yt

�

 zt�s

�
= 0, where zt�s 2

Ft�h is a vector of instruments, such that s > h and dim(zt�s) > 2:

Proposition 8 If A1-A4 and A7-A12 hold, then, the feasible Extended BCAF (Bias

Corrected Average Forecast) 1
N

NX
i=1

fhi;t�cBhc�h based on GMM estimates b�h = [cBh;c�h]
obeys

plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc�h
!
= Et�h (yt).

It is worth mentioning that our identi�cation strategy is entirely based on GMM

estimates. The validity of overidentifying restrictions can be checked by using stan-

dard TJ statistics. In our case, following Issler and Lima (2009), we rely on double

asymptotics (T;N ! 1) and (at the same time) assume that the forecast horizon

h remains bounded and, thus, does not diverge (H < 1), which is a reasonable
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hypothesis when dealing with actual survey forecasts (e.g. SPF, Michigan, Liv-

ingston).7 Furthermore, the key identi�cation restriction E
�
vhi;t j Ft�h

�
= 0 is es-

sentially due to the orthogonal decomposition (10) plus a restriction on the error

term "hi;t, that is, E("hi;t j Ft�h) = 0.

On the other hand, the Extended BCAF is a generalization of the original BCAF

proposed by Issler and Lima (2009), which considered �h = 1. Notice that our setup

also includes the Davies and Lahiri (1995) and Davies (2006) framework, reproduced

below with our notation:

yt � fhi;t = �
�
khi + �ht + "hi;t

�
: (18)

By imposing �hi = 1 for all i = 1; :::; N and all h = 1; :::; H; in the extended

BCAF setup, one can reproduce the three-dimensional error structure of the referred

authors.

Finally, notice that the Extended BCAF is computed by 1
N

NX
i=1

fhi;t�cBhc�h , such that

plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc�h
!
= Et�h (yt). In other words, despite the fact that indi-

vidual forecasts fhi;t might come (for instance) from asymmetric risk functions, the

Extended BCAF is designed to preserve optimality under the MSE loss, as next

discussed.

2.3 Optimality

In this section, we discuss the optimality of the original BCAF estimator and an im-

plied testable restriction. First, notice that there exists a scalar Wold representation

for yt of the form:

yt = �t +
1X
j=0

 j�t�j = �t +
h�1X
j=0

 j�t�j +
1X
j=h

 j�t�j; (19)

7Alternative identi�cation strategies could be pursued (e.g. within-group method), which could
potentially lead to more e¢ cient estimates. For instance, one could explore the panel model with
�xed e¤ects proposed by Bai (2009), which allows for the joint presence of additive and interactive
e¤ects. Nonetheless, we leave this route as a suggestion for future research.
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where �t is the deterministic term,  0 = 1,
P1

j=1

�� j�� <1 and �t�j is white noise.

By taking the conditional expectation h-periods before, it follows that:

Et�h(yt) = �t +
h�1X
j=0

 jEt�h(�t�j) +
1X
j=h

 jEt�h(�t�j) = �t +
1X
j=h

 j�t�j: (20)

Therefore, we have that

yt � Et�h(yt) =
h�1X
j=0

 j�t�j: (21)

From equation (10) it also follows that yt � Et�h(yt) = ��ht and, thus,

�ht = �
h�1X
j=0

 j�t�j; (22)

which is exactly assumption 3 of Issler and Lima (2009), in which the shock

�ht is a MA process of order at most h � 1, which is a testable restriction. Now,

we discuss the optimality of the original BCAF estimator under a more general

risk function. To do so, consider that fhi;t = khi + �hi Et�h(yt) + "hi;t and also that

yt = Et�h(yt)+�ht = Et�h(yt)��ht , and de�ne �h � plim
N!1

1
N

NP
i=1

�hi ,
���hi �� <1 uniformly

in i. Thus, it follows that

fhi;t = khi + �hi yt + �hi �
h
t + "hi;t (23)

)
(fhi;t � khi )

�hi
= yt + �ht +

"hi;t

�hi
(24)

) plim
N!1

 
1

N

NX
i=1

(fhi;t � khi )

�hi

!
= yt + �ht (25)

) E[plim
N!1

 
1

N

NX
i=1

(fhi;t � khi )

�hi

!
� yt]

2 = �2�h : (26)

Notice that under the original BCAF of Issler and Lima (2009) and ignoring the
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existence of the slope coe¢ cient �hi it follows that

1

N

NX
i=1

(fhi;t � khi )
p! �hyt + �h�ht (27)

1

N

NX
i=1

(fhi;t � khi � yt)
p! (�h � 1)yt + �h�ht (28)

= (�h � 1)yt + (�h � 1)�ht + �ht (29)

= (�h � 1)Et�h(yt) + �ht (30)

This way, it follows that:

E[plim(
N!1

1

N

NX
i=1

(fhi;t � khi ))� yt]
2 (31)

= (�h � 1)2(Et�h(yt))2 + �2�h > �2�h : (32)

Therefore, if the forecast bias is not only additive, i.e. fhi;t = �hi Et�h (yt)+khi +"hi;t,

where �hi�
�
�h; �2

�h

�
, such that �h 6= 1, the BCAF is no longer optimal. Optimality

can be restored if the BCAF is slightly modi�ed to be 1
N

NP
i=1

�
fi;t�ckhic�hi

�
, where bkhi andc�hi are consistent estimators of khi and �hi , respectively.

2.4 Aggregate Forecasts

In this section, we remind the reader that OLS estimates from a standard (intercept-

slope) bias correction model based on aggregated forecasts (Elliott et al., 2006) might

not be necessarily unbiased. To investigate this issue more carefully, �rst consider

the econometric model under Case 3 and Proposition 8. Then, take the cross-section

average on both sides of fhi;t = khi + �hi (yt + �ht ) + "hi;t, such that:

1

N

NX
i=1

fhi;t =
1

N

NX
i=1

�
khi + �hi (yt + �ht ) + "hi;t

�
(33)

) yt =
1

N

NX
i=1

�
fhi;t � khi � �hi �

h
t � "hi;t

�
�hi

(34)
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One can rewrite the last equation in the following way:

yt = ch0 + ch1f
h

t + �ht (35)

where ch0 =
1
N

NP
i=1

�khi
�hi
; ch1 =

1
N

NP
i=1

1
�hi
; f

h

t � 1
N

NP
i=1

fhi;t; �
h
t =

1
N

NP
i=1

�
��ht �

"hi;t
�hi

�
: Based on

the time series fyt; f
h

t gTt=1, one could employ OLS to estimate parameters (ch0 ; ch1)0

or, alternatively, use Nonlinear Least Squares (NLS) to directly estimate parameters

(Bh; �h)0 from the regression:

yt = �
Bh

�h
+
1

�h
f
h

t + �ht : (36)

Notice that it is a linear regression with nonlinear restriction on the coe¢ cients.

Nonetheless, as well known, if E(fh 0t �ht ) 6= 0, then, OLS estimator might not be

unbiased. To check it more carefully, consider the following double asymptotics

(T;N !1)seq and assume that h remains bounded, as it follows:

lim
(T;N!1)seq

E(�ht ) = lim
(T;N!1)seq

� 1
N

NX
i=1

E

 
�ht +

"hi;t

�hi

!
(37)

= lim
(T;N!1)seq

� 1

N

NX
i=1

 
E(�ht ) +

E("hi;t)
E(�hi )

!
= 0; (38)

where the last two equalities are due to E(�ht ) = 0 for all t and h; E("hi;t) = 0 for

all i and t; (�hi ; "
h
i;t) are independent of each other for all i and t and a given h;

and plim
(T;N!1)seq

1
N

NP
i=1

�hi = �h;
���h�� <1. We also assume that �h 6= 0 (to exclude the

non-interesting case in which the aggregate forecast would be just a random error

around Bh).

In addition, notice that:

E(�h0t �ht ) = E

  
� 1
N

NX
i=1

 
�ht +

"hi;t

�hi

!!0 
� 1
N

NX
i=1

 
�ht +

"hi;t

�hi

!!!
(39)

lim
(T;N!1)seq

E(�h0t �ht ) = lim
(T;N!1)seq

1

N

NX
i=1

 
E(�h0t �ht ) +

2E(�h0t "hi;t)
E(�hi )

+
E("h0i;t"hi;t)
E(�h0i �

h
i )

!
(40)

= �2�h > 0 (41)
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since E(�h0t �ht ) = �2
�h
; (�ht ; "

h
i;t; �

h
i ) are independent of each other for all i; t and

a given h; and lim
(T;N!1)seq

1
N

NP
i=1

E("h0i;t"hi;t) = 0 by following the proof of Lemma 1

of Issler and Lima (2009). Moreover, provided that lim
(T;N!1)seq

1
N

NP
i=1

E(�hi ) = �h 6=

0, by assumption, and since lim
(T;N!1)seq

1
N

NP
i=1

V AR(�hi ) = �2
�h

> 0, it also follows

that lim
(T;N!1)seq

1
N

NP
i=1

E(�h0i �
h
i ) =

�
�2
�h
+
�
�h
�2� 6= 0. Now, let�s investigate the term

E(fh 0t �ht ):

E(fh 0t �ht ) = E

  
1

N

NX
i=1

(khi + �hi yt) + (�
h
i �
h
t + "hi;t)

!0
�ht

!
(42)

=
1

N

NX
i=1

�
khi E

�
�ht
�
+ �hi E

�
y0t�

h
t

�
� �hi E

�
�h0t �

h
t

��
(43)

) lim
(T;N!1)seq

E(fh 0t �ht ) = plim
(T;N!1)seq

 
1

N

NX
i=1

�hi E
�
y0t�

h
t

�!
� �h�2�h (44)

= plim
(T;N!1)seq

 
1

N

NX
i=1

� �hi E
�
y0t�

h
t

�
� E

�
y0t"

h
i;t

�!
� �h�2�h (45)

= � lim
(T;N!1)seq

1

N

NX
i=1

E(y0t"hi;t) (46)

where E(y0t�ht ) = ��2�h comes from the orthogonal decomposition: yt = Et�h (yt)��ht .

Since plim
N!1

1
N

NP
i=1

"hi;t = 0 (with variance equal to zero, in the limit) it follows that

lim
(T;N!1)seq

1
N

NP
i=1

E(y0t"hi;t) = 0 (recall that yt is assumed to be a weakly stationary and

ergodic process).

This way, the OLS condition E(fh 0t �ht ) = 0 can be asymptotically achieved (al-

though requiring double asymptotics). Nonetheless, in cases where only the time

dimension diverges (i.e. T !1 with small N) biased OLS coe¢ cients can be gen-

erated. An alternative approach to overcome this potential (�nite sample) bias is

to employ a standard instrumental variable (IV) setup by assuming, for instance,

that E(z0t�s�ht ) = 0, for s > h, based on a set of valid instruments zt. Notice that

this approach can be nested into the GMM setup discussed in previous sections.8 In
8In fact, recall that the GMM setup allows for moment conditions other than the considered in

23



the empirical exercise, we employ aggregate forecasts to investigate bias-correction

based on the (GMM) moment conditions (15) and the Nonlinear Least Squares

(NLS) regression (36).

3 Empirical Application

3.1 Data

In this section, we employ the BCAF of Issler and Lima (2009) to a varying forecast

horizon, based on Brazilian in�ation data, and compare it to our proposed extended

setup. In particular, we focus our analysis on the behavior of forecasts of the monthly

in�ation rate in Brazil, as measured by IPCA, which is a consumer price index (CPI)

used to compute the o¢ cial in�ation target. Our goal is to estimate the "forecast

error term-structure" of the in�ation rate based on market forecasts obtained from

the Focus survey.

The Focus survey9 is a unique panel database of forecasts, organized by the

Central Bank of Brazil, which collects daily information on almost 100 institutions,

including commercial banks, asset-management �rms, and non-�nancial institutions,

which are followed throughout time with a reasonable turnover. Forecasts are com-

puted at di¤erent frequencies, for a large array of macroeconomic time series included

in the survey, as well as at di¤erent forecast horizons, which potentially can serve to

approximate a large N; T environment for techniques designed to deal with unbal-

anced panels �which is not the case studied here. Besides the large size of N and

T , the Focus survey also has the following desirable features: the anonymity of fore-

casters is preserved (i.e. there is no reputation concerns and design of competition

is likely to encourage truthful reporting), although the list of the top-�ve forecasters

for a given economic variable is periodically released by the Central Bank of Brazil

(see Carvalho and Minella, 2012).

this paper, for instance, focused on higher moments of the forecast error, or even mixing coe¢ cients
from distinct forecast horizons (e.g. moments based on forecast revisions), which might useful to
smooth the estimated coe¢ cients along the horizons. In addition, the aggregate approach can be
less e¢ cient since it employs much less data in comparison to the disaggregated counterpart.

9The collection and manipulation of data from the Focus survey is conducted exclusively by the
sta¤ of the Central Bank of Brazil.
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In order to obtain the largest possible balanced panel (N�T�H), we used a time-

series sample period covering daily forecasts collected from 02 January 2006 to 07

February 2014. Every day considered within the sample, market agents i = 1; :::; N

inform their expectations regarding the in�ation rate for the next 14 months. For

instance, market agent i informs on 05 January 2006 his (or her) forecast for in�ation

rate in December 2005 (not yet released), as well as for January 2006 and the

following 12 months. Next day, the same agent updates the forecasts for the same

in�ation rates in December 2005, January 2006,..., January 2007.

This way, our sample covers forecasts for the CPI in�ation rates from December

2005 to January 2014 (t = 1; :::; T = 98 months), which represents a period of stable

in�ation in Brazil (see Figure 1), and the forecast horizons range from h = 1; :::; H =

400 days. This way, the original database represents forecasts for "�xed-events" (see

Bakhshi et al., 2005) and varying forecast horizons. These original forecasts are re-

organized to form time series of �xed-forecast-horizons and time-varying-events. As

a result, the dataset forms an unbalanced panel (N �T �H) containing an amount

of 2,732,827 observations. The �nal dataset used in this paper contains 1,486,559

observations, since we only consider the forecasts from agents that participate on

the survey in a regular basis (i.e., forming a balanced panel). Figure 3 shows the

number of e¤ective agents N for each horizon h.

We consider two consecutive time sub-periods, where the �rst sub-period (t =

1; :::; T1) is labeled �training sample�, where realizations of yt are usually con-

fronted with forecasts provided by the survey of forecasts, and bias-correction terms

are estimated. The second sub-period is where genuine out-of-sample forecast is

entertained, comprising the last P observations (t = T1 + 1; :::; T ) to compute

MSEh =
1
P

TP
t=T1+1

�
yt � bfht �2, where bfht is either the BCAF or the Extended BCAF

forecast. For the average forecast, there is no parameter to be estimated using

training-sample observations. Out-of-sample forecasts are computed according to

faverage;ht = 1
N

NP
i=1

fhi;t, t = T1 + 1; :::; T , and its MSE is similarly computed. In this

sense, we chose the �rst R = 60 time observations to estimate the model para-

meters leaving P = 38 time-series observations for (pseudo) out-of-sample forecast

evaluation.
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We estimate both the original BCAF of Issler and Lima as well as the proposed

Extended BCAF. Regarding the original BCAF, we estimate the market bias cBh

for each horizon h separately. In respect to the Extended BCAF, we use a set

of instruments containing lagged �gures of in�ation �t and interest it rates (IPCA

and Selic, respectively), nominal exchange rate (R$/US$) and industrial production.

Interest rate, nominal exchange rate and industrial production index are all �rst-

di¤erenced and log-transformed. The reported results are based on the following set

of instruments: zt�s = [1; �t�s; �t�s�2; �t�s�5; it�s�5]0 with s = 14 months.

Notice that our dataset (in fact) represents an unbalanced 3-dimensional setup

with mixed frequencies (t is measured in a monthly frequency, whereas h is provided

in a daily basis). The ideal situation would be to estimate the Extended BCAF by

jointly using the 3 dimensions altogether. However, in practice, this estimation was

not feasible (i.e. singularities in the numerical optimization arise), probably due

to the fact that forecasts of two consecutive horizons might be highly correlated.10

Joint (3D) estimations with selected horizons (e.g. h = 30; 60; 90; :::; 180 days) also

resulted in convergence problems. The solution adopted was to estimate the model

for each horizon h separately (as done in the original BCAF). In this sense, we

considered Models 1 and 2 (described in Case 3 of Section 2.2) by using individual

as well as the average forecasts.

The empirical exercise is all conducted by using the R software (version 3.0.1)

and the package "gmm". The covariance matrix of coe¢ cients is estimated in the

original BCAF by using the "random �elds" approach (Conley, 1999) as in Issler

and Lima (2009), whereas in the Extended BCAF it is estimated by using the "two

step" approach of Hansen (1982), although the "iterative" procedure of Hansen et

al. (1996) leads to similar results.

10On the other hand, some individuals in the survey may infrequently update their forecasts;
which could also generate singularities in the optimization problem. A possible solution, in this
case, would be to estimate the model with monthly data in the forecast horizon dimension.
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3.2 Results

The results of our empirical exercise are presented in Tables and Figures in Appen-

dix. The results in Table 1 show that the average bias is negative for the whole set of

considered horizons (suggesting that, in general, survey participants underestimate

in�ation) and statistically signi�cant after a 6-month horizon. The estimated bias

for a 7-month horizon (�0:0456) is approximately �0:55% in a yearly basis, which

is a sizable bias for an average in�ation rate around 5:6% in twelve months (as of

January 2014).

In Table 2, pseudo out-of-sample forecast comparisons between the average fore-

cast and the original bias-corrected average forecast show that the former has a MSE

16% bigger than that of the latter when considering a twelve-month forecast horizon,

which shows that the forecasting gains from bias correction might be non-trivial. It

is worth mentioning that these results are in line with the previous �ndings of Issler

and Lima (2009), which report a p-value of 0:063 for a null-bias test with a 6-month

horizon, despite their di¤erent sample (from November 2002 to March 2006) in com-

parison to the one used in our empirical exercise (from December 2005 to January

2014).

Figure 4 shows the so-called forecast error "term-structure" estimated via the

original BCAF of Issler-Lima. Notice that, as expected, the market bias collapses to

zero (i.e., the BCAF converges to the simple average forecast) as long as the forecast

horizon approaches to zero.

In Appendix A.4, the results for the Extended BCAF are presented. Table 3

presents the comparison between models 1 and 2, leading to similar point estimates,

although model 1 (with individual forecasts), as expected, presents lower con�dence

intervals for estimated coe¢ cients. In both cases, the Wald test of "no bias" is

strongly rejected in all considered horizons, in sharp contrast to the respective results

from the original BCAF, which pointed out to the existence of forecast bias only

after a 6-month horizon. To save space, the remaining Figures and Tables only show

the results for model 2 (quite similar to the results from model 1).

Figures 9 and 10 present the estimated coe¢ cients along the daily forecast hori-

zons h, revealing the evolution of forecast-bias along the "term-structure" in the
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short-run (up to 90 days), which seems to remain relatively constant in the medium

to long-run.

On the other hand, notice that the possibility of a more �exible model, allowing

for the slope coe¢ cient (associated to the conditional expectation) to be di¤erent

from unity, indeed leads to sizable out-of-sample forecast improvements. Figures

11 and 12 show that the Extended BCAF generates MSE ratios (in respect to the

average forecasts) with gains greater than those produced by the original BCAF.

Indeed, the equal predictive accuracy test of Clark and West (2007) for nested

models (Figure 13) suggests that both bias-correction devices can statistically reduce

(at a 10% signi�cance level) out-of-sample MSE for horizons above 9 months (and

marginally reduce the MSE for h ranging between 1 and 3 months). The Clark-West

test also indicates that the extended BCAF can statistically improve out-of-sample

predictability over the original BCAF for longer horizons (h > 10 months).

Regarding model speci�cation, Table 4 shows the p-values of a testable restriction

that the aggregate shock �ht , estimated within the extended setup, follows a moving

average process of order (at most) h � 1. Overall, the results indicate that the

aggregate shock seems not to violate the optimal restriction of MA(h� 1).

Finally, in Appendix A.5 we present a comparison between Nonlinear Least

Squares (NLS) and GMM estimates, both based on aggregate forecasts. Notice

that distinct estimation techniques lead to quite di¤erent in-sample results.11 More-

over, the out-of-sample performance of the estimated bias-correction devices suggests

that GMM generates lower MSEs in almost all horizons in comparison to NLS. In

addition, according to the Clark-West (2007) test, the NLS-based model generates

MSEs no better than the MSEs from the standard average forecast (excepting a few

marginal results for horizons between 1 and 3 months).

4 Conclusion

In this paper, we use an econometric approach to forecast stationary and ergodic

series yt within a 3-dimensional panel-data framework, where the number of forecasts

and the number of time periods increase without bounds. Our method is linked

11A Hausman speci�cation test could be employed to further investigate this di¤erence.

28



to the previous literature on two-way (and three-way) error decomposition (e.g.

Wallace and Hussain (1969); Fuller and Battese (1974); Davies and Lahiri (1995))

as well as on forecast combination and bias-correction devices (e.g. Granger and

Ramanathan (1984); Issler and Lima (2009)). As shown here, standard tools from

panel-data asymptotic theory are used to devise an optimal forecast combination

that delivers Et�h (yt) under more general loss functions than usual MSE.

The novelty in this paper is to propose a bias-correction device for a whole set

of forecast horizons, in order to reveal the forecast error "term-structure", that is,

the size of aggregate bias in respect to the forecast horizon. More importantly,

a microfounded framework is presented to justify the existence of a forecast bias,

based on the optimization problem of individual forecasters. Among the many

potential sources of forecast bias (e.g. model misspeci�cation, distinct information

sets among forecasters due to private information, asymmetric loss functions and

its relationship with the DGP), we focus here on the later source and present a

detailed discussion about asymmetric loss functions; which might lead the standard

bias-correction approach (based only on intercept correction) to become sub-optimal

in the presence of such asymmetries from individual forecasters.

In such a context, a GMM setup is suggested to generate a feasible optimal

(combined) forecast, constructed to deliver the conditional expectation of the target

variable. An empirical exercise using a dataset of Brazilian in�ation expectations

illustrates our methodology, suggesting that the proposed model is able to produce

out-of-sample forecasts with superior performance (in the MSE sense), for several

forecast horizons, in comparison to the average forecast and to the additive-only

bias-correction approach of Issler and Lima (2009).

Possible extensions of this paper include: (i) investigate the dynamics, and re-

lated statistical properties, of the forecast revision process Rhi;t � fhi;t � fh+1i;t ; (ii)

pursue other identi�cation strategies and conduct a joint 3-dimensional estimation;

and (iii) tackle the unbalanced panel issues (e.g. missing values, ragged edge data)

by using, for instance, the Expectation Maximization (EM) algorithm (Stock and

Watson, 2002a,b).
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A Appendix

A.1 Proofs of Propositions

Proof of Proposition 1. De�ne the objective function �(ey) � E (L(y � ey) j Ft�h)
=

1R
�1
L(y � ey)f(y)dy = eyR

�1
�1g(y � ey)f(y)dy + 1R

ey �2g(y � ey)f(y)dy, where the last
equality is due to A3. Di¤erentiating �(ey) with respect to ey and equating it
to zero gives us the optimal forecast ey� and the respective value of the mini-
mum expected loss �(ey�). Thus, it follows that @�(ey)=@ey = 0 ) �1

ey�R
�1
g0(y �

ey�)f(y)dy = ��2
1R
ey�g

0(y � ey�)f(y)dy. Recall that (by A3) f�1; �2g > 0, and de-

note 1 �
ey�R
�1
g0(y � ey�)f(y)dy � 0, since f(y) � 0 for all y 2 R and, based on

assumptions A2-A3, g0(e) � 0 for all e � 0, which is equivalent to y 2 (�1; ey�].
In addition, denote 2 �

1R
ey�g

0(y � ey�)f(y)dy � 0, since f(y) � 0 for all y 2 R

and, also based on assumptions A2-A3, g0(e) � 0 for all e � 0, which is equivalent

to y 2 [ey�;1). Thus �11 = ��22 or �1(�1) = �22 � 0. (ii) If �1 > �2,

then, (�1) < 2. This way,
ey�R
�1

� g0(y � ey�)f(y)dy < 1R
ey�g

0(y � ey�)f(y)dy. Since
(by A3) g(e) is a symmetric function about e = 0, that is g(e) = g(�e), and its

�rst derivative g0(e) exists almost everywhere, then, it follows that g0(e) must be

an antisymmetric function about e = 0, or y = ey�, so that g0(e) = �g0(�e). One

can rewrite the previous inequality as
ey�R
�1
g1(y � ey�)f(y)dy <

1R
ey�g1(y � ey�)f(y)dy,

where g1(e) �

8<: �g0(e) ; e < 0

g0(e) ; e > 0
is a symmetric and non-negative function around

e = 0, or y = ey�, which implies (by using the symmetry of g1 and a mean value
theorem for integration) that

ey�R
�1
f(y)dy <

1R
ey�f(y)dy )

ey�R
�1
f(y)dy < 1 �

ey�R
�1
f(y)dy

since (by de�nition of a pdf) we have that
1R
�1
f(y)dy = 1. Thus,

ey�R
�1
f(y)dy < 0:5

)
ey�R
�1
f(y)dy = Ft;t�h(ey�) � � i < 0:5 ) efhi;t < Medt�h(yt).

(iii) If �1 < �2, then, based on a similar argument, it follows that efhi;t >
Medt�h(yt). (i) Now, it trivially follows that if �1 6= �2 then Ft;t�h(ey�) 6= 0:5.

(iv) Since �j1=�
j
2 < 1 ) efhj;t > Medt�h(yt). Since �1 (�1) = �22 � 0, and if
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�i1=�
i
2 < �j1=�

j
2, then, 

i
2= (�i1) < j2=

�
�j1

�
) �j1i2 < �i1

j
2 )

eyj�R
�1

� g0(y �

eyj�)f(y)dy1Reyi�g0(y � eyi�)f(y)dy <
eyi�R
�1
� g0(y � eyi�)f(y)dy1Reyj�g0(y � eyj�)f(y)dy. Thus,eyj�R

�1
g1(y� eyj�)f(y)dy1Reyi�g0(y� eyi�)f(y)dy <

eyi�R
�1
�g0(y� eyi�)f(y)dy1Reyj�g1(y� eyj�)f(y)dy

)
eyj�R
�1
g1(y�eyj�)f(y)dy1Reyi�g1(y�eyi�)f(y)dy <

eyi�R
�1
g1(y�eyi�)f(y)dy1Reyj�g1(y�eyj�)f(y)dy.

Since g1(ej) is a symmetric function about ej = 0, or y = eyj�, following proof in
(ii), it follows that

eyj�R
�1
f(y)dy

1R
eyi�g1(y � eyi�)f(y)dy <

eyi�R
�1
g1(y � eyi�)f(y)dy1Reyj�f(y)dy.

Now , since g1(ei) is a symmetric function about ei = 0, or y = eyi� it also fol-
lows that

eyj�R
�1
f(y)dy

1R
eyi�f(y)dy <

eyi�R
�1
f(y)dy

1R
eyj�f(y)dy )

eyj�R
�1
f(y)dy

 
1�

eyi�R
�1
f(y)dy

!
<

eyi�R
�1
f(y)dy

 
1�

eyj�R
�1
f(y)dy

!
)

eyj�R
�1
f(y)dy <

eyi�R
�1
f(y)dy ) Ft;t�h(eyj�) < Ft;t�h(eyi�)

) efhj;t < efhi;t and from (iii) efhj;t > Medt�h(yt) ) efhi;t > efhj;t > Medt�h(yt):

Proof of Corollary 2. Based on Proposition 1, we have the nice result that if

�1 > �2 then � i < 0:5, but if �1 < �2 then � i > 0:5. Since by de�nition we have

that � i � Ft;t�h( efhi;t), and from A4, Ft;t�h is a continuous function, it follows that

when �1 = �2 we must also have that � i = 0:5 ) efhi;t =Medt�h(yt):

Proof of Corollary 3. From Proposition 2, we have that (symmetric case)

� i = 0:5. In addition, if the conditional density function (pdf) of yt is a unimodal,

continuous and symmetric function about its conditional mean, then we also have

that the conditional mean of yt must coincide with the respective conditional median.

In other words, it follows that efhi;t = F�1yt (0:5 j Ft�h) =Medt�h(yt) = Et�h(yt).

Proof of Corollary 4. Part of this proof comes from Granger and Newbold (1986,

p.126). Firstly, note (from A3) that the lin-lin loss function can be represented by

L(e) = g(e)h(e), in which g(e) =

8<: �e ; e < 0

e ; e > 0
and g0(e) =

8<: �1 ; e < 0

1 ; e > 0
.

Thus, from the proof of Proposition 1, we have that 1 �
eyiR
�1
g0(y � eyi)f(y)dy =

�
eyiR
�1
f(y)dy = �Ft;t�h(eyi) = �� i ; and 2 �

1R
eyig

0(y � eyi)f(y)dy = 1R
eyif(y)dy =
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1�
eyiR
�1
f(y)dy = 1�Ft;t�h(eyi) = 1�� i. In addition, we also have that �11 = ��22

) ��1� i = ��2(1� � i) = ��2 + �2� i ) �2 = (�1 + �2)� i ) � i = �2=(�1 + �2).

Proof of Proposition 5. From Proposition 1, recall that under an asymmetric

loss function (�1 6= �2) it follows that the optimal forecast efhi;t is a conditional
quantile of yt other than the median, such that � i � Ft;t�h( efhi;t):
(ia) Gaussian distribution (�; �2): efhi;t = �t;t�h + �t;t�h�

�1(� i) = Et�h(yt) + khi ,

where khi = �t;t�h�
�1(� i): Notice that under symmetry (�1 = �2) it follows that

khi = �t;t�h�
�1(� i = 0:5) = 0:

(ib) Two-piece normal (�; �21; �
2
2): According to Julio (2007), the conditional

quantiles of a two-piece normal distribution, where � denotes Et�h(yt), are given by:

� �
p
2=�(�2 � �1) + �1�

�1( �
C
p
2��1

) where C =
q

2
�
(�1 + �2)

�1 for � � Pr[x �

� �
p
2=�(�2 � �1)] ; or equal to � �

p
2=�(�2 � �1) + �2�

�1( �+C
p
2��2�1

C
p
2��2

) for

� > Pr[x � ��
p
2=�(�2 � �1)]: In both cases, notice that efhi;t = Et�h(yt) + khi :

(ic) Logistic distribution (a; b): The conditional quantiles are given by a +

b ln
�

�
1��
�
, where a = Et�h(yt) ) efhi;t = Et�h(yt) + khi , where k

h
i = b ln

�
� i
1�� i

�
:

Notice that under symmetry (�1 = �2) of the loss function it follows that k
h
i =

b ln
�

0:5
1�0:5

�
= 0.

(iia) Log-normal (�; �2): The conditional quantiles are given by exp(�+���1(�)),

thus, efhi;t = exp(�t;t�h + �t;t�h�
�1(� i)), whereas Et�h(yt) = exp(�t;t�h + �2t;t�h=2).

Therefore, it follows that efhi;t = �hi Et�h(yt), where �
h
i = exp(�t;t�h�

�1(� i)��2t;t�h=2):

(iib) Weibull (b; k): The conditional quantiles are given by b [� ln(1� �)]1=k,

thus, efhi;t = b [� ln(1� � i)]
1=k, whereas Et�h(yt) = b�(1 + 1=k). Therefore, it follows

that efhi;t = �hi Et�h(yt), where �
h
i =

[� ln(1�� i)]1=k
�(1+1=k)

:

(iii) Beta (a = 1; b > 0): The conditional quantiles are given by 1 � (1 � �)1=b,

whereas Et�h(yt) = a
a+b

= 1
1+b
, then, efhi;t = khi + �

h
i Et�h(yt); where khi = �(1� � i)1=b

and �hi = 1 + b:

(iv) Beta (a > 0; b = 1): The conditional quantiles are given by � 1=a, then,

ln( efhi;t) = ln(�
1=a
i ) ) a = ln(� i)

ln( efhi;t) . Since Et�h(yt) = a
a+b

= a
a+1

=

ln(�i)

ln( efh
i;t
)

1+
ln(�i)

ln( efh
i;t
)

=

ln(� i)

ln(� i)+ln( efhi;t) ) ln( efhi;t) = ln(� i)
Et�h(yt)

� ln(� i) ) efhi;t = exp( ln(� i)
Et�h(yt)

) exp(� ln(� i)): There-

fore, efhi;t = �hi �(Et�h(yt)), in which �hi = exp(� ln(� i)) and � is the non-linear
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function �(Et�h(yt)) = exp( ln(� i)
Et�h(yt)

).

Proof of Proposition 6. Parts of this proof follow Granger (1969), Patton and

Timmermann (2007) and Gaglianone and Lima (2012). Recall that, without loss of

generality, we assumed that X 0
t;t�h = (1; xt;t�h) is a 2 � 1 vector and � = (�0; �1)

0

;  = (0; 1)
0. By homogeneity of the loss function and DGP (A5), the optimal

forecast can be represented in the following way:

efhi;t =
arg miney

Z
Li(y � ey)dFt;t�h(y)

arg miney
Z "

g

 
1

X 0
t;t�h

!#�1
Li

 
1

X 0
t;t�h

(y � ey)! dFt;t�h(y)
=

arg miney
Z �

g

�
1

(0 + 1xt;t�h)

���1
Li
�

1

(0 + 1xt;t�h)
(y � ey)� dFt;t�h(y)

=
arg miney

Z
Li
�

1

(0 + 1xt;t�h)
(y � ey)� dFt;t�h(y)

=
arg miney

Z
Li
�

1

(0 + 1xt;t�h)
(�0 + �1xt;t�h + 0�t + 1xt;t�h�t � ey)� dF�;h(�):

Now represent a forecast ey of yt made at period t�h by �0+�1xt;t�h+(0 + 1xt;t�h) e.
This way, the optimal forecast efhi;t is given by:
efhi;t = �0 + �1xt;t�h + (0 + 1xt;t�h) �

arg mine
Z
Li
�

1

(0 + 1xt;t�h)
(�0 + �1xt;t�h

+(0 + 1xt;t�h) �t � �0 � �1xt;t�h � (0 + 1xt;t�h) e))dF�;h(�)
= �0 + �1xt;t�h + (0 + 1xt;t�h) �

arg mine
Z
Li (�t � e) dF�;h(�)

= �0 + 0
i
h + �1xt;t�h + 1xt;t�h

i
h

= �0(� i) + �1(� i)xt;t�h where �0(� i) =
�
�0 + 0

i
h

�
and �1(� i) = (�1 + 1

i
h);

in which we have used the fact that F�;h(�) is time-invariant by de�nition, and

ih � arg mine R
Li (�t � e) dF�;h or, equivalently, ih = F�1�;h (� i) since efhi;t = F�1t;t�h(� i).

Therefore, the location-scale assumption for the DGP implies that the optimal fore-

cast can be viewed as a linear conditional quantile of yt, evaluated at the speci�c

percentile � i 2 [0; 1], so that efhi;t = �0(� i) + �1(� i)xt;t�h:

On the other hand, from Koenker (2005, p.302), we know that integrating a con-

ditional quantile function of yt over the entire domain � 2 [0; 1] yields the conditional

mean of yt. In other words, provided that yt is given by a location-scale model (A5),
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it follows that a conditional quantile of yt is given by F�1t;t�h(�) = �0(�)+�1(�)xt;t�h

, for some � 2 [0; 1] ) Et�h(yt) =
1R
0

F�1t;t�h(�)d� =
1R
0

(�0(�) + �1(�)xt;t�h) d� =

�0 + �1xt;t�h, where �j =
1R
0

�j(�)d� ; j = f0; 1g: Thus, Et�h(yt) = �0 + �1xt;t�h

) �1(� i)
�1

Et�h(yt) = �0
�1(� i)
�1

+ �1
�1(� i)
�1

xt;t�h ) �1(� i)
�1

Et�h(yt) +
�
�0(� i)� �0

�1
�1(� i)

�
=

�0
�1(� i)
�1

+ �1
�1(� i)
�1

xt;t�h

+
�
�0(� i)� �0

�1
�1(� i)

�
= �0(� i) + �1(� i)xt;t�h = efhi;t. Therefore, if one de�nes

khi �
�
�0(� i)� �0

�1
�1(� i)

�
and �hi �

�1(� i)
�1

it follows that efhi;t = khi + �hi Et�h(yt).

Notice that khi and �
h
i are functions of �0(�) and �1(�), which depend on the pa-

rameters � and  of the location-scale model and on ih, which is a constant that

depends only on the distribution F�;h (0; 1) and the loss function Li.

In the case of no scale e¤ects on the DGP, it follows that only the intercept

function �0(�) varies across the quantile levels � and, thus, it follows that �1(�) = �1

for all � 2 [0; 1] ) �hi = 1.

Proof of Proposition 7. (i) From Proposition 6, it follows that efhi;t = khi +

�hi Et�h(yt), where khi �
�
�0(� i)� �0

�1
�1(� i)

�
and �hi �

�1(� i)
�1

; �0(� i) = (�0 + 0
i
h);

�1(� i) = (�1 + 1
i
h); �j =

1R
0

�j(�)d� for j = f0; 1g. In addition, the location-scale

model implies that Et�h(yt) = �0 + �1xt;t�h. Notice that khi and �
h
i are functions of

�0(� i) and �1(� i), which (in turn) depend on the parameters � and  of the location-

scale model and on ih, which is a constant that only depends on the distribution

F�;h (0; 1) and on the loss Li.

Nonetheless, the optimal (feasible) forecast fhi;t of yt conditioned on the infor-

mation set available at period (t� h) is given by fhi;t =
bkhi + b�hi bEt�h(yt): If we

de�ne the error term "hi;t as the di¤erence between the optimal (feasible) forecast

and the optimal forecast, it follows that "hi;t � fhi;t � efhi;t = fhi;t � khi � �hi Et�h(yt) )
fhi;t = khi + �hi Et�h(yt) + "hi;t, where "

h
i;t 6= 0, provided that b�0(�) � �0(�) 6= 0 andb�1(�) � �1(�) 6= 0, for all � 2 [0; 1], due to parameter uncertainty, under a �nite

sample with T observations of fyt;xt;t�hgTt=1.

(ii) First de�ne b�(�) � [c�0(�);c�1(�)]. Koenker (2005, Theorem 4.1, p.120)

shows that the estimator b�n(�) = argmin
�2R2

Pn
t=1 �� (yt � �0 � �1xt;t�h), where ��
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is de�ned as in Koenker and Basset (1978) by �� (u) =

8<: �u; u � 0

(� � 1)u; u < 0
, is a

consistent estimator for �(�), in linear conditional quantile functions (under some

mild regularity conditions on xt;t�h), as long as n ! 1. This way, it follows thatb� = 1
K

PK
k=1 b�(� k)�� k p! � =

1R
0

�(�)d� , provided that b�(�) p! �(�). Therefore,

it also follows that bkhi � �b�0(� i)� c�0c�1 b�1(� i)� p! khi =
�
�0(� i)� �0

�1
�1(� i)

�
andb�hi � b�1(� i)c�1 p! �hi =

�1(� i)
�1

.

(iii) From item (ii), it follows that [bkhi ; b�hi ] p! [khi ; �
h
i ]. Thus, it follows thatcBh � 1

N

NX
i=1

bkhi p! Bh and b�h � 1
N

NX
i=1

b�hi p! �h. The location-scale model also

implies (see proof of Proposition 6) that Et�h(yt) = �0 + �1xt;t�h. If one de�nes

the sample analog bEt�h (yt) = c�0 +c�1xt;t�h, from consistency of [c�0(�);c�1(�)] and
provided that xt;t�h is covariance-stationary, it follows that bEt�h (yt) p! Et�h (yt) :

Now consider the (feasible) optimal forecast fhi;t � bkhi +b�hi bEt�h(yt): Taking the cross-
sectional average, it follows that 1

N

NX
i=1

fhi;t =
1
N

NX
i=1

�bkhi + b�hi bEt�h(yt)� = 1
N

NX
i=1

bkhi +
1
N

NX
i=1

�b�hi bEt�h(yt)� = cBh+c�hbEt�h (yt) ) 1
N

NX
i=1

fhi;t�cBhc�h = bEt�h (yt). Now, taking the
sequential limits on T and N , it follows that plim

(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc�h
!
= Et�h (yt).

Proof of Proposition 8. Let �rst T ! 1 to obtain plim
T!1

 
1
N

NX
i=1

fhi;t�cBhc�h
!
=

plim
T!1

0BBB@
1
N

NX
i=1

fhi;t�
1
N

NX
i=1

bkhi
1
N

NX
i=1

b�hi

1CCCA =

1
N

NX
i=1

fhi;t�
1
N

NX
i=1

khi

1
N

NX
i=1

�hi

= yt+ �
h
t +

1
N

NX
i=1

"hi;t

1
N

NX
i=1

�hi

; where the sec-

ond equality comes from A12 (consistency of GMM estimates, e.g. under Theorem

2.6 of Newey and McFadden, 1994). Now, letting N ! 1 we obtain (by A10 and

Lemma 1 of Issler and Lima, 2009) plim
N!1

 
1
N

NX
i=1

"hi;t

!
= 0 and (by A7, A10, A11)

that plim
N!1

0BBB@
1
N

NX
i=1

"hi;t

1
N

NX
i=1

�hi

1CCCA = 0 ) plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc�h
!
= yt + �ht = Et�h(yt)
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A.2 Parameter uncertainty: Some examples

Example 1 Suppose that: (i) DGP is given by
�
ytjt�h

�
� N(�; �2); (ii) Loss

function of individual i is the MSE function; (iii) Individual i (correctly) assumes that

the DGP is given by a Gaussian distribution, however, due to �nite sample, estimates the

parameters (b�; b�2). In this case, from (i) and (ii), the optimal forecast (Granger, 1969)

is efhi;t = Et�h(yt) = �: However, the best that individual i can do is to approximate the

"optimal forecast" by using (ii) and (iii), so that fhi;t = bEt�h(yt) = b�. Thus, the optimal
forecast "approximation error" is given by "hi;t � fhi;t � efhi;t = b� � �. Provided that b� is
consistently estimated, it follows that plim

T!1

�
"hi;t
�
= 0.

Example 2 Suppose that: (i) DGP is given by
�
ytjt�h

�
� N(�; �2); (ii) Loss

function of individual i is the Lin-Lin asymmetric function of Corollary 4; (iii) Individual

i (correctly) assumes that the DGP is given by a Gaussian distribution, however, due to

�nite sample, estimates the parameters (b�; b�2). In this case, from (i) and (ii), the optimal
forecast (see Proposition 5 and Corollary 4) is efhi;t = khi +Et�h(yt), where k

h
i = ���1(� i)

and � i = �2=(�1 + �2): However, individual i approximates the "optimal forecast" by

using (ii) and (iii), so that fhi;t = b�+b���1(� i). Thus, the optimal forecast "approximation
error" is given by "hi;t � fhi;t � efhi;t = (b�� �) + (b� � �) ��1(� i). Provided that (b�; b�2)
are consistently estimated, it follows that plim

T!1

�
"hi;t
�
= 0.

Example 3 Suppose that: (i) DGP is given by
�
ytjt�h

�
� Weibull(b; k); (ii) Loss

function of individual i is the Lin-Lin asymmetric function of Corollary 4; (iii) Individual

i (wrongly) assumes that the DGP is given by a Gaussian distribution, and estimate

the parameters (b�; b�2). In this case, from (i) and (ii), the optimal forecast (see proof

of Proposition 5) is efhi;t = b [� ln(1� � i)]
1=k, where � i = �2=(�1 + �2). However,

individual i try to approximate the "optimal forecast" by using (ii) and (iii), so that fhi;t =b�+b���1(� i): This way, "hi;t � fhi;t� efhi;t = b�+b���1(� i)�b [� ln(1� �2=(�1 + �2))]
1=k

and, thus, plim
T!1

�
"hi;t
�
6= 0:
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A.3 Results of BCAF: plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t � cBh
!
= Et�h (yt)

Figure 1 - CPI in�ation rate in Brazil (yt)
Monthly and twelve-month accumulated rates (%)

Figure 2 - In�ation rate (yt) and survey-based forecasts (fhi;t)
for selected horizons (in days)

Note: The black line shows the monthly in�ation rate. The red line represents the average forecast and the blue line

shows the BCAF forecast. Gray lines show the forecasts fhi;t of survey participant i for yt made at period t� h:
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Figure 3 - Number of agents (N) for each forecast horizon (h)

Table 1: Average Bias - BCAF (Issler and Lima, 2009)

Forecast Horizon h
(in months)

Average Bias cBh H0 : B
h = 0

p-value
1 �0:0188 0:293
2 �0:0259 0:255
3 �0:0261 0:270
6 �0:0324 0:198
9 �0:0568 0:004
12 �0:0715 0:000

Table 2: MSE comparison

Forecast Horizon h (a) MSE (b) MSE (a)/(b)
(in months) Average BCAF

Forecast
1 0:0177 0:0166 1:06
2 0:0248 0:0234 1:06
3 0:0267 0:0254 1:05
6 0:0312 0:0294 1:06
9 0:0328 0:0293 1:12
12 0:0357 0:0309 1:16
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Figure 4 - Forecast Error Term-Structure (cBh)

Figure 5 - Mean Squared Error (MSE)

Note: Max and Min denote the maximum and minimum MSEs, for each horizon,

across all forecasters. Average refers to the MSE of the average forecast.

Figure 6 - Relative MSE
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Figure 7 - Hypothesis test of null-bias (Ho : Bh = 0); p-values of a t-ratio test

Note: Red line shows a p-value of 0.05.

A.4 Extended BCAF: plim
(T;N!1)seq

 
1
N

NX
i=1

fhi;t�cBhc
�h

!
= Et�h (yt)

Table 3 - Estimation results

^ ^ ^ ^
horizon
(days)

B (h) beta (h) Wald test
(pvalue)

B (h) beta (h) Wald test
(pvalue)

10 0.0053 0.9673 2.4E92 0.0036 0.9638 1.1E13
(0.0003) (0.0063) (0.0009) (0.0276)

20 0.0098 0.9308 5.7E124 0.0071 0.9312 3.0E12
(0.0005) (0.0074) (0.0016) (0.0399)

30 0.0147 0.8858 5.9E233 0.0118 0.8929 7.5E16
(0.0006) (0.0086) (0.0026) (0.0481)

60 0.0205 0.8620 4.1E149 0.0173 0.8541 9.6E11
(0.0009) (0.0147) (0.0033) (0.0583)

90 0.0223 0.8500 1.1E226 0.0180 0.8647 1.8E12
(0.0009) (0.0169) (0.003) (0.0763)

180 0.0217 0.8669 8.1E188 0.0176 0.8486 2.8E11
(0.0009) (0.0211) (0.003) (0.0884)

360 0.0236 0.7965 4.7E112 0.0199 0.8275 2.9E15
(0.0013) (0.0162) (0.0025) (0.088)

Model 1: Disaggregated Forecasts Model 2: Aggregated Forecasts

Note: Standard deviation in parentheses. Wald test refers to Ho: [B(h);beta(h)] = [0;1].

Figure 8 - GMM overidenti�cation restrictions; TJ test (p-values)

Note: Red line shows a p-value of 0.05.
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Figure 9 - Coe¢ cient cBh and 95% con�dence interval

Figure 10 - Coe¢ cient c�h and 95% con�dence interval

Figure 11 - MSE comparison

Note: Max and Min denote the maximum and minimum MSEs, for each horizon,

across all forecasters. Average refers to the MSE of the average forecast.
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Figure 12 - MSE ratio comparison

Figure 13 - Clark and West (2007) test (p-values)
Ho: equal predictive accuracy

Note: Red line shows a p-value of 0.10.

Figure 14 - Aggregate shock b�ht for selected horizons (in months)
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ETA_H9 ETA_H12
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Table 4: Optimality test: �ht follows a MA of order (at most) h� 1

Based on the regression: �ht = a+ �ht +

q+hX
j=1

bj�
h
t�j

Forecast Horizon h
(in months)

H0 : a = bj = 0; for all j � h
(p-value)

q = 2 q = 3
1 0:003 0:000
2 0:534 0:559
3 0:828 0:612
6 0:392 0:049
9 0:011 0:007
12 0:024 0:412

A.5 Aggregate Forecasts and Bias-Correction (NLS x GMM)

Table 5 - Estimation comparison

^ ^ ^ ^
horizon
(days)

B (h) beta (h) B (h) beta (h)

10 0.0547 0.8372 0.0036 0.9638
(0.0185) (0.0429) (0.0009) (0.0276)

20 0.0919 0.7376 0.0071 0.9312
(0.0268) (0.0635) (0.0016) (0.0399)

30 0.0746 0.7536 0.0118 0.8929
(0.0441) (0.1078) (0.0026) (0.0481)

60 0.0250 0.9880 0.0173 0.8541
(0.1105) (0.2837) (0.0033) (0.0583)

90 0.0392 1.0306 0.0180 0.8647
(0.1369) (0.3542) (0.003) (0.0763)

180 0.0672 1.0834 0.0176 0.8486
(0.2045) (0.5238) (0.003) (0.0884)

360 0.3765 1.7374 0.0199 0.8275
(0.6405) (1.5355) (0.0025) (0.088)

Nonlinear Least Squares GMM estimation

Note: Standard deviation in parentheses. NLS coe¢ cients from regression yt = �Bh=�h+fht =�
h + �ht ;

where fht denotes the average forecast. GMM estimation based on Model 2.

Figure 15 - Nonlinear Least Squares (NLS) - Hypothesis test of null-bias (p-value)
Ho : (Bh = 0; �h = 1)

Note: Red line shows a p-value of 0.05.
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Figure 16 - MSE ratio comparison

Figure 17 - MSE ratio comparison (cont.)

Figure 18 - Clark and West (2007) test (p-values)
Ho: equal predictive accuracy

Note: Red line shows a p-value of 0.10.
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