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Behavioral Models of the Foreign Exchange Market: 

is there any empirical content? 

João Barata R. B. Barroso
*
 

Abstract 

The Working Papers should not be reported as representing the views of the Banco Central 

do Brasil. The views expressed in the papers are those of the author(s) and do not 

necessarily reflect those of the Banco Central do Brasil. 

Behavioral models of the foreign exchange market explore the bias of 

economic agents towards forecasting rules with good recent performance. 

We propose an empirical framework to study such models without imposing 

restrictions on the set of forecasting rules or performance metrics. In 

particular, we propose a significance test for the constraints imposed by 

behavioral models relative to a very general non parametric alternative 

based on neural networks. We apply the framework to a unique dataset for 

the Brazilian foreign exchange market with full records of net order flow 

intermediated by the financial system, therefore connecting behavioral 

models to market microstructure models. The results support tightening 

constraints by 96% in the direction of behavioral models and this result is 

robust to assumptions regarding private order flow information.  

Keywords: exchange rate dynamics, behavioral finance, neural network, 

order flow, market micro structure. 

JEL Classification: F31, G02, C45, C58 

* 
Research Department, Central Bank of Brazil. E-mail: joao.barroso@bcb.gov.br. 
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1. Introduction 

 

Behavioral models of the foreign exchange market explore the bias of economic 

agents towards forecasting rules with good recent performance. This feature tends to 

generate complex dynamics in the population of active forecasting rules and disconnect 

from fundamentals in exchange rate behavior (Brock and Hommes (1997), De Grauwe 

and Grimaldi (2006a, 2006b)). Therefore, it is an interesting class of models with the 

potential to capture important features of foreign exchange markets. 

Empirical specifications of such models have to incorporate both forecast 

heterogeneity and the associated population dynamics. The usual approach is to start 

from a set forecasting rules, generally based on the concept of chartists and 

fundamentalists, following the survey evidence of forecast heterogeneity (e.g. Froot 

(1990), Cheung and Chinn (2001), Ellen et.al (2013)). The forecasting rules are then 

estimated by first stage regressions and the population dynamics on a second stage 

based on some performance metric for the forecasting rules (e.g. De Grauwe and 

Grimaldi (2006a), Manan and Werterholff (2007), Reiner (2009), Jong et. al, (2013) and 

Ellen et.al (2013).  

In this paper we propose a much less restricted approach. It works without 

imposing any significant restrictions on the set of forecasting rules or performance 

metrics. The population dynamics is estimated in a single step together with the set of 

forecasting rules. The estimator is computationally efficient and designed to capture 

robust nonlinear features in the data generating process. Moreover, we propose a 

significance test for the constraints imposed by behavioral models relative to a very 

general non parametric alternative. The null hypothesis is not contaminated by untested 

assumptions based on survey evidence and intuitive definitions of forecasting rules and 

performance metrics. In summary, we are able to investigate the empirical content of 

behavioral models in a very general and flexible framework. 

We implement our nonparametric methodology for a unique dataset with order 

flow information. Therefore, we are able to connect with the important microstructure 

approach to foreign exchange markets (e.g. Evans and Lyons (2002), Vitale (2007)), but 

from a behavioral perspective that has not been explored in that literature. Relative to 

the empirical behavioral model literature, we also contribute by incorporating into the 

data a major close determinant of foreign exchange rate dynamics, the exclusion of 
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which may bias any inference on the empirical content of behavioral features. The 

dataset refers to the Brazilian foreign exchange market and order flow information, due 

to regulatory requirements, covers all spot transactions. We show the dataset supports 

strong behavioral constraints on the data generating process. We also show the 

conclusions from significance tests of behavioral constraints are robust to alternative 

assumptions for the relation between aggregate order flow and private information. 

Both empirical results are important and showcase the relevance of our methodology. 

The methodology is based on a nonparametric framework defined in terms of 

neural networks, a rich class of adaptive learning models. The main intuition from the 

paper is the formal similarities between behavioral models and neural network models. 

The central idea is to start from a very weak concept of behavioral models which is 

actually equivalent to neural networks and increasingly impose constraints on top of this 

concept. This allows us to explore classic nonparametric approximation results from 

neural networks and implement nonparametric testing procedures. 

First, we show behavioral models, in a weak sense, approximate any data 

generating process, a corollary of White (1990). Second, we show that constrained 

models also approximate the process, but up to a neighborhood the size of which we 

estimate from the data. Third, we propose a significance test of the constraints based on 

a nonparametric wild bootstrap procedure (Kreiss, Neumann and Yao (2008)). Fourth, 

we consider a grid of increasingly tighter constraints and formulate a joint test 

controlling for false discovery rate (Benjamini and Hochberg (1995)).   Finally, we 

propose a computationally efficient estimator for behavioral models which requires at 

most least squares optimization with a quadratic constraint. This estimator is based on 

the algorithm proposed by White (2006) and is designed to capture the most 

nonlinearity while also controlling for over-fitting. The computational efficiency 

estimation allows one to implement the testing procedure in a feasible timeframe.  

The paper is structured as follows. In the following section we explore the 

approximation properties of behavioral models. The third section proposes a test for the 

behavioral constraints.  In the fourth section we propose computationally efficient 

single step estimators for behavioral models. The next section presents the results of 

applying our methodology to Brazilian foreign exchange data. We summarize the 

results in the final section.   
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2. Approximation properties of behavioral models 

 

A behavioral model for the foreign exchange market is 

 

   ∑         
 

    
(1) 

 

where        (  |  ) is the forecast error,    is the current period exchange rate, 

measured as deviation from fundamental or in first difference;    are exchange rate 

covariates;         (  ) is the forecast type   at period   for next period exchange rate; 

and      is the measure of type   forecasters which follows a multinomial logit:  

 

     
      

∑       
 

 
(2) 

 

with     the sensitivity to past performance of forecasting rules and        (  ) the 

realized profit from having used the forecasting rule of type   in the previous period. 

Regarding the set of conditioning variables   , it may include lags of the exchange rate 

itself and current values and lags of variables that forecast the exchange rate and are 

available to the agents at the time of the forecast. Notice this is a behavioral model in a 

weak sense, because there are no reasonable restrictions on profit function and 

forecasting rules suggested by economic theory. We address this as follows. 

A reasonable behavioral model is such that (i) the forecast are related to the 

realized profit by the functional relation        (    )   (      ) with    and     

the sign, the identity or other simple function, (ii) the forecasts are sensible in the sense 

that              ( (  )      )
  for   in a set which may not include  (  |  ). 

Without loss of generality, we consider reasonable behavioral models such that  

 

     (    )
        (3) 

 

The constraint on the realized profit function that characterizes reasonable 

behavioral model is consistent with most of the literature, e.g. De Grauwe and Grimaldi 

(2006b) for a book length treatment. It measures if the forecast captures the correct sign, 

and the size of any economic gains, which are proportional to the actual forecast. The 
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multinomial logit specification was originally proposed by Brock and Hommes (1997) 

in connection to a discrete rational choice between competing forecasting rules and the 

resulting complex system behavior. The requirement that forecasts are sensible is not 

emphasized, but has been the rule in empirical work, where first stage regressions 

implement sensible forecasting rules in restricted parametric sets. Except for the 

forecast dynamics, the model is classical, with optimal decision and market clearing. 

 

Intuition 

Our results follow from a somewhat trivial observation: single hidden layer 

neural networks may be written as a behavioral model, and vice versa. Consider the 

following neural network model       ∑    
           . We actually have to 

consider a threshold exponential, but let’s focus on the exponential for the intuition. 

Dividing and multiplying the right hand side by ∑    
   

  we have a behavioral model 

with     arbitrary,        
      and        ∑    

   
    . Of course, nothing 

guarantees      and      are related as required in a reasonable behavioral model, or that 

     is a sensible forecast for that matter. Our estimation and testing procedure will try to 

make the neural network as close as possible to a reasonable model. 

Notice that forecasts belong to a restricted set of neural networks and therefore 

cannot perform as well as the conditional expectation, since it is unrestricted. The 

approximation of the profit function by a linear function may be rather poor as well. 

Yet, the same argument above would apply to a two hidden layers neural network 

   ∑    (     ∑                  )           . In this case, the forecasts would be 

restricted two hidden layers networks   ∑    (      ∑                    )           

and the realized profits one hidden layer networks (     ∑                  )  . 

Therefore, by increasing the number of layers, we allow for more flexibility in each of 

the components associated with the behavioral interpretation of the model. But we still 

have no guarantee the model is reasonable. 

White (1990) shows that if we let network complexity (the integer   defining the 

number of hidden units) and coverage (norm of the    and   ) grow at a well calibrated 

deterministic rate then the least squares estimator of the neural network converges in 

probability to the true conditional expectation. Since each neural network corresponds 
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to a behavioral model, the same result applies. White (1990) also shows that if there is 

an error in obtaining the least squares estimator which is persistent even asymptotically, 

than the estimated neural network will be within a neighborhood of the true model. We 

show bellow that a restricted least squares estimator which imposes reasonable 

constraints, to the extent that it imposes an error from the point of view of the 

unrestricted problem, also defines a neighborhood of approximation. 

 

Results 

Assume (     ) is a strictly stationary mixing process in the bounded spaces 

    of dimensions   and   respectively. The mixing condition can be either   or   

mixing with geometric rate (e.g., White (1990); see also Lindner (2009) for the case of 

conditional heteroscedasticity). Let   be the set of measurable functions       

bounded in the norm ∫  ( )  (  ), with    the measure defined over  , and let   be the 

distance function with this norm. Suppose there is a unique       such that 

 (  |  )    (  ). Let    (   )    when 

 

 ( )     ∑    ( (   )     )  

      

     ∑|  |

 

   

   ∑∑|   |

 

   

 

   

    (4) 

 

For any given    (   ),  
 

 ( )  ∑
    ( )

∑     ( )
      

  ( )

      

 

  ( )  ( ((   )     )(   )
     ((   )     ) )    

  ( )    ∑    ( (   )      )
 

    

 

(5) 

 

define the associated behavioral model (       ) for some      . The parameter   

measures the sensitivity of agents to past profit when setting their forecasts. The 

parameter   introduces an upper bound on the flexible function used to model the 

forecasting rules, which is a necessary feature to obtain our approximation results. Later 

in the paper we show how to estimate the parameter  , but the parameter   is calibrated 

to ensure a good range of positive and negative values for the profit function.  
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Consider the unconstrained estimator 

 

 ̂ (   )        
   (   )

  
 

 
∑ (    (  ))

 

      

 

 

(6) 

 

According to Theorem 2.2 in White (1990), if we allow    and    to grow at a well 

calibrated deterministic rate in relation to the sample size, then  ( ̂ (     )   )
 
  .  

This is true, in particular, if           when T  , such that     (    ) and 

    (  ),      . In words, the least squares estimator consistently estimates the 

conditional expectation function. The least square estimator has associated parameter 

estimators  ̂(   ) and   ̂(   ). From definitions in the previous paragraph, it also has 

an associated behavioral model estimator ( ̂   ̂   ̂     )(   ) for an arbitrary 

     . Therefore, we can restate White theorem in terms of behavioral models: 

 

Proposition 1 [White (1990), Theorem 2.2]: If    and    grow at a well calibrated 

deterministic rates in relation to the sample size, then the sequence of associated 

behavioral models ( ̂   ̂   ̂     )(     )  is such that  ( ̂ (     )   )
 
  . 

 

Remark 1. The proposition is a direct consequence of the stated theorem once we show 

that the threshold exponential  ( )      (   ( )      ( )) is a bounded squashing 

function that satisfies a Lipchitz condition. A squashing function is monotonic function 

from the real numbers to [0,1] with finite limits at minus and plus infinity, and this is 

evident in the threshold exponential. The exponential function is also known to respect 

a Lipchitz condition in intervals, and the threshold guarantees the condition generally. 

Now consider the following constrained estimator 

 

 ̃ (     )        
   (   )    

  
 

 
∑ ( ̂ (  )   (  ))

 

      

       

 

   
∑ [(  (  )  (    )

   (    ))
 

 (     (    ))
 

]

             

    

(7) 

 

The idea here is to estimate an approximately reasonable behavioral model, using the 

sum of squared deviation of the exact conditions defining a reasonable model. As we 
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decrease   we impose tighter constraints. From the perspective of the unconstrained 

estimator, the constrained estimator includes an error, the average size of which is 

  

 

  ( )    
 

 
∑ ( ̂ (  )   ̃ (  ))

 

      

 
(8) 

 

The error is bounded above by    ∑  ̂ (  )
 

       and bellow by zero. We may choose 

the sequences    and    so that    ( ) has a limit. Unless the true model satisfies the 

constraint, we have      ( )   ( )   .  By an immediate application of a theorem 

in White (1990) we have the following result: 

 

Proposition 2 [White (1990), Theorem 3.5]: If   ̂  is a consistent estimator, then  ̃ ( ) 

will be within neighborhood of size  ( ) of the true conditional expectation, using the 

distance metric   defined before. 

 

Remark 2. The proposition is a direct consequence of the stated theorem, since the 

sequence   ( ) built in the previous paragraph satisfies the necessary assumptions 

(Assumption B.4 in White (1990)). 

 

 

For a sufficiently large sample,   ( ) estimates the size of the neighborhood. 

Since   ( ) increases for tighter constraints, they are associated with less reasonable 

models. The important empirical question is: how far should we go in the direction of 

reasonable models? We propose to select the most reasonable model compatible with 

the data. Therefore we must have a procedure to test the constraint, which is the subject 

of the next section. 

It is important to observe that the behavioral model associated with a neural 

network imposes strong functional form restrictions. As argued in the Appendix, we 

may extend our results to neural networks with more than one hidden layer, therefore 

increasing the flexibility of these functions.  But it is clear we cannot rule out that still 

more flexible functional forms would provide better approximating properties
1
. 

                                                 
1
 For example, if forecasts are single layer neural networks and profits are reasonable, the conditional 

expectation is a two layer network with time varying coefficients, which appears very flexible but has 

unknown approximation properties. 
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Also notice we may impose stronger constraints. For instance, if    

(                 ), we may consider restricted forecasts conditional on (       ), and 

lagged restricted forecasts on (         ). This would give the unrestricted model a 

better chance of approximating the restricted model as far as the information structure is 

concerned. Allowing more network complexity in the constrained estimator may have 

the same effect. It is also possible to introduce several constraints instead of an average 

of the reasonable constraints. This would likely result in less reasonable models and 

wider neighborhoods. The constraints might also receive different weights if the 

researcher believes some properties defining reasonable models to be more important 

than others for theoretical or empirical reasons. 

 

3. Testing reasonable constraints 

 

In this section we propose a test for the null hypothesis that the conditional 

expectation respects reasonable constraints, that is   ( )  ( )   , against the 

alternative   ( )  ( )   . Following Kreiss, Neumann and Yao (2008), we consider 

the   -distance between the unconstrained and constrained estimator. That is, the 

distance   ( ) defined in equation (8) above is the proposed test statistic. We consider 

the following nonparametric wild bootstrap algorithm to evaluate the p-value: 

 

1. Generate the wild bootstrap residuals {  
 }   

  from   
    ̂  , where    is a 

sequence of i.i.d. random variables with zero mean and unit variance, 

  ̂        ̂ (  )   and such that   
     ̃ (  )    

   

2. Calculate the bootstrap test statistic   
 ( ) on the sample {  

    }   
   

3. Reject the null hypothesis   ( ) if   ( ) is greater than the upper-  point of 

the conditional distribution of   
 ( ) given {     }   

   

 

Note that the bootstrap algorithm uses the residuals from the unconstrained 

nonparametric fit. This is in accordance with Hall and Wilson (1991), since it results in 

consistent estimates of residuals under both the null and the alternative hypothesis. Also 

note that the wild bootstrap is able to account for dependency and conditional 

heteroscedasticity common in exchange rate data. 
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To investigate how far should we go in the direction of reasonable models, we 

consider multiple tests over a grid {  }   
  indexing different null hypothesis. For 

example,             with    of the constraint evaluated at the unconstrained 

estimator. To control for false discoveries rates, we propose to use the Benjamini and 

Hochberg (1995) testing procedure at level  . That is, let  ( )   ( )      ( ) be the 

ordered p-values. Find the highest    such that  (  )       , and reject the null for all 

the ranks     . 

 

4. Estimation of behavioral models  

 

As mentioned in the introduction, estimation behavioral models has been usually 

performed in two stages,  first estimating reasonable forecasting rules and then 

substituting into the full model for non linear estimation. Our proposed estimator 

proceeds in a single step by imposing approximately reasonable constraints. The 

estimator also avoids the severe numerical problems associated with least squares 

optimization of neural networks by relying on an approximate optimization, as 

described in this section. 

The unconstrained neural network and the associated behavioral model may be 

estimated by the approximate optimization algorithm proposed by White (2006). The 

algorithm proceeds from specific to general as follows: (i) start from a random sample 

of hidden units (  ) in a bounded support; (ii) include hidden units one at a time so as 

to minimize the chance of rejection in a misspecification test based on neglected non 

linearity (Bierens (1990), Stinchcombe and White (1998)); (iii) for each additional unit, 

set the  s coefficients by least squares; (iv) select the final number of hidden units 

based on the minimum cross validated mean squared error in a “hv-block” design 

(Racine (2000)). The algorithm maximizes the chance of capturing relevant non linear 

effects but also minimizes the chance of over-fitting. Notice that the data driven cross-

validation procedure also provides consistent approximation of bounded continuous 

functions (White (1990), Theorem 3.4), and is therefore equivalent to the deterministic 

setting of network complexity growth rates. 

To estimate the constrained behavioral model we first define the optimization 

over the   and   coefficients. It is convenient to adopt a matrix notation. Let 
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  (   (  )    (  )) 

   (               )                                           

   (          )                                         

where   is either the unity column vector or the matrix of stacked    in case there are 

common linear terms in the forecasts (see Section 5), n is the number of columns in  ,    

is the vector of stacked   ,   is the lag operator,    (            )
 
,      (    )

   , 

  ∑  (  ) , and   is defined in Remark 1. Then the constrained optimization over   

and   for a given network structure and hidden units is equivalent to the following 

penalized unconstrained optimization, as long as   is set appropriately: 

   
 

( ̂    )     ∑ [(      )
 
 (     )

 
]

 
 

with N the number of items in the sum so as to express it as an average,  ̂ the 

unconstrained fit,    ( (      )      (      ) )     ̅    the vector with the 

evaluated profits. The first order condition for   and is   are, respectively, 

   ̌     ∑ [  
  ̅       

  ]
 

 (       ∑ [  
      

   ]
 

)   

and 

 

 
 

∑  ̅ 
    

∑  ̅ 
  ̅  

   

Substituting the second on the first, we have 

   ̌     ∑   
  

 
 (       ∑ [  

      
   ]

 
    

[∑  ̅ 
    ]

 

∑  ̅ 
  ̅  

)  

such that we may obtain the solution for   when the right hand side matrix inside the 

parenthesis is invertible. The solution for   is then easy to obtain - it will be positive for 

proper values of the parameter   defining the range of the profit function. 

With this definition, a simple estimator for the constrained behavioral model is 

to proceed as in the unconstrained case, but with the following additional step: (v) 

perform constrained or penalized optimization over   and  . One may also consider 

searching over the sample of    for further gains, but we do not recommend it since 
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hidden unit loadings are rough approximations anyway. By fixing network complexity 

and hidden units loadings we focus the comparison on the constraints.  

Although we could have used nonlinear least squares on the full set of 

parameters of the sieve, such an optimization is computationally hard and the fit of the 

candidate solution obtained by such method is often worse than the approximate 

solution of the method proposed here (see White (2006) for Monte Carlo experiments). 

The algorithm proposed here could be used as a generator of starting values for 

optimization on the full parameter space, since this is the major difficulty for this class 

of objective functions. In the context of testing for reasonable models and the large 

bootstrap experiments necessary to implement it, this additional step would probably be 

too costly to be feasible. Moreover, notice that the consistency results from Section 2 

would still be valid under approximate optimization, although the neighborhood around 

the true model should be extended by the size of the optimization errors. To the extent 

that such errors are of similar magnitudes in constrained and unconstrained estimation 

the distance  ( ) in Proposition 2 can be interpreted as the increase in the size of the 

neighborhood of approximation implied by optimization errors. 

 

5. Application: Brazilian foreign exchange market and net order flow 

 

Our database begins in January 2002 and ends in November 2012. The series are 

sampled at a daily frequency. The order flow variable is from the Central Bank of Brazil 

electronic records of private spot transactions intermediated by financial institutions and 

covers the entire spot foreign exchange market. The set of conditioning variables is 

taken from the empirical literature of the BRL/USD market (e.g. Kolsheen (2013) and 

Barroso (2014)), and includes the CRB commodity price index, the VIX implicit 

volatility index, the DOL dollar index and the EMBI spread. Except for order flow, all 

the variables are measured in first difference. 

Due to regulatory constraints, the set of intermediaries allowed to participate in 

the spot market is very restricted and includes only major financial institutions. 

Information assumptions are therefore particularly important. Each institution collects 

partial information on their clients order flow. However, from this and other partial 

information they may infer, to some degree of accuracy, the aggregate net order flow in 
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the market. For this reason, it is not straight forward how to incorporate aggregate order 

flow in the model. Our baseline specification includes net order flow as a linear term. 

The extended specification includes it into the non linear approximation which is 

supposed to capture expectation formation dynamics. This captures two limiting 

assumptions of no information and full information of aggregate order flow. As for the 

timing of covariates, market participants usually have early information of international 

exogenous variables from other markets, so we include them contemporaneously. 

For our application, instead of a scalar    as in (4)-(5), we substitute it by       

in the formulas, with vector    and a constant included in   . Accordingly, we write 

     in place of (   )   . This does not influence at all the approximation theorems, but 

avoids the cumbersome approximation of a linear part by a complex network. It does 

imply forecasts have a common linear term, and therefore puts all the weight of 

disagreement on the flexible nonlinear part of the expectation formation process. 

To implement the computationally efficient estimators of Section 4, we fix 

   , and sample 2000 vectors of    from the uniform distribution on (-1,1), except 

for the constant, which we sample from (1,2) to ensure a good range for the profit 

function
2
. The interval seems appropriate given the sample of 2480 daily observations 

and the scale of the variables. Following recommendations in Racine (2000), the hv-

block cross validation uses      and      . For simplicity, the specification 

selected for the unconstrained case is the same for all in sample and bootstrap 

estimators. By fixing network complexity we focus the comparison on the constraints.  

Baseline model. The baseline model excludes order flow from the nonlinear 

term. The best cross validation performance in the unconstrained case is obtained with 

network complexity     . That is, there are 30 types of forecasting rules in use by 

economic agents. The results are summarized in Table 1. To investigate how far should 

we go in the direction of reasonable models, we consider multiple tests over a grid of 

null hypothesis. Each null is defined by the   defining the constraint in (7) and we 

report this as a percentage of the constraint evaluated at the unconstrained estimation. 

The test statistic is the L2 distance between the estimators defined in (8). The bootstrap 

p-values were obtained by the procedure described in Section 3. Boldface p-values are 

significant at 5% controlling for false discovery rate as described in Section 3. 

                                                 
2
 We experimented with several intervals and values for phi. The final choice was selected by comparing 

the performance, given we select the number of hidden units for each alternative by cross validation. 
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According to the results reported in Table 1, the constraints can be tightened at most by 

95.7% in the direction of reasonable models. The value of the constraint evaluated at the 

unconstrained estimator is a first estimate of how far the data is from a reasonable 

model.  That we can tighten this by 95.7% without compromising the fit of the model is 

an economically significant result. 

 

 

 

Extended model. The extended model has order flow in both linear and non 

linear terms, so as to capture possible knowledge of aggregate order flow in the 

expectation formation process. The best cross validation performance in the 

unconstrained case is obtained with network complexity of     . That is, there are 17 

types of forecasting rules used by economic agents. The results are summarized in Table 

2. As before, boldface p-values are significant at 5% controlling for false discovery rate 

as described in Section 3. According to the results, the constraints can be tightened at 

most by 95.6% in the direction of reasonable models, which is close to the baseline. 

 

 

Table 1. Testing reasonable behavioral constraints: baseline/1

Covariates: CRB, DOL, VIX, EMBI, OFLOW

100-delta /2 21.76 79.89 87.26 95.24 95.69 99.91

test statistic /3 0.004 0.008 0.010 0.020 0.022 0.123

p-value /4
0.822 0.480 0.392 0.124 0.066 0.006

Notes:

/1 Excludes order flow inside hidden units; 30  hidden units selected by cross validation.

/2 Delta measured as % of the constraint evaluated at unconstrained estimator

/3 Defined as the L2 distance between unconstrained and constrained estimator

/4 Bold if rejects constrained model at 5% controlling for false discovery rate

Table 2. Testing reasonable behavioral constraints: extended/1

Covariates: CRB, DOL, VIX, EMBI, OFLOW

100-delta /2 30.89 43.92 74.66 83.97 95.61 96.33

test statistic /3 0.004 0.005 0.010 0.017 0.041 0.079

p-value /4
0.281 0.435 0.588 0.270 0.098 0.002

Notes:

/1 Includes order flow inside hidden units; 17 hidden units selected by cross validation.

/2 Delta measured as % of the constraint evaluated at unconstrained estimator

/3 Defined as the L2 distance between unconstrained and constrained estimator

/4 Bold if rejects constrained model at 5% controlling for false discovery rate
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When testing for reasonable constraints, we rely on the approximation properties 

of the individual components in the associated behavioral model, that is, on the 

approximation properties of profit and forecasting functions. Our framework allows for 

more flexibility in such components by increasing the number of hidden units. There are 

other alternatives, such as allowing for some time variation in the coefficients in the 

neural network. In any case, our empirical application did not explore more flexibility in 

the representation of forecasts and profit functions beyond the level afforded by single 

layer networks. In this sense, our results provide only a lower bound on how far we may 

go in the direction of reasonable models in this particular foreign exchange market. 

 

6. Conclusion 

 

We devise approximation, estimation and testing results for behavioral models 

without restricting the set of forecasting rules beyond some very weak reasonable 

constraints. This is made possible by the analogy between behavioral models and neural 

networks, with some adaptation to incorporate reasonable properties of the forecasting 

rules and performance evaluation metrics used by economic agents. In this context, the 

important empirical question is: how far should we go in the direction of reasonable 

models? We propose to select the most reasonable model compatible with the data by 

multiple tests over a grid of such reasonable models. To implement such testing 

procedure we also develop computationally efficient estimators for constrained and 

unconstrained behavioral models which do not require first step estimation of different 

forecasting models for the exchange rate process. 

We apply the proposed testing framework to a unique dataset for the Brazilian 

foreign exchange market with full records of net order flow intermediated by the 

financial system. The results support tightening of constraints in the direction of 

reasonable models by 96%. This result is robust to alternative assumptions regarding 

private information of economic agents with respect to order flow. As noted in the 

previous section, our empirical application explores only single layer networks, 

although more layers would increase the flexibility. In this sense, the result is a lower 

bound on how far we may go in the direction of reasonable models.  
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Appendix 

 

In this appendix we show how to extend the propositions to many hidden layers 

neural networks. From Theorem 4.1 in White (1990), consistency results apply for a 

two hidden layer neural network, for well defined deterministic rates. Let the threshold 

exponential be denoted by  ( )      (   ( )     ( )).  Assume for simplicity the 

same complexity   and coverage   for both hidden layers. Let     (   )    when 
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For a given     (   ), we can always write 
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  ( )   (     ∑  ((   )     )            ) 

 

The unconstrained and constrained estimators are defined as before but now over 

  (   )  The test statistic for the constraints is also the same as before. For estimation 

we could still sample the lambdas randomly, but we would still face non linear 

optimization in the beta parameters, with associated numerical problems. A possible 

procedure would be to sample second layer betas as well, maybe around the one hiddn 

layer estimates, and then select the set of second layer parameters to capture the most 

non linearity. For the two layer estimator to have a more meaningful difference from the 

one layer case, one may consider a final stage non linear least squares optimization in 

the enlarged set of betas. 
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