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Abstract

In this paper, we construct several multi-step-ahead density forecasts for the for-

eign exchange (FX) rate based on statistical, �nancial data and economic-driven ap-

proaches. The objective is to go beyond the standard conditional mean investigation

of the FX rate and (for instance) allow for asymmetric responses of covariates (e.g.

�nancial data or economic fundamentals) in respect to exchange rate movements. We

also provide a toolkit to evaluate out-of-sample density forecasts and select models for

risk analysis purposes. An empirical exercise for the Brazilian FX rate is provided.

Overall, the results suggest that no single model properly accounts for the entire den-

sity in all considered forecast horizons. Nonetheless, the GARCH model as well as

the option-implied approach seem to be more suitable for short-run purposes (until

3 months), whereas the survey-based and some economic-driven models appear to be

more adequate for longer horizons (such as one year).
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1 Introduction

The foreign exchange (FX) rate market is one of the most important in the �nancial

system. According to the recent report of the Bank for International Settlements (BIS,

2013), trading in foreign exchange markets averaged $5.3 trillion per day in April 2013.1

Besides its huge trading volume, it also represents the largest asset class in the world

leading to high liquidity.2 Other features of this market are the high volatility and the

potential variety of factors that might a¤ect exchange rates (e.g. economic fundamentals,

speculative transactions and currency interventions, among many others).

Forecasting exchange rates is of great importance for economic agents, in particular, for

investors and policy makers. Accurate forecasts of FX rates allow investors, for instance, to

design adequate trading strategies and to hedge against market risk. On the other hand,

central banks worldwide closely monitor the daily FX movements, since it can impact

future price dynamics and, thus, help setting the appropriate interest rate policy (Groen

and Matsumoto, 2004). Besides, it is a useful information for central bankers to decide

for interventions.

In practical terms, however, accurately forecasting the FX rate has proved to be a

nontrivial exercise. The failure of standard economic theory to explain foreign exchange

rate behaviour using key economic fundamentals (such as the money supply, trade balance

and national income) has prevailed in the international economics literature since the

classical papers of Meese and Rogo¤ (1983a,b). The authors investigated the out-of-

sample forecasting performance of standard exchange rate models during the post-Bretton

Woods period and concluded that such models do not perform better than a naive random

walk (RW) forecast.3 Indeed, the macroeconomic theory has proposed several potential

predictors of exchange rates (usually based upon the Purchasing Power Parity (PPP)

hypothesis, the Uncovered Interest Rate (UIP) parity condition and the monetary model).

However, the forecasting contribution of such approaches has been under question since

the highly in�uential �ndings of Meese and Rogo¤. In this sense, Bacchetta and van

Wincoop (2006) describe the RW paradigm as �...the major weakness of international

macroeconomics.�4

As a consequence, an extensive literature has studied the forecasting performance of

empirical exchange rate models and several (potential) explanations have been put forward.

Just to mention a few papers: Mark (1995) �nds evidence of greater predictability of

economic exchange rate models at longer horizons, although these �ndings have been

1According to the same report, it is up from $4.0 trillion in April 2010 and $3.3 trillion in April 2007.
2Nonetheless, in the long run, the attractiveness of carry trade strategies relative to other investments is not

clear. Indeed, there is a large literature that started with Burnside et al. (2006), which suggests that market frictions

greatly reduce the pro�tability of currency speculation strategies.
3The random walk forecast is such that the (log) level of the nominal exchange rate is predicted to remain at

the current (log) level (also known as the �no change� forecast).
4On Meese and Rogo¤, see also the recent working paper by Rossi (2013).
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questioned later by Kilian (1999). Kilian and Taylor (2003) argue that exchange rates can

be predicted from economic models after taking into account the possibility of nonlinear

exchange rate dynamics. Cheung et al. (2005) examine the out-of-sample performance of

the interest rate parity, monetary, productivity-based and behavioral exchange rate models

and conclude that (indeed) none of these models consistently beats the RW forecast at any

horizon. The authors argue that even if a particular macroeconomic "fundamental" has

some level of predictive power for a bilateral exchange rate (at a certain horizon), the same

variable may show no predictive power at di¤erent horizons or for other bilateral exchange

rates. On the other hand, Engel and West (2005) argue that it is not surprising that a

random walk forecast outperforms fundamental-based models under some circumstances.

The argument is based on the behavior of the exchange rate as an asset price within a

rational expectation present-value (Taylor rule) model with a discount factor near one.5

In a distinct but complementary approach, several papers in the late 90s started investi-

gating the random walk paradigm from a di¤erent view: out-of-sample density forecasting.

For instance, Diebold, Hahn, and Tay (1999) use the RiskMetrics model to compute half-

hour-ahead density forecasts for Deutschmark�dollar and yen�dollar returns. Christof-

fersen and Mazzotta (2005) construct option-implied density and interval forecasts for

four major exchange rates. Clews et al. (2000) describes a non-parametric method to

forecast risk neutral densities, based on the smile interpolation of option prices. Boero

and Marrocu (2004) obtain one-day-ahead density forecasts for euro nominal e¤ective

exchange rate using self-exciting threshold autoregressive (SETAR) models. Sarno and

Valente (2009) use information from the term structure of forward premia to evaluate the

exchange rate density forecasting performance of a Markov-switching vector equilibrium

correction model. Hong et al. (2007) construct half-hour-ahead density forecasts for euro�

dollar and yen�dollar exchange rates using a broad set of univariate time series models

that capture fat tails, time-varying volatility and regime switches.

In general, these previous studies on exchange rate density forecasting use high fre-

quency data, which are not available for most conventional economic fundamentals. In

addition, these studies quite often do not consider multi-step-ahead forecasts and, gener-

ally, assume that conditional densities are analytically constructed (i.e. based on para-

metric densities). Wang and Wu (2012) tackle these issues by using a semiparametric

method, applied to a group of exchange rate models, to generate out-of-sample exchange

5As complementary lines of research, see also the following papers: Wu (2008) studies the importance of the order

�ows at short horizons, within the "microstructure approach". Engel et al. (2009) based on a panel of exchange

rates argue that in the presence of stationary, but persistent, unobservable fundamentals, long-horizon predictability

prevails in FX rate forecasting. Della-Corte et al. (2009) discuss the forward premium and its promising results in a

portfolio allocation framework. Chen and Tsang (2009) �nd that cross-country yield curves are useful in predicting

exchange rates. Molodtsova and Papell (2009) extend the standard set of exchange rate models by incorporating

Taylor rule fundamentals. More recently, Fratzscher et al. (2012) investigate the scapegoat theory (as an attempt

for explaining the poor performance of traditional models), and Morales-Arias and Moura (2013) explore forecast

combination based on panel data and adaptive forecasting.
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rate interval forecasts. The authors suggest that economic fundamentals might provide

useful information in (out-of-sample) forecasting FX rate distributions. Based on fore-

cast intervals for ten OECD exchange rates, the authors �nd that, in general, FX models

generate tighter forecast intervals than the random walk, given that their intervals cover

out-of-sample exchange rate realizations equally well. Moreover, the results suggest a con-

nection between exchange rates and fundamentals: economic variables (indeed) contain

information useful in forecasting distributions of exchange rates. in this sense, the Taylor

rule model (Molodtsova and Papell, 2009) performs better than the monetary, PPP and

forward premium models, and its advantages are more pronounced at longer horizons.

In this paper, we also go beyond point forecasting and follow the previous strand of

literature focused on density forecasting. We address the subject by considering statistical

approaches (such as GARCH), economic-driven models, and also setups based on �nancial

data (treating the exchange rate as an asset price). Instead of using high frequency data

and focusing on very short-run horizons, we employ monthly data, that enable us to

investigate standard macroeconomic models of (point and density) forecast, constructed

here from both parametric and semiparametric setups.

In addition, based on a set of density forecasts, generated for a full range of forecast

horizons (from one to twelve months), we go a step further and ask the following question:

Which model is the best one (among the considered set of models) for a given forecast

horizon, and a given part of the conditional distribution of the FX rate? The objective here

is to increase our understanding of exchange rate dynamics from a risk-analysis perspective.

In other words, our objective is to investigate risk measures of FX-rate generated from

distinct approaches, which may reveal potential links between exchange rates and economic

fundamentals (or �nancial variables) that a simple point forecast evaluation may neglect.

This way, our main contribution is to bring together a whole set of statistical tools, from

distinct strands of the literature (e.g. international economics, density forecasting and risk

management) to investigate FX-rate tail risk, through the lens of competing models.

This paper is organized as follows: Section 2 presents the density forecast models and

the respective estimation schemes. Section 3 presents our empirical exercise to investigate

the Brazilian FX rate, based on a set of (pseudo) out-of-sample multi-step-ahead density

forecasts. The estimated densities are investigated both from a global (entire density) as

well as a local perspective (based on value-at-risk analysis and risk management tools).

Section 4 concludes.
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2 Methodology

2.1 Density Forecast Models

Along this paper, we investigate m = 1; :::; 5 models to construct the point (and density)

forecasts for the nominal exchange rate (st) of the Brazilian Real with respect to the U.S.

dollar (R$/US$).6 Following the notation of Wang and Wu (2012), a general setup of the

(point forecast) model m takes the form of:

st+h � st = X0m;t�m;h + "m;t+h (1)

in which st+h � st is the h-periods change of the (log) exchange rate and X0m;t is a vector
with economic variables used in modelm. Regarding multi-period ahead forecasts (h > 1),

notice that we follow the "direct forecast" approach, in contrast to the "recursive (or

iterated) forecast" route. See Marcellino, Stock and Watson (2006)7 for a good discussion.

Table 1 - Exchange rate (point and density) forecast models

Model Label Covariate vector X 0
m;t Density Forecast

1 GARCH - Monte Carlo simulation [1;�st] parametric

2 Option-implied (RND-RWD) � nonparametric

3 Random walk (without drift) [1] semiparametric

4 Survey-based expectation [1; set+1jt] semiparametric

5 Relative PPP model [1;�qt] semiparametric

Notes: Covariate vectors are presented for h=1. RND stands for risk-neutral density and

RWD to real world density. The set+1jt term refers to the survey-based expectation of the

exchange rate of period t+1 formed at period t, and the real exchange rate qt is de�ned as

qt� st+p�t�pt in which pt(p
�
t ) is the (log) consumer price index in the home (foreign) country.

Model 1 is a GARCH-Monte Carlo simulation model. It is a backward-looking form,

improved by some variance reduction techniques employed over the traditional random

sampling simulation method. After the estimation of di¤erent speci�cations8, the one

that has better adjusted the data was the AR(1)-Gaussian GARCH(1,1), with "Descriptive

6The term "model" is used throughout this paper in a broad sense that includes forecasting methods.
7"Iterated" multi-period ahead time series forecasts are made using a one-period ahead model, iterated forward

for the desired number of periods, whereas �direct� forecasts are made using a horizon-speci�c estimated model,

where the dependent variable is the multi-period ahead value being forecasted. Which approach is better is an

empirical matter: in theory, iterated forecasts are more e¢ cient if correctly speci�ed, but direct forecasts are more

robust to model misspeci�cation.
8AR(1)-GARCH(1,1) t-student, random walk with drift and gaussian white noise, random walk with gaussian

GARCH and random walk with t-student GARCH. The sampling simulation methods combined with each one of

these models were Simple Random Sampling, Simple Random Sampling with runs, Latin Hypercube and Descriptive

Sampling.
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Sampling" as the simulation method. It can be represented as below (h = 1):

�st = �+ ��st�1 + �t (2)

h2t = ! + 
h2t�1 + ��
2
t�1; (3)

where st is the log of the nominal exchange rate, h2t is the conditional variance and �t is

the input variable of the simulation model assumed to be standard normally distributed

and descriptive sampled instead of randomly sampled.9

Model 2 is based on �nancial data and the extraction of information from option

prices.10 It consists basically of two major steps: (i) obtaining risk-neutral densities

(RND); and (ii) transforming these densities into real world densities (RWD). The RND

for an asset price gives the set of probabilities that investors would attach to the future

asset prices in a world in which they were risk-neutral. But if investors are risk-averse

(as they usually are), risk premia will drive a wedge between the probabilities inferred

from options (RND) and the true probabilities they attach to alternative values of the

underlying asset price (RWD).

The �rst step follows a method proposed by Shimko (1993) which is a non-parametric

technique for extracting RND from option prices based on the construction of a implied

volatility curve for the option via interpolation of its strike prices (the "smile volatility

curve"). Shimko�s method was developed for stock option prices and we had adapted it

for exchange rates. The adaptation used the Black Model for pricing future price options

(Black, 1976).11 Breeden and Litzenberger (1978) derived an explicit relationship between

the risk-neutral density of an asset and the price of the option on that asset, as expression

below:
@2Ct
@K2

t

= e�rtT f(st); (4)

in which Ct is the (call) option price of an underlying asset st, Kt is the respective exercise

(strike) price of the referred option, rt is the risk-free interest rate, T denotes the number of

days to maturity, and f(st) is the risk-neutral probability density (RND) of the underlying

asset st. Shimko obtained the densities from this formula by interpolating the calculated

implicit volatilities for the same maturity and di¤erent exercise prices. To do so, one
9For more details about "Descriptive Sampling" and other sampling methods for variance reduction, see Saliby

(1989) and Glasserman (2004).
10The main idea is that options are contracts giving the right (but not the obligation) to buy or sell an asset at a

given point in the future at a price set now (the strike price). Options to buy (call options) are only valuable if there

is a chance that when the option comes to be exercised, the underlying asset will be worth more than the strike

price. This way, if one considers options to buy a particular asset at a particular point in the future but at di¤erent

strike prices, the prices at which such contracts are trade now provides some information about the market�s view

of the chances that the price of the underlying asset will be above the various strike prices. Therefore, options tell

us something about the probability the market attaches to an asset being within a range of possible prices at some

future date.
11 If the underlying asset of the future contract is the exchange rate, the Black Model becomes equivalent to the

Garman-Kohlagen Model for pricing exchange rate options.
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must generate an entire continuum of values for the relation of the option price versus its

exercise price, given that only a few points of this curve are indeed known.

In this sense, Shimko proposes a quadratic interpolation of the implied volatilities

associated with each existing exercise price. From this new curve of implied volatilities,

the continuum of values for the option price is obtained, allowing the calculation of second

derivatives and, thus, the respective densities. In this paper, risk neutral densities for

future exchange rates were generated only for one, two and three months ahead (h =

1; 2; 3), due to the low liquidity of exchange rate-based options (and the lack of available

data) for longer maturities.

The second step follows a method proposed by Vincent-Humphreys and Noss (2012).

Instead of the commonly used method of applying utility-function transformations to the

RND, these authors propose an empirical and less restrictive methodology. They use a

parametric Beta distribution function to calibrate the di¤erence between the RND and

the RWD. According to the authors, although the Beta distribution is parsimonious, as

it depends on only two parameters, it nests many simple forms of transformation, such

as mean shift, mean-preserving changes in variance and changes involving mean, variance

and skewness.

Models 3 is a benchmark model of random walk without drift. Model 4 is a forward-

looking survey-based expectation (i.e., consensus forecast), with a bias correction device as

proposed by Capistrán and Timmermann (2009). Model 5 is a weaker version of the PPP

model (so-called relative PPP). The density forecasts of models 3, 4 and 5 are generated by

using a semiparametric approach based on quantile regression, as suggested by Gaglianone

and Lima (2012).12 The idea is to use a location-scale speci�cation to construct density

forecasts from the covariate vectorX0m;t. This way, the conditional speci�cation for models

3, 4 and 5 with mean and variance dynamics is de�ned as

st+h � st = X0m;t�m;h +
�
X0m;t�m;h

�
�t+h; (5)

�t+hjFt � F�;h (0; 1) (6)

where F�;h (0; 1) is some distribution with mean zero and unit variance, which depends on

h but does not depend on the information set Ft. X0m;t 2 Ft is a k�1 vector of covariates,
and � and � are k�1 vectors of parameters which include the intercepts �0 and �0. This
class of data-generating process (DGP) is very broad and includes most common volatility

processes such as ARCH and stochastic volatility. Based on the previous model and using

standard quantile regression techniques (see Koenker, 2005), the conditional quantiles of

st+h � st are given by
Qm;� (st+h � st j Ft) = X0m;t�m;h(�) (7)

12The authors generate multi-step-ahead conditional density forecasts for the unemployment rate in the U.S. from

(point) consensus forecasts and quantile regression; which is a setup that do not impose any parametric structure

on the shape of the conditional distributions.
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where, for a given quantile level � 2 [0; 1], it follows that �m;h(�) is a k � 1 vector of
parameters of the form �i(�) =

�
�i(�) + �i(�)F

�1
�;h (�)

�
; i = 1; :::; k: Given a family of

estimated conditional quantiles Qm;� (�), the conditional density of st+h � st can be easily
estimated by using the Epanechnikov kernel, for instance, which is a weighting function

that determines the shape of the bumps.

To guarantee monotonicity of the conditional quantiles (and the validity of the related

conditional distribution), by avoiding possible crossing of quantiles, some rearrangement

procedure (e.g., He, 1997; Chernozhukov et al., 2010) could be further employed.13

Finally, it is worth mentioning that, besides the �ve models above, an extended

set of economic-driven models is also considered (see Table A.1 in appendix), based on

Molodtsova and Papell (2009) and Wang and Wu (2012), although their results are not

reported in this paper to save space.14 The objective here is not to propose the best

model to forecast the FX rate, but rather to discuss risk management implications of a

given set of available models to (density) forecast the foreign exchange rate, within a range

of forecast horizons.

2.2 Forecast Evaluation

The forecast evaluation is conducted in this paper throughout distinct perspectives: Firstly,

for illustrative and comparison purposes, we do a standard point forecast evaluation, fo-

cused on the forecast performance of the central part (location) of the estimated densi-

ties. To do so, we compute the root mean squared error (RMSE) and check whether it

is possible to beat the random walk forecast for a given forecast horizon, based on the

Diebold-Mariano-West (1995, 1996) test and also on the Harvey et al. (1997) modi�ed

test.

Secondly, the density forecast evaluation is conducted along two dimensions: (i) Global

analysis, which is a shape evaluation based on the entire estimated density. Following the

literature on density forecast evaluation, we investigate coverage rates; the Berkowitz

(2001) test; the model ranking from the log predictive density scores (LPDS); and the

Amisano-Giacomini (2007) test; (ii) Local analysis, which evaluates speci�c points of the

densities, interpreted here as Value-at-Risk (VaR) measures. To do so, we employ available

risk management tools for VaR backtesting based on the tests of Kupiec (1995); Christof-

fersen (1998); and Gaglianone et al. (2011). The details of each evaluation procedure will

be presented in next section together with the results of our empirical exercise.

13He (1997) pointed out that crossing problem occurs more frequently in multiple-variable regressions. Thus, we

should not expect crossing to be an issue in our empirical exercise due to the reduced number of covariates in models

3, 4 and 5.
14 In this sense, we only show the results for the relative PPP model, which generally presented the best results

among the extended set of speci�cations.
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3 Empirical Exercise

3.1 Data

The currency we consider is the Brazilian Real (R$) foreign exchange rate in respect to

the U.S. dollar (US$). Our choice of country re�ects our intention to examine exchange

rate behavior for one of the largest emerging economies. The models are estimated using

monthly data from January 2000 through December 2012 (156 observations), with �exible

exchange rate over the considered sample.15 The exchange rate is de�ned as the Brazilian

Real price of a unit of U.S. dollar currency, so that an increase in the exchange rate denotes

a depreciation of the Real currency.

We use data over the period January 2000-December 2004 for model estimation (train-

ing sample) and reserve the remaining data for (pseudo) out-of-sample forecasting. We

construct (point and density) forecasts for horizons h = 1; :::; 12 months. This way, the

evaluation sample for h = 1 is January 2005-December 2012 (96 out-of-sample forecasts),

whereas for h = 12 we have 85 out-of-sample forecasts.

To evaluate the performance of the models, we estimate them by using both recursive

estimation (increasing sample size) as well as rolling window estimation (with a �xed

sample of �ve years = 60 monthly observations).16 See Morales-Arias and Moura (2013)

for a detailed discussion about rolling window and recursive forecasting.

Figure 1 - Exchange rate R$/US$
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Figure 1 presents the behavior of the Brazilian FX rate along the considered sample.

In the second semester of 2002, the exchange rate experienced a sharp increase due to
15The monthly (nominal) exchange rate is given by the sale rate (R$/US$) at the beginning of each month

(Sisbacen PTAX800). The results for the end-of-month and daily-averaged rates lead to very similar conclusions.

The FX-rate data is obtained from the website of the Central Bank of Brazil. For model 2, we use the BM&F�s

reference prices for dollar calls. For model 4, we employ survey-based (consensus) expectations from the Focus

survey, organized by the Central Bank of Brazil, which collects daily information on more than 100 institutions,

including commercial banks, asset-management �rms, and non-�nancial institutions. For model 5, we also use data

from the FRED dataset of the Federal Reserve Bank of St. Louis.
16Each model is initially estimated using the �rst 60 observations and the one-period-ahead (up to the twelve-

month-ahead) point and density forecasts are generated. We, then, drop the �rst data point, add an additional

observation at the end of the sample, re-estimate the models and generate again out-of-sample forecasts. This

process is repeated along the remaining data.
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(among other factors) the augment of investors uncertainty regarding the future of eco-

nomic fundamentals after the presidential elections in October 2002; exhibiting a relatively

consistent appreciation pattern in the remaining periods, only interrupted by the global

crisis in 2008 and the recent devaluation trend initiated in 2012.

3.2 Point Forecasts

We start the model evaluation by investigating the performance of the exchange rate point

forecast across the investigated models. Next �gure summarizes the conditional point

forecasts of selected models for h = 1; :::; 12 estimated along the pseudo out-of-sample

exercise. Table 2 shows the respective Root Mean Squared Error (RMSE) obtained from

the forecast prediction errors along the mentioned exercise. Models are labeled "a" or "b"

according to the sample used in model estimation (recursive estimation or rolling window).

Figure 2 - Point forecasts of selected models
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Is it possible to beat the random walk? To tackle this question we employ the Diebold-

Mariano-West (1995, 1996) test of equal accuracy (see Tables 2 and 3).17 The null hy-

pothesis assumes equal RMSEs of two competing models. Positive test statistics indicate

that the considered (alternative) model has a lower RMSE than the benchmark (random

walk) model.18

The results based on the recursive estimation indicate that the only model which

exhibits a positive DMW statistic is model 4 (for horizons ranging from 1 to 6 months).

In other words, only the model which embodies survey-based expectations (model 4) is

able to present a lower RMSE in comparison to the random walk.

The results for a rolling window scheme are similar. In both cases, the mentioned

"gain" over the random walk is only statistically signi�cant at horizons h = 1 or 2 months.

Indeed, the gain for h = 1 is of 106% and 108%, for the recursive and rolling window

estimations, respectively. For h = 2 these �gures drop to 15% and 17%, respectively.

This result is in line with a vast literature reporting the practical di¢ culty on beating

the naive random walk forecast in pseudo out-of-sample exercises (see Mark, 1995).19 In

our case, the results suggest that information content from survey expectations might

improve short-term point forecasts.

In appendix, we also present the results of the DMW test modi�ed by Harvey et al.

(1997), which propose a hypothesis test more suitable to small sample sizes. The results

are quite similar.

Table 2 - RMSE results

Recursive estimation Rolling window
RMSE (Root Mean Squared Error)
Model 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
h=1 0.09 0.12 0.09 0.04 0.09 0.09 0.12 0.09 0.04 0.09
h=2 0.13 0.15 0.13 0.12 0.14 0.14 0.15 0.13 0.11 0.14
h=3 0.17 0.18 0.17 0.16 0.18 0.18 0.18 0.17 0.16 0.19
h=4 0.21 0.18 0.21 0.20 0.22 0.21 0.18 0.21 0.20 0.22
h=5 0.24 0.18 0.24 0.24 0.25 0.25 0.18 0.24 0.24 0.26
h=6 0.27 0.18 0.27 0.27 0.29 0.28 0.18 0.27 0.27 0.29
h=7 0.29 0.18 0.29 0.30 0.33 0.30 0.18 0.29 0.30 0.34
h=8 0.31 0.18 0.31 0.31 0.35 0.32 0.18 0.31 0.31 0.36
h=9 0.32 0.18 0.32 0.33 0.37 0.33 0.18 0.32 0.34 0.39

h=10 0.33 0.18 0.33 0.36 0.41 0.34 0.18 0.33 0.36 0.42
h=11 0.34 0.18 0.35 0.43 0.48 0.35 0.18 0.35 0.43 0.49
h=12 0.35 0.18 0.36 0.46 0.55 0.37 0.18 0.36 0.45 0.55

17A related empirical question is the following: "Are the competing models better (than the RW) in predicting

just the direction of change?" We leave this point forecast comparison for future research.
18The table entries are Diebold-Mariano-West t-tests (p-values) of equal RMSEs, taking the random

walk (model 3) as the benchmark and model m 6= 3 as the alternative. The variances entering the test
statistics use the Newey-West estimator, with a bandwidth of 0 at the 1-month horizon and 1.5�horizon in
the other cases, following Clark (2011, supplementary appendix) and Clark and McCracken (2012, p.61).
19Notice that given the in�ation di¤erential (between Brazil and the US) a RW with drift could possibly be even

harder to beat.
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Table 3 - Diebold-Mariano-West test of equal accuracy
Diebold­Mariano­West (1995, 1996): test statistic (p­value)

h 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
1 ­1.38 ­1.68 ­0.33 3.95 ­0.77 ­1.02 ­1.68 0.33 3.94 ­0.84

(0.17) (0.1) (0.75) (0) (0.44) (0.31) (0.1) (0.75) (0) (0.4)

2 ­0.83 ­1.06 0.61 2.79 ­0.88 ­0.90 ­1.06 ­0.61 2.86 ­1.34
(0.41) (0.29) (0.54) (0.01) (0.38) (0.37) (0.29) (0.54) (0.01) (0.18)

3 ­0.90 ­0.50 0.65 1.28 ­1.30 ­0.92 ­0.50 ­0.65 1.48 ­1.14
(0.37) (0.62) (0.52) (0.2) (0.2) (0.36) (0.62) (0.52) (0.14) (0.26)

4 ­0.80 1.29 ­0.94 0.36 ­1.46 ­0.93 1.29 0.94 0.29 ­1.25
(0.43) (0.2) (0.35) (0.72) (0.15) (0.36) (0.2) (0.35) (0.77) (0.21)

5 ­0.79 1.98 ­0.05 0.03 ­1.22 ­0.83 1.98 0.05 0.05 ­1.14
(0.43) (0.05) (0.96) (0.98) (0.22) (0.41) (0.05) (0.96) (0.96) (0.26)

6 ­0.84 2.11 ­1.38 0.03 ­1.36 ­0.79 2.11 1.38 ­0.32 ­1.18
(0.4) (0.04) (0.17) (0.98) (0.18) (0.43) (0.04) (0.17) (0.75) (0.24)

7 ­0.95 2.28 ­1.12 ­0.40 ­1.21 ­0.85 2.28 1.12 ­0.64 ­1.50
(0.34) (0.02) (0.26) (0.69) (0.23) (0.4) (0.02) (0.26) (0.53) (0.14)

8 ­1.04 2.65 ­1.90 ­0.19 ­1.18 ­0.86 2.65 1.90 ­0.26 ­1.12
(0.3) (0.01) (0.06) (0.85) (0.24) (0.39) (0.01) (0.06) (0.79) (0.26)

9 ­1.03 2.87 ­0.79 ­0.51 ­1.22 ­0.96 2.87 0.79 ­0.53 ­1.76
(0.31) (0.01) (0.43) (0.61) (0.23) (0.34) (0.01) (0.43) (0.6) (0.08)

10 ­1.02 3.50 ­1.40 ­0.44 ­1.34 ­0.95 3.50 1.40 ­0.43 ­1.44
(0.31) (0) (0.16) (0.66) (0.19) (0.34) (0) (0.16) (0.66) (0.15)

11 ­0.96 3.96 ­1.52 ­0.60 ­1.39 ­1.00 3.96 1.52 ­0.59 ­1.47
(0.34) (0) (0.13) (0.55) (0.17) (0.32) (0) (0.13) (0.56) (0.15)

12 ­1.06 4.38 0.68 ­0.59 ­1.47 ­1.02 4.38 ­0.68 ­0.52 ­1.36
(0.29) (0) (0.5) (0.56) (0.15) (0.31) (0) (0.5) (0.6) (0.18)

Model Model

Note: Positive test statistics indicate that a model has a lower RMSE in comparison to the RW.

3.3 Density Forecasts - Global Analysis

Density forecast evaluation has become popular in the �elds of time series forecasting

and risk evaluation (Ko and Park, 2013) and related formal testing procedures have been

developed by several recent studies.20 We start the global density evaluation by presenting

in Figure 3 the estimated conditional Probability Density Functions (PDFs) of the R$/US$

exchange rate at December 2012, constructed with di¤erent forecast horizons. In appendix,

there are complementary graphs for given models and varying forecast horizons as well as

PDFs for other selected periods.

20A good review of various testing methods in density forecasting is provided by Corradi and Swanson (2006).
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Figure 3 - Conditional PDFs of R$/US$ at December 2012
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Coverage rates

According to Clark (2011, p.336): "In light of central bank interest in uncertainty

surrounding forecasts, con�dence intervals, and fan charts, a natural starting point for

forecast density evaluation is interval forecasts - that is, coverage rates." In this sense,

a necessary (but not su¢ cient) condition for a "good" density model is to produce a

conditional density with an adequate coverage rate.21 The objective in this section is to

check whether the model departures from a given nominal coverage rate (e.g., 70%) appear

to be statistically meaningful.

In practice, one needs to compute the frequency of observations of st+h which have

fallen inside the forecast interval. In our case, we adopt the 70% interval band, which leads

to a forecast interval based on the conditional quantiles Qm;� (st+h � st j Ft) of model m,
ranging from quantile level � = 0:15 to � = 0:85. Then, a simple statistical test veri�es the

equality between the frequency of observations which have fallen in the forecast interval

(nominal coverage) and the true coverage. The results are presented in Table 4.

Table 4 - Coverage Rates

Recursive estimation Rolling window
Forecast coverage rates: % of actual outcomes inside the 70% interval band

h 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
1 0.70 0.71 0.66 0.78 0.69 0.71 0.71 0.68 0.69 0.69

(0.96) (0.96) (0.37) (0.06) (0.79) (0.86) (0.96) (0.63) (0.79) (0.79)

2 0.64 0.59 0.69 0.79 0.71 0.63 0.59 0.64 0.71 0.68
(0.27) (0.06) (0.92) (0.09) (0.92) (0.22) (0.06) (0.31) (0.92) (0.78)

3 0.55 0.52 0.71 0.78 0.77 0.54 0.52 0.66 0.72 0.72
(0.01) (0.01) (0.82) (0.22) (0.24) (0.02) (0.01) (0.52) (0.73) (0.72)

4 0.47 0.52 0.71 0.77 0.76 0.47 0.52 0.63 0.70 0.73
(0) (0) (0.9) (0.28) (0.33) (0) (0) (0.41) (0.99) (0.67)

5 0.34 0.51 0.76 0.74 0.73 0.45 0.51 0.57 0.67 0.71
(0) (0) (0.46) (0.63) (0.73) (0) (0) (0.18) (0.76) (0.94)

6 0.30 0.51 0.79 0.67 0.78 0.40 0.51 0.60 0.63 0.67
(0) (0) (0.32) (0.78) (0.28) (0) (0) (0.29) (0.49) (0.76)

7 0.28 0.50 0.81 0.63 0.81 0.40 0.50 0.59 0.58 0.70
(0) (0) (0.27) (0.55) (0.18) (0) (0) (0.3) (0.28) (1)

8 0.19 0.49 0.78 0.64 0.79 0.34 0.49 0.55 0.61 0.63
(0) (0) (0.47) (0.6) (0.36) (0) (0) (0.11) (0.41) (0.56)

9 0.22 0.49 0.82 0.65 0.80 0.32 0.49 0.57 0.59 0.65
(0) (0) (0.21) (0.67) (0.28) (0) (0) (0.23) (0.35) (0.65)

10 0.23 0.48 0.76 0.64 0.72 0.24 0.48 0.55 0.61 0.69
(0) (0) (0.56) (0.65) (0.79) (0) (0) (0.2) (0.47) (0.93)

11 0.23 0.48 0.84 0.65 0.69 0.24 0.48 0.57 0.63 0.63
(0) (0) (0.09) (0.69) (0.87) (0) (0) (0.3) (0.57) (0.54)

12 0.21 0.47 0.85 0.61 0.76 0.19 0.47 0.53 0.60 0.64
(0) (0) (0.03) (0.49) (0.39) (0) (0) (0.23) (0.43) (0.61)

Model Model

Note: The table includes in parentheses p-values for the null of correct coverage (empirical =

nominal rate of 70%), based on t-statistics using standard errors computed with the Newey-West

estimator, with a bandwidth of 0 at the 1-month horizon and 1.5�horizon for other cases.

Wang andWu (2012) point out that random walk intervals are essentially intervals from

the unconditional distribution, whereas intervals based on economic models are intervals

from conditional distributions. In other words, if the true model is indeed a random walk,

21Coverage rates reveal the di¤erence between the probability that realizations fall into the forecasted intervals

and the respective nominal coverage.
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then, asymptotically, the length of both the RW and the economic model have to be

exactly the same.

In our exercise, �rst note that the random walk22 and the survey-based approaches

(models 3 and 4) as well as the economic-driven model 5 are not rejected at a 5% con�dence

level in all horizons and both sampling schemes (excepting model 3 for h = 12). On the

other hand, models 1 and 2 produced an adequate coverage rate for short horizons (h = 1; 2

months, in both recursive and rolling window estimations). The rolling window estimation

scheme (for shorter horizons, in general) yields slightly more accurate interval forecasts

(i.e., coverage rates closer to the 70% nominal rate), in line with the �ndings of Clark

(2011, p.336).23 As a robustness check, we also present (in appendix) the results for the

50% and 90% interval bands, which (in general) point to similar conclusions.

Probability integral transform (PIT)

The coverage rates although providing an initial approach to analyze density models

can be viewed as unconditional tests, since they ignore potential cluster behavior (along

the sample size) of a given percentile of the estimated density and, thus, do not take into

account time dependence. We next investigate the density forecast models based on a

broader measure of density calibration: the probability integral transform (PIT).

According to Clements (2005), the PIT of the realization of the variable with respect

to the density forecast is given by

zt+1 =
yt+1R
�1

bft+1;t(u)du � bFt+1;t(yt+1); (8)

where bFt+1;t(yt+1) is the estimated probability of Yt+1 not exceeding the realized value
yt+1, and bft+1;t is our estimated density forecast of a given model m. The main idea
of density forecast evaluation is that, assuming correct speci�cation of the model, the

PIT yields independent and uniformly distributed random variables. When the forecast

density bft+1;t equals the true density, it follows that zt+1 � U(0; 1), where U(0; 1) is the
uniform distribution over the interval (0; 1). Clements (2005, p.104) argues that even

though the actual conditional densities may be changing over time, provided the forecast

densities match the actual densities at each t, then zt � U(0; 1) for each t, and the zt are
independently distributed from each other, such that the realized time series fztgTt=1 is an
i.i.d. sample from a standard uniform distribution.

22Except for h=12 in a recursive estimation scheme.
23The referred author also argues that: "For a given model, di¤erences in coverage across horizons likely

re�ect a variety of forces, making a single explanation di¢ cult. One force is sampling error. Even if a

model were correctly speci�ed, random variation in a given data sample could cause the empirical coverage

rate to di¤er from the nominal. Sampling error increases with the forecast horizon, due to the overlap of

forecast errors for multistep horizons (e¤ectively reducing the number of independent observations relative

to the one-step horizon). Of course, an increased sampling error across horizons will translate into reduced

power to detect departures from accurate coverage."
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Berkowitz (2001) develops tests to evaluate the conditional density based on the nor-

mality of the normalized errors that have better power than tests based on the uniformity

of the PITs. The normalized forecast error is de�ned as ezt+1 � ��1(zt+1), where zt+1

denotes the PIT of a one-step ahead forecast error and ��1 is the inverse of the standard

normal distribution.24 These tests have been used in recent studies such as Clements

(2004), Jore et al. (2010) and Clark (2011).

Table 5 - Density test of Berkowitz (2001)

Ho : ezt+1 � iid N(0; 1)
Recursive estimation Rolling window

Berkowitz test (p­value)
Model 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
h=1 0.04 0.49 0.22 0.00 0.82 0.21 0.49 0.17 0.00 0.73
h=2 0.38 0.34 0.01 0.00 0.23 0.54 0.34 0.07 0.05 0.32
h=3 0.36 0.39 0.00 0.00 0.00 0.78 0.39 0.01 0.00 0.01
h=4 0.00 0.37 0.00 0.00 0.00 0.57 0.37 0.04 0.00 0.00
h=5 0.00 0.34 0.00 0.00 0.00 0.45 0.34 0.00 0.00 0.00
h=6 0.26 0.24 0.00 0.00 0.00 0.89 0.24 0.00 0.00 0.00
h=7 0.00 0.19 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00
h=8 0.32 0.14 0.00 0.00 0.00 0.64 0.14 0.00 0.00 0.00
h=9 0.00 0.12 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00

h=10 0.00 0.12 0.00 0.00 0.00 0.00 0.12 0.06 0.00 0.00
h=11 0.00 0.09 0.00 0.00 0.00 0.00 0.09 0.00 0.10 0.00
h=12 0.00 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00

For short-term forecast horizons, such as from h = 1 to 3 months, models 1 and 2

present a proper density forecast, in both sampling schemes. For medium-term horizons

(h = 4; :::; 8) there is no single model that passes the Berkowitz test in both estimation

schemes. Nonetheless, it is worth mentioning the relative good performance of model 1 in

the rolling window framework. For longer horizons (h = 9; :::; 12), again, there is no pre-

dominant model, although it is worth highlighting that the survey-based approach (model

4) is able to generate adequate forecasts for h = 11 when estimated in a rolling window

scheme. In the extended set of economic models (results not reported, but available upon

request), we noticed that the Taylor rule speci�cation (model II) is also able to gener-

ate good density forecasts within a rolling window scheme. This result corroborates the

view that the exchange rate might be "too noisy" to be predicted by economic models in

the short-run25 (directly in line with the di¢ culty in beating the RW model), but might

respond to economic fundamentals in the long-run (see Mark, 1995).

Log predictive density score (LPDS)

Another useful indicator of the calibration of density forecasts is given by the log

predictive density scores (LPDS). This approach allows us to rank the investigated models

based on their log-scores (for each forecast horizon), under which a higher score implies

24For h=1 the test statistic (jointly) assumes independence and standard normality for ezt+1 and (under
the null) it converges to a �2(3) distribution. For h>1, we adopt a modi�ed version of the test (see Jore et

al., 2010) using a two degrees-of-freedom variant (without a test for independence).
25Excepting, of course, the positive results for very short-run horizons based on high frequency data and

microstructure approach (e.g., order �ow).
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a better model. The LPDS of model m and forecast horizon h is de�ned in the following

way:

LPDSm;h =
1

T

TP
t=1
ln
� bfmt+h;t (yt+h)� (9)

where bfmt+h;t is the density of the variable of interest Yt+h estimated from model m and

based on the information set available at period t. The referred density is evaluated at the

observed value yt+h and (log) averaged along the out-of-sample observations. The LPDS

results of Table 6 are summarized in Table 7, which presents the rank order of density

models based on such criterion.

Table 6 - Log predictive density score (LPDS)
LPDS (Log Predictive Density Score)
Model 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
h=1 ­2.21 ­2.19 ­1.89 ­1.66 ­1.87 ­2.19 ­2.19 ­2.00 ­1.57 ­1.77
h=2 ­2.12 ­2.19 ­2.08 ­1.80 ­2.07 ­2.12 ­2.19 ­1.97 ­1.78 ­1.78
h=3 ­2.12 ­2.27 ­2.09 ­1.91 ­2.19 ­2.12 ­2.27 ­2.05 ­1.76 ­1.91
h=4 ­2.14 ­2.26 ­1.93 ­2.29 ­2.13 ­2.11 ­1.85 ­2.03
h=5 ­2.12 ­2.50 ­2.16 ­2.53 ­2.07 ­2.34 ­2.11 ­2.13
h=6 ­2.17 ­2.37 ­2.31 ­2.49 ­2.14 ­2.28 ­2.12 ­2.19
h=7 ­2.18 ­2.72 ­2.19 ­2.70 ­2.13 ­2.55 ­2.16 ­2.34
h=8 ­2.21 ­2.73 ­2.28 ­2.70 ­2.15 ­2.64 ­2.19 ­2.26
h=9 ­2.24 ­2.81 ­2.43 ­2.43 ­2.17 ­2.63 ­2.25 ­2.13

h=10 ­2.29 ­2.85 ­2.36 ­2.83 ­2.18 ­2.67 ­2.15 ­2.55
h=11 ­2.33 ­2.97 ­2.40 ­2.94 ­2.18 ­2.73 ­2.30 ­2.56
h=12 ­2.41 ­3.00 ­2.38 ­2.85 ­2.23 ­2.79 ­2.22 ­2.54

Note: The table entries are average values of log predictive density scores (see Adolfson,

Linde, and Villani, 2005), under which a higher score implies a better model.

Table 7 - Ranking of density models according to LPDS
Rank of models based on LPDS
Model 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
h=1 5 4 3 1 2 4 5 3 1 2
h=2 4 5 3 1 2 4 5 3 1 2
h=3 3 5 2 1 4 4 5 3 1 2
h=4 2 3 1 4 4 3 1 2
h=5 1 3 2 4 1 4 2 3
h=6 1 3 2 4 2 4 1 3
h=7 1 4 2 3 1 4 2 3
h=8 1 4 2 3 1 4 2 3
h=9 1 4 2 3 2 4 3 1

h=10 1 4 2 3 2 4 1 3
h=11 1 4 2 3 1 4 2 3
h=12 2 4 1 3 2 4 1 3

Note: The best two models according to the LPDS rank ordering (i.e. higher

LPDS��gures) are highlighted in yellow for each sample scheme.

Overall, the LPDS analysis indicates that models 1, 4 and 5 would be the most recom-

mended for horizons above six months, whereas the results for shorter horizons, although

not pointing to a single approach, in general, suggest the survey-based model 4.

Now, we turn to an interesting question regarding the LPDS results: Is it possible to

beat the forecast from model 3 when dealing with densities? In order to answer this ques-

tion, we use the Amisano-Giacomini (2007) test which compares the log score distance

between two competing models. Because the theoretical setup of the test proposed by

Amisano and Giacomini requires forecasts estimates with rolling samples of data, we only
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apply the test to the models estimated with the rolling window scheme. The null hypoth-

esis assumes equal LPDS between model 3 and model m 6= 3. A negative test statistic

indicates a higher LPDS of model m in comparison to the RW approach. In Table 8, the

negative �gures statistically signi�cant at a 5% signi�cance level are marked in blue.

Table 8 - Amisano-Giacomini (2007) test applied to average LPDS (rolling window)
Amisano­Giacomini (2007): test statistic (p­value)

h 1b 2b 3b 4b 5b
1 0.19 0.19 0.00 ­0.43 ­0.24

(0) (0) (1) (0) (0)

2 0.15 0.22 0.00 ­0.19 ­0.19
(0) (0) (1) (0) (0)

3 0.07 0.22 0.00 ­0.29 ­0.14
(0.12) (0) (1) (0) (0)

4 0.02 0.15 0.00 ­0.26 ­0.07
(0.82) (0.12) (1) (0) (0.3)

5 ­0.27 ­0.08 0.00 ­0.23 ­0.21
(0) (0.31) (1) (0) (0.01)

6 ­0.14 ­0.03 0.00 ­0.15 ­0.09
(0.05) (0.8) (1) (0.28) (0.51)

7 ­0.41 ­0.30 0.00 ­0.38 ­0.20
(0) (0) (1) (0) (0.01)

8 ­0.49 ­0.40 0.00 ­0.45 ­0.38
(0) (0) (1) (0) (0)

9 ­0.46 ­0.40 0.00 ­0.37 ­0.50
(0) (0) (1) (0) (0)

10 ­0.48 ­0.45 0.00 ­0.52 ­0.12
(0) (0) (1) (0) (0.02)

11 ­0.55 ­0.52 0.00 ­0.43 ­0.17
(0) (0) (1) (0) (0.01)

12 ­0.56 ­0.59 0.00 ­0.57 ­0.25
(0) (0) (1) (0) (0)

Model

Note: Null hypothesis of zero average di¤erence in LPDS between model 3 (benchmark) and model m 6= 3.
Similar to Clark (2011), the p-values are computed by regressions of di¤erences in log scores (time series)

on a constant, using the Newey-West estimator of the variance of the regression constant

(with a bandwidth of 0 at the 1-month horizon and 1.5�horizon for other cases).

Note that the random walk density approach is easily overwhelmed in several cases.

Models 1, 4 and 5 showed a relatively superior performance in respect to the naive model

3. Next table summarizes the results of the global analysis.

Table 9 - Summary of the Global Analysis

Horizon Coverage rate Berkowitz test LPDS AG test

1 1ab,2ab,3ab,4ab,5ab 1b,2ab,3ab,5ab 4ab,5ab 4b,5b

2 1ab,2ab,3ab,4ab,5ab 1ab,2ab,3b,4b,5ab 4ab,5ab 4b,5b

3 3ab,4ab,5ab 1ab,2ab 3a,4ab,5b 4b,5b

6 3ab,4ab,5ab 1ab 1ab,4ab -

9 3ab,4ab,5ab - 1ab,4a,5b 1b,4b,5b

12 3b,4ab,5ab - 1ab,4ab 1b,4b,5b

Notes: Column 2 identi�es the density models that presented a p-value above 0.05 in the coverage rate analysis.

Column 3 exhibits models that are not rejected (5% signi�cance level) at Berkowitz�s test.

Column 4 presents the best two models (within each sample scheme) according to the LPDS ranking,

and column 5 shows those models that "beat" the random walk density forecast at a 5% signi�cance level.
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3.4 Density Forecasts - Local Analysis

Now, we investigate the predictive accuracy of the density models under a local analysis

approach. The idea is to check for the performance of distinct parts of the conditional

distribution, estimated through di¤erent approaches. A given model to generate the whole

conditional density of the variable of interest might produce, for instance, an "adequate"

risk measure for the left tail of the distribution (i.e., at low percentiles) but, at the same

time, can generate "poor" risk measures at the central part (or even at the right tail) of

the distribution. For this reason, we next analyze the density models through the lens of

their respective performance along a grid of selected quantile levels � = f0:1; 0:2; :::; 0:9g;
in order to cover the key parts of the conditional distribution.26

A percentile of the conditional distribution, called here by a "conditional quantile",

can be viewed as a Value-at-Risk (VaR) measure (see Christo¤ersen et al., 2001). As

point out by Wang and Wu (2012), the VaR is a prevalent risk management tool used

by investors. It is essentially a one-sided forecast interval measuring downside risks. For

this reason, the forecast evaluation of the selected "slices" of the distribution can also

naturally be conducted by using the many statistical tests available in the risk management

literature, also known as "backtests" (see Jorion (2007) and Crouhy et al. (2001) for a

good review). In this paper, we use four procedures to conduct the local analysis, next

described, although it should be mentioned that many more tests are currently available

in the literature.27

(i) Local Forecast Coverage Rate: The �rst procedure is the forecast coverage

rate (LFCRm;h;� ) of model m and horizon h at quantile level � . Similar to the coverage

rate discussed in the section 3.3, we now compute (for all out-of-sample observations) the

percentage of outcomes below a given nominal quantile level � . Ideally, the empirical

LFCRm;h;� should be as close as possible to one minus the nominal level � .

\LFCRm;h;� =
1

T

TP
t=1
Ht+h (10)

where Ht+h =

(
1 ; if yt+h > bQm;� (yt+h j Ft)
0 ; if yt+h � bQm;� (yt+h j Ft) and yt+h = st+h � st. The statistical

signi�cance of LFCRm;h;� � (1� �) is checked via the Kupiec (1995) backtest.

26 It is worth mentioning that an analysis at extreme quantile levels (e.g., � = 0:995) is possible within

our framework, although would require a much higher number of observations to be used in both models�

estimation and the pseudo out-of-sample exercise.
27Such as the nonparametric test of Crnkovic and Drachman (1997), the duration approach of Christof-

fersen and Pelletier (2004), the CAViaR setup of Engle and Manganelli (2004) and the Ljung-Box type-test

of Berkowitz et al. (2008), among many others.
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(ii) Kupiec (1995): It is a nonparametric test (also known as the unconditional

coverage test) based on the proportion of violations Ht+h, in which the null hypothesis

assumes that:

Ho : LFCRm;h;� = E(Ht+h) = 1� � (11)

The probability of observing N violations, in which yt+h > bQm;� (yt+h j Ft), over a
sample size of T is driven by a Binomial distribution. This way, the null can be tested

through a standard likelihood ratio (LR) test of the form:

LRuc = 2 ln

0B@
�
\LFCRm;h;�

�N
(1� \LFCRm;h;� )T�N

(1� �)N (�)T�N

1CA ; (12)

which follows (under the null hypothesis) a chi-squared distribution with one degree of

freedom.

(iii) Christo¤ersen (1998): The unconditional coverage test does not provide any

information about the temporal dependence of observed violations. In this sense, Christof-

fersen (1998) extends the previous test to incorporate an evaluation of time independence

of the referred violations. To do so, de�ne Tij as the number of days in which a state

j occurred in one day, while it was at state i the previous day. The test statistic also

depends on �i, which is de�ned as the probability of observing a violation, conditional

on state i the previous day. The author assumes that the Ht+h stochastic process follows

a �rst order Markov sequence. This way, under the null hypothesis of independence it

follows that � = �0 = �1 = (T01 + T11)=T , and the complementary test statistic can be

constructed, as it follows.

LRind = 2 ln

 
(1� �0)T00�T010 (1� �1)T10�T111
(1� �)(T00+T10)�(T01+T11)

!
: (13)

The conditional coverage test of Christo¤ersen (1998) has the following joint statistic of

unconditional coverage and independence: LRcc = LRuc + LRind. The joint test statistic

LRcc is asymptotically distributed as �2(2).

(iv) Value-at-Risk test based on Quantile Regression (VQR test): The pre-

vious test has a restrictive feature, since it only takes into account the autocorrelation

of order 1 in the violation sequence. Moreover, it clearly ignores the magnitude of viola-

tions when comparing the observed �gure of yt+h with the estimated conditional quantilebQm;� (yt+h j Ft). To overcome these features, Gaglianone et al. (2011) proposed the VQR
test in order to evaluate the predictive performance of the estimated Value-at-Risk mea-

sure Vt+h � bQm;� (yt+h j Ft). The VQR test is simply a Wald test based on the following
quantile regression:

Q� (yt+h j Ft) = �0(�) + �1 (�)Vt+h ; � 2 (0; 1) (14)
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Under the null hypothesis that Vt+h is an adequate conditional quantile of yt+h, it

follows that Vt+h = Q� (yt+h j Ft), which can be veri�ed through the following joint coef-
�cient test: Ho : �0(�) = 0 and �1 (�) = 1:

The results of the four mentioned procedures adopted to (locally) investigate the den-

sity models are presented in Table 10 for a one-month-ahead forecast horizon (h = 1).

The respective results for h = 2; 3; 6; 9; and 12 months are presented in appendix.

Table 10 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=1
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.09 0.10 0.15 0.01 0.11 0.08 0.10 0.15 0.07 0.08
0.2 0.18 0.21 0.28 0.08 0.24 0.18 0.21 0.27 0.14 0.20
0.3 0.30 0.32 0.43 0.15 0.34 0.27 0.32 0.35 0.23 0.31
0.4 0.45 0.40 0.51 0.24 0.46 0.39 0.40 0.53 0.31 0.40
0.5 0.55 0.51 0.61 0.36 0.52 0.54 0.51 0.61 0.42 0.50
0.6 0.65 0.59 0.74 0.51 0.68 0.61 0.59 0.68 0.51 0.59
0.7 0.75 0.76 0.79 0.64 0.77 0.71 0.76 0.77 0.64 0.75
0.8 0.82 0.85 0.83 0.77 0.80 0.81 0.85 0.82 0.78 0.79
0.9 0.91 0.89 0.93 0.92 0.93 0.88 0.89 0.91 0.90 0.89

Panel B ­ Kupiec (1995) test
h=1
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.84 0.89 0.16 0.00 0.64 0.58 0.89 0.16 0.35 0.58
0.2 0.57 0.84 0.06 0.00 0.34 0.57 0.84 0.10 0.10 0.96
0.3 0.96 0.63 0.01 0.00 0.36 0.53 0.63 0.25 0.12 0.79
0.4 0.34 0.93 0.03 0.00 0.25 0.77 0.93 0.01 0.08 0.93
0.5 0.31 0.84 0.02 0.01 0.68 0.41 0.84 0.02 0.10 1.00
0.6 0.36 0.90 0.00 0.08 0.12 0.77 0.90 0.12 0.08 0.90
0.7 0.28 0.19 0.04 0.18 0.12 0.86 0.19 0.12 0.18 0.28
0.8 0.57 0.17 0.40 0.48 0.96 0.76 0.17 0.57 0.65 0.84
0.9 0.84 0.64 0.35 0.58 0.35 0.43 0.64 0.84 0.89 0.64

Panel C ­ Christoffersen (1998) test
h=1
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.08 0.00 0.13 0.21 0.00 0.08 0.23 0.09
0.2 0.27 0.39 0.10 0.00 0.46 0.19 0.39 0.12 0.00 0.14
0.3 0.29 0.22 0.01 0.00 0.64 0.39 0.22 0.20 0.00 0.95
0.4 0.00 0.80 0.04 0.00 0.46 0.07 0.80 0.00 0.00 0.90
0.5 0.05 0.90 0.01 0.00 0.65 0.31 0.90 0.01 0.01 0.72
0.6 0.12 0.55 0.02 0.03 0.26 0.35 0.55 0.19 0.03 0.99
0.7 0.55 0.30 0.03 0.25 0.16 0.98 0.30 0.16 0.25 0.48
0.8 0.85 0.04 0.20 0.43 0.14 0.92 0.04 0.13 0.64 0.86
0.9 0.96 0.27 0.22 0.41 0.22 0.12 0.27 0.79 0.63 0.13

Panel D ­ VQR (2011) test
h=1
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.33 0.37 0.43 0.00 0.07 0.14 0.37 0.41 0.49 0.20
0.2 0.16 0.63 0.03 0.00 0.05 0.52 0.63 0.05 0.06 0.13
0.3 0.62 0.86 0.04 0.00 0.05 0.47 0.86 0.13 0.01 0.04
0.4 0.57 0.91 0.25 0.10 0.57 0.41 0.91 0.17 0.18 0.49
0.5 0.23 0.68 0.12 0.04 0.05 0.30 0.68 0.12 0.19 0.09
0.6 0.10 0.91 0.00 0.17 0.07 0.13 0.91 0.02 0.56 0.07
0.7 0.16 0.00 0.00 0.38 0.02 0.08 0.00 0.01 0.49 0.01
0.8 0.01 0.00 0.00 0.73 0.00 0.04 0.00 0.00 0.68 0.00
0.9 0.00 0.01 0.00 0.53 0.00 0.02 0.01 0.00 0.51 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model

A rejection of a given model for a selected horizon and a percentile of the distribution

suggests the need for local improvement on the density model, in order to eliminate (for

instance) a wrong coverage rate, a clustering behavior or even a poor temporal dynam-

ics. We summarize the local analysis results in terms of acceptance/rejection (at a 5%

signi�cance level) on the three considered backtests (Kupiec, Christo¤ersen, VQR).
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In this sense, we aggregate the results in respect to lower quantiles, in which � 2
f0:1; 0:2; 0:3g, or higher quantiles, where � 2 f0:7; 0:8; 0:9g. The results are presented in
Table 11. In other words, for a model to be shown in a given cell of Table 11 (e.g. h = 1)

it requires a p-value above 0.05 in all the 9 possible cases (3 percentiles x 3 types of test).

For h = 1, only a few models passes (at the same time) in the three statistical tests

and in all selected percentiles of the respective part of the distribution. For h = 2, only

model 1a (recursive estimation, lower quantiles) would survive to this restrictive criterion,

and for h > 2 not a single model would be selected. This way, for h > 1, the adopted

criterion to select models is weakened as long as the forecast horizon increases.

Table 11 - Summary of the Local Analysis

Horizon Criteria to Select Models Low Quantiles (� � 0:3) High Quantiles (� � 0:7)
1 Kupiec, Christo¤ersen, VQR 1b,3b,5a 4ab

2 Kupiec, Christo¤ersen, VQR 1a -

2 Kupiec, Christo¤ersen 1a,5ab 4b,5b

3 Kupiec, Christo¤ersen 5a -

3 Kupiec 3a,4b,5ab 2ab,4ab,5ab

6 Kupiec 3a,5ab 3b,4ab,5ab

9 Kupiec 3a,5ab 3ab,4a,5a

12 Kupiec 3a,5ab 3b,4a

3.5 Risk Assessment

In this section, we conduct a risk assessment exercise as a complement to the density

models�local analysis. To do so, we �rst establish, for illustrative purposes, the following

ad-hoc limits of both valuation (�) and devaluation (�) of the R$/USS exchange rate. In

the devaluation case, we �rst construct a dummy variable (Duppert+h ) to reveal the periods

which (ex-post) exhibited a devaluation amount equal (or greater than) the established

limit (�):

Duppert+h =

(
1 if st+h

st
> �

0 ; otherwise
(15)

Next, for each considered model m, we search across the respective estimated density

(in practice, across the grid of quantile levels � = f0:01; 0:02; :::; 0:99g) for the conditional
quantile of st+h which matches (or is closer to) �st. In other words, we look for the quantile

level � which corresponds to the devaluation limit and, thus, can be interpreted as the ex-

ante conditional probability that the exchange rate will surpass (h�periods ahead) such
limit in the future. More formally:

� t+h � Pr(st+h=st > � j Ft); where Qm;� t+h(st+h j Ft) = �st; � t+h 2 [0; 1] (16)

The next �gure shows both time series � t+h and D
upper
t+h representing (respectively)

the ex-ante conditional probability that the FX-rate will breach the limit and the ex-post
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periods when it indeed occurred (gray vertical bars). The procedure for the downside-risk

analysis (based on Dlowert+h ; � and � t+h) is similar to the upside-risk analysis just described.

We present the risk analysis only for h = 1, since it is the horizon with the greatest number

of models "approved" by the three (local analysis) backtests.

Figure 4 - Conditional probabilities of (de)valuation

of the R$/US$ exchange rate one-month-ahead (h = 1)

(a) at least 5% devaluation

0.0

0.2

0.4

0.6

0.8

1.0

I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV

2007 2008 2009 2010 2011 2012

M1a M2a M3a
M4a M5a M1b
M2b M3b M4b
M5b

(b) at least 5% valuation

0.0

0.2

0.4

0.6

0.8

1.0

I II III IV I II III IV I II III IV I II III IV I II III IV I II III IV

2007 2008 2009 2010 2011 2012

M1a M2a M3a
M4a M5a M1b
M2b M3b M4b
M5b

25



Figure 4 (cont.) - Conditional probabilities of (de)valuation

of the R$/US$ exchange rate one-month-ahead (h = 1)

(c) at least 10% devaluation
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(d) at least 10% valuation
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The risk analysis reveals that the forward looking model 4 (based on survey expecta-

tions, with a bias correction device, and quantile regression) is relatively able to anticipate

FX rate movements. In other words, a forecaster using model 4 would have predicted

relatively well the occurrence of a FX rate devaluation equal (or larger than) 5% (or 10%)

for next month. This type of tool can be useful for evaluating competing models and
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selecting those which historically provide more accurate predictions of a given event.

It should be viewed as a complement to the previous local analysis, mainly focused

on the performance of �xed conditional quantiles (VaRs) vis-à-vis the actual FX rate

outcomes. In this section, however, the goal was to compare pre-established FX rate

movements in contrast to a set of conditional quantiles estimated at di¤erent quantile

levels (i.e., the entire estimated density).

Finally, it is worth mentioning that tail risk in Brazil can be greatly a¤ected by o¢ cial

interventions in the FX market, which are not properly captured by any of the investigated

models based on monthly data. In this case, a setup with high-frequency data (beyond

the scope of this paper) could be further explored (see Kohlscheen and Andrade, 2013).28

4 Conclusion

This article has examined several density forecast models for the Brazilian foreign exchange

rate through the lens of a set of density forecasting evaluation and risk management tools.

We follow a strand of literature which goes beyond the conditional mean analysis and

focus on the entire density forecast of the FX rate. The objective is to contribute to

the literature by investigating which approaches are more useful in density forecasting

exchange rates.

Overall, the results point out to a general conclusion that no single model properly

accounts for the entire density in all considered forecast horizons (not even the RW-based

model). In fact, the choice of a density forecast model for the FX rate should depend on

the part of the conditional distribution of interest as well as on the forecast horizon (short-

run x long-run). The reason is that some models are more prone to produce good forecasts

at high (or low) percentiles of the FX rate density; which is in line with an asymmetric

response of covariates in respect to the exchange rate conditional distribution.

In other words, a given economic fundamental, for instance, which might be useless to

explain conditional mean exchange rate dynamics, might be adequate to explain upside

(or downside) risks of FX rate at a particular horizon. By focusing on the accuracy of

the methods in predicting the likelihood of (de)valuation events we are also able to select

models to be used for risk management purposes.

Our contribution is to provide a toolkit to evaluate available models according to

its forecasting performance for distinct parts of the distribution and di¤erent forecast

horizons, trying to bridge the gap between distinct literatures on international economics,

density forecasting and �nancial risk analysis. To do so, we proposed a global analysis as

well as a local analysis, which can reveal the suitable models for a determined goal.

Possible extensions of this research could incorporate: (i) other covariates to explain

28The authors investigate o¢ cial interventions in the Brazilian FX market (i.e. currency swap auctions, which

are focused on providing hedge to economic agents, liquidity to domestic FX market and reducing excessive market

volatility) based on high-frequency data.
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FX dynamics in long-run (e.g., commodity price index, as suggested by Kohlscheen, 2013);

(ii) additional density models (e.g., GARCH-in-mean); (iii) density forecast combination

(Hall and Mitchell, 2007; Jore et al., 2010; Kascha and Ravazzolo, 2010; Gaglianone and

Lima, 2014); (iv) risk assessment based on alternative risk measures (Artzner et al., 1999);

and (v) microstructure approach based on high frequency data. We leave these extensions

as suggestions for future research.
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Appendix

Table A.1 - Extended set of economic models, based on

Molodtsova and Papell (2009) and Wang and Wu (2012)

Model Label Covariate vector X0m;t

I Taylor rule model [1;�t � ��t ; y
gap
t � ygap�t ; qt]

II Taylor rule (PPP holds) [1;�t � ��t ; y
gap
t � ygap�t ]

III Taylor rule (PPP holds and smoothing) [1;�t � ��t ; y
gap
t � ygap�t ; it�1 � i�t�1]

IV Taylor rule (smoothing) [1;�t � ��t ; y
gap
t � ygap�t ; qt; it�1 � i�t�1]

V Absolute PPP model [1;qt]

VI Relative PPP model [1;�qt]

VII Monetary model [1; st � ((mt �m�
t )� (yt � y�t ))]

VIII Monetary model (weaker version) [1;�st � ((�mt ��m�
t )� (�yt ��y�t ))]

IX Forward premium model [1;it � i�t ]
Notes: �t(�

�
t ) is the CPI in�ation and y

gap
t (ygap�t ) is the output gap in the home (foreign) country,

it(i
�
t ) is the short-term interest rate in the home (foreign) country, and mt(m

�
t ) is the money supply

and yt(y
�
t ) is the output in the home (foreign) country.
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Figure A.1 - Conditional PDFs of R$/US$ at December 2012
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Figure A.2 - Conditional PDFs of R$/US$ at December 2012
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Figure A.3 - Conditional PDFs of R$/US$ at December 2009, 2010 and 2011

Recursive estimation (h=1, 3, 6, 9 and 12)
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Table A.2 - Diebold-Mariano-West test modi�ed by Harvey et al. (1997)
DMW test modified by Harvey et al. (1997): test statistic (p­value)

h 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
1 ­1.37 ­1.67 ­0.32 3.93 ­0.77 ­1.02 ­1.67 0.32 3.92 ­0.84

(0.17) (0.1) (0.75) (0) (0.44) (0.31) (0.1) (0.75) (0) (0.4)

2 ­0.81 ­1.05 0.60 2.75 ­0.86 ­0.89 ­1.05 ­0.60 2.81 ­1.32
(0.42) (0.3) (0.55) (0.01) (0.39) (0.38) (0.3) (0.55) (0.01) (0.19)

3 ­0.88 ­0.49 0.63 1.25 ­1.27 ­0.90 ­0.49 ­0.63 1.44 ­1.11
(0.38) (0.63) (0.53) (0.21) (0.21) (0.37) (0.63) (0.53) (0.15) (0.27)

4 ­0.77 1.25 ­0.91 0.34 ­1.40 ­0.89 1.25 0.91 0.28 ­1.20
(0.44) (0.22) (0.37) (0.73) (0.16) (0.38) (0.22) (0.37) (0.78) (0.23)

5 ­0.75 1.88 ­0.05 0.02 ­1.16 ­0.79 1.88 0.05 0.05 ­1.08
(0.45) (0.06) (0.96) (0.98) (0.25) (0.43) (0.06) (0.96) (0.96) (0.28)

6 ­0.79 1.98 ­1.30 0.03 ­1.27 ­0.75 1.98 1.30 ­0.30 ­1.11
(0.43) (0.05) (0.2) (0.98) (0.21) (0.46) (0.05) (0.2) (0.77) (0.27)

7 ­0.89 2.12 ­1.04 ­0.37 ­1.13 ­0.79 2.12 1.04 ­0.59 ­1.39
(0.38) (0.04) (0.3) (0.71) (0.26) (0.43) (0.04) (0.3) (0.56) (0.17)

8 ­0.95 2.42 ­1.74 ­0.17 ­1.08 ­0.79 2.42 1.74 ­0.24 ­1.03
(0.34) (0.02) (0.09) (0.86) (0.28) (0.43) (0.02) (0.09) (0.81) (0.31)

9 ­0.93 2.59 ­0.71 ­0.46 ­1.10 ­0.87 2.59 0.71 ­0.48 ­1.59
(0.35) (0.01) (0.48) (0.65) (0.28) (0.39) (0.01) (0.48) (0.64) (0.12)

10 ­0.91 3.12 ­1.25 ­0.39 ­1.19 ­0.85 3.12 1.25 ­0.39 ­1.28
(0.37) (0) (0.21) (0.69) (0.24) (0.4) (0) (0.21) (0.7) (0.2)

11 ­0.84 3.48 ­1.33 ­0.53 ­1.22 ­0.88 3.48 1.33 ­0.52 ­1.29
(0.4) (0) (0.19) (0.6) (0.23) (0.38) (0) (0.19) (0.61) (0.2)

12 ­0.91 3.79 0.59 ­0.51 ­1.27 ­0.88 3.79 ­0.59 ­0.45 ­1.18
(0.36) (0) (0.56) (0.61) (0.21) (0.38) (0) (0.56) (0.65) (0.24)

Model Model

Table A.3 - Global Coverage Rates (50%)
Panel 1 ­ Forecast coverage rates: % of actual outcomes inside the 50% interval band

h 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
1 0.57 0.53 0.50 0.61 0.48 0.56 0.53 0.47 0.53 0.49

(0.15) (0.54) (1) (0.02) (0.69) (0.31) (0.54) (0.54) (0.54) (0.84)

2 0.46 0.44 0.51 0.61 0.49 0.49 0.44 0.40 0.57 0.52
(0.48) (0.37) (0.93) (0.04) (0.92) (0.92) (0.37) (0.08) (0.21) (0.76)

3 0.38 0.39 0.52 0.51 0.55 0.36 0.39 0.50 0.44 0.48
(0.04) (0.08) (0.71) (0.88) (0.38) (0.02) (0.08) (1) (0.29) (0.76)

4 0.30 0.39 0.59 0.57 0.61 0.34 0.39 0.52 0.55 0.53
(0) (0.07) (0.24) (0.42) (0.14) (0.02) (0.07) (0.83) (0.56) (0.75)

5 0.20 0.38 0.47 0.54 0.62 0.29 0.38 0.34 0.53 0.49
(0) (0.05) (0.75) (0.68) (0.2) (0) (0.05) (0.07) (0.74) (0.91)

6 0.23 0.37 0.58 0.52 0.58 0.26 0.37 0.41 0.52 0.55
(0) (0.04) (0.4) (0.9) (0.35) (0) (0.04) (0.32) (0.89) (0.64)

7 0.14 0.37 0.51 0.50 0.53 0.27 0.37 0.37 0.50 0.51
(0) (0.02) (0.92) (1) (0.75) (0.01) (0.02) (0.18) (1) (0.92)

8 0.13 0.36 0.48 0.51 0.52 0.21 0.36 0.31 0.47 0.48
(0) (0.01) (0.85) (0.96) (0.87) (0) (0.01) (0.04) (0.83) (0.88)

9 0.13 0.35 0.51 0.50 0.52 0.20 0.35 0.28 0.48 0.45
(0) (0) (0.92) (1) (0.84) (0) (0) (0.03) (0.85) (0.68)

10 0.14 0.34 0.54 0.52 0.51 0.18 0.34 0.37 0.46 0.44
(0) (0) (0.72) (0.88) (0.96) (0) (0) (0.22) (0.73) (0.57)

11 0.15 0.34 0.56 0.49 0.52 0.12 0.34 0.35 0.49 0.43
(0) (0) (0.63) (0.93) (0.85) (0) (0) (0.19) (0.93) (0.54)

12 0.13 0.33 0.56 0.52 0.47 0.13 0.33 0.34 0.51 0.39
(0) (0) (0.55) (0.89) (0.82) (0) (0) (0.14) (0.96) (0.3)

Model Model

Note: The table includes in parentheses p-values for the null of correct coverage (empirical =

nominal rate of 50%), based on t-statistics using standard errors computed with the Newey-West

estimator, with a bandwidth of 0 at the 1-month horizon and 1.5�horizon for other horizons.
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Table A.4 - Global Coverage Rates (90%)
Panel 2 ­ Forecast coverage rates: % of actual outcomes inside the 90% interval band

h 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
1 0.90 0.88 0.90 0.97 0.91 0.90 0.88 0.85 0.86 0.88

(0.89) (0.46) (0.89) (0) (0.83) (0.89) (0.46) (0.21) (0.32) (0.46)

2 0.87 0.78 0.89 0.95 0.89 0.85 0.78 0.88 0.89 0.87
(0.49) (0.02) (0.89) (0.08) (0.89) (0.27) (0.02) (0.69) (0.9) (0.54)

3 0.77 0.67 0.93 0.91 0.93 0.79 0.67 0.87 0.85 0.88
(0.02) (0) (0.56) (0.67) (0.51) (0.03) (0) (0.6) (0.33) (0.75)

4 0.72 0.67 0.91 0.96 0.91 0.72 0.67 0.82 0.84 0.85
(0.01) (0) (0.77) (0.06) (0.76) (0.01) (0) (0.25) (0.3) (0.45)

5 0.62 0.66 0.90 0.92 0.89 0.63 0.66 0.85 0.80 0.87
(0) (0) (0.97) (0.54) (0.88) (0.01) (0) (0.55) (0.23) (0.7)

6 0.48 0.66 0.88 0.89 0.89 0.56 0.66 0.81 0.80 0.85
(0) (0) (0.79) (0.85) (0.89) (0) (0) (0.36) (0.27) (0.57)

7 0.44 0.66 0.90 0.89 0.90 0.52 0.66 0.81 0.78 0.84
(0) (0) (1) (0.85) (1) (0) (0) (0.4) (0.21) (0.58)

8 0.39 0.65 0.89 0.90 0.88 0.46 0.65 0.81 0.79 0.84
(0) (0) (0.86) (0.98) (0.75) (0) (0) (0.39) (0.23) (0.58)

9 0.36 0.65 0.91 0.85 0.95 0.44 0.65 0.76 0.77 0.85
(0) (0) (0.87) (0.51) (0.17) (0) (0) (0.25) (0.21) (0.63)

10 0.32 0.64 0.93 0.83 0.95 0.40 0.64 0.74 0.78 0.85
(0) (0) (0.51) (0.38) (0.18) (0) (0) (0.21) (0.27) (0.61)

11 0.30 0.64 0.92 0.87 0.93 0.37 0.64 0.76 0.81 0.84
(0) (0) (0.74) (0.67) (0.53) (0) (0) (0.21) (0.37) (0.54)

12 0.28 0.64 0.91 0.82 0.94 0.38 0.64 0.74 0.78 0.85
(0) (0) (0.93) (0.38) (0.29) (0) (0) (0.12) (0.26) (0.59)

Model Model

Note: The table includes in parentheses p-values for the null of correct coverage (empirical =

nominal rate of 90%), based on t-statistics using standard errors computed with the Newey-West

estimator, with a bandwidth of 0 at the 1-month horizon and 1.5�horizon for other horizons.
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Table A.5 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=2
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.13 0.19 0.14 0.02 0.09 0.09 0.19 0.18 0.05 0.09
0.2 0.23 0.29 0.27 0.12 0.23 0.19 0.29 0.34 0.16 0.19
0.3 0.35 0.39 0.43 0.21 0.34 0.27 0.39 0.49 0.18 0.28
0.4 0.52 0.47 0.53 0.34 0.47 0.40 0.47 0.57 0.36 0.39
0.5 0.61 0.56 0.65 0.49 0.65 0.54 0.56 0.65 0.49 0.49
0.6 0.68 0.66 0.73 0.57 0.71 0.62 0.66 0.72 0.56 0.66
0.7 0.73 0.74 0.79 0.63 0.76 0.71 0.74 0.81 0.69 0.71
0.8 0.77 0.81 0.87 0.80 0.84 0.74 0.81 0.88 0.77 0.80
0.9 0.89 0.88 0.94 0.92 0.89 0.83 0.88 0.91 0.88 0.88

Panel B ­ Kupiec (1995) test
h=2
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.41 0.01 0.25 0.00 0.86 0.86 0.01 0.02 0.09 0.86
0.2 0.45 0.03 0.08 0.03 0.45 0.80 0.03 0.00 0.29 0.80
0.3 0.32 0.06 0.01 0.05 0.44 0.57 0.06 0.00 0.01 0.74
0.4 0.02 0.15 0.01 0.20 0.15 1.00 0.15 0.00 0.40 0.83
0.5 0.03 0.26 0.00 0.92 0.00 0.47 0.26 0.00 0.92 0.92
0.6 0.09 0.20 0.01 0.53 0.03 0.67 0.20 0.02 0.40 0.20
0.7 0.57 0.43 0.05 0.15 0.21 0.91 0.43 0.01 0.91 0.91
0.8 0.45 0.80 0.06 1.00 0.29 0.14 0.80 0.03 0.45 1.00
0.9 0.87 0.62 0.20 0.60 0.87 0.04 0.62 0.86 0.62 0.62

Panel C ­ Christoffersen (1998) test
h=2
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.20 0.02 0.13 0.00 0.20 0.20 0.02 0.03 0.03 0.79
0.2 0.36 0.01 0.12 0.03 0.42 0.45 0.01 0.00 0.19 0.08
0.3 0.32 0.00 0.00 0.04 0.25 0.04 0.00 0.00 0.02 0.48
0.4 0.01 0.00 0.00 0.03 0.01 0.05 0.00 0.00 0.02 0.05
0.5 0.03 0.00 0.00 0.06 0.00 0.05 0.00 0.00 0.06 0.02
0.6 0.12 0.03 0.00 0.00 0.02 0.15 0.03 0.01 0.02 0.07
0.7 0.04 0.02 0.00 0.00 0.03 0.19 0.02 0.00 0.14 0.19
0.8 0.00 0.00 0.00 0.04 0.00 0.01 0.00 0.00 0.42 0.05
0.9 0.03 0.01 0.07 0.21 0.03 0.00 0.01 0.01 0.58 0.58

Panel D ­ VQR (2011) test
h=2
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.06 0.01 0.05 0.00 0.01 0.01 0.01 0.07 0.28 0.00
0.2 0.12 0.14 0.11 0.00 0.04 0.02 0.14 0.04 0.16 0.05
0.3 0.11 0.38 0.22 0.20 0.17 0.13 0.38 0.02 0.58 0.17
0.4 0.05 0.59 0.15 0.16 0.09 0.37 0.59 0.00 0.30 0.25
0.5 0.07 0.64 0.00 0.04 0.01 0.13 0.64 0.00 0.06 0.06
0.6 0.02 0.43 0.01 0.12 0.00 0.03 0.43 0.00 0.35 0.00
0.7 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.14 0.00
0.8 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.10 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model
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Table A.6 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=3
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.21 0.26 0.15 0.05 0.07 0.17 0.26 0.19 0.09 0.07
0.2 0.36 0.32 0.23 0.12 0.20 0.27 0.32 0.29 0.14 0.17
0.3 0.41 0.44 0.39 0.21 0.32 0.36 0.44 0.44 0.26 0.26
0.4 0.54 0.50 0.56 0.32 0.45 0.41 0.50 0.53 0.32 0.38
0.5 0.62 0.55 0.69 0.40 0.59 0.51 0.55 0.69 0.49 0.47
0.6 0.68 0.66 0.76 0.57 0.68 0.60 0.66 0.74 0.60 0.62
0.7 0.71 0.76 0.83 0.64 0.78 0.67 0.76 0.81 0.64 0.69
0.8 0.79 0.81 0.89 0.76 0.86 0.70 0.81 0.86 0.73 0.76
0.9 0.83 0.85 0.94 0.89 0.91 0.81 0.85 0.91 0.86 0.88

Panel B ­ Kupiec (1995) test
h=3
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.14 0.10 0.39 0.04 0.00 0.01 0.62 0.39
0.2 0.00 0.01 0.42 0.03 0.96 0.12 0.01 0.04 0.12 0.46
0.3 0.02 0.01 0.05 0.06 0.69 0.20 0.01 0.01 0.34 0.34
0.4 0.01 0.05 0.00 0.10 0.36 0.77 0.05 0.01 0.10 0.74
0.5 0.02 0.30 0.00 0.06 0.10 0.84 0.30 0.00 0.84 0.54
0.6 0.10 0.23 0.00 0.61 0.10 0.93 0.23 0.00 0.93 0.74
0.7 0.79 0.23 0.00 0.20 0.10 0.53 0.23 0.02 0.20 0.86
0.8 0.76 0.84 0.01 0.29 0.12 0.02 0.84 0.12 0.12 0.29
0.9 0.04 0.14 0.21 0.84 0.62 0.01 0.14 0.62 0.24 0.59

Panel C ­ Christoffersen (1998) test
h=3
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.14 0.22 0.25 0.06 0.00 0.01 0.06 0.25
0.2 0.00 0.00 0.33 0.01 0.05 0.00 0.00 0.02 0.01 0.10
0.3 0.00 0.00 0.00 0.01 0.11 0.02 0.00 0.00 0.02 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.18
0.7 0.00 0.01 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00

Panel D ­ VQR (2011) test
h=3
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.01 0.00 0.07 0.00 0.01 0.00 0.00 0.08 0.03 0.00
0.2 0.00 0.01 0.15 0.00 0.05 0.03 0.01 0.10 0.04 0.05
0.3 0.01 0.11 0.11 0.10 0.01 0.01 0.11 0.05 0.32 0.01
0.4 0.00 0.46 0.00 0.06 0.01 0.01 0.46 0.00 0.19 0.01
0.5 0.00 0.73 0.00 0.02 0.00 0.00 0.73 0.00 0.03 0.00
0.6 0.00 0.58 0.00 0.02 0.00 0.00 0.58 0.00 0.02 0.00
0.7 0.00 0.02 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model
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Table A.7 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=6
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.37 0.26 0.09 0.07 0.09 0.29 0.26 0.15 0.10 0.10
0.2 0.46 0.33 0.18 0.14 0.15 0.32 0.33 0.29 0.14 0.14
0.3 0.53 0.45 0.35 0.15 0.33 0.36 0.45 0.45 0.18 0.26
0.4 0.55 0.52 0.58 0.21 0.46 0.45 0.52 0.58 0.25 0.36
0.5 0.64 0.57 0.69 0.45 0.66 0.49 0.57 0.69 0.47 0.51
0.6 0.67 0.68 0.74 0.53 0.71 0.54 0.68 0.74 0.51 0.60
0.7 0.69 0.76 0.80 0.67 0.77 0.62 0.76 0.77 0.64 0.70
0.8 0.73 0.80 0.85 0.71 0.85 0.66 0.80 0.81 0.73 0.77
0.9 0.76 0.85 0.95 0.93 0.95 0.71 0.85 0.90 0.85 0.86

Panel B ­ Kupiec (1995) test
h=6
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.70 0.25 0.70 0.00 0.00 0.11 0.97 0.97
0.2 0.00 0.00 0.56 0.16 0.26 0.01 0.00 0.05 0.16 0.16
0.3 0.00 0.00 0.29 0.00 0.54 0.20 0.00 0.00 0.01 0.44
0.4 0.00 0.02 0.00 0.00 0.23 0.33 0.02 0.00 0.00 0.46
0.5 0.01 0.17 0.00 0.35 0.00 0.92 0.17 0.00 0.60 0.92
0.6 0.17 0.11 0.01 0.16 0.02 0.23 0.11 0.01 0.07 0.93
0.7 0.87 0.22 0.03 0.54 0.14 0.09 0.22 0.14 0.20 0.95
0.8 0.09 0.96 0.26 0.05 0.26 0.00 0.96 0.75 0.09 0.47
0.9 0.00 0.11 0.12 0.25 0.12 0.00 0.11 0.97 0.11 0.20

Panel C ­ Christoffersen (1998) test
h=6
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.25 0.00 0.00 0.00 0.00 0.01 0.00
0.2 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel D ­ VQR (2011) test
h=6
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.06 0.00 0.01 0.00 0.00 0.01 0.00 0.01
0.3 0.00 0.10 0.00 0.00 0.00 0.00 0.10 0.00 0.00 0.00
0.4 0.00 0.34 0.00 0.00 0.00 0.00 0.34 0.00 0.00 0.00
0.5 0.00 0.55 0.00 0.00 0.00 0.00 0.55 0.00 0.00 0.00
0.6 0.00 0.12 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model
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Table A.8 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=9
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.44 0.27 0.09 0.11 0.06 0.28 0.27 0.22 0.13 0.06
0.2 0.50 0.34 0.23 0.16 0.20 0.35 0.34 0.39 0.16 0.15
0.3 0.57 0.47 0.36 0.17 0.28 0.39 0.47 0.51 0.18 0.23
0.4 0.60 0.53 0.61 0.23 0.52 0.43 0.53 0.65 0.22 0.41
0.5 0.63 0.58 0.67 0.38 0.64 0.52 0.58 0.67 0.38 0.50
0.6 0.65 0.68 0.73 0.57 0.69 0.57 0.68 0.73 0.53 0.61
0.7 0.66 0.75 0.78 0.64 0.75 0.58 0.75 0.73 0.59 0.65
0.8 0.66 0.80 0.86 0.73 0.82 0.61 0.80 0.80 0.67 0.68
0.9 0.72 0.84 0.94 0.92 0.93 0.64 0.84 0.91 0.86 0.86

Panel B ­ Kupiec (1995) test
h=9
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.77 0.68 0.14 0.00 0.00 0.00 0.45 0.14
0.2 0.00 0.00 0.53 0.32 0.92 0.00 0.00 0.00 0.32 0.20
0.3 0.00 0.00 0.20 0.01 0.74 0.08 0.00 0.00 0.01 0.13
0.4 0.00 0.01 0.00 0.00 0.02 0.54 0.01 0.00 0.00 0.86
0.5 0.02 0.13 0.00 0.02 0.01 0.67 0.13 0.00 0.02 1.00
0.6 0.36 0.11 0.01 0.54 0.07 0.54 0.11 0.01 0.21 0.79
0.7 0.41 0.30 0.08 0.20 0.30 0.02 0.30 0.57 0.03 0.29
0.8 0.00 0.92 0.12 0.10 0.67 0.00 0.92 0.92 0.00 0.01
0.9 0.00 0.09 0.14 0.51 0.29 0.00 0.09 0.77 0.28 0.28

Panel C ­ Christoffersen (1998) test
h=9
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.00

Panel D ­ VQR (2011) test
h=9
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.4 0.00 0.07 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00
0.5 0.00 0.37 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00
0.6 0.00 0.50 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00
0.7 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model
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Table A.9 - Local coverage rates and backtests for selected percentiles
Panel A ­ Forecast coverage rates: % of actual outcomes below the nominal quantile level (tau)

h=12
tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.45 0.28 0.11 0.13 0.13 0.35 0.28 0.25 0.12 0.11
0.2 0.52 0.35 0.25 0.14 0.25 0.41 0.35 0.38 0.14 0.16
0.3 0.56 0.48 0.34 0.18 0.36 0.42 0.48 0.41 0.18 0.36
0.4 0.56 0.55 0.54 0.26 0.51 0.44 0.55 0.55 0.26 0.44
0.5 0.61 0.60 0.67 0.28 0.65 0.47 0.60 0.67 0.27 0.51
0.6 0.64 0.69 0.72 0.41 0.68 0.52 0.69 0.68 0.38 0.58
0.7 0.66 0.74 0.80 0.65 0.75 0.54 0.74 0.72 0.55 0.62
0.8 0.67 0.79 0.92 0.74 0.86 0.55 0.79 0.75 0.69 0.67
0.9 0.68 0.84 1.00 0.89 0.99 0.60 0.84 0.89 0.81 0.81

Panel B ­ Kupiec (1995) test
h=12

tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.86 0.38 0.38 0.00 0.00 0.00 0.60 0.86
0.2 0.00 0.00 0.29 0.16 0.29 0.00 0.00 0.00 0.16 0.40
0.3 0.00 0.00 0.41 0.01 0.20 0.02 0.00 0.03 0.01 0.20
0.4 0.00 0.00 0.01 0.01 0.05 0.51 0.00 0.00 0.01 0.51
0.5 0.04 0.06 0.00 0.00 0.01 0.59 0.06 0.00 0.00 0.91
0.6 0.50 0.07 0.02 0.00 0.12 0.12 0.07 0.12 0.00 0.66
0.7 0.41 0.40 0.04 0.29 0.28 0.00 0.40 0.72 0.00 0.13
0.8 0.01 0.79 0.00 0.19 0.16 0.00 0.79 0.29 0.02 0.01
0.9 0.00 0.07 0.00 0.86 0.00 0.00 0.07 0.86 0.01 0.01

Panel C ­ Christoffersen (1998) test
h=12

tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.7 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel D ­ VQR (2011) test
h=12

tau 1a 2a 3a 4a 5a 1b 2b 3b 4b 5b
0.1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.3 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.4 0.00 0.04 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
0.5 0.00 0.33 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00
0.6 0.00 0.28 0.00 0.00 0.00 0.00 0.28 0.00 0.00 0.00
0.7 0.00 0.03 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00
0.8 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

p­value for each model p­value for each model

Model Model

p­value for each model p­value for each model

p­value for each model p­value for each model
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