How much random does European Union walk?
A time-varying long memory analysis

A. Sensoy and Benjamin M. Tabak

December, 2013
How much random does European Union walk?

A time-varying long memory analysis

A. Sensoy∗†
Benjamin M. Tabak‡

Abstract

This paper proposes a new efficiency index to model time-varying inefficiency in stock markets. We focus on European stock markets and show that they have different degrees of time-varying efficiency. We observe that the 2008 global financial crisis has had an adverse effect on almost all EU stock markets. However, the Eurozone sovereign debt crisis has had a significant adverse effect only on the markets in France, Spain and Greece. For the late members, joining EU does not have a uniform effect on stock market efficiency. Our results have important implications for policy makers, investors, risk managers and academics.

Keywords: Long memory; European Union; Stock Market Efficiency; Generalized Hurst Exponent

JEL Classification: C00, C1, G01, G14, G15, N24

∗Borsa Istanbul, Research Department, Istanbul, Turkey 34467; Bilkent University, Department of Mathematics, Ankara, Turkey 06800
†Banco Central do Brasil, Research Department, Brazil
1 Introduction

Market efficiency has been widely discussed in financial literature. According to the weak form of Efficient Market Hypothesis (EMH) (Fama, 1970), stock prices follow a random walk, a term to denote the logic asserting that tomorrow’s price changes only reflect tomorrow’s news where news is assumed to be unpredictable hence price changes must be random (Malkiel, 2003). However, as far as financial markets are concerned, the notion of long memory was shown to exist in asset returns first by Mandelbrot (1971) and then by many others (See Fama and French (1988); Lo and Mackinlay (1988); Poterba and Summers (1988); Brock et al. (1992); Cochran et al. (1993)).

The presence of long memory brings out several problems: The investors’ preferred investment horizon becomes a risk factor (Mandelbort, 1997); the methods used to price financial derivatives (such as the Black and Scholes (1973) model) may no longer be valid;1 the usual tests based on the Capital Asset Pricing Model and Arbitrage Pricing Theory (Black et al., 1972) cannot be applied to series with long memory.2

This paper aims to compare the efficiency of all stock markets in European Union (EU) after the introduction of the Euro.3 This comparison is essential in many ways, for example; since not all EU members use Euro as their currency, it is an important question to answer if such a situation made any difference on the stock market efficiency in the last decade. A similar question arises due to the fact that some of the countries in our analysis joined EU or started to use Euro later than others in the time interval of our study. Furthermore, the study time line includes two major crisis; namely the 2008 global financial crisis and the Eurozone sovereign debt crisis.

In 2008, the US experienced a major financial crisis leading to one of the most serious recessions in history. The crisis spread to many foreign nations, especially in Europe, resulting in a global economic crisis. The crisis has had further developments in countries in Europe with weak fiscal discipline, leading to the European debt crisis. Six of the region’s countries; Greece, Portugal, Ireland, Italy, Spain, Cyprus, have struggled to fully pay back their bondholders. Although these six are seen as the most problematic, their possible default has far-reaching consequences beyond their borders. This study will also show the effects these crises have had on the efficiency of European stock markets.

1Jamdee and Los (2007) demonstrates how long memory phenomena can change European option values compared to the Black-Scholes model assumptions.

2Mandelbort (1971) notes that the arrival of new information can not be fully arbitraged away in the presence of long memory and asset pricing with martingale models cannot be obtained from arbitrage.

3The Euro is the second largest reserve currency as well as the second most traded currency in the world after the United States dollar.
This is the first study that compares relative efficiency of all stock markets in EU and we use the Hurst exponent in that purpose. Many previous weak-form EMH studies assume a fixed level of market efficiency throughout the entire estimation period. It is incorrect to assume that the market is perpetually in an equilibrium state (Lo, 2004, 2005). Hence, instead of regular static approaches, we use a time-varying approach to see the dynamics of the efficiency. Moreover, instead of the popular R/S (Hurst, 1951) and modified R/S (Lo, 1991) statistics approach, we use the generalized Hurst exponent (GHE) introduced by Barabasi and Vicsek (1991). It combines sensitivity to any type of dependence in the data and simplicity. Furthermore, since it does not deal with maxima and minima, it is less sensitive to outliers than the popular R/S statistics (Barabasi and Vicsek, 1991; Di Matteo et al., 2005). Besides, it is a stylized fact that the stock returns are not normally distributed and are heavy-tailed. Barunik and Kristoufek (2010) studies how the sampling properties of the Hurst exponent estimate change with fat tails by comparing the R/S analysis, multifractal detrended fluctuation analysis, detrending moving average and the generalized Hurst exponent approach in estimating the Hurst exponent on independent series with different heavy tails. They show that GHE is robust to heavy tails in the underlying process and provides the lowest variance.

Finally, we contribute to the literature by introducing a time-varying efficiency index that could be useful especially in analyzing the effects of exogenous events on the efficiency level.

The structure of the paper is as follows: Section 2 gives a brief literature review on the efficiency of European stock markets. Section 3 explains the methodology used in this study. Section 4 presents the data and the results. Finally section 5 includes some discussion and offers a brief conclusion.

2 Review of past studies on the efficiency of European stock markets

The efficiency of stock markets has been a subject of much attention in the empirical finance literature. The literature that focus on European stock markets has employed various methodologies. However, the literature provides mixed evidence. Cheung and Lai (1995) found no evidence of long memory in major European stock markets using a modified R/S test and a fractional differencing test. Using the modified R/S statistic, Jacobsen (1996) shows that none of the return series of indexes of five major European countries exhibits long memory. Lux (1996), applying three different concepts for the identification of long memory effects, virtually found no evidence of such behavior in German stock

For example see Sadique and Silvapule (2001); Cajueiro and Tabak (2004, 2007, 2008); Kim and Shamsuddin (2008); Lim and Kim (2011); Goddard and Onali (2012); Spierdijk et al. (2012); Sensoy (2013) for international stock markets.
market returns. Dockery and Kavussanos (1996) performs unit root tests using panel data to investigate empirically stock price efficiency of the Athens stock market and their Wald test statistics reject the random walk hypothesis for stock prices. However, using time-varying global Hurst exponents, Cajueiro et al. (2009) show that after the financial liberalization in Greece, stock market efficiency has significantly improved in time.

Booth and Koutmos (1998) studies four major European stock markets by modeling their returns as conditionally heteroskedastic processes with time dependent serial correlation. Their evidence suggests that returns in these markets are non-linearly dependent on their past history. Vir (2000) examines the long memory property in Finnish stock market by various alternative test procedures. The results give some evidence on long memory but do not overwhelmingly support their existence in the Finnish stock market. Areal and Armada (2002) find tendencies towards mean aversion and mean reversion in Portuguese stock market using several methodologies, however they notice that results are very sensitive to the methodology used and the significance tests performed. Smith and Ryoo (2003) test the assertion that stock prices of five European emerging markets; Greece, Hungary, Poland, Portugal and Turkey, follow a random walk using the multiple variance ratio test. The assertion is rejected in all cases except Turkish stock market. Fifield et al. (2005) test the validity of the weak form of EMH for a selection of 11 European stock markets. Their findings indicate that the emerging markets included in their study are informationally inefficient; they display some degree of predictability in their returns, although the developed markets do not.

Lately, Hurst exponent became very popular in analyzing the stock market efficiency. Cajueiro and Tabak (2006) present empirical evidence of short and long-run predictability in stock returns for European transition economies using Hurst exponent. Furthermore, they find that this long-range dependence is strongly time-varying. With a similar methodology, Onali and Goddard (2009) test for random walk behavior in the Italian stock market. They reveal that departure from random walk behavior is statistically significant on standard criteria. Later in another study, Onali and Goddard (2011) analyze long memory in the returns of eight European stock market indexes and find strong evidence of long memory for the stock market of Czech Republic, and a weaker evidence for the stock markets of Spain and Switzerland.

Borges (2010) tests the weak form EMH on stock market indexes of UK, France, Germany, Spain, Greece and Portugal using a runs test and joint variance ratio tests. This hypothesis is rejected in Portugal, Greece, France and UK, however it is not rejected in Germany and Spain. Smith (2012) tests for random walk behavior of 15 European stock markets with a rolling window variance ratio tests. He finds that the most efficient are the Turkish, UK, Hungarian and Polish markets and the least efficient are the Ukrainian, Maltese and Estonian stock markets. Furthermore, the 2008 financial crisis coincides with
return predictability in the Croatian, Hungarian, Polish, Portuguese, Slovakian and UK stock markets. However, the crisis had little effect on weak form efficiency in stock markets of Greece, Latvia, Romania, Russia and Turkey.

Based on the above studies, one could state that efficiency analyzes for European stock markets do not come to a unified conclusion and the results vary in time.

3 Methodology

Several methods have been proposed to analyze the long memory in time series\(^5\) and the literature review shows that the two most common techniques used for European stock markets are the modified R/S analysis and the variance ratio tests. However, in this study we will follow a different methodology. We are interested in the degree of long memory of a given stochastic process \(S(t)\) with \(t = (1, 2, ..., \Delta t)\) defined over a time window \(\Delta t\) with unitary time steps and we use \(H(q)\) as a measure of long memory.\(^6\) It is a generalization of the approach proposed by Hurst (1951) and it may be evaluated using the \(q^{th}\)-order moments of the distribution of increments, which is a good characterization of the statistical evolution of \(S(t)\) (Barabasi and Vicsek, 1991),

\[
K_q(\tau) = \frac{< |S(t + \tau) - S(t)|^q >}{< |S(t)|^q >} \tag{1}
\]

where \(\tau\) can vary between 1 and \(\tau_{max}\) and \(< ... >\) denotes the sample average over the time window.\(^7\) \(H(q)\) is then defined for each time scale \(\tau\) and each parameter \(q\) as

\[
K_q(\tau) \propto \tau^{qH(q)} \tag{2}
\]

\(^5\)See Taqqu et al. (1995) for a survey of these methods.

\(^6\)In financial applications, \(S(t)\) is the log-prices for stock markets.

\(^7\)For \(q = 1\), eq.(1) describes the scaling behavior of the absolute increments and it is expected to be closely related to the original Hurst exponent which is indeed associated with the scaling of the absolute spread in the increments (Di Matteo, 2007). Therefore, in this work, we focus on the case \(q = 1\). For \(q = 2\), \(K_q(\tau)\) is proportional to the autocorrelation function \(C(t, \tau) = < S(t + \tau)S(t) >\).
$H(q)$ is computed through a linear least squares fitting\(^8\) using a set of values corresponding to different values of τ_{max} in eq. (1).\(^9\) For any value of q, $H(q) = 0.5$ means that $S(t)$ does not exhibit long memory, while $H(q) > 0.5$ and $H(q) < 0.5$ implies that $S(t)$ is persistent and mean-reverting respectively.\(^10\)

3.1 Calculation of the standard errors

The standard errors of the $H(1)$ estimates are found by employing a pre-whitening and post-blackening bootstrap approach of Grau-Carles (2005) that also previously used by Cajueiro and Tabak (2008, 2010) and Souza et al. (2008). The methodology can be summarized as follows:

1. Obtain the log-returns $r(t)$ from log-prices.
2. Do the pre-whitening by estimating an $AR(p)$ model for log-returns with p sufficiently high (we take p from 1 to 30). The order of the AR is estimated through the Akaike information criteria.
3. Obtain the residuals $\epsilon(t)$ of the AR model from the historical sequence.
4. Obtain the simulated innovations by bootstrapping $\epsilon(t)$ using the circular block bootstrap (Politis and Romano, 1992), where the choice of block length is given by the rule provided in Politis and White (2004).\(^11\)
5. The post-blackening is made, adding the innovations series generated by bootstrap to the model whose parameters were generated in the pre-whitening, to obtain the synthetic log-return series.
6. The synthetic log-prices are recovered recursively from bootstrap samples of synthetic log-returns.
7. For each synthetic log-prices, the $H_b(1)$ is estimated.

We run 100 bootstrap samples and estimate $H(1)$ for them. Then the standard deviation $S(H_b(1))$ of these estimates taken as a proxy for the standard error of generalized Hurst exponents. At the end

\(^8\)Observe that relation (2) leads to $\ln K_q(\tau) = qH(q) \ln \tau + C$.

\(^9\)In the spirit of Di Matteo et al. (2005), we let τ_{max} vary between 5 to 19 days.

\(^10\)Processes with a scaling behavior of (2) may be divided into two classes: (i) unifractal processes that $H(q)$ is independent of q i.e. $H(q) = H$ or (ii) multifractal processes that $H(q)$ is not constant and each moment scales with a different exponent. Previous researches (Xu and Gencay, 2003; Cajueiro and Tabak, 2004, 2005; Di Matteo et al., 2005) show that financial time series exhibit multifractal scaling behavior. Calvet and Fisher (2002) explore the implications of multifractality and suggest new models for forecasting which are competitors to GARCH models.

\(^11\)We use the rule corrected in 2009.
of the process, the Wald statistic\(^\text{12}\) is given by \(W = \left(\frac{H(1) - 0.5}{S(H(1))}\right)^2\) and it tests the null hypothesis of long memory does not exist.

4 Data and Results

We consider daily prices of all stock markets in the European Union (current members) after the introduction of Euro (covers a time period between 02/01/1999 and 25/02/2013). This condition gives us 27 markets to consider which are listed in Table 1 in the A.

4.1 Dynamic approach and an efficiency ranking

We use a rolling sample approach, therefore we do not have to use a strict cut off date which is usually subject to criticism. Even when an important event occurs such as a financial crisis, it may take a long time for its full effect to take place. Similarly, possible structural breaks must be taken into account when analyzing financial time series, since arbitrarily chosen sub-samples or non-overlapping intervals could not capture this dynamic.\(^\text{13}\)

Recent studies using rolling window approach revealed that market efficiency evolves over time. In order to see if this is the case, we choose a 4 year (1008 observations) time-window (that shift 22 points at a time) since it corresponds to the duration of political cycles in most of the countries under our study and it is large enough to provide satisfactory statistical significance.

We use an approach similar to those of Zunino et al. (2007); Lim (2007) and Lim et al. (2008): For each window, we calculate \(H(1)\) and its standard errors to obtain the Wald statistic \(W\). Then, we call a window significant if the null hypothesis of efficiency is rejected (naturally, we call it insignificant if efficiency is not rejected). The rolling window approach reveals how often the long memory hypothesis is rejected by the selected test statistic, and hence the percentage of sub-samples with an insignificant test statistic (which we call efficiency ratio) can be used to compare the relative efficiency of our 27 stock markets (See Table 1 for a relative efficiency ranking).

For all stock markets, Figure 1 presents the time-varying \(H(1)\) with a black curve (The descriptive statistics of the time-varying \(H(1)\) can be found in Table 2 in the A). Figure 1 also displays the dynamic rejection status of efficiency by blue and red markers denoting the rejection of efficiency at 5% and 1% significance levels respectively.

\(^{12}\)The \(W\) has a \(\chi^2\) distribution (Tabak and Cajueiro, 2006; Cajueiro and Tabak, 2008; Souza et al., 2008).

\(^{13}\)There is an expanding literature tracking the evolution of market efficiency over time by means of a time-varying parameter model or a rolling estimation window. For details, see the survey paper by Lim and Brooks (2011).
Figure 1: continued on next page
Figure 1: Black curves are the time-varying $H(1)$ of stock markets in European Union obtained from a 4 year length rolling window. Blue and red markers denote the rejection of efficiency at 5% and 1% significance levels respectively.
Table 1: Efficiency ranking of stock markets based on analysis with a rolling window of 4 year length

<table>
<thead>
<tr>
<th>Market</th>
<th>Sig. windows (5%)</th>
<th>Sig. windows (1%)</th>
<th>Total windows</th>
<th>Eff. ratio (5%)</th>
<th>Eff. ratio (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Denmark</td>
<td>11</td>
<td>3</td>
<td>115</td>
<td>90.4%</td>
<td>97.4%</td>
</tr>
<tr>
<td>Hungary</td>
<td>12</td>
<td>1</td>
<td>115</td>
<td>89.6%</td>
<td>99.1%</td>
</tr>
<tr>
<td>Italy</td>
<td>17</td>
<td>5</td>
<td>117</td>
<td>85.5%</td>
<td>95.7%</td>
</tr>
<tr>
<td>Finland</td>
<td>18</td>
<td>8</td>
<td>115</td>
<td>84.4%</td>
<td>93.0%</td>
</tr>
<tr>
<td>Belgium</td>
<td>29</td>
<td>21</td>
<td>118</td>
<td>75.4%</td>
<td>82.2%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>32</td>
<td>13</td>
<td>115</td>
<td>72.2%</td>
<td>88.7%</td>
</tr>
<tr>
<td>Germany</td>
<td>37</td>
<td>19</td>
<td>117</td>
<td>68.4%</td>
<td>83.8%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>40</td>
<td>18</td>
<td>118</td>
<td>66.1%</td>
<td>84.8%</td>
</tr>
<tr>
<td>Spain</td>
<td>52</td>
<td>35</td>
<td>116</td>
<td>55.2%</td>
<td>69.8%</td>
</tr>
<tr>
<td>Poland</td>
<td>58</td>
<td>41</td>
<td>115</td>
<td>49.6%</td>
<td>64.4%</td>
</tr>
<tr>
<td>Austria</td>
<td>58</td>
<td>36</td>
<td>113</td>
<td>48.7%</td>
<td>68.1%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>70</td>
<td>59</td>
<td>115</td>
<td>39.1%</td>
<td>48.7%</td>
</tr>
<tr>
<td>Ireland</td>
<td>73</td>
<td>56</td>
<td>116</td>
<td>37.1%</td>
<td>51.7%</td>
</tr>
<tr>
<td>Greece</td>
<td>78</td>
<td>62</td>
<td>114</td>
<td>31.6%</td>
<td>45.6%</td>
</tr>
<tr>
<td>Latvia</td>
<td>78</td>
<td>72</td>
<td>105</td>
<td>25.7%</td>
<td>31.4%</td>
</tr>
<tr>
<td>Sweden</td>
<td>86</td>
<td>60</td>
<td>115</td>
<td>25.2%</td>
<td>47.8%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>90</td>
<td>89</td>
<td>109</td>
<td>17.4%</td>
<td>18.4%</td>
</tr>
<tr>
<td>Portugal</td>
<td>97</td>
<td>93</td>
<td>117</td>
<td>17.1%</td>
<td>20.5%</td>
</tr>
<tr>
<td>France</td>
<td>99</td>
<td>83</td>
<td>118</td>
<td>16.1%</td>
<td>29.7%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>59</td>
<td>52</td>
<td>66</td>
<td>10.6%</td>
<td>21.2%</td>
</tr>
<tr>
<td>UK</td>
<td>106</td>
<td>94</td>
<td>116</td>
<td>8.6%</td>
<td>19.0%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>46</td>
<td>35</td>
<td>50</td>
<td>8.0%</td>
<td>30.0%</td>
</tr>
<tr>
<td>Romania</td>
<td>109</td>
<td>103</td>
<td>112</td>
<td>2.7%</td>
<td>8.0%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>92</td>
<td>91</td>
<td>93</td>
<td>1.1%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Malta</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Estonia</td>
<td>116</td>
<td>116</td>
<td>116</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

1. A significant window ($\alpha\%$) is a window where market efficiency is rejected at $\alpha\%$ significance level.
2. Efficiency ratio is calculated by dividing the number of insignificant windows by total number of windows.
3. Ordering from top to down is in descending order of efficiency based on the efficiency ratio (5%).
First thing to notice in Figure 1 is that all stock markets have different degrees of time-varying efficiency. According to Table 1, the group of most efficient markets include Denmark, Hungary, Italy and Finland. For all these markets, the efficiency ratio is above 80% at both 0.05 and 0.01 significance levels. These are followed by a second group of markets consisting of Belgium, Czech Republic, Germany and Netherlands. For this group, the efficiency ratio is above 60% at both 0.05 and 0.01 significance levels. A thing to notice is that for both groups, 3/4 of the markets are developed i.e. only Hungary in group one and Czech Republic in group two can be considered as emerging markets. On the other hand, the group of least efficient markets include Romania, Bulgaria, Malta, Estonia and Lithuania. At both 0.05 and 0.01 significance levels, efficiency ratios are below 10% for these markets. The findings give us evidence for developed markets being more efficient than emerging markets in the EU which is in parallel with findings of Di Matteo et al. (2005) and Fifield et al. (2005). However, an exceptional case exists: While being Europe’s two of the largest financial markets, France and UK have unexpected performances in terms of efficiency with efficiency ratios below 30% at both 0.05 and 0.01 significance levels. This situation supports the findings of Borges (2010) and contradicts with those of Smith (2012) who states that UK is one of the most efficient markets in the Europe.

As mentioned before, time interval of our study includes the 2008 global financial crisis and the Eurozone sovereign debt crisis. The time-varying $H(1)$s in Figure 1 tell us that stock market efficiency reacts to the 2008 crisis basically in one of the following ways.

1. Efficiency is adversely affected but recovers in a very short time interval.

2. Efficiency is adversely affected then recovers, however this recovery time can take up to 3-24 months.

3. Efficiency is adversely affected and a recovery is not observed.

Stock markets of Germany, Italy, Netherlands, Spain, Austria, Denmark, Czech Republic, Hungary and Poland belong to first group while stock markets of Belgium, Luxembourg, Ireland, Portugal, Greece and Latvia belong to second one. The third group consists of Malta, Slovakia, Estonia, UK, Sweden, Lithuania, Bulgaria and Romania (we could not strictly categorize the few remaining markets). Contents of the groups reveal a direct relationship between market maturity and the recovery speed of a market in terms of efficiency. One thing to notice is that Hungary, Poland, Czech Republic, UK and Sweden do not use Euro which may suggest that not using Euro could be advantageous for emerging markets and disadvantageous for developed markets in terms of efficiency during a financial crisis. On the other hand Denmark, a developed market but does not belong to Eurozone, is one of the most efficient markets among EU members (both during the 2008 crisis and all time period) hence we could not obtain strict conclusions.
During the sovereign debt crisis (that appeared around mid-2010), the stock market efficiency do
not seem to be effected as seriously as it did in the 2008 crisis. Indeed, the obvious adverse effects are
only seen in France, Spain and Greece. No serious effect is observed in the other problematic countries
Portugal, Ireland and Italy. Moreover, Italy is one of the most efficient stock markets during this time
period, and at the same time convergence to efficiency is observed in the markets of Ireland and Portugal.

Another important observation is the convergence of markets in Poland, Czech Republic, Latvia
towards efficiency after joining EU in 2004. While this behavior was permanent in Poland and Czech
Republic, it was temporary for Latvia. Such a convergence is not observed at all in other late members of
EU; Malta, Slovakia, Estonia, Lithuania, Romania and Bulgaria. Furthermore, stock market of Slovakia
diverges from efficiency after a short time from joining EU. These different outcomes show that joining
EU does not have the same qualitative effect on stock market efficiency.

With a similar approach we may hope to observe the effects of adopting Euro as a currency on
stock market efficiency: Slovenia, Cyprus, Malta, Slovakia and Estonia adopted Euro as their currency
between 2007-2011 however this time interval coincides with the two major crisis, thus the time series is
contaminated by these events.

An explanation for the different impact on European stock markets is that there may be differences
in market microstructure. In some countries institutional investors may play an important role and if
they trade on information stock markets could become more efficient. Furthermore, European global
investors may be targeting specific countries rather than all of them to construct a diversified global
portfolio. In some countries it can be easier to invest either due to the market size, or to local regulation.
These differences can help explain the changes in efficiency over time and whether specific countries will
converge towards more efficient markets.

4.2 Robustness check

The numerical stability of the estimation of \(H(1) \) was well studied previously by Di Matteo et al.
(2003, 2005) and Di Matteo (2007) by comparing theoretical Hurst exponents with the results of Monte
Carlo simulations using different random number generators. In this part, we test the robustness of
our standard errors using the Jackknife method (Kunsch, 1989) following the steps of Di Matteo et al.
(2005). For each stock market, considering the whole time period, we take out randomly 10% of the
sample, calculate \(H(1) \) and iterate this procedure 10 times where each time we take out the data which
were not taken out previously. We observe that the mean value of \(H(1) \)s obtained from the Jackknife
sample is very close to the original \(H(1) \) estimate. Also 75% of the time, max and min values of \(H(1) \)
obtained from Jackknifed samples stay in the interval defined by \(H(1) \pm \)standard errors. Furthermore,
when we redo this Jackknife procedure by taking out 5% of the sample at a time, this ratio goes up to 85% (See Figure 2 for the detailed results). These ratios are considered to be successful if we take into account that we have two major crisis in the sample period.

On the other hand, in studies with a rolling window, window length can be a controversial subject. In order to see if our efficiency ranking is robust, we repeat our study with a 2 year (504 observations) time-window that shift 22 points at a time. The new ranking is given in Table 3 in the A and it is consistent with our previous ranking.

4.3 A time-varying efficiency index

While approaches as in Figure 1 are very handy in analyzing the qualitative changes in time-varying stock market efficiency, a quantitative measure could be useful for further research. In that manner, we introduce an efficiency index. First idea was to construct an index that at any given time t, it would display the ratio of insignificant windows up to time t to total windows up to time t. However such construction gives equal weight to each window and eventually makes it difficult to observe the late impacts when the time interval gets larger.

Thus, we construct a modified model as follows: For a stock market, suppose we have a total number of N windows and t is a time variable taking values from the set $\{1, 2, ..., N\}$. Let E_t be a $1 \times t$ vector, where the i^{th} column of E_t is 1 if efficiency is not rejected in the i^{th} window, and 0 otherwise. As easily understood, size of E_t increases by one column at each time step. Now, let P_t be a $1 \times t$ vector such that for any given t, the k^{th} column of P_t is $1/\sqrt{(t-k+1)}$ where $k \in \{1, 2, ..., t\}$. Then the time-varying efficiency index is constructed as the following,

$$\text{efficiency index}(t) = \frac{E_t \cdot P_t}{I_t \cdot P_t}$$

where I_t is the $1 \times t$ identity vector and \(\cdot \) is the vector inner product.

To put it in a more conventional way, at any given time t, $\text{efficiency index}(t)$ measures a weighted ratio of insignificant windows over total windows up to time t where the largest weight is given to the latest efficiency status, and the past weights decay as a power law. Hence, the past is never forgotten. However, the latest status mostly characterizes the index value. By construction, efficiency index can

\footnote{The $H(1)$ estimates in Figure 2 together with the median values in Table 2 reveal that while emerging markets are persistent, developed markets are mean-reverting in the union.}

\footnote{The ranking is still consistent even with a 1 year length rolling window. For space saving purposes, data is not presented here however, all of it can be obtained upon request.}
Figure 2: $H(1)$ and ±standard errors together with Jackknife fluctuation band (see upper sub-figure for the Jackknife with a 10% out of sample procedure and lower sub-figure for the 5% out of sample procedure) and the efficiency line $H(1) = 0.5$.

Note: For the 10% out of sample Jackknife procedure, Jackknife fluctuation band stays within the $H(1)$±standard errors 75% of the time. For the 5% out of sample case, Jackknife fluctuation band stays within the $H(1)$±standard errors 85% of the time. Figure 2 also reveals that while emerging markets are persistent, developed markets are mean-reverting.
take values between 0% and 100% where the previous and the latter correspond to complete inefficiency and complete efficiency respectively.

For each stock market, efficiency indexes are given in Figure 3. As of February 2013, the highest five efficiency index values are as follows;\(^{16}\) Hungary: 92.5%, Italy: 86.8%, Finland: 83.0% and Denmark: 81.4%. The rest is below 80%.\(^{17}\) The conclusions we obtained in the previous section can be observed in Figure 3 easily.

5 Conclusion

As much as being a vital concept, market efficiency has been a controversial subject for a lot of academicians and practitioners. Moreover, it is not easy to validate it qualitatively nor to measure it quantitatively. Bearing this fact in mind, this paper investigates the long memory in stock markets in the EU after the introduction of Euro by using generalized Hurst exponent with a rolling window approach. The major findings of the study are summarized as follows. First, all stock markets have different degrees of time-varying long memory. Our dynamic approach reveals that the most efficient stock markets belong to Denmark, Hungary, Italy and Finland while the least efficient ones are in Lithuania, Estonia, Malta and Bulgaria. The empirical evidence shows that market efficiency is positively related with the market maturity, however an exceptional case exists for the stock markets of the UK and France which are found to be relatively inefficient compared to mid-sized markets of EU.

The literature on random walk behavior has found evidence that long-term autocorrelations are negative. Therefore, stock market returns are mean reverting in the long run. This implies that Hurst exponents should be below the 0.5 threshold. However, in several countries we observe Hurst exponents consistently above 0.5 which implies market aversion and persistent behavior. This suggests, that in some stock markets there seems to be prolonged periods with prices deviating from fundamentals. This phenomena can be due to some sort of irrational behavior or due to market microstructure issues. Further research could exploit these issues in depth to gain a better understanding of the deviations from market efficiency.

The studied time line includes two major crisis namely; the 2008 global financial crisis and the Eurozone sovereign debt crisis. Our dynamic approach reveals that while the 2008 crisis has an adverse effect on all stock markets of EU in terms of efficiency, the effect of sovereign debt crisis is limited to

\(^{16}\)Where significance level is taken to be 0.05 for the rejection of efficiency in a window. See the blue curves in Figure 3.

\(^{17}\)If the significance level is taken to be 0.01 in the same case, the highest efficiency index values as of February 2013 are Hungary: 99.4%, Italy: 97.0%, Finland: 92.2%, Denmark: 91.4%, Czech Republic: 90.7%, Germany: 89.1% and Netherlands: 89.0%. The rest is below 80%. See the red curves in Figure 3.
Figure 3: Efficiency index for each stock market in the European Union
France, Spain and Greece. Moreover, in general, market maturity is inversely related to the recovery time (in terms of efficiency) from the crisis. We could not obtain a strict conclusion on the effects of the usage of Euro on stock market efficiency. Similarly, we have mixed results on the effects of joining EU: while stock markets of Czech Republic and Poland converge to efficiency in a short time with a permanent characteristic, this effect has been temporary or not observed in other late members of EU.

After checking the robustness of our results, we finally introduce a time-varying stock market efficiency index that uses aggregate data and able to capture the dynamics of efficiency at any given time. We believe the index can provide guidance for policymakers, investors and portfolio managers.

Further research could explore the difference in stock market microstructure within these countries. These differences may explain how these markets react to external shocks and how they are absorbed by domestic prices. Taking into account liquidity, market depth, the role of institutional investors may provide additional useful information on the dynamics of stock markets and it seems an important step to be taken in the research agenda.

References

Table 1: Analyzed stock markets

<table>
<thead>
<tr>
<th>Country</th>
<th>Stock market index*</th>
<th>European Union</th>
<th>Eurozone</th>
<th>Time of study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>BEL 20</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>France</td>
<td>CAC 40</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Germany</td>
<td>DAX</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Italy</td>
<td>FTSEMIB</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>LUXXX</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Netherlands</td>
<td>AEX</td>
<td>1952</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Ireland</td>
<td>ISEQ</td>
<td>1973</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Portugal</td>
<td>PSI 20</td>
<td>1973</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Spain</td>
<td>IBEX 35</td>
<td>1986</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Austria</td>
<td>ATX</td>
<td>1995</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Finland</td>
<td>OMX Helsinki</td>
<td>1995</td>
<td>1999</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Slovenia</td>
<td>SBITOP</td>
<td>2004</td>
<td>2007</td>
<td>2003-2013</td>
</tr>
<tr>
<td>Cyprus</td>
<td>CYSM/MAPA</td>
<td>2004</td>
<td>2008</td>
<td>2004-2013</td>
</tr>
<tr>
<td>Malta</td>
<td>MALTEX</td>
<td>2004</td>
<td>2008</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Slovakia</td>
<td>SKSM</td>
<td>2004</td>
<td>2009</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Estonia</td>
<td>TALSE</td>
<td>2004</td>
<td>2011</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Denmark</td>
<td>OMX Kopenhagen</td>
<td>1973</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>UK</td>
<td>FTSE 100</td>
<td>1973</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Sweden</td>
<td>OMX Stockholm</td>
<td>1995</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>PX</td>
<td>2004</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Hungary</td>
<td>BUX</td>
<td>2004</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Latvia</td>
<td>OMX Riga</td>
<td>2004</td>
<td>not member</td>
<td>2000-2013</td>
</tr>
<tr>
<td>Lithuania</td>
<td>OMX Vilnius</td>
<td>2004</td>
<td>not member</td>
<td>2000-2013</td>
</tr>
<tr>
<td>Poland</td>
<td>WIG 20</td>
<td>2004</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>SOFIX</td>
<td>2007</td>
<td>not member</td>
<td>2000-2013</td>
</tr>
<tr>
<td>Romania</td>
<td>BET</td>
<td>2007</td>
<td>not member</td>
<td>1999-2013</td>
</tr>
</tbody>
</table>

*Data obtained from Bloomberg.
Table 2: Descriptive statistics of the time-varying $H(1)$ obtained from a rolling window of 4 year length

<table>
<thead>
<tr>
<th>Market</th>
<th>Median</th>
<th>Mean</th>
<th>Max</th>
<th>Min</th>
<th>Std</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>J-B p-value</th>
<th>S-W p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>0.503</td>
<td>0.505</td>
<td>0.560</td>
<td>0.442</td>
<td>0.024</td>
<td>0.09</td>
<td>2.96</td>
<td>0.500</td>
<td>0.224</td>
</tr>
<tr>
<td>France</td>
<td>0.450</td>
<td>0.450</td>
<td>0.489</td>
<td>0.396</td>
<td>0.022</td>
<td>-0.15</td>
<td>2.39</td>
<td>0.244</td>
<td>0.396</td>
</tr>
<tr>
<td>Germany</td>
<td>0.478</td>
<td>0.482</td>
<td>0.524</td>
<td>0.437</td>
<td>0.018</td>
<td>0.02</td>
<td>2.73</td>
<td>0.500</td>
<td>0.388</td>
</tr>
<tr>
<td>Italy</td>
<td>0.497</td>
<td>0.495</td>
<td>0.533</td>
<td>0.457</td>
<td>0.017</td>
<td>-0.14</td>
<td>2.51</td>
<td>0.396</td>
<td>0.998</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>0.538</td>
<td>0.554</td>
<td>0.652</td>
<td>0.455</td>
<td>0.053</td>
<td>0.38</td>
<td>1.77</td>
<td>0.016</td>
<td>0.000</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.491</td>
<td>0.490</td>
<td>0.543</td>
<td>0.440</td>
<td>0.024</td>
<td>0.06</td>
<td>2.11</td>
<td>0.091</td>
<td>0.112</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.532</td>
<td>0.533</td>
<td>0.586</td>
<td>0.454</td>
<td>0.030</td>
<td>-0.28</td>
<td>2.77</td>
<td>0.326</td>
<td>0.120</td>
</tr>
<tr>
<td>Portugal</td>
<td>0.560</td>
<td>0.559</td>
<td>0.594</td>
<td>0.476</td>
<td>0.031</td>
<td>-1.24</td>
<td>3.43</td>
<td>0.001</td>
<td>0.000</td>
</tr>
<tr>
<td>Spain</td>
<td>0.475</td>
<td>0.475</td>
<td>0.520</td>
<td>0.437</td>
<td>0.017</td>
<td>0.25</td>
<td>2.73</td>
<td>0.396</td>
<td>0.873</td>
</tr>
<tr>
<td>Austria</td>
<td>0.526</td>
<td>0.522</td>
<td>0.562</td>
<td>0.452</td>
<td>0.024</td>
<td>-0.50</td>
<td>2.81</td>
<td>0.062</td>
<td>0.034</td>
</tr>
<tr>
<td>Finland</td>
<td>0.505</td>
<td>0.506</td>
<td>0.549</td>
<td>0.467</td>
<td>0.018</td>
<td>0.14</td>
<td>2.47</td>
<td>0.344</td>
<td>0.923</td>
</tr>
<tr>
<td>Greece</td>
<td>0.545</td>
<td>0.545</td>
<td>0.607</td>
<td>0.496</td>
<td>0.028</td>
<td>0.12</td>
<td>1.94</td>
<td>0.048</td>
<td>0.008</td>
</tr>
<tr>
<td>Slovenia</td>
<td>0.582</td>
<td>0.574</td>
<td>0.636</td>
<td>0.521</td>
<td>0.027</td>
<td>-0.34</td>
<td>2.33</td>
<td>0.171</td>
<td>0.019</td>
</tr>
<tr>
<td>Cyprus</td>
<td>0.556</td>
<td>0.561</td>
<td>0.609</td>
<td>0.529</td>
<td>0.023</td>
<td>0.59</td>
<td>2.22</td>
<td>0.065</td>
<td>0.006</td>
</tr>
<tr>
<td>Malta</td>
<td>0.649</td>
<td>0.652</td>
<td>0.715</td>
<td>0.602</td>
<td>0.027</td>
<td>0.53</td>
<td>2.55</td>
<td>0.030</td>
<td>0.003</td>
</tr>
<tr>
<td>Slovakia</td>
<td>0.609</td>
<td>0.594</td>
<td>0.656</td>
<td>0.504</td>
<td>0.044</td>
<td>-0.76</td>
<td>2.26</td>
<td>0.009</td>
<td>0.000</td>
</tr>
<tr>
<td>Estonia</td>
<td>0.634</td>
<td>0.642</td>
<td>0.711</td>
<td>0.572</td>
<td>0.036</td>
<td>0.28</td>
<td>1.96</td>
<td>0.034</td>
<td>0.001</td>
</tr>
<tr>
<td>Denmark</td>
<td>0.497</td>
<td>0.497</td>
<td>0.533</td>
<td>0.455</td>
<td>0.016</td>
<td>-0.16</td>
<td>2.48</td>
<td>0.334</td>
<td>0.750</td>
</tr>
<tr>
<td>UK</td>
<td>0.446</td>
<td>0.444</td>
<td>0.488</td>
<td>0.402</td>
<td>0.021</td>
<td>-0.10</td>
<td>2.10</td>
<td>0.085</td>
<td>0.090</td>
</tr>
<tr>
<td>Sweden</td>
<td>0.463</td>
<td>0.459</td>
<td>0.512</td>
<td>0.406</td>
<td>0.022</td>
<td>-0.46</td>
<td>2.78</td>
<td>0.076</td>
<td>0.014</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.513</td>
<td>0.513</td>
<td>0.549</td>
<td>0.463</td>
<td>0.019</td>
<td>-0.31</td>
<td>2.34</td>
<td>0.090</td>
<td>0.067</td>
</tr>
<tr>
<td>Hungary</td>
<td>0.511</td>
<td>0.509</td>
<td>0.538</td>
<td>0.474</td>
<td>0.015</td>
<td>-0.41</td>
<td>2.55</td>
<td>0.084</td>
<td>0.092</td>
</tr>
<tr>
<td>Latvia</td>
<td>0.552</td>
<td>0.545</td>
<td>0.604</td>
<td>0.455</td>
<td>0.029</td>
<td>-0.55</td>
<td>2.86</td>
<td>0.050</td>
<td>0.019</td>
</tr>
<tr>
<td>Lithuania</td>
<td>0.658</td>
<td>0.657</td>
<td>0.689</td>
<td>0.616</td>
<td>0.013</td>
<td>-0.46</td>
<td>4.09</td>
<td>0.021</td>
<td>0.070</td>
</tr>
<tr>
<td>Poland</td>
<td>0.516</td>
<td>0.515</td>
<td>0.569</td>
<td>0.454</td>
<td>0.030</td>
<td>-0.10</td>
<td>1.79</td>
<td>0.030</td>
<td>0.001</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>0.647</td>
<td>0.638</td>
<td>0.697</td>
<td>0.529</td>
<td>0.041</td>
<td>-0.82</td>
<td>2.71</td>
<td>0.014</td>
<td>0.000</td>
</tr>
<tr>
<td>Romania</td>
<td>0.566</td>
<td>0.566</td>
<td>0.612</td>
<td>0.514</td>
<td>0.022</td>
<td>-0.01</td>
<td>2.26</td>
<td>0.193</td>
<td>0.436</td>
</tr>
</tbody>
</table>

J-B and S-W denote Jarque-Bera and Shapiro-Wilk normality tests respectively.
Table 3: Efficiency ranking of stock markets based on analysis with a rolling window of 2 year length

<table>
<thead>
<tr>
<th>Market</th>
<th>Sig. windows (5%)</th>
<th>Sig. windows (1%)</th>
<th>Total windows</th>
<th>Eff. ratio (5%)</th>
<th>Eff. ratio (1%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hungary</td>
<td>41</td>
<td>22</td>
<td>138</td>
<td>76.3%</td>
<td>84.1%</td>
</tr>
<tr>
<td>Finland</td>
<td>45</td>
<td>30</td>
<td>138</td>
<td>67.4%</td>
<td>78.3%</td>
</tr>
<tr>
<td>Denmark</td>
<td>48</td>
<td>24</td>
<td>138</td>
<td>65.2%</td>
<td>82.6%</td>
</tr>
<tr>
<td>Italy</td>
<td>56</td>
<td>41</td>
<td>140</td>
<td>60.0%</td>
<td>70.7%</td>
</tr>
<tr>
<td>Germany</td>
<td>59</td>
<td>44</td>
<td>140</td>
<td>57.9%</td>
<td>68.6%</td>
</tr>
<tr>
<td>Netherlands</td>
<td>60</td>
<td>41</td>
<td>141</td>
<td>57.5%</td>
<td>70.9%</td>
</tr>
<tr>
<td>Belgium</td>
<td>61</td>
<td>45</td>
<td>141</td>
<td>56.7%</td>
<td>68.1%</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>61</td>
<td>44</td>
<td>138</td>
<td>55.8%</td>
<td>68.1%</td>
</tr>
<tr>
<td>Spain</td>
<td>70</td>
<td>50</td>
<td>139</td>
<td>49.6%</td>
<td>64.0%</td>
</tr>
<tr>
<td>Poland</td>
<td>79</td>
<td>57</td>
<td>138</td>
<td>42.8%</td>
<td>58.7%</td>
</tr>
<tr>
<td>Greece</td>
<td>79</td>
<td>69</td>
<td>137</td>
<td>42.3%</td>
<td>49.6%</td>
</tr>
<tr>
<td>Austria</td>
<td>79</td>
<td>57</td>
<td>136</td>
<td>41.9%</td>
<td>58.1%</td>
</tr>
<tr>
<td>Ireland</td>
<td>87</td>
<td>72</td>
<td>139</td>
<td>37.4%</td>
<td>48.2%</td>
</tr>
<tr>
<td>Slovakia</td>
<td>88</td>
<td>76</td>
<td>132</td>
<td>33.3%</td>
<td>42.4%</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>94</td>
<td>76</td>
<td>138</td>
<td>31.9%</td>
<td>44.9%</td>
</tr>
<tr>
<td>Cyprus</td>
<td>52</td>
<td>40</td>
<td>73</td>
<td>28.8%</td>
<td>45.2%</td>
</tr>
<tr>
<td>Latvia</td>
<td>93</td>
<td>81</td>
<td>128</td>
<td>27.3%</td>
<td>36.7%</td>
</tr>
<tr>
<td>Sweden</td>
<td>103</td>
<td>91</td>
<td>138</td>
<td>25.4%</td>
<td>34.1%</td>
</tr>
<tr>
<td>Romania</td>
<td>101</td>
<td>93</td>
<td>135</td>
<td>25.2%</td>
<td>31.1%</td>
</tr>
<tr>
<td>Slovenia</td>
<td>68</td>
<td>65</td>
<td>89</td>
<td>23.6%</td>
<td>27.0%</td>
</tr>
<tr>
<td>Portugal</td>
<td>115</td>
<td>102</td>
<td>140</td>
<td>17.9%</td>
<td>27.1%</td>
</tr>
<tr>
<td>UK</td>
<td>115</td>
<td>107</td>
<td>139</td>
<td>17.3%</td>
<td>23.6%</td>
</tr>
<tr>
<td>France</td>
<td>126</td>
<td>117</td>
<td>141</td>
<td>10.6%</td>
<td>17.0%</td>
</tr>
<tr>
<td>Bulgaria</td>
<td>107</td>
<td>101</td>
<td>116</td>
<td>7.8%</td>
<td>12.9%</td>
</tr>
<tr>
<td>Estonia</td>
<td>132</td>
<td>132</td>
<td>139</td>
<td>5.0%</td>
<td>5.0%</td>
</tr>
<tr>
<td>Malta</td>
<td>135</td>
<td>133</td>
<td>136</td>
<td>0.7%</td>
<td>2.2%</td>
</tr>
<tr>
<td>Lithuania</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

1. A significant window (α%) is a window where market efficiency is rejected at α% significance level.
2. Efficiency ratio is calculated by dividing the number of insignificant windows by total number of windows.
3. Ordering from top to down is in descending order of efficiency based on efficiency ratio (5%).
Os Trabalhos para Discussão do Banco Central do Brasil estão disponíveis para download no website http://www.bcb.gov.br/?TRABDISCLISTA

The Working Paper Series of the Central Bank of Brazil are available for download at http://www.bcb.gov.br/?WORKINGPAPERS

301 Determinantes da Captação Líquida dos Depósitos de Poupança
Clodoaldo Aparecido Annibal
Dez/2012

302 Stress Testing Liquidity Risk: the case of the Brazilian Banking System
Benjamin M. Tabak, Solange M. Guerra, Rodrigo C. Miranda and Sergio Rubens S. de Souza
Dec/2012

303 Using a DSGE Model to Assess the Macroeconomic Effects of Reserve Requirements in Brazil
Waldyr Dutra Areosa and Christiano Arrigon Coelho
Jan/2013

303 Utilizando um Modelo DSGE para Avaliar os Efeitos Macroeconômicos dos Recolhimentos Compulsórios no Brasil
Waldyr Dutra Areosa e Christiano Arrigon Coelho
Jan/2013

304 Credit Default and Business Cycles: an investigation of this relationship in the Brazilian corporate credit market
Jaqueline Terra Moura Marins and Myrian Beatriz Eiras das Neves
Mar/2013

304 Inadimplência de Crédito e Ciclo Econômico: um exame da relação no mercado brasileiro de crédito corporativo
Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves
Mar/2013

305 Preços Administrados: projeção e repasse cambial
Paulo Roberto de Sampaio Alves, Francisco Marcos Rodrigues Figueiredo, Antonio Negromonte Nascimento Junior e Leonardo Pio Perez
Mar/2013

306 Complex Networks and Banking Systems Supervision
Theophilos Papadimitriou, Periklis Gogas and Benjamin M. Tabak
May/2013

306 Redes Complexas e Supervisão de Sistemas Bancários
Theophilos Papadimitriou, Periklis Gogas e Benjamin M. Tabak
Maio/2013

307 Risco Sistêmico no Mercado Bancário Brasileiro – Uma abordagem pelo método CoVaR
Gustavo Silva Araújo e Sérgio Leão
Jul/2013

308 Transmissão da Política Monetária pelos Canais de Tomada de Risco e de Crédito: uma análise considerando os seguros contratados pelos bancos e o spread de crédito no Brasil
Debora Pereira Tavares, Gabriel Caldas Montes e Osmani Teixeira de Carvalho Guillén
Jul/2013
309 Converting the NPL Ratio into a Comparable Long Term Metric
Rodrigo Lara Pinto Coelho and Gilneu Francisco Astolfi Vivan

310 Banks, Asset Management or Consultancies’ Inflation Forecasts: is there a better forecaster out there?
Tito Nícias Teixeira da Silva Filho

311 Estimação não-paramétrica do risco de cauda
Caio Ibsen Rodrigues Almeida, José Valentim Machado Vicente e Osmani Teixeira de Carvalho Guíllen

312 A Influência da Assimetria de Informação no Retorno e na Volatilidade das Carteiras de Ações de Valor e de Crescimento
Max Leandro Ferreira Tavares, Claudio Henrique da Silveira Barbedo e Gustavo Silva Araújo

313 Quantitative Easing and Related Capital Flows into Brazil: measuring its effects and transmission channels through a rigorous counterfactual evaluation
João Barata R. B. Barroso, Luiz A. Pereira da Silva and Adriana Soares Sales

314 Long-Run Determinants of the Brazilian Real: a closer look at commodities
Emanuel Kohlscheen

315 Price Differentiation and Menu Costs in Credit Card Payments
Marcos Valli Jorge and Wilfredo Leiva Maldonado

315 Diferenciação de Preços e Custos de Menu nos Pagamentos com Cartão de Crédito
Marcos Valli Jorge e Wilfredo Leiva Maldonado

316 Política Monetária e Assimetria de Informação: um estudo a partir do mercado futuro de taxas de juros no Brasil
Gustavo Araújo, Bruno Vieira Carvalho, Claudio Henrique Barbedo e Margarida Maria Gutierrez

317 Official Interventions through Derivatives: affecting the demand for foreign exchange
Emanuel Kohlscheen and Sandro C. Andrade

318 Assessing Systemic Risk in the Brazilian Interbank Market
Benjamin M. Tabak, Sergio R. S. Souza and Solange M. Guerra

319 Contabilização da Cédula de Produto Rural à Luz da sua Essência
Cássio Roberto Leite Netto

320 Insolvency and Contagion in the Brazilian Interbank Market
Sergio R. S. Souza, Benjamin M. Tabak and Solange M. Guerra

321 Systemic Risk Measures
Solange Maria Guerra, Benjamin Miranda Tabak, Rodrigo Andrés de Souza Penaloza and Rodrigo César de Castro Miranda

322 Contagion Risk within Firm-Bank Bivariate Networks
Rodrigo César de Castro Miranda and Benjamin Miranda Tabak
323 Loan Pricing Following a Macro Prudential Within-Sector Capital Measure
Bruno Martins and Ricardo Schechtman
Aug/2013

324 Inflation Targeting and Financial Stability: A Perspective from the Developing World
Pierre-Richard Agénor and Luiz A. Pereira da Silva
Sep/2013

325 Teste da Hipótese de Mercados Adaptativos para o Brasil
Glener de Almeida Dourado e Benjamin Miranda Tabak
Set/2013

326 Existência de equilíbrio num jogo com bancarrota e agentes heterogêneos
Solange Maria Guerra, Rodrigo Andrés de Souza Peñaloza e Benjamin Miranda Tabak
Out/2013

327 Celeridade do Sistema Judiciário e Créditos Bancários para as Indústrias de Transformação
Jacopo Ponticelli e Leonardo S. Alencar
Out/2013

328 Mercados Financeiros Globais – Uma Análise da Interconectividade
Marcias Correia Lima Filho, Rodrigo César de Castro Miranda e Benjamin Miranda Tabak
Out/2013

329 Is the Divine Coincidence Just a Coincidence? The Implications of Trend Inflation
Sergio A. Lago Alves
Oct/2013

330 Forecasting Multivariate Time Series under Present-Value-Model Short- and Long-run Co-movement Restrictions
Osmani Teixeira de Carvalho Guillén, Alain Hecq, João Victor Issler and Diogo Saraiva
Oct/2013

331 Measuring Inflation Persistence in Brazil Using a Multivariate Model
Vicente da Gama Machado and Marcelo Savino Portugal
Nov/2013

332 Does trade shrink the measure of domestic firms?
João Barata R. B. Barroso
Nov/2013

333 Do Capital Buffers Matter? A Study on the Profitability and Funding Costs Determinants of the Brazilian Banking System
Benjamin Miranda Tabak, Denise Leyi Li, João V. L. de Vasconcelos and Daniel O. Cajueiro
Nov/2013

334 Análise do Comportamento dos Bancos Brasileiros Pré e Pós-Crise Subprime
Osmani Teixeira de Carvalho Guillén, José Valentim Machado Vicente e Claudio Oliveira de Moraes
Nov/2013

335 Why Prudential Regulation Will Fail to Prevent Financial Crises. A Legal Approach
Marcelo Madureira Prates
Nov/2013

336 Traditional and Matter-of-fact Financial Frictions in a DSGE Model for Brazil: the role of macroprudential instruments and monetary policy
Fabia A. de Carvalho, Marcos R. Castro and Silvio M. A. Costa
Nov/2013
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>337</td>
<td>Opacidade e Crédito Bancário: evidências empíricas a partir da NYSE e da NASDAQ</td>
<td>Helder Ferreira de Mendonça, Renato Falci Villela Loures e Délio José Cordeiro Galvão</td>
<td>Nov/2013</td>
</tr>
<tr>
<td>338</td>
<td>Um Estudo sobre Comportamento de Tomadores e Ofertantes no Mercado de Crédito</td>
<td>Tony Takeda e Paulo Evandro David</td>
<td>Dez/2013</td>
</tr>
<tr>
<td>339</td>
<td>Um Conto de Três Hiatos: Desemprego, Utilização da Capacidade Instalada da Indústria e Produto</td>
<td>Sergio Afonso Lago Alves e Arnildo da Silva Correa</td>
<td>Dez/2013</td>
</tr>
<tr>
<td>340</td>
<td>Asymmetric Effects of Monetary Policy in the U.S. and Brazil</td>
<td>Ioannis Pragidis, Periklis Gogas and Benjamin Tabak</td>
<td>Dec/2013</td>
</tr>
<tr>
<td>341</td>
<td>Estimating Strategic Complementarity in a State-Dependent Pricing Model</td>
<td>Marco Bonomo, Arnildo da Silva Correa and Marcelo Cunha Medeiros</td>
<td>Dec/2013</td>
</tr>
</tbody>
</table>