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Forecasting Multivariate Time Series under

Present-Value-Model Short- and Long-run

Co-movement Restrictions�

Osmani Teixeira de Carvalho Guillény Alain Hecqz

João Victor Isslerx Diogo Saraiva{

The Working Paper should not be reported as representing the views of the

Banco Central do Brasil. The views expressed in the papers are those of the

author(s) and not necessarily re�ect those of the Banco Central do Brasil.

Abstract

This paper has two original contributions. First, we show that PV rela-

tionships entail a weak-form SCCF restriction, as in Hecq et al. (2006) and

in Athanasopoulos et al. (2011), and implies a polynomial serial correlation

common feature relationship (Cubadda and Hecq, 2001). These represent

short-run restrictions on the dynamic multivariate systems, something that

has not been discussed before. Our second contribution relates to forecasting

multivariate time series that are subject to PVM restrictions, which has a
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wide application in macroeconomics and �nance. We bene�t from previous

work showing the bene�ts for forecasting when the short-run dynamics of the

system is constrained. The reason why appropriate common-cycle restrictions

improve forecasting is because it �nds linear combinations of the �rst di¤er-

ences of the data that cannot be forecast by past information. This embeds

natural exclusion restrictions preventing the estimation of useless parameters,

which would otherwise contribute to the increase of forecast variance with no

expected reduction in bias.

We applied the techniques discussed in this paper to data known to be sub-

ject to PV restrictions: the online series maintained and updated by Shiller at

http://www.econ.yale.edu/~shiller/data.htm. We focus on three di¤erent data

sets. The �rst includes the levels of interest rates with long and short ma-

turities, the second includes the level of real price and dividend for the S&P

composite index, and the third includes the logarithmic transformation of

prices and dividends. Our exhaustive investigation of six di¤erent multivari-

ate models reveals that better forecasts can be achieved when restrictions

are applied to them. Speci�cally, cointegration restrictions, and cointegration

and weak-form SCCF rank restrictions, as well as all the set of theoretical

restrictions embedded in the PVM.

JEL: C22, C32

Keywords: forecasting, multivariate models, vector autoregression (VAR), present-

value restrictions, common cycles, cointegration, interest rates, prices and dividends.
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1 Introduction

Using multivariate models in economics and other sciences have been proved fruitful

since they entail key inter-relationships between the variables being modelled. Un-

fortunately, most of these models have an abundance of free parameters, which poses

a problem when they are used for forecasting, since their forecast-accuracy measures

are usually outperformed by those of more parsimonious alternatives. One way to

cope with this problem is to impose restrictions, reducing the number of free para-

meters. In economics, this is done in two di¤erent ways within a uni�ed framework

�usually, but not exclusively, a vector autoregressive (VAR) model. The �rst is

to impose long-run relationships among the series being modelled when they trend

over time, i.e., to impose cointegration restrictions; see Engle and Granger (1987).

The second is to impose similarities in their short-run dynamics, i.e., to impose

common-cycle restrictions either in weak or in strong form; see Engle and Kozicki

(1993), Vahid and Engle (1993) and Hecq et al. (2000, 2006).

The extensive work on cointegration (e.g. Engle and Yoo, 1987 or Reinsel and

Ahn, 1992, and all the literature that followed) has shown that considering and

imposing long-run relationships leads to forecasting gains compared to the model

in �rst di¤erences (see also Clements and Hendry, 1998 or Ho¤man and Rasche,

1996, inter alia). However, less than a handful of papers (e.g., Issler and Vahid,

2001, Vahid and Issler, 2002, Anderson and Vahid, 2011) have investigated whether

additional short-run co-movement restrictions generate better forecasts. Moreover,

only recently have Athanasopoulos et al. (2011) compared the relative importance

of these two types of restrictions using simulations and real data, their results show-
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ing that existing short-run restrictions have a greater potential to improve forecast

accuracy compared to cointegration restrictions.

Perhaps the asymmetry in the treatment of long- and short-run co-movement

is due to the fact that cointegration is often interpreted in terms of economic re-

lationships. Of course, this does not mean that short-run restrictions cannot be a

consequence of economic theory. For example, Candelon and Hecq (2000) and Ba-

sistha and Startz (2008) link the former to Okun�s law. Issler and Vahid (2001) give

examples where the short-run behavior of consumption and income is restricted by

liquidity-contraint models or by optimal-consumption models.

More importantly, short-run restrictions are implied by the present-value model

studied here. So are long-run restrictions, but Campbell and Shiller (1987) have only

stressed the fact that cointegration between the level of two variables (labeled Yt and

yt in this paper) is a necessary condition for the validity of a present-value model (PV

and PVM, respectively, hereafter) linking them.1 Hence, it is often overlooked that

another necessary condition for the PVM to hold is that the forecast error entailed

by the PV model is orthogonal to the past. We refer to Hansen and Sargent (1981,

1993) and Baillie (1989) for initial work on rational expectations linked to PVMs,

and Johansen and Swensen (1999, 2004, 2011), and Johansen (2000), for a recent

fresh look on the subject. The basis of this result is the use of rational expectations

in forecasting future values of variables in the PVM.

Indeed, PVMs arise from a �rst-order stochastic di¤erence equation, where its

1Examples of Yt and yt are, respectively, prices and dividends for a given asset, long- and short-
term interest rates, and consumption and disposable income. If they are integrated processes, they
will cointegrate. See also the examples in Campbell (1987) and Campbell and Deaton (1989), inter
alia, which are reviewed in Engsted (2002), and the interesting recent contribution of Johansen
and Swensen (2011).
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error term must be unforecastable regarding past information, i.e., it must have a

zero conditional expectation. If this fails, the PV equation will not be valid, since it

will contain an additional term capturing the (non-zero) conditional expected value

of all future error terms. Cointegration imposes the transversality condition allowing

to discard the limit I (0) combination of Yt and yt. The existence of an unforecastable

linear combination of the I (0) series in the di¤erence equation guarantees that the

dynamic behavior of the variables in the PVM is consistent with theory. Since

we need both conditions to validate PVMs, it is ideal to work with an integrated

econometric framework encompassing the joint existence of these two phenomena.

This is the starting point of this article. We �rst show that PV relationships

entail a weak-form common feature restriction, as in Hecq et al. (2006) and in

Athanasopoulos et al. (2011), for the vector error-correction model (VECM) for Yt

and yt. It also implies a polynomial serial correlation common feature relationship

(Cubadda and Hecq, 2001) for the VAR representation for�yt and the cointegrating

relationship Yt � �yt: These represent short-run restrictions on the dynamic system

for these variables. Once we cast the PVM in these terms, it is straightforward to

apply the toolkit of the common-feature literature for inference and testing, which

has superior results vis-a-vis standard methods. This is the �rst original contribution

of this paper.

Our second contribution relates to forecasting series that are subject to PVM re-

strictions, which has a wide application in macroeconomics and �nance. We bene�t

from our previous theoretical results, especially regarding the existence of common-

cyclical features in its various forms. As is well known, there has been previous

work showing the forecast bene�ts when the short-run dynamics of the system is
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constrained for stationary data (Vahid and Issler, 2002), and when it is constrained

for data subject to long- and short-run restrictions (Issler and Vahid, 2001, Ander-

son and Vahid, 2011, and Athanasopoulos et al., 2011). The reason why appropriate

common-cycle restrictions improve forecasting is because they �nd linear combina-

tions of the �rst di¤erences of the data that cannot be forecast by past information.

This embeds natural exclusion restrictions preventing the estimation of useless pa-

rameters, which would otherwise contribute to the increase of forecast variance with

no expected reduction in bias. After all, forecast models should not try to forecast

the unforecastable. The whole issue is obviously parsimony, but the exclusion re-

strictions are chosen in a way that is aligned with the �nal objective �to forecast

the series in the system �eliminating parameters that go against that.

We show the relevance of the issues discussed above in an empirical exercise

involving two sets of �nancial series. The �rst contains annual long- and short-

maturity interest rates for the U.S. economy. The second contains real price and

dividend for the S&P composite index and the real risk-free rate. Both data sets

were extracted from the online library maintained and updated by Shiller

(http://www.econ.yale.edu/~shiller/data.htm), with 142 annual observations span-

ning the period 1871-2012. We are careful to consider di¤erent layers of restrictions

discussed in the PVM literature: long-run restrictions (cointegration), short-run re-

strictions (weak-form common cycles), long- and short-run restrictions jointly, and

the latter with additional speci�c parameter restrictions implied by economic theory.

Each layer corresponds to a speci�c restricted representation for the reduced form

VAR. Forecast-accuracy measures across representations are compared to evaluate

the bene�ts of imposing each set of restrictions. Since all restricted representa-
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tions forecast the �rst di¤erences of the data, but the VAR forecasts their level, we

transformed VAR forecasts errors into �rst-di¤erence counterparts in making �nal

comparisons.

Our last contribution is to devise a testing strategy for PV restrictions in macro-

economics and �nance incorporating more than 20 years of research on this topic.

We cover several important issues. First, how to choose consistently the lag length

of the VAR. Second, testing for cointegration, common cycles and weak-form com-

mon cycles. We discuss a multivariate approach based on the likelihood ratio test

(canonical correlation analysis) and a single-equation heteroskedasticity robust ap-

proach (GMM). Part of our suggested strategy relies on Monte-Carlo simulation

results. Finally, we also suggest integrated approaches estimating jointly the lag

length of the VAR and long-run and short-run parameters as in Athanasopoulos et

al. (2011), and an alternative estimating jointly long-run and short-run parameters

as in Centoni, Cubadda and Hecq (2007). In order to avoid using too much space

of a forecast paper with testing and estimation issues, they are discussed in the

Appendix.

The rest of the paper is divided as follows. Section 2 reviews PV formulas and

notations (both for the levels and the log-levels of the variables) and discusses the

types of restrictions a simple present value model implies for the VECM as well as for

a transformed VAR. In Section 3, we present an in-sample analysis of the data used

in the forecast experiment, verifying whether or not some of the restrictions implied

by economic theory hold in practice. In Section 4 we compare the forecasting gains

obtained from imposing di¤erent types of PV restrictions in multivariate models.

Section 5 concludes. The Appendix contains additional material on how to select
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the lag-length of the VAR in our context, how to implement di¤erent tests of PVMs,

including their small-sample performance, and other relevant issues for examining

PVM restrictions.

2 Present-value models

2.1 Basic representation in levels, long- and short-run co-

movement

Consider the present value equation:2

Yt = �(1� �)
1X
i=0

�iEtyt+i; (1)

which states that Yt is a linear function of the present discounted value of expected

future yt, where Et (�) is the conditional expectation operator, using information up

to t as the information set. In most cases Yt and yt are I(1) variables. Examples of Yt

and yt include, respectively: long and short-term interest rates, real stock prices and

real dividends, personal consumption and disposable income, etc. (see the survey of

Engsted, 2002). In this subsection, it is assumed constant expected returns with a

discount factor � = 1
1+r
: The coe¢ cient � is a factor of proportionality. For example,

� = �=(1� �) in the price-dividend relationship; � = 1 for the interest rates case and

the link with the discount factor is given by the term structure of the interest rates

(see, inter alia, Chow, 1984; Campbell and Shiller, 1987; Johansen and Swensen,

2011). The choice of � only impacts the value of the cointegrating vector. Hence,

2For simplicity, we do not include a constant term at this level of presentation as some papers
do.
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here, in what follows, we set its value equal to � = �=(1� �), such that:

Yt = �

1X
i=0

�iEtyt+i: (2)

Following Campbell and Shiller (1987), the actual spread is de�ned as:

St � Yt �
�

1� � yt; (3)

where St is I(0) if Yt and yt are cointegrated. Subtracting �
1��yt from both sides of

(2) produces the theoretical spread S
0
t:

S
0

t =
�

1� �

1X
i=1

�iEt�yt+i: (4)

This shows that series must be theoretically cointegrated because the right-hand

side is a function of I(0) terms with exponentially decreasing weights. Further,

subtracting �EtYt+1 = �
P1

i=0 �
iEtyt+i+1 from Yt in (4), we obtain:

Yt = �EtYt+1 + �yt: (5)

From (5), if one adds and subtracts �Yt; leading to Yt = �Et�Yt+1 + �Yt + �yt or

(1� �)Yt = �Et�Yt+1 + �yt, one �nally obtains:

S
00

t =
�

1� �Et�Yt+1: (6)

Equation (6) gives the spread as a function of one-step ahead forecasts of �Yt+1.

We can always perform the following decomposition:

�Yt+1 = Et�Yt+1 + (�Yt+1 � Et�Yt+1)| {z }
ut+1

: (7)
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Plugging (7) into (6), and lagging the whole equation by one period we have St�1 =

�
1���Yt + ut or alternatively,

�Yt =
1� �
�
St�1 + vt (8)

where ut (or vt = �1��
�
ut) is orthogonal to the past in expectation. From (8) we

also obtain:

(1� �)St�1 = ��Yt + (1� �)ut (9)

St�1 � �Yt�1 + �
�

1� � yt�1 = �Yt � �Yt�1 +
�
�
�

1� � yt � �
�

1� � yt
�
+ (1� �)ut

St�1 = �St + �
�

1� ��yt + (1� �)ut

which gives

St =
1

�
St�1 �

�

1� ��yt + "t (10)

with "t =
(1��)
�
ut.

As stressed by Campbell (1987), in the context of saving, equation (10) plays a

very important role: it is the �rst order stochastic di¤erence equation that generates

the PVM. There are two important conditions to go from (10) to (4): cointegration

delivers the transversality condition lim
k!1

�kEt (St+k) = 0, whereas unforecastability

of "t regarding the past, i.e., Et ("t+j) = 0, for all j > 0, ensures that there is no

additional term in the right-hand side of (4) invalidating it. The �rst represents a

long-run restriction between Yt and yt. The second restricts the dynamics of the

stationary representation of the system, making St and �yt speci�c functions of

their own past alone. Thus, they can be viewed as short-run restrictions on the

behavior of St and �yt. These are exactly the types of restrictions studied in the
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common-cycle literature. Therefore, applying the toolkit developed there allows a

fresh view of PVMs as we show below.

Remark 1. Johansen and Swensen (2011) discuss the properties of the three spreads

St, S
0
t, and S

00
t . Their setup is slightly di¤erent than ours, since, in (1), they de-

�ne the present-value relationship to be Yt =
P1

i=1 �
iEtyt+i instead of Yt = �(1 �

�)
P1

i=0 �
iEtyt+i, i.e., they discount only future values of yt and not its current value.

Some authors prefer the latter to the former using the argument that, in the discrete

time setup, the cash �ow is accrued at the end of every period. Here, we follow

Campbell and Shiller in their choice of PV formula using (1). The cointegrating

vector is not a¤ected by this choice, but the short-run dynamic-coe¢ cient restric-

tions are �as we shall see in the next section. For that reason, some of our results

are not identical to those in Johansen and Swensen (2011).

2.2 Common-cyclical feature restrictions: VARs and VECMs

Assume that the bivariate system for the I(1) series (Yt; yt)0 follows a VAR(p) in

levels, and that St = Yt � �yt is the stationary error-correction term. In the price-

dividend case � = �
1�� : The corresponding vector error-correction model (VECM)

representation is given by: 
�Yt

�yt

!
= �1

 
�Yt�1

�yt�1

!
+ :::+ �p�1

 
�Yt�p+1

�yt�p+1

!
+

 
�1

�2

!
St�1 +

 
�1t

�2t

!
;

(11)

where we assume that the disturbance terms are white noise and that conditions for

avoiding I(2)-ness are met. The �is are the short-run coe¢ cient matrices, and �1

and �2 are the loadings on the error-correcting term.
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As is well known, PV relationships imply restrictions on dynamic models of the

data. Campbell and Shiller (1987) and others have exploited the fact that VARs

have cross-equation restrictions. Here, however, we exploit a di¤erent nature of these

restrictions �the fact that there are also reduced-rank restrictions for the VECM

(11).

Proposition 2. If the elements of (Yt; yt)0 obey a PV relationship as in (9), i.e.,

St�1 =
�
1���Yt+ut, then, their VECM obeys a weak-form common feature relation-

ship (see Hecq et al., 2006, and Athanasopoulos et al., 2011): there exists a 1 � 2

vector 
0 such that 
0�1 = 
0�2 = :::: = 
0�p�1 = 0, but 
0
 
�1

�2

!
6= 0: Moreover,


0 = (1 : 0); the �rst row of every �i; i = 1:::p � 1, must be zero, and the following

restriction must also be met: �1 = 1��
�
.

The usual cross-equation restriction within the VAR and proposed by Campbell

and Shiller (1987) can also be seen from a transformed VAR on St and �yt; see

Johansen and Swensen (2011). To go from the VECM (11) to the transformed

VAR representation we use C =

"
1 ��
0 1

#
, the 2 � 2 nonsingular matrix formed

by stacking the transpose of the cointegrating vector
h
1 ��

i
and the selection

vector
h
0 1

i
, such that C

 
�Yt

�yt

!
=

 
�St

�yt

!
. Premultiplying both sides of

(11) by C, and solving for St and �yt, we obtain: 
St

�yt

!
=

 
�11(L) �12(L)

�21(L) �22(L)

! 
St�1

�yt�1

!
+

 
�1t

�2t

!
(12)

where �11(L) and �21(L) are polynomials of order p � 1 and �12(L) and �22(L)

are polynomials of order p � 2: Indeed, one important issue is to note is that the

transformed VAR (12) is a VAR of order p both in St and in �yt in which the two
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coe¢ cients of �yt�p are zero. Cross-equation restrictions for the system are imposed

on the coe¢ cient matrices of �(L) =

 
�11(L) �12(L)

�21(L) �22(L)

!
= �1+�2L+ :::+�pL

p�1

in (12).

We have the following proposition.

Proposition 3. A PVM as in (10), i.e., St = 1
�
St�1 � �

1���yt + "t, implies a

polynomial serial-correlation common feature relationship (see Cubadda and Hecq,

2001) for the transformed VAR (12): there exists a vector ~

0
0 such that ~


0
0�2 =

:::: = ~

0
0�p = 0, with ~


0
0�1 = ~


0
1 6= 0: Moreover in the PVM ~


0
0 = (1 : �

1�� ) and

~

0
1 = (�1

�
: 0):

Thus, a PVM entails cointegration and additional orthogonality conditions as-

sociated with reduced rank restrictions in VECMs or transformed VARs. One

of the possible explanations for observing a rejection of the PVMs is the use of

cross-equation restrictions that impose both reduced-rank restrictions and particu-

lar values on the parameters. Misspeci�cations such as proxy variables or measure-

ment errors can a¤ect the value of the parameters, leaving una¤ected the reduced-

rank restrictions. As an example, instead of the PV representation Yt = �(1 �

�)
P1

i=0 �
iEtyt+i one can �nd in the literature that the series Yt is a function of the

future discounted expected value of yt such that Yt =
P1

i=1 �
iEtyt+i:3 This slight

change is not innocuous as we show next. To see that, apply the algebra used before

3Johansen and Swensen (2011) as well as Campbell, Lo and Mackinlay (1996) use that formu-
lation when they consider the stock price at the end of the period.
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to Yt =
P1

i=1 �
iEtyt+i to obtain the following expressions:

�Yt = ��yt +
1� �
�
St�1 + ut; (13)

where 
0 = (1 : 1) and �1 =
1� �
�

in Proposition 1. (14)

St = � 1

(1� �)�yt +
1

�
St�1 + vt; (15)

where ~
00 = (1 :
1

1� � ) and ~

0
1 = (�

1

�
: 0) in Proposition 2. (16)

What emerges now is that the unpredictable linear combinations involve three vari-

ables: �Yt, �yt, and St, both in the VECM and the transformed VAR. Moreover

the values of the parameters are now di¤erent from before �the weights used in the

linear combinations (13) and (15) di¤er from the ones in (8) and (10), respectively.

Put di¤erently, regarding the use of Yt =
P1

i=1 �
iEtyt+i versus Yt = �(1 �

�)
P1

i=0 �
iEtyt+i, respectively, yields the following orthogonality conditions for each

speci�c di¤erence equation:

Et�1
�
�Yt +�yt �

1� �
�
St�1

�
= 0, vs. Et�1

�
�Yt �

1� �
�
St�1

�
= 0,

Et�1
�
St +

1

(1� �)�yt �
1

�
St�1

�
= 0, vs. Et�1

�
St +

�

1� ��yt �
1

�
St�1

�
= 0.

Despite the di¤erences in parameter values in the linear combinations above,

the existence of a reduced-rank model is not a¤ected by how one writes the PV

equation linking Yt and yt. Hence, the reduced-rank properties of the VECM and

of the transformed VAR are invariant to this choice: in both cases, there exists

weak-form common features for the VECM and the PSCCF for the transformed

VAR.
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2.3 Constant versus variable expected returns: levels versus

logs

Campbell and Shiller�s (1987) model for the level of prices (Yt) and dividends (yt) is

consistent with a very restrictive assumption �that the expected return of a given

stock is constant through time:

Et [Rt+1] = R; (17)

where

Rt+1 �
Pt+1 +Dt+1

Pt
� 1; (18)

where Pt and Dt denote, respectively, the price and the dividend of a given stock.

In two subsequent papers, Campbell and Shiller (1988a,b) developed an alterna-

tive representation for prices and dividends, in which (17) needs not hold, so being

consistent with the idea of time-varying returns. This alternative representation

uses the logarithm of prices and dividends:

ht+1 � log(1 +Rt+1) = log(Pt+1 +Dt+1)� log(Pt); (19)

arriving at:

ht+1 = pt+1 � pt + log(1 + exp(dt+1 � pt+1)); (20)

where lower-case variables represent the respective logarithmic transformation of the

original variable.
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They use a �rst-order taylor expansion in (20), to get:

ht+1 � k + �pt+1 + (1� �)dt+1 � pt (21)

= k + �pt+1 + (1� �)dt+1 � pt + dt � dt (22)

= k + �pt+1 + dt+1 � dt � �dt+1 + dt � pt (23)

= k + �pt+1 � �dt+1 +�dt+1 + dt � pt (24)

= k + � (pt+1 � dt+1) + �dt+1 + (dt � pt) (25)

where � � 1
(1+exp(d�p)) , and d� p is the average across time of dt+1 � pt+1, and

k � � log(�)� (1� �) log(1=�� 1):

Notice that we can solve (25) for (dt � pt), yielding an exact stochastic �rst-order

di¤erence equation for it,

(dt � pt) = �k + ht+1 ��dt+1 � � (pt+1 � dt+1) + "t+1; (26)

where "t+1 is an approximation error. Under the assumption that Et ("t+j) = 0,

for all j > 0, equation (26) can be solved forward to yield a logarithmic version of

equation (4):

dt � pt = �
k

1� � + Et
1X
j=0

�j [ht+1+j ��dt+1+j] : (27)

Campbell and Shiller (1988a) argue that �there is no economic content in equa-

tion (27)�. To get economic content they impose a restriction on the behavior and

dynamics of ht:

Etht+1 = Etrt+1 + c; (28)

i.e., that the excess-return of a stock, vis-a-vis the real risk-free rate rt, is constant.4

4Equation (28) implies the existence of a common cycle for ht and rt.
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If rt is observable, (27) and (28) yield a testable econometric model:

dt � pt =
c� k
1� � + Et

1X
j=0

�j [rt+1+j ��dt+1+j] : (29)

2.4 Common-cyclical feature restrictions: the logarithmic

version

To test the log-linear present value model embedded in (29), we use the tridimen-

sional system for Xt = (pt; dt; rt)
0. Notice �rst that (28) implies that rt is I(0),

given that ht = is I(0). This yields the �rst cointegrating vector for the system

in Xt. Given that rt is I(0), from (29) dt � pt is I(0) as well, yielding the second

cointegrating vector in the system.

The VECM(p� 1) reads as:264 �pt�dt

�rt

375 =

264 
1 
4


2 
5


3 
6

375" (dt�1 � pt�1)
rt�1

#
+

0B@ a111 a112 a113

a121 a122 a123

a131 a132 a133

1CA�Xt�1 +

� � �+

0B@ ap�111 ap�112 ap�113

ap�121 ap�122 ap�123

ap�131 ap�132 ap�133

1CA�Xt�p�1 + �t (30)

Disregarding an irrelevant constant term, the PVM implies that Et�1 [ht � rt] =

0. From equation (25), we can approximate ht as ht = ��pt + (1� �)(dt�1 � pt�1).

Consequently in the VECM, if we pre-multiply the system (30) by
�
� 0 �1

�
,

in order to obtain an expression for ht � rt, we must have:

�
� 0 �1

�
�Xt| {z }

��pt��rt

= �(1� �)(dt�1 � pt�1) + rt�1 +
�
� 0 �1

�
�t (31)
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which is equivalent to

��pt + (1� �)(dt�1 � pt�1)| {z }
ht

� rt =
�
� 0 �1

�
�t, (32)

which implies Et�1 [ht � rt] = 0: These theoretical conditions restrict the VECM

parameters as follows:

�
� 0 �1

�0B@ ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

1CA = 0; i = 1; :::; p� 1, and, (33)

�
� 0 �1

�264 
1 
4


2 
5


3 
6

375" (dt�1 � pt�1)
rt�1

#
= (�
1 � 
3)| {z }

�(1��)

(dt�1 � pt�1)

+(�
4 � 
6)| {z }
1

rt�1: (34)

The last set of restrictions in (34) are:


1 =

3 � (1� �)

�
, and, (35)


4 =

6 + 1

�
: (36)

Given the estimates of 
3, 
6, and � � 1
(1+exp(d�p)) , we can obtain the corresponding

values of 
1 and 
4, consistent with (29). We now summarize these results with the

following proposition.

Proposition 4. If the elements in Xt = (pt; dt; rt)
0 obey a PVM as in (29) and

(28), the latter leading to ht = rt + "t, where ht = ��pt + (1 � �)(dt�1 � pt�1),

and Et�1 ["t] = 0, then, their VECM obeys a weak-form common feature relationship

(Hecq et al., 2006, and Athanasopoulos et al., 2011): there exists a 1 � 3 vector
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0 =
�
� 0 �1

�
, such that 
0

0B@ ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

1CA = 0; i = 1; :::; p � 1, implying

that the �rst row of

0B@ ai11 ai12 ai13

ai21 ai22 ai23

ai31 ai32 ai33

1CA is proportional to the last row (1=�); that


0

264 
1 
4


2 
5


3 
6

375 6= 0, with �rst-row elements being restricted as follows: 
1 = 
3�(1��)
�

,

and 
4 =

6+1
�
.

Finally, as was the case for the same series in levels, i.e., Pt andDt, slight changes

on the assumptions of when dividends are accrued (beginning, middle or end of pe-

riod t) in�uence the short-run parameter restrictions imposed on the multivariate

system for Xt = (pt; dt; rt)
0. This is not a trivial issue, especially because we are not

dealing with �rm data for prices and dividends. On the contrary, we are dealing

with an aggregate of several �rms, each one having its own dividend policy �some

of which are varying across time, making it very di¢ cult to know exactly what are

the appropriate short-run parameter restrictions that should be imposed in PVMs.

Although short-run parameter restrictions are not invariant to changes in dividend

policy, as discussed at the end of Section 2.2, rank restrictions discussed in Propo-

sitions 1 and 3 are invariant to them. We take this explicitly into account when

devising the forecast models considered in the forecast experiment.

21



3 In-sample analysis of the data used in the fore-

cast experiment

Here, we analyze three di¤erent data sets which are later used in the forecast exper-

iment. The �rst includes the levels of interest rates with long and short maturities,

labelled ilr and isr, respectively. The second includes the level of real price and

dividend for the S&P composite index, labelled Pt and Dt, and the last involves the

logarithmic transformation of prices and dividends, pt = lnPt and dt = lnDt, with

the inclusion of the real risk-free rate, labelled rt. Data is collected for the period

1871-2012 by Shiller. Results are presented in Table 1, whereas the econometric

tools used in this section are discussed at great length in the Appendix.

For each data set, we use the Hannan-Quinn information criteria to determine

the lag length of the VAR in levels. This is reported in the third column of Table 1.

Columns (4), (5) and (6) refers to as the cointegration analysis. We do not reject the

null of no long-run relationships when the levels are used but the sensible value of

the discount factor may lead to the conclusion that we have a power issue. There is a

clear indication of cointegration for the interest rates as well as for prices/dividends

in logs. Notice that we should have found two cointegrating vectors for the system

with (pt; dt; rt)0. Strictly speaking, we only found one cointegrating vector at 5%

signi�cance, albeit the test statistics is very to close to the critical value at that

level. So, imposing two vectors could be a possibility. As far as common-cyclical

features are concerned, results in columns (7) to (9) show a clear indication of weak-

form common features for interest rates; we also conclude that there is a common

feature vector for the system (Pt; Dt)
0 if we use the robust GMM test J2. For the
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Table 1: Long and short-run properties of the series in the forecast experiment
Cointegration Common Cycle

(1) (2) (3) (4) (5) (6) (7) (8) (9)
System Ends VAR(p) H0 cv5% �̂ �LR J2 cv5%
(P t; Dt) 2012 3 r = 0: 10.47 15.49 60.75 9.76 5.65 7.81

2007 2 r = 0: 12.67 15.49 69.76 10.46 1.69 3.84

(pt; dt; rt) 2012 1
r = 0 : 78:74
r = 1 : 14:58

29.79
15.49

1.764 9 SCCF 9 SCCF �

2007 1
r = 0 : 75:18
r = 1 : 14:37

29.79
15.49

1.802 9 SCCF 9 SCCF �

(ilr; isr) 2012 2 r = 0: 31.52 15.49 1.071 0.12 0.10 3.84
2007 2 r = 0: 31.66 15.49 1.096 0.02 0.02 3.84

system with (pt; dt; rt)0, our optimal choice of model is the VECM(0), for which there

always exist SCCFs.

Therefore, we were able to �nd empirically that data subject to the theory of

PVMs conform to some of the restrictions implied by theory. In our forecast experi-

ment below, we ask a di¤erent question: whether or not imposing these restrictions

in unrestricted multivariate models for that same data leads to an improvement of

standard forecast-accuracy measures. This experiment have not only bearings on

theory, but on practical issues as well.

4 Out-of-sample forecasting

4.1 Forecasting strategies imposing di¤erent co-movement

restrictions

We describe next the di¤erent forecast strategies used in this paper, each of them

imposing a di¤erent set of co-movement restrictions on the unrestricted VAR, our

benchmark forecasting model:

1. VAR(p) in levels (benchmark): Select p using the Hannan-Quinn (HQ)
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criterion, estimate the system by conditional maximum likelihood (ML) and

use the results to forecast the variables in the system up to h periods ahead.

2. VECM(HQ-PIC): This is the VECM possibly restricted (but not necessar-

ily) by cointegration and/or by weak-form serial-correlation common features:

select jointly p, the rank of the short-run matrices, and the cointegrating rank,

by the combination of the use of the posterior information criterion (PIC) and

the HQ criterion as suggested by Athanasopoulos et al. (2011), further esti-

mating all parameters by their two-step conditional ML. Forecast the variables

in the system up to h periods ahead.

3. VECM(HQ-J): This is the VECM using solely the PVM-cointegration re-

striction. Select p by the HQ criterion, impose the cointegrating-rank restric-

tion consistent with the PVM. Conditional on that restriction, estimate the

cointegrating vector consistently (Johansen, 1991), further performing con-

ditional ML estimation using estimated cointegrating vectors. Forecast the

variables in the system up to h periods ahead.

4. VECM(HQ)Rank: This is the VECM using solely the PVM cointegration

and weak-form serial-correlation-common-feature rank restrictions. Select p

by the HQ criterion, where we impose the rank restrictions for cointegration

and weak-form serial-correlation-common-feature consistent with the PVM.

Estimate all parameters by conditional ML and forecast the variables in the

system up to h periods ahead.

5. PV model: This is the VECM using the PVM cointegration and weak-form

serial-correlation-common-feature rank restrictions, in addition to the theo-
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retical restrictions discussed in Proposition 2. Select p by the HQ criterion,

estimate all parameters by conditional ML, imposing the restrictions outlined

in Proposition 1, where we use the cointegrating vector estimate of �, b� (T -
consistent), to constrain �1, as b�1 = 1�b�b� = 1=b�. From the quasi-structural

form we recover the reduced-form and forecast the variables in the system up

to h periods ahead.

6. Log PV model: This is the VECM for Xt = (pt; dt; rt)
0, using the PVM coin-

tegration and weak-form serial-correlation-common-feature rank restrictions,

in addition to the theoretical restrictions discussed in Proposition 4. Select p

by the HQ criterion. Estimate the last two reduced-form equations under the

previous restrictions and set b� � 1
(1+exp(d�p)) , where d� p is the time-average

of dt � pt. With the last two equations of reduced-form estimates and b�, we
assemble the quasi-structural form, recover the reduced-form, and then fore-

cast the variables in the trivariate system for Xt = (pt; dt; rt)
0 up to h periods

ahead. Loss functions here are computed vis-a-vis the logged variables, i.e.,

vis-a-vis the variables in Xt = (pt; dt; rt)
0.

In the list above, we compare models with di¤erent layers of restrictions, starting

with the unrestricted model in (1), all the way through the PVM-restricted models in

(5) and (6), respectively in levels and in log-levels. There is a rationale for choosing

each of these di¤erent models. Model (2) is the preferred choice of Athanasopoulos

et al. (2011), when the series being modelled are subject to long- and short-run

restrictions. This choice is data driven, since we let information criteria (PIC and

HQ) choose the cointegranting and the short-run-matrix rank, which is not im-
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posed a priori. Models (3) and (4) impose (i.e. without testing for the existence of

those restrictions) respectively cointegration and cointegration and weak-form serial-

correlation-common-feature rank restrictions. These restrictions are motivated by

the theory of PV models for trending data. Notice, however, that model (4) refrains

from imposing the parameter restrictions listed in Proposition 1, but only imposes

the rank restrictions. This is due to the fact that parameter restrictions are sensitive

to small changes in the assumption underlying PV models. As discussed above, one

of these assumptions is related to the timing in which dividends are accrued in the

price-dividend model; see Remark 1 and the discussion at the end of Section 2.2.

Finally, models (5) and (6) are completely theory based and impose all restrictions

listed either in Proposition 1 or in Proposition 3. Comparisons of models (5) and (6)

with the unrestricted VAR and with model (2) can answer whether imposing struc-

tural restrictions helps in forecasting, settling �at least from the point-of-view of

forecasting using PVM restrictions �a dispute between theory-based econometrics

(structural form) and atheoretical (reduced form) econometric models.5

For the empirical analyses we use the online series maintained and updated by

Shiller at http://www.econ.yale.edu/~shiller/data.htm. The estimation details for

the forecasting models are as follows. First, we divide our total sample in �estimation

sample� and �forecasting sample.� Since the great recession (2008-2009) has had

a huge in�uence on asset prices and on the prices of bonds (interest rates), we

considered two separate forecast samples: the �rst ending in 2007, just prior to

the great recession, and the second ending in 2012, with all available information

up to now. We set h = 1; 2; :::; 12 years in the forecasting exercise. This enables

5About the dispute between reduced- and structural-form in econometrics, see the recent paper
by Keane (2010) and further comments on it.
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measurement of short- and medium-term forecast accuracy (h between 1 and 5

years) as well as long term (h > 10 years). When forecasting until 2007, we have

70 observations for the estimation sample (from 1871-1940) and 67 observations for

the forecasting sample (1941-2007).6 When forecasting until 2012, the estimation

sample has 75 observations (from 1871-1945) and 67 observations for the forecasting

sample (1946-2012). Estimation is performed with a rolling window, kept constant

throughout the out-of-sample exercise.

The forecast accuracy of all restricted models are compared to that of the VAR

in levels. We use the ratio of the root-mean-squared-forecast error for each model

(or variable in them) vis-a-vis that of the VAR in levels �our benchmark:

RRMSFEMh =
RMSFEMh
RMSFEV ARh

; (37)

where RRMSFEMh is the root-mean-squared-forecast error (RMSFE) statistic of

modelM , relative to that of the unrestricted VAR, for h step-ahead forecasting. All

comparisons are made using the embedded �rst-di¤erence forecast errors.

We want to be able to distinguish the forecast accuracy of models (1)-(6), asking

whether their accuracy measures are statistically equal or not. We do this using

the unconditional predictive ability test of Giacomini and White (2006), comparing

each model M with the unrestricted VAR, and comparisons across all other models

as well �not shown to save space, but available upon request.

6Notice that, the number of out-of-sample observations di¤ers for h = 1, h = 2, all the way to
h = 12: for the latter it is 56, while it is 67 for the former.
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4.2 Forecasting results

We have forecast results for three di¤erent data sets. The �rst is regarding the levels

of interest rates with long and short maturities, labelled ilr and isr, respectively,

where theory assumes the long rate to be the expected PV of the discounted short

rate. The second is regarding the level of real price and dividend for the S&P

composite index, labelled Pt and Dt, where price should be the expected PV of

the discounted dividend stream. The last involves the logarithmic transformation

of prices and dividends, pt = lnPt and dt = lnDt, respectively, which PV analysis

requires the inclusion of the real risk-free rate, labelled rt.

We computed the relative measure of forecast accuracy (RMSFE) of model M

vis-a-vis the VAR, described in (37). Since the all restricted representations (models

(2)-(6)) forecast the �rst di¤erences of the data, but the VAR (model (1)) forecasts

their level, we transform the VAR forecasts errors into �rst-di¤erence errors in order

to compute the ratio in (37). Following the empirical �nancial literature, which

relies much more on individual-data results, we focus on forecast measures for the

individual variables instead of those for the system as a whole �a good example

being Patton, Ramadorai, and Streat�eld (2013).

In Tables 2 through 5, we present forecast results for isr and ilr. When we

exclude the great recession period �forecasts up to 2007, for the short rate, the PV

model (5) dominates almost at all horizons, although in the short- and medium-

horizon, strategy (4, VECM(HQ)Rank) dominates. For the long rate, strategy (4,

VECM(HQ)Rank) dominates at all horizons, although strategy (3, VECM(HQ-J))

and PV model (5) perform well on occasion. If we extend the forecast period to 2012
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Table 2: Relative RMSFE of restricted models vs VAR for isr. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 1.058 1.056 1.014 1.057 1.051 1.206 1.005 0.886 0.907 0.955 0.908 0.842

[0.27] [0.216] [0.013] [0.124] [0.246] [1.409] [0.001] [0.795] [0.63] [0.122] [0.59] [1.208]
VECM(HQ-J) 0.952 0.955 0.997 0.919 0.949 0.96 0.927 0.892 0.845 0.88 0.86 0.84

[0.906] [0.839] [0.011] [1.452] [0.9] [0.58] [2.119] [1.56] [1.517] [1.3] [1.345] [1.317]
VECM(HQ)Rank 0.952 0.871 0.901 0.987 0.931 0.958 0.955 0.914 0.894 0.886 0.865 0.878

[0.948] [1.122] [1.317] [0.471] [0.931] [0.341] [1.971] [1.593] [1.597] [1.406] [1.367] [1.273]
PV 0.946 0.923 0.932 0.956 0.923 0.896 0.874 0.895 0.804 0.801 0.81 0.801

[1.372] [0.843] [0.965] [1.131] [0.836] [1.191] [1.514] [1.196] [1.549] [1.328] [1.235] [1.248]
Ratio of root-mean-squared-forecast error (RMSFE) of model in each row to that of the VAR in levels, transformed to �rst di¤erences. Best Models in blue.
�Denotes rejection of the null of equal forecast accuracy at the 10% level, according to the Giacomini and White (2006) test. The number in [] is

the test statistic and the critical value is equal to 2.705.
��Denotes rejection of the null of equal forecast accuracy at the 5% level, according to the Giacomini and White (2006) test. The number in [] is

the test statistic and the critical value is equal to 3.8415
���Denotes rejection of the null of equal forecast accuracy at the 1% level, according to the Giacomini and White (2006) test. The number in [] is

the test statistic and the critical value is equal to 6.6349.

Table 3: Relative RMSFE of restricted models vs VAR for ilr. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.944 1.06 1.064 1.174 0.993 1.111 0.988 0.914 0.927 0.905 1.022 0.872

[0.176] [0.254] [0.224] [1.549] [0.011] [1.564] [0.012] [0.564] [0.509] [0.668] [0.195] [1.831]
VECM(HQ-J) 0.943 0.939 0.996 0.981 0.905 0.913 0.874 0.944 0.889 0.845 0.874 0.864

[0.699] [1.221] [0.015] [0.226] [1.693] [2.021] [1.422] [1.242] [1.411] [1.495] [1.03] [1.856]
VECM(HQ)Rank 0.915 0.806 0.996 0.924 0.923 0.938 0.859 0.892 0.899 0.831 0.881 0.862

[0.492] [1.632] [0.000] [1.292] [2.373] [1.667] [1.464] [1.108] [1.333] [1.536] [1.015] [1.837]
PV 0.979 0.938 0.963 0.933 0.979 0.933 0.986 0.967 0.881 0.855 0.979 0.809

[0.15] [1.051] [0.587] [0.715] [0.161] [1.807] [0.039] [0.237] [1.045] [0.936] [0.067] [1.733]
See Notes of Table 2.

�see Tables 4 and 5 �the PV model (5) performs well for the short rate, except

for the medium horizon, which is dominated by strategy (4, VECM(HQ)Rank). For

the long rate, strategy (4, VECM(HQ)Rank) dominates, although the PV model (5)

performs well in the medium- to long-horizon. Thus, for interest-rate forecasts, we

conclude that the PV model (5) and strategy (4, VECM(HQ)Rank) perform really

well. Despite that, it should be noted that no strategy has a forecast performance

that is statistically superior to that of the VAR, the exception being strategy (2,

VECM(HQ-J)) at the 7-year-ahead horizon.

In Tables 6 through 9, we present forecast results for prices and dividends for

the level of the S&P 500 portfolio, Pt and Dt. In forecasting Pt, the PV model

(5) performed really well regardless of the forecast sample (2007 or 2012), although
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Table 4: Relative RMSFE of restricted models vs VAR for isr. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 1.13 1.043 0.946 1.166 0.955 1.133 1.191 0.919 0.94 1.067 0.862 0.775

[1.345] [0.212] [0.119] [1.372] [0.163] [0.877] [0.996] [0.635] [0.393] [0.359] [0.855] [1.331]
VECM(HQ-J) 1.008 0.944 0.986 0.973 0.939 0.928 0.935 0.94 0.895 0.913 0.866 0.873

[0.112] [1.594] [0.601] [1.142] [1.21] [1.172] [2.348] [1.587] [1.475] [1.262] [1.257] [1.207]
VECM(HQ)Rank 1.038 0.912 0.896 1.003 0.912 0.887 0.885 0.926 0.843 0.895 0.832 0.853

[0.518] [0.916] [1.289] [0.000] [1.41] [1.41] [1.941] [1.62] [1.469] [1.342] [1.3] [1.246]
PV 0.984 0.927 0.922 0.967 0.882 0.876 0.886 0.883 0.805 0.829 0.76 0.758

[0.303] [1.119] [1.209] [1.243] [1.64] [1.394] [1.626] [1.292] [1.504] [1.349] [1.32] [1.292]
See Notes of Table 2.

Table 5: Relative RMSFE of restricted models vs VAR for ilr. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 1.105 1.021 1.068 1.118 0.961 1.098 1.234 0.948 0.978 1.05 0.959 0.886

[0.913] [0.024] [0.326] [1.713] [0.427] [1.398] [1.536] [0.316] [0.098] [0.377] [0.328] [2.175]
VECM(HQ-J) 0.971 0.958 1.026�� 0.985 0.973 0.958 0.972� 0.984 0.958 0.944 0.928 0.909

[2.144] [1.472] [4.44] [0.238] [1.74] [2.646] [3.089] [0.943] [1.117] [1.351] [0.706] [1.999]
VECM(HQ)Rank 0.927 0.823 1.011 0.95 0.957 0.948 0.94 0.937 0.922 0.918 0.916 0.888

[0.216] [1.468] [0.292] [1.03] [2.219] [2.006] [2.561] [0.944] [1.233] [1.445] [0.765] [1.876]
PV 0.937 0.881 0.965 0.939 0.982 0.97 0.998 0.959 0.899 0.882 0.871 0.849

[0.512] [1.616] [0.611] [0.716] [0.003] [0.004] [0.315] [0.255] [0.845] [0.892] [0.752] [1.853]
See Notes of Table 2.

its performance in the short horizon up to 2007 was beaten by that of strategy (2,

VECM(HQ-PIC)) and strategy (3, VECM(HQ-J)). RegardingDt, for short horizons,

strategy (3, VECM(HQ-J)) does well overall. Strategy (2, VECM(HQ-PIC)) does

well for the medium horizon, while the PV model (5) performs well in the long

horizon. Thus, for Pt and Dt, we conclude that PV model (5) and strategies (2,

VECM(HQ-PIC)) and (3, VECM(HQ-J)) are the best.

In Tables 10 through 13, we present forecast results for pt and dt. When forecasts

Table 6: Relative RMSFE of restricted models vs VAR for Pt. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.951 0.951 0.954� 0.959 0.958 0.971 0.99 0.995 0.987 0.994 0.998 0.993

[0.281] [2.461] [3.031] [2.144] [2.005] [1.386] [1.323] [1.363] [1.737] [0.515] [0.223] [1.828]
VECM(HQ-J) 0.945 0.954� 0.962� 0.965 0.96 0.971 0.987 0.991 0.984�� 0.992 0.997 0.993

[0.185] [3.743] [3.483] [2.621] [2.35] [1.924] [1.368] [1.467] [6.389] [0.706] [0.302] [1.799]
VECM(HQ)Rank 0.95 0.955 0.958 0.962� 0.958 0.97 0.989 0.994 0.985�� 0.992 0.997 0.992

[0.252] [1.487] [1.394] [2.778] [2.369] [0.025] [0.091] [0.771] [4.737] [0.791] [0.353] [1.847]
PV 0.965 0.968 0.983 0.985 0.973 0.982 0.991 0.98 0.974� 0.983 0.989 0.993

[0.189] [1.371] [0.904] [0.829] [1.356] [1.192] [1.134] [1.066] [2.766] [0.822] [0.737] [0.302]
See Notes of Table 2.
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Table 7: Relative RMSFE of restricted models vs VAR for Dt. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.977 0.989 0.901�� 0.867��� 0.875� 0.902 0.928 0.946 0.949 0.973 0.995 0.973

[0.927] [0.623] [4.317] [9.852] [3.5] [0.085] [0.034] [1.51] [0.000] [0.448] [0.034] [0.285]
VECM(HQ-J) 0.931��� 0.887��� 0.841��� 0.838��� 0.895 0.924 0.944 0.941 0.931 0.958 0.982 0.963

[6.922] [7.557] [9.489] [13.597] [0.766] [0.036] [0.125] [1.598] [0.055] [1.425] [0.204] [0.585]
VECM(HQ)Rank 0.958� 0.983 0.869��� 0.854��� 0.898 0.917 0.935 0.933 0.923 0.955 0.982 0.965

[3.092] [2.676] [7.495] [9.022] [0.824] [0.016] [0.237] [1.76] [0.028] [1.885] [0.206] [0.584]
PV 0.958�� 1.107 1.022 1.032 1.267 1.397�� 1.467��� 1.42 1.375 1.401 1.403 1.337�

[4.794] [0.059] [0.472] [0.042] [2.458] [5.715] [6.753] [1.279] [2.271] [1.486] [2.189] [2.89]
See Notes of Table 2.

Table 8: Relative RMSFE of restricted models vs VAR for Pt. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.998 0.967�� 0.938 0.926 0.898 0.949 0.926 0.918 0.924 0.921 0.888 0.905

[0.941] [4.334] [2.145] [1.713] [1.629] [1.769] [1.216] [1.31] [1.251] [1.217] [1.188] [1.106]
VECM(HQ-J) 0.991 0.97�� 0.948 0.935 0.907 0.944 0.926 0.917 0.923 0.921 0.89 0.904

[1.343] [4.962] [2.321] [1.883] [1.737] [1.295] [1.288] [1.326] [1.268] [1.223] [1.186] [1.109]
VECM(HQ)Rank 0.991 0.965 0.936 0.925 0.893 0.941 0.919 0.909 0.915 0.914 0.879 0.895

[0.544] [2.667] [1.962] [1.91] [1.665] [0.822] [1.354] [1.322] [1.242] [1.217] [1.185] [1.107]
PV 0.98 0.908 0.828 0.777 0.727 0.652 0.564 0.478 0.443 0.374 0.315 0.264

[0.605] [1.333] [0.894] [0.713] [1.277] [1.519] [1.17] [1.197] [1.215] [1.175] [1.155] [1.106]
See Notes of Table 2.

Table 9: Relative RMSFE of restricted models vs VAR for Dt. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.931 0.9 0.871� 0.907�� 0.991 1.093 1.108 0.948 0.619 0.632 0.739 0.868

[0.039] [2.609] [2.742] [4.489] [0.501] [0.445] [0.506] [0.000] [1.363] [1.15] [1.056] [0.722]
VECM(HQ-J) 0.872��� 0.809��� 0.819��� 0.891� 1.023 1.114 1.123 0.954 0.618 0.63 0.723 0.868

[11.218] [9.108] [9.954] [3.088] [0.084] [0.502] [0.58] [1.017] [1.378] [1.156] [1.06] [0.74]
VECM(HQ)Rank 0.889� 0.878� 0.863�� 0.937 1.06 1.151 1.164 0.989 0.584 0.626 0.76 0.923

[3.562] [3.281] [5.57] [0.279] [0.212] [0.59] [0.649] [0.362] [1.368] [1.148] [0.993] [0.383]
PV 0.888�� 0.982 0.971 1.075 1.359�� 1.446�� 1.422��� 1.161 0.843 0.624 0.691 0.833

[4.878] [1.198] [1.406] [0.567] [4.698] [6.42] [6.763] [0.249] [0.492] [0.795] [0.674] [0.445]
See Notes of Table 2.
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Table 10: Relative RMSFE of restricted models vs VAR for pt. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.929�� 0.938�� 0.934�� 0.947� 0.958 0.965 0.974 0.995 0.993 0.995 0.999 0.997

[3.985] [4.604] [6.117] [3.034] [1.007] [0.803] [0.719] [0.211] [0.149] [0.118] [0.018] [0.019]
VECM(HQ-J) 0.897�� 0.921��� 0.923��� 0.936�� 0.935� 0.958 0.97 0.99 0.981 0.987 0.994 0.994

[6.36] [6.689] [8.232] [5.103] [3.233] [1.271] [0.81] [0.366] [0.641] [0.397] [0.126] [0.101]
VECM(HQ)Rank 0.901�� 0.931�� 0.929�� 0.942� 0.935� 0.959 0.972 0.991 0.979 0.984 0.992 0.995

[4.958] [4.593] [5.979] [3.393] [3.102] [1.214] [0.812] [0.357] [0.668] [0.487] [0.171] [0.051]
PV 2.025��� 2.917��� 3.119��� 3.178��� 3.176��� 3.286��� 3.407��� 3.352��� 3.325��� 3.328��� 3.335��� 3.345���

[42.408] [79.156] [67.565] [58.132] [48.619] [43.036] [37.053] [32.576] [28.27] [25.879] [23.389] [21.084]
See Notes of Table 2.

Table 11: Relative RMSFE of restricted models vs VAR for dt. Forecast period up
to 2007.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.98 0.964 0.911 0.891 0.911 0.937 0.952 0.966 0.971 0.977 0.968 0.949

[2.433] [1.977] [1.995] [0.998] [0.761] [0.571] [0.718] [0.992] [0.908] [0.475] [0.338] [0.474]
VECM(HQ-J) 0.952 0.873�� 0.806��� 0.826�� 0.928 0.958 0.965 0.941 0.917 0.937 0.939 0.93

[2.304] [5.904] [7.568] [5.988] [0.99] [0.477] [0.604] [2.013] [2.646] [1.434] [1.022] [1.026]
VECM(HQ)Rank 0.964 0.94 0.812 0.825�� 0.919 0.945 0.955 0.934 0.912� 0.929 0.938 0.934

[0.234] [0.002] [2.574] [4.742] [1.618] [0.755] [0.706] [2.188] [2.952] [1.762] [1.161] [1.022]
PV 0.907 3.324 5.371�� 5.929�� 5.909��� 6.016��� 6.221��� 6.355��� 7.327��� 8.269��� 8.408��� 8.308���

[1.742] [2.356] [5.903] [4.93] [9.502] [9.275] [10.018] [8.809] [9.065] [10.561] [10.227] [10.967]
See Notes of Table 2.

are carried out until 2007, the best model for pt is strategy (3, VECM(HQ-J)),

while there is no clear best strategy for dt: for short horizons the log PV model (6)

performs well, for the medium horizons strategy (3, VECM(HQ-J)) is best, while for

long horizons strategy (4, VECM(HQ)Rank) is the best one. For the full forecast

sample up to 2012, the best model for pt is strategy (3, VECM(HQ-J)), while for

dt log PV model (6) performs well for h = 1, strategy (3, VECM(HQ-J)) is best

for h = 2; 3, while for long horizons strategy (4, VECM(HQ)Rank) is the best one.

Thus, we conclude that strategy (3, VECM(HQ-J)) works really well, followed by

strategy (4, VECM(HQ)Rank). On occasion, log PV model (6) performs well.

Wrapping up results across all assets and horizons, we �nd that PV models (es-

pecially 5) perform well. The same can be said about strategy (3, VECM(HQ-J))

and strategy (4, VECM(HQ)Rank). However, as is well known, econometric models

are built to forecast mainly at shorter horizons, since, as the horizon increases, con-

ditional forecasts converge to their unconditional counterparts. If we focus only on
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Table 12: Relative RMSFE of restricted models vs VAR for pt. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.868� 0.909 0.945 0.962 0.969 0.984 0.981 0.988 1.002 1.001 1.000 1.003

[3.641] [2.255] [0.932] [1.489] [0.803] [0.1] [0.091] [0.103] [0.054] [0.003] [0.002] [0.025]
VECM(HQ-J) 0.876�� 0.901� 0.924�� 0.943� 0.958 0.975 0.976 0.984 0.989 0.995 0.999 1.001

[5.729] [3.358] [4.425] [2.949] [1.599] [0.42] [0.322] [0.203] [0.553] [0.09] [0.001] [0.001]
VECM(HQ)Rank 0.879�� 0.908� 0.936 0.949 0.957 0.976 0.98 0.986 0.991 0.998 1.001 1.000

[6.201] [2.751] [2.425] [1.906] [1.369] [0.364] [0.145] [0.108] [0.449] [0.032] [0.004] [0.000]
PV 2.001��� 2.834��� 3.044��� 3.104��� 3.14��� 3.204��� 3.212��� 3.19��� 2.948��� 3.027��� 3.037��� 3.051���

[32.221] [81.764] [56.782] [48.517] [38.35] [36.047] [34.488] [33.279] [32.957] [33.91] [32.3] [37.36]
See Notes of Table 2.

Table 13: Relative RMSFE of restricted models vs VAR for dt. Forecast period up
to 2012.
Horizon: 1 2 3 4 5 6 7 8 9 10 11 12
VECM(HQ-PIC) 0.961 0.966 0.929 0.893 0.86 0.873 0.88 0.885 0.942 0.969 0.991 0.991

[0.069] [0.363] [0.387] [1.373] [0.212] [0.61] [1.491] [2.175] [2.097] [0.963] [0.157] [0.071]
VECM(HQ-J) 0.921�� 0.889� 0.826�� 0.809�� 0.869 0.86 0.851 0.841 0.928� 0.96 0.977 0.976

[4.918] [2.804] [4.763] [4.612] [1.375] [1.124] [1.438] [2.494] [2.875] [1.666] [0.774] [0.641]
VECM(HQ)Rank 0.933�� 0.976 0.865 0.807� 0.844 0.848 0.859 0.852 0.924� 0.952 0.974 0.973

[4.472] [0.679] [2.077] [3.544] [1.975] [1.899] [1.671] [2.515] [3.122] [1.942] [0.816] [0.823]
PV 0.819��� 2.777��� 4.943��� 6.345��� 6.77��� 6.801��� 6.864��� 7.005��� 5.678��� 5.863�� 5.779�� 5.538��

[7.448] [18.576] [24.418] [20.669] [14.578] [9.772] [8.519] [8.137] [7.423] [6.5] [5.757] [5.273]
See Notes of Table 2.

results at business-cycle horizons (1 through 5 years ahead), we have a clear winner

strategy �strategy (3, VECM(HQ-J)) �which produces the best forecast model for

36.67% of occasions. The other two strategies, strategy (4, VECM(HQ)Rank) and

PV model, produce the best models for 26.67% and 25% of occasions, respectively.

Finally, we investigate if one of the 3 preferred methods �strategy (3, VECM(HQ-

J)), strategy (4, VECM(HQ)Rank), and the PV model �produce forecasts that are

statistically di¤erent from the others, employing the unconditional predictive abil-

ity test of Giacomini and White (2006). For ilr and isr, we �nd that strategy

(3, VECM(HQ-J)) have produced statistically better accuracy statistics than the

PV model, while the converse is not true. Regarding the latter and strategy (4,

VECM(HQ)Rank), there is no clear dominance, which also happens when we com-

pared strategy (3, VECM(HQ-J)) and strategy (4, VECM(HQ)Rank). For Pt and

Dt, we �nd that strategy (3, VECM(HQ-J)) have produced statistically better accu-
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racy statistics than the PV model and strategy (4, VECM(HQ)Rank), respectively,

while the converse is not true. For pt and dt, there is a clear pecking order as follows:

strategy (3, VECM(HQ-J)), strategy (4, VECM(HQ)Rank), and the PV model.

All in all, if we have to recommend one forecast strategy for multivariate mod-

els containing series subject to PVM restrictions, we would choose strategy (3,

VECM(HQ-J)). Notice that it imposes cointegration restriction (theory) but es-

timates the cointegrating vector using econometric techniques applied to data.

5 Conclusion

This paper has two original contributions. The �rst is to show that PV relationships

entail a weak-form SCCF restriction, as in Hecq et al. (2006) and in Athanasopou-

los et al. (2011). It also implies a polynomial serial correlation common feature

relationship (Cubadda and Hecq, 2001) for the VAR representation for �yt and

the cointegrating relationship Yt� �yt: These represent short-run restrictions on the

dynamic system for these variables, something that has not been discussed before.

Our second contribution relates to forecasting multivariate time series that are

subject to PVM restrictions, which has a wide application in macroeconomics and

�nance. We bene�t from previous work showing the bene�ts for forecasting when

the short-run dynamics of the system is constrained for stationary data (Vahid and

Issler, 2002), and when it is constrained for data subject to long- and short-run re-

strictions (Issler and Vahid, 2001, Anderson and Vahid, 2011, and Athanasopoulos

et al., 2011). The reason why appropriate common-cycle restrictions improve fore-

casting is because it �nds linear combinations of the �rst di¤erences of the data that

cannot be forecast by past information. This embeds natural exclusion restrictions
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preventing the estimation of useless parameters, which would otherwise contribute

to the increase of forecast variance with no expected reduction in bias.

We applied the techniques discussed in this paper to data known to be subject

to PV restrictions: the online series maintained and updated by Shiller at

http://www.econ.yale.edu/~shiller/data.htm. We focus on three di¤erent data sets.

The �rst includes the levels of interest rates with long and short maturities, the

second includes the level of real price and dividend for the S&P composite index, and

the third includes the logarithmic transformation of prices and dividends, which PV

analysis requires the inclusion of the real risk-free rate. Our exhaustive investigation

of six di¤erent multivariate models reveals that better forecasts can be achieved when

restrictions are applied to them. Speci�cally, cointegration restrictions in strategy

(3, VECM(HQ-J)) and cointegration and weak-form SCCF restrictions in strategy

(4, VECM(HQ)Rank), as well as all the set of theoretical restrictions embedded in

the PV model (5). All in all, if we have to recommend one forecast strategy for

multivariate models containing series subject to PVM restrictions, we would choose

strategy (3, VECM(HQ-J)).
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A Appendix: Testing present-value models with

a common-cycle approach

The discussion of this paper suggests that, for integrated Yt and yt, there are three

di¤erent instances in which we can investigate the validity of PVMs. First, the

cointegration test for Yt and yt, if both are I (1). Second, the (invariant) rank

restrictions in the VECM or the transformed VAR. Third, the coe¢ cient restrictions

and unpredictability properties for linear combinations. In order to test for PVMs,

we propose the following steps:

1. Choose consistently the order of the V AR(p) for the joint I(1) process (Yt; yt)0

using di¤erent information criteria.
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2. Given our choice of p; test for the existence of cointegration between Yt and yt.

If that is the case (there exists one cointegrating vector), estimate the long-

run coe¢ cient �, in St = Yt��yt, super-consistently using the likelihood-based

trace test proposed by Johansen (1995). Alternatively, the Engle and Granger

(1987) regression test can be carried out. In either case, form Ŝt = Yt � �̂yt.

If there is no cointegration, the PVM is rejected.

3. Given p and Ŝt; test for the weak form common feature using a reduced rank

test for (�Yt;�yt)0. We can use both a likelihood ratio multivariate approaches

(e.g. a canonical correlation analysis) and a single-equation approach (e.g.

GMM). Because most present-value relationships apply to heteroskedastic �-

nancial data, one may prefer a GMM framework on the basis that it easily

embeds robust variance-covariance matrices for parameters estimates. Indeed

the canonical correlation approach assumes i:i:d: disturbances.

Note that we can improve over steps 1 to 3 using steps 4 and/or 5 below. Given

that we only work with bivariate systems for a relatively large number of ob-

servations in this paper we do not introduce those small sample improvements

into our analysis. But, these are:

4. Integrate steps 2 and 3, estimating jointly long-run and short-run parameters

as in Centoni, Cubadda and Hecq (2007).

Integrate steps 1, 2 and 3, estimating jointly the lag length of the VAR and

long-run and short-run parameters as in Athanasopoulos et al. (2011).

41



A.1 LR tests for i.i.d. disturbances

The canonical-correlation approach entails the use of a likelihood ratio (reduced-

rank regression) test for the weak-form common features in the V ECM (p� 1)

for (�Yt;�yt)0. It can be undertaken using the canonical-correlation test on zero

eigenvalues, which are computed from:

CanCor

8>>>>>>>>>><>>>>>>>>>>:

 
�Yt

�yt

!
;

0BBBBBBBBBB@

�Yt�1
...

�Yt�p+1

�yt�1
...

�yt�p+1

1CCCCCCCCCCA
j (Dt; Ŝt�1)

9>>>>>>>>>>=>>>>>>>>>>;
; (38)

where CanCor fXt;WtjGtg denotes the computation of canonical correlations be-

tween the two sets of variables Xt and Wt; concentrating out the e¤ect of Gt (de-

terministic terms and a disequilibrium error-correction term) by multivariate least

squares. The previous program (38) is numerically equivalent to

CanCor

8>>>>>>>>>>>><>>>>>>>>>>>>:

0B@ �Yt

�yt

Ŝt�1

1CA ;

0BBBBBBBBBBBB@

�Yt�1
...

�Yt�p+1

�yt�1
...

�yt�p+1

Ŝt�1

1CCCCCCCCCCCCA
j Dt

9>>>>>>>>>>>>=>>>>>>>>>>>>;
(39)

which is more convenient to directly obtain the coe¢ cient of Ŝt�1 in (10). The

likelihood ratio test, denoted by �LR; considers the null hypothesis that there exist at

least s common feature vectors. It is obtained in �LR = �T
sP
i=1

ln(1��̂i); s = 1; 2;

where �̂i are the i-th smallest squared canonical correlations computed from (38)
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or (39) above, namely from �̂�1XX�̂XW �̂
�1
WW �̂WX ; or similarly from the symmetric

matrix �̂�1=2XX �̂XW �̂
�1
WW �̂WX�̂

�1=2
XX ; where �̂ij are the empirical covariance matrices,

i; j = X;W .

In the bivariate case, the unrestricted VECM has 4(p�1)+2 parameters, whereas

the restricted model has 2(p�1)+2+1. The number of restrictions when testing the

hypothesis that there exists one WF common feature is then 2(p� 1)� 1 = 2p� 3

for p > 1:7 As proposed in Issler and Vahid (2001), we can obtain the same sta-

tistics by computing twice the di¤erence between the log-likelihood in the unre-

stricted V ECM (p� 1) for (�Yt;�yt)0 and in the pseudo-structural form estimated

by FIML: 
1 �
0
0 1

! 
�Yt

�yt

!
=

�
0
~�1

� 
�Yt�1

�yt�1

!
+ :::

+

�
0
~�p�1

� 
�Yt�p+1

�yt�p+1

!
+

�
(�1 � 
0�2)

~�2

�
St�1 +

�
v1t
v2t

�
:

For the transformed VAR the restriction underlying the restricted PSCCF can be

tested using:

CanCor

8>>>>>>>>>>>><>>>>>>>>>>>>:

0B@ Ŝt

�yt

Ŝt�1

1CA ;

0BBBBBBBBBBBB@

Ŝt�1

Ŝt�2
...

Ŝt�p

�yt�2
...

�yt�p+1

1CCCCCCCCCCCCA
j Dt

9>>>>>>>>>>>>=>>>>>>>>>>>>;
;

where the number of parameters in the unrestricted model is 4(p � 1) + 2; the

restricted model has 6 + 2(p � 2); the number of restrictions is 2p � 4 in case of
7In the VECM, the general formula for n series that can be annihilated by s combinations is

sn(p� 1)� s(n� s):
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unrestricted ~
1: 
1 �~
0
0 1

! 
St

�yt

!
=

�~�1a
~�1b

� 
St�1

�yt�1

!
+ :::

+

�
0
~�p�1

� 
St�p+1

�yt�p+1

!
+

 
0 0
~�p;p 0

! 
St�p

�yt�p

!
+

�
u1t
u2t

�
:

If ~
1 is restricted we have 2p� 3 restrictions and the pseudo structural form is 
1 �~
0
0 1

! 
St

�yt

!
=

 
#1 0
~�2;1 ~�2;2

! 
St�1

�yt�1

!
+

�
0
~�p�1

� 
St�2

�yt�2

!
+ � � �+

 
0 0
~�p;p 0

! 
St�p

�yt�p

!
+

�
u1t
u2t

�
:

Notice that this set of rank restrictions are identical to the ones in Campbell and

Shiller (1987) if one imposes zero restrictions in the last matrix coe¢ cient in their

setup8. The proposed approach to testing PVMs here is to �rst test the rank condi-

tion (necessary) without imposing yet any further parameter restrictions. As argued

above, the rank condition is invariant to how we write the PV equation linking Yt

and yt. If not rejected, then we can test the additional restrictions on matrices co-

e¢ cients, which are not invariant to how we write the PV equation. Putting more

weight on invariant restrictions satis�es robustness, since, not only a di¤erent de�n-

ition of the timing of Yt and/or yt, but also the presence of measurement error, data

revisions, all will lead to the correct rank condition to be met but imply di¤erent

parameter values in the di¤erence equation generating PVMs. An additional reason

to follow this path is that we will be able to split both e¤ects, shedding light on the

8This is probably implicit in their analysis but it is not discussed in the paper itself.
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exact reason for rejecting theory if that is the case. Understanding why we reject

a given PVM is an important issue, since di¤erent authors have complained that

cross-equation restriction tests reject PVMs too often, even in cases where theory is

�rmly believed to hold and that graphical analysis seems to support that view.

A.2 Regression-Based GMM Tests

Testing with a GMM approach entails testing the common feature null hypothesis

using an orthogonality condition between a combination of variables in the model�
�Yt;�yt; Ŝt�1

�0
and the conditioning set W 0

t . For example, in the context of (8),

we would have the following moment restrictions:

E([�Yt � 
1�yt � 
2Ŝt�1]
W 0
t) = 0; (40)

where we would have additionally to test H0: 
1 = 0 and 
2 =
1��
�
using a Wald

test. Prior to that, we want to estimate 
1 and 
2 and test the validity of the over-

identifying restrictions in (40). The use of IV type estimators and the associated

orthogonality tests is straightforward in this context. Let us consider Wt the vector

of instruments de�ned as before (an intercept is added). The GIVE estimator is

simply the 2SLS or the IV estimator when the instruments are the past of the

series, namely

�̂GIV E =
�
�X0W(W0W)�1W0�X

��1 �
�X0W(W0W)�1W0�Y

�
; (41)

with �Xt= (�yt; Ŝt�1; 1)
0: The validity of the orthogonality condition and conse-

quently the presence of a common feature vector is obtained via an overidenti�cation
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J-test (Hansen, 1982) J1(�) = TgT (�; :)0P�1T gT (�; :);whose empirical counterpart is:

J1(�IV ) = (u
0 ~W)(�̂2u ~W

0 ~W)�1( ~W0u):

The variance-covariance matrix of the orthogonality condition has under usual reg-

ularity properties the sample counterpart P̂T = (1=T )�̂2u( ~W
0 ~W) with ut = �Yt �


̂1�yt�
̂2Ŝt�1. ~W is the demeanedW; namely ~W =W � i(i0i)�1iW (with i = (1:::1)0)

because we do not want to impose that the common feature vector also annihilates

the constant vector.

All the estimates and tests presented above embedded the assumption of ho-

moskedasticity. This may be �ne for macroeconomic data, such as consumption and

income, but is clearly at odds with �nancial data. Candelon et al. (2005) have illus-

trated in a Monte Carlo exercise that �LR has large size distortions in the presence

of GARCH disturbances. We implement the GIVE estimator by using the White�s

HCSE estimator such that (see Hamilton, 1994):

�̂GMM =
�
�X0W(W0BW)�1W0�X

��1 �
�X0W(W0BW)�1W0�Y

�
; (42)

where the only di¤erence between �̂GMM and the usual �̂GIV E is the presence of an ad-

ditional diagonal matrixB = diag(u21; u
2
2; :::u

2
T ) where ut = �Yt�
̂1IV�yt�
̂2IV Ŝt�1

are the residuals obtained under homoskedasticity using the GIVE estimation in

a �rst step. For testing, we form the following new sequence of residuals u�t =

�Yt � 
̂1GMM�yt � 
̂2GMM Ŝt�1;and use these to compute a new J-test robust to

heteroskedasticity:

J2(�GMM) = (u
�0 ~W)( ~W0B ~W)�1( ~W0u�): (43)

46



Note that alternative approaches have been evaluated in Hecq an Issler (2012).

A.3 Small sample properties of PVM tests

A small Monte Carlo simulation might help to advise the use of one of the tests

considered. We use T = 100 observations with 10; 000 replications. The lag length

of the VAR in level in the data generating process is chosen to be p = 3: However,

we estimate the model for p = 2; 3 and 5. The DGP that ensures 

0
= (1 : 0) is: 

�Yt

�yt

!
=

 
0:05

0:05

!
+

 
0 0

0:5 0:2

! 
�Yt�1

�yt�1

!
+ ::

 
0 0

�0:4 0:2

! 
�Yt�2

�yt�2

!

+

 
1

0:75

!�
1 � �

1��

� Yt�1

yt�1

!
+

 
u1t

u2t

!
:

We considered two types of error terms for the VECM above: in the �rst DGP,

labelled DGP # 1 in Table13, the disturbance term is bivariate normal with a

unit variance and a correlation of 0:5; in the second process, labelled DGP # 2,

the disturbance terms are governed by a bivariate GARCH process (CCC) with a

yesterday news coe¢ cient of 0:25, a coe¢ cient of persistence of 0:74, and a long

run variance equals 0:01. Note that yesterday�s news coe¢ cient is larger than what

is usually found empirically (between 0:10 and 0:15). The theoretical coe¢ cients

in the relationship �Yt = �
1�yt + 
2St�1 + ut are 
1 = 0 and 
2 =
�
1�� : Here,

for simplicity, we set �
1�� = 1 in the DGP but the cointegrating vector Yt � �̂yt is

estimated using Johansen�s approach.

Table 14 reports the empirical rejection frequency at the 5% signi�cance level

(nominal size). In the iid case, the behavior of the tests is rather similar. Results

get much more worse in the presence of time varying conditional variances. With
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Table 14: Empirical size (nominal set to 5statistic
T = 100

Levels Log Levels
V AR(p) �LR J1 J2 �LR J1 J2

DGP #1: iid p = 2 6.27 5.96 5.95 6.25 5.99 5.98
p = 3 7.91 6.93 6.17 7.89 6.93 6.18
p = 5 8.62 6.47 5.00 8.65 6.45 4.98

DGP #2:GARCH p = 2 13.2 12.9 6.07 13.3 13.0 6.05
p = 3 17.6 16.5 5.76 17.6 16.5 5.74
p = 5 21.3 17.8 4.53 21.3 17.8 4.54

heteroskedastic data, the robust-White GMM test has proper size.

In the last three columns of Table 14 we report the rejection frequencies of the

same three tests applied to the logarithms of the variables Yt and yt but for the same

DGP in levels. It emerges however that taking the logs does not a¤ect the rejection

frequencies.
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