
Working Papers

329

ISSN 1518-3548

Sergio A. Lago Alves

Is the Divine Coincidence Just a Coincidence?

The Implications of Trend Inflation

October, 2013



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ISSN 1518-3548 
CNPJ 00.038.166/0001-05 

Working Paper Series Brasília n. 329 October 2013 p. 1-53 



 

Working Paper Series 
 
 
 
 
Edited by Research Department (Depep) – E-mail: workingpaper@bcb.gov.br 
 
Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br 
Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br 
Head of Research Department: Eduardo José Araújo Lima – E-mail: eduardo.lima@bcb.gov.br 
 
The Banco Central do Brasil Working Papers are all evaluated in double blind referee process. 
 
Reproduction is permitted only if source is stated as follows: Working Paper n. 329. 
 
Authorized by Carlos Hamilton Vasconcelos Araújo, Deputy Governor for Economic Policy. 
 
 
 
General Control of Publications 
 
Banco Central do Brasil 

Comun/Dipiv/Coivi 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 14º andar 

Caixa Postal 8.670 

70074-900 Brasília – DF – Brazil 

Phones: +55 (61) 3414-3710 and 3414-3565 

Fax: +55 (61) 3414-1898 

E-mail: editor@bcb.gov.br 

 
 
 
The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or  
its members. 
 
Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced. 
 
 
As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco 
Central do Brasil. 
 
Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente. 
 
 
 
Citizen Service Division 
 
Banco Central do Brasil 

Deati/Diate 

SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo 

70074-900 Brasília – DF 

Toll Free: 0800 9792345 

Fax: +55 (61) 3414-2553 

Internet: <http//www.bcb.gov.br/?CONTACTUS> 



Is the Divine Coincidence Just a Coincidence?
The Implications of Trend Inflation∗

Sergio A. Lago Alves†

Abstract

The Working Papers should not be reported as representing the views of the Banco

Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily reflect those of the Banco Central do Brasil.

In standard New Keynesian models, in which staggered pricing is the only
nominal rigidity and shocks to preferences or technology are the only source of
fluctuations, the literature has long agreed that the divine coincidence holds:
the monetary authority is able to simultaneously stabilize the inflation rate
and the output gap. I show that the divine coincidence holds only when the
inflation rate is stabilized at exactly zero. Even a small deviation of trend
(steady-state) inflation from zero generates a policy trade-off. I demonstrate
this result using the model’s non-linear equilibrium conditions to avoid any
bias arising from log-linearization. When the model is log-linearized in line
with common practice, a non-zero trend inflation gives rise to what I call
an endogenous trend inflation cost-push shock. This shock enters the New
Keynesian Phillips curve whenever the steady state level of inflation (trend
inflation) deviates from zero. To assess the impact of trend inflation, I derive
the welfare-based loss function under trend inflation and characterize optimal
policy rules. Optimal policy is able to reduce the volatility of inflation and the
output gap but can never fully stabilize them under non-zero trend inflation.
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1 Introduction1

The theoretical literature on the trade-off between price inflation variability and

output gap variability has long agreed that the standard New Keynesian model

exhibits what Blanchard and Gali (2007) called a divine coincidence: under price

stickiness, any monetary policy rule that stabilizes the inflation rate, in the face

of preference or technology shocks, also stabilizes the output gap. Yet in practice,

most central banks perceive that they face a trade-off between stabilizing inflation

and stabilizing the output gap. Hence, a puzzle arises in reconciling these two

perspectives.

The literature has responded either by artificially adding shock terms to the

Phillips curve (e.g. Clarida et al. (1999) and Gali (2002)) or by extending the stan-

dard New Keynesian model with additional frictions that allow the gap between

output under flexible prices and the effi cient output to vary over time. Those fric-

tions take the form of time varying taxes (e.g. Woodford (2003, chap. 6), Benigno

and Woodford (2005)), time varying markups (e.g. Benigno and Woodford (2005)),

wage rigidities (e.g. Erceg et al. (2000) and Blanchard and Gali (2007)) and cost

channels (e.g. Ravenna and Walsh (2006)), among others.

In this paper, I show that we do not need to extend the standard New Keynesian

model in order to obtain a trade-off. The divine coincidence holds only in the

particular case in which the monetary policy stabilizes the inflation rate at exactly

zero. Using the non-linear model to avoid any bias due to log-linearizations, my

main result is that it is impossible for monetary policy to simultaneously stabilize

the inflation rate and the output gap except in the special cases in which either policy

stabilizes the inflation rate at exactly zero or firms following an exact full indexation

mechanism when not reoptimizing their price. The divine coincidence actually comes

from a coincidence when the inflation rate is stabilized at zero: independently of

the values of the structural parameters, a few composite parameters converge to the

same level. This coincidence is suffi cient to prevent the preference and technology

shocks from affecting the output gap. At any other non-zero level for the stabilized

inflation rate, the output gap moves in response to those shocks.

1The original working paper this paper is partially based on is found in Alves (2012a).
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Previously, the literature assessing the divine coincidence focused on log-linearized

versions of New Keynesian models. Given the fact that the benchmark approach is

to log-linearize the models about a steady state equilibrium with zero inflation, it is

no surprise that the literature has concluded that the monetary authority faces no

trade-off in the standard New Keynesian model.

When the model is log-linearized around a steady state equilibrium with non-

zero trend inflation, the main result translates into what I call the endogenous trend

inflation cost-push shock, which ultimately depends only on the technology and

preference shocks. The level of trend inflation acts as a shock amplifier: it is zero

when the trend inflation is zero and increases as trend inflation rises. Therefore,

policy trade-off arises even though there is no artificially added shock terms to the

Phillips curve or frictions that generate time-varying gaps between output under

flexible prices and the effi cient output.

In order to assess the welfare effects of the trend inflation cost-push shock, I

conduct a welfare analysis to characterize the distortions created by trend inflation.

For that, I derive the fully-fledged welfare-based loss function under trend infla-

tion (TIWeB),2 obtain trend-inflation optimal policy rules, for the case in which

the central bank is assigned a non-zero average inflation target, under discretion,

unconditionally commitment (e.g. Damjanovic et al. (2008)), and from the timeless

perspective (e.g. Woodford (1999, 2003)).

I also conduct an analysis on the gains of commitment using optimal policies

that account for trend inflation and policies obtained if central banks were aware

of the effects of trend inflation in the Phillips curve, but followed optimal policies

based on the standard welfare-based (SWeB) loss function under zero trend inflation

(Woodford (2003, chap. 6)).

Addressing welfare questions is not a simple task in models with non-zero trend

inflation and staggered pricing. Even though aggregate variables have well-defined

steady state levels in such equilibria,3 there is also a steady-state dispersion of

2The TIWeB loss function differs from the trend inflation welfare-based loss function obtained
by Coibion et al. (2012), as their approximation about the steady state with trend inflation is only
partial. They actually approximate some components of the welfare function around the steady
state with flexible prices, which is the same as the steady state with zero inflation. For this reason,
Guido Ascari suggested calling their result as the hybrid welfare-based loss function.

3Broadly speaking, the non-stochastic steady state equilibrium is defined as the one achieved
when all disturbances are fixed at their means.
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relative prices. This fact is well documented in the literature on trend inflation (e.g.

Ascari (2004), Ascari and Ropele (2007, 2009, 2011), Ascari and Sbordone (2013),

Coibion and Gorodnichenko (2011), Coibion et al. (2012), among others).4

The findings of the welfare analysis are: (i) the trend-inflation optimal policy

under unconditionally commitment dominates all other policies under trend infla-

tion and all optimal policies based on the SWeB loss function; (ii) second-order

approximations of the welfare function always underestimate welfare losses when

average inflation exceeds zero; (iii) while this effect is exacerbated by always using

the SWeB loss function in welfare analysis, it is mitigated by using the appropriated

TIWeB loss function; and (iv) while the coeffi cient on the variability of the output

gap is constant in the SWeB loss function, it varies in the TIWeB loss function to

internalize the distortions created by non-zero trend inflation. For lower levels of

trend inflation, this coeffi cient tends to fall as trend inflation rises, suggesting that

fighting inflation becomes more important. This result is consistent with the findings

of Ascari and Ropele (2007) for trend-inflation optimal policies under discretion: if

the loss function has a constant weight on output gap volatility, determinacy and

stability under rational expectations equilibria requires a decreasing upper bound

for this weight as trend inflation rises.

In order to evaluate how different optimal policies perform and test whether they

are able to at least mitigate the effects of the trend inflation cost-push shock, I em-

ploy simulations as in Ascari and Ropele (2007) to investigate how macro volatility

and impulse responses to exogenous shocks vary with trend inflation. The analysis

also compares results under optimal policies that account for trend inflation with

policies obtained if central banks were aware of the effects of trend inflation in the

Phillips curve, but followed optimal policies based on the SWeB loss function. The

main finding is that it is the unconditional variance of the output gap rather than

inflation that is most affected by whether policies are obtained using the standard

loss function or the loss function that correctly incorporates trend inflation. The

simulations confirm that optimal policies are able to fully stabilize the inflation rate

and the output gap only when trend inflation is exactly zero. As trend inflation

rises, the trade-off between inflation variability and output gap variability becomes

4More references on trend inflation are found in Alves (2012b), Amano et al. (2007), Cogley and
Sbordone (2008), Fernandez-Corugedo (2007), Kichian and Kryvtsov (2007), and Sahuc (2006).
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more and more apparent: the unconditional variances of both variables and the

amplitude of their responses to shocks increase.

The remainder of the paper is organized as follows. The model is described in

Section 2. The key results on policy trade-offs are derived in Section 3. The effect

of trend inflation on welfare is discussed in Section 4, while Section 5 provides a

welfare analysis of optimal policy under discretion and commitment. Simulations

results are presented in Section 6. Section 7 summarizes the paper’s conclusions.

2 The model

For simplicity, I follow Woodford (2003, chap. 4) to describe the standard new-

Keynesian model with Calvo (1983) price setting and flexible wages. The economy

consists of a representative infinite-lived household that consumes an aggregate bun-

dle and supplies differentiated labor to a continuum of differentiated firms indexed by

z ∈ (0, 1), which produce and sell goods in a monopolistic competition environment.

2.1 Households

Household’s workers supply ht (z) hours of labor to each firm z, at nominal wage

Wt (z) = Ptwt (z), where Pt is the consumption price index and wt (z) is the real

wage. Disutility over hours worked in each firm is υt (z) ≡ χht (z)1+ν / (1 + ν), where

ν−1 is the Frisch elasticity of labor supply. The household’s aggregate disutility

function is υt ≡
∫ 1

0
υt (z) dz. Consumption ct (z) over all differentiated goods is

aggregated into a bundle Ct, as in Dixit and Stiglitz (1977), and provides utility

ut ≡ εtC
1−σ
t / (1− σ), where σ−1 is the intertemporal elasticity of substitution and

εt is a preference shock. The household instantaneous utility is ut−υt. Aggregation

and expenditure minimization relations are described by:

C
θ−1
θ

t =
∫ 1

0
ct (z)

θ−1
θ dz ; P 1−θ

t =
∫ 1

0
pt (z)1−θ dz

ct (z) = Ct

(
pt(z)
Pt

)−θ
; PtCt =

∫ 1

0
pt (z) ct (z) dz

(1)

where θ > 1 is the elasticity of substitution between goods.

Financial markets are complete and the budget constraint is PtCt+Etqt+1Bt+1 ≤

Bt + Pt
∫ 1

0
wt (z)ht (z) dz + dt, where Et is the time-t expectations operator, Ct is
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the aggregate consumption bundle, Bt is the state-contingent value of the portfolio

of financial securities held at the beginning of period t, dt denotes nominal dividend

income, and qt+1 is the stochastic discount factor from (t+ 1) to t.

The household chooses the sequence of Ct, ht (z) and Bt+1 to maximize its welfare

measure Wt ≡ maxEt
∑∞

τ=t β
τ−t (uτ − υτ ), subject to the budget constraint and

a standard no-Ponzi condition, where β denotes the subject discount factor. In

equilibrium,5 Lagrange multiplier λt on the budget constraint and the optimal labor

supply function satisfy λt = u′t/Pt and wt (z) = υ′t (z) /u′t, where u
′
t ≡ ∂ut/∂Ct is the

marginal utility to consumption, υ′t (z) ≡ ∂υt (z) /∂ht (z) is the marginal disutility to

hours. The optimal consumption plan and the dynamics of the stochastic discount

factor are described by the following Euler equations

1 = βEt

(
u′t+1
u′t

It
Πt+1

)
; qt = β

u′t
u′t−1

1
Πt

(2)

, where Πt = 1+πt and It = 1+ it are the gross inflation and interest rates at period

t, which satisfies It = 1/Etqt+1, and it is the riskless one-period nominal interest

rate.

2.2 Firms

Firm z ∈ (0, 1) produce differentiated goods using the technology yt (z) = Atht (z)ε,

where At is the aggregate technology shock and ε ∈ (0, 1). The aggregate output Yt

is implicitly defined by PtYt =
∫ 1

0
pt (z) yt (z) dz. Using the market clearing condition

ct (z) = yt (z), ∀z, the definition implies that Yt = Ct, and that the firm’s demand

function is yt (z) = Yt (pt (z) /Pt)
−θ.

With probability (1− α), the firm optimally readjusts its price to pt (z) = p∗t .

With probability α, the firm sets the price according to pt (z) = pt−1 (z) Πind
t ,

where Πind
t ≡ Π

γπ
t−1 and γπ ∈ (0, 1).6 When optimally readjusting at period t,

the price p∗t maximizes the expected discounted flow of nominal profits Pt (z) =

pt (z) yt (z) − Ptwt (z)ht (z) + Etqt+1Pt+1 (z), given the demand function and the

5As usual, equilibrium is defined as the equations describing the first order conditions of the
representative household and firms, a transversality condition lim

T→∞
ET qt,TBT = 0, where qt,T ≡

ΠT
τ=t+1qτ , and the market clearing conditions.
6Full indexation is the particular case in which γπ = 1.
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price setting structure. At this moment, the firm’s real marginal cost is mc∗t =

(1/µ)X
(ω+σ)
t (p∗t/Pt)

−θω, where ω ≡ (1 + ν) /ε − 1 is a composite parameter, µ ≡

θ/ (θ − 1) > 1 is the static markup parameter, Xt ≡ Yt/Y
n
t is the gross output gap,

and Y n
t is the natural (flexible prices) output, which evolves according to

Y n(ω+σ)

t =
ε

χµ
εtA(1+ω)

t (3)

Following e.g. Ascari and Sbordone (2013, Section 3) and Ascari (2004, online

Appendix), the firm’s first order condition can be conveniently written, in equilib-

rium, as follows: (
p∗t
Pt

)1+θω

=
Nt

Dt

(4)

The numerator Nt and the denominator Dt functions can be written in recursive

forms, avoiding infinite sums:

Nt = (Xt)
(ω+σ) + Etnt+1Nt+1 ; nt = αqtGtΠt

(
Πt

Πindt

)θ(1+ω)

Dt = 1 + Etdt+1Dt+1 ; dt = αqtGtΠt

(
Πt

Πindt

)(θ−1) (5)

where Gt ≡ Yt/Yt−1 denotes the gross output growth rate. The price setting structure

implies the following dynamics:

1 = (1− α)

(
p∗t
Pt

)−(θ−1)

+ α

(
Πt

Πind
t

)(θ−1)

(6)

3 Policy trade-off

The model is a typical example of the standard new-Keynesian framework: it has

standard functional forms, only one real distortion (monopolistic competition), only

one source of nominal rigidity (Calvo staggered price setting) and shocks to prefer-

ences or technology are the only source of fluctuations.

Under those circumstances, the generally accepted paradigm in the literature on

optimal monetary policy is that this model has what Blanchard and Gali (2007)

call the divine coincidence property: the monetary authority faces no trade-off in

simultaneously stabilizing the (gross) inflation rate Πt ≡ 1 + πt and the (gross)

output gap Xt ≡ 1 + xt, i.e. the monetary policy is able to achieve the Pareto-
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optimal equilibrium that would occur under completely flexible wages and prices.

As I show, however, this result is only feasible if either the monetary authority

stabilizes the inflation rate at exact zero percent or firms have an exact full indexa-

tion mechanism when not optimally resetting their prices. The divine coincidence no

longer holds otherwise. The following theorem states the policy trade-off results for

the nonlinear model. Therefore, they are robust to any log-linearized approximation

and do not depend on assuming that distortions are suffi ciently close to zero.

Theorem 1 With staggered price setting (α > 0) and partial indexation (γπ 6= 1),

there exists a trade-off in stabilizing the output gap xt and the inflation rate πt when-

ever the monetary policy chooses a non-zero rate for stabilizing πt: it is impossible

for xt and πt to simultaneously have zero variance if πt is stabilized at π̄ 6= 0. If

π̄ = 0 or γπ = 1, there is no stabilization trade-off and the divine coincidence holds.

Proof. It is easier to deal with the (gross) inflation rate Πt ≡ 1 +πt and the (gross)

output gap Xt ≡ 1 + xt. Assume, with no loss of generality, that the monetary

authority stabilizes the inflation rate at a discretionary level, i.e. var (Πt) = 0, ∀t,

and Πt = Π̄ ≡ 1 + π̄, ∀t. It implies that Πind
t = Π̄γπ , ∀t. From (6) and (4), the

optimal relative resetting price p∗t/Pt and the ratio Nt/Dt remain at their steady

state levels:

p∗t
Pt

=
(

1−α
1−ᾱ
) 1
(θ−1) ; Nt

Dt
=
(

1−α
1−ᾱ
) (1+θω)

(θ−1) (7)

where ᾱ ≡ α
(
Π̄
)(θ−1)(1−γπ)

. Suppose, by contradiction, that var (Xt) = 0, ∀t, i.e.

Xt is stabilized at a level X̄. It implies that the output level and the stochastic

discount factor evolve, in equilibrium, according to

Yt = Ct = X̄Y n
t ; qt = β

Π̄

(
εt
εt−1

)(
Y nt
Y nt−1

)−σ
Plugging the last result into (5), we conclude that Nt and Dt evolve according

to

Nt =
(
X̄
)(ω+σ)

+ ᾱϑβEt

[(
εt+1

εt

)(
Y n
t+1

Y n
t

)1−σ

Nt+1

]
(8)

Dt = 1 + ᾱβEt

[(
εt+1

εt

)(
Y n
t+1

Y n
t

)1−σ

Dt+1

]
(9)
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where ϑ ≡
(
Π̄
)(1+θω)(1−γπ)

. Equations (7) and (8) imply that:

Dt =

(
1− α
1− ᾱ

)−(1+θω)
(θ−1) (

X̄
)(ω+σ)

+ ᾱϑβEt

[(
εt+1

εt

)(
Y n
t+1

Y n
t

)1−σ

Dt+1

]
(10)

while (9) implies that:

ᾱβEt

[(
εt+1

εt

)(
Y n
t+1

Y n
t

)1−σ

Dt+1

]
= Dt − 1 (11)

(i) Consider the case in which πt is stabilized at a non-zero level π̄ 6= 0 and

indexation is partial (γπ 6= 1). This implies that Π̄ 6= 1, ϑ 6= 1 and ᾱ 6= α. Using

the last two results, it is easy to verify that Dt must remain at its steady state level

D̄:

Dt = D̄ =
1

(ϑ− 1)

(
ϑ−

(
1− α
1− ᾱ

)−(1+θω)
(θ−1) (

X̄
)(ω+σ)

)

Since Dt+1 is also fixed at D̄, eq. (9) implies that Dt must also satisfy

Dt = 1 + D̄ᾱβEt

[(
εt+1

εt

)(
Y n
t+1

Y n
t

)1−σ
]

Recall that εt is the exogenous preference shock and Y n
t is a function of the ex-

ogenous preference εt and technology At shocks. Hence, the last result describes a

contradiction, for it implies that Dt should moves in response to exogenous shocks.7

Therefore, it is impossible for xt and πt to simultaneously have zero variance if πt

is stabilized at π̄ 6= 0.

(ii) Consider the case in which πt is stabilized at the zero level π̄ = 0, or firms

follow an exact full indexation mechanism (γπ = 1). This implies that Π̄ = 1, ϑ = 1

and ᾱ = α. Using (10) and (11), it is easy to verify that there is no contradiction in

assuming that the output gap can be stabilized when the inflation rate is stabilized

at π̄ = 0. In this case, the stabilizing level of the output gap is X̄ = 1, i.e. x̄ = 0,

there is no stabilization trade-off and the divine coincidence holds.

Even though the theorem predicts some instances in which the monetary policy

faces no trade-off, the empirical evidence strongly supports the conditions for a

7Of course, there is a particular case in which the distributions of εt and At are such that
Et

(
εt+1
εt

)(
Y n
t+1

Y n
t

)1−σ
remains fixed. I rule out this possibility as it occurs with measure zero.
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policy trade-off: inflation has been systematically positive since the World War II in

developed and emergent countries,8 and empirical evidence from macro and micro

data suggests that there is very small indexation on individual prices.9 Therefore,

the theorem predicts that the divine coincidence property is just a very particular

case, whose necessary conditions are not supported by empirical evidence.

In light of the last theorem, a natural question is whether it is desirable to sta-

bilize the inflation rate at a non-zero level of trend inflation π̄, given that doing so

would prevent the output gap from being stabilized. The literature on trend infla-

tion, incorporating important distortions such as the zero lower bound constraint

(e.g. Coibion et al. (2012)), has shown that the optimal level of trend inflation rate

is positive, yet small.10 As a consequence of Theorem 1, with a positive trend infla-

tion rate, optimal monetary policy faces a stabilization trade off and does not fully

stabilize the inflation rate or the output gap. Section 5 shows the optimal way to

control the variability of inflation and output gap, given a positive trend inflation.

I do not intend to pursue the question of the optimal level of inflation and take

as given a positive trend inflation rate, reflecting the practice of many central banks

that have adopted or have been assigned low but positive inflation targets.11 Even

though the inflation targets are not guaranteed to be welfare-optimal,12 I address the

following question: if a central bank that is concerned about welfare is not seeking to

bring the inflation rate back to its welfare optimum but has been assigned a target

for trend inflation, how should alternative policies be evaluated so as to pick the

best policy from the policy family that keeps average inflation equal to the target?

8Indeed, average annual inflation ranged between 4% to 10% in European countries, about 3-
5% in the US, and higher in developing countries even after their disinflationary plans succeeded.
Japan had a long period of negative inflation, from 1999 to 2005. Even though the CPI annual
inflation rate averaged 3.14% from 1971 to 2008, the average from 1999 to 2005 was -0.46%. Source:
Japan’s Statistics Bureau.

9For instance, this evidence is found in Bils and Klenow (2004), Cogley and Sbordone (2005,
2008), Klenow and Kryvtsov (2008), Klenow and Malin (2010) and Levin et al. (2006).
10An excellent review of the literature on trend inflation, which includes topics on the optimal

level of inflation, is found in Ascari and Sbordone (2013).
11While most models in the literature have zero (e.g. Woodford (2003)) or negative (e.g. ?)

inflation as the optimal level to be pursued by the monetary authority, inflation targets around
the world have always been positive. As of 2011, 27 central banks have adopted inflation targeting
as their framework for monetary policy, and have positive inflation targets, ranging between 2 to
5 percent in most countries. See e.g. Hammond (2011) and Rogers (2010) for the inflation targets
pursued in each country.
12Non-optimality may arise from measurement error of empirical CPIs, political economy issues

(median voter preferences, lobbies, etc.) or model uncertainty, which may include a mismatch
between the preferred models used by the government and the ones used by the central bank.
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An important feature of the staggered price structure under trend inflation is

that there is a steady state dispersion of relative prices. Clarifying this point is

important before continuing the analysis.

Under trend inflation with Calvo price setting and partial indexation (γπ 6= 1),

the steady state is still dynamic at the firm level. Indeed, while structural shocks

are constrained to remain at their zero means, the positive trend inflation induces a

stationary dispersion of relative prices. The Calvo staggered price structure implies

that there is always a fraction of firms whose prices lag behind their optimal levels.

As a consequence, firms adjust above the aggregate price trend when they are set

to optimize. This particularity makes the individual prices and production levels

to be dispersed, even under the steady state. Interestingly, the aggregate output

converges to a time invariant steady state level. The individual output dispersion is

such that it cancels out when aggregating.

3.1 The log-linearized model

For any variableWt, the hatted (benchmark) notation ŵt ≡ log
(
Wt/W

)
represents

its log-deviation from its steady state level W with non-zero trend inflation (Trend

StSt) and the tilde notation w̃t ≡ log (Wt/W) represents its log-deviation from its

steady state level W with zero trend inflation (Zero StSt). The few cases in which

Zero StSt tilde variables are used are clearly stressed.

Under flexible prices (α = 0), the (log-deviation) real interest rate and (log-

deviation) output ŷnt evolve according to the following equations:

r̂nt = Et
[
σ
(
ŷnt+1 − ŷnt

)
− (ε̂t+1 − ε̂t)

]
; ŷnt = 1

(ω+σ)

[
(1 + ω) Ât + ε̂t

]
(12)

Under sticky prices (α > 0),13 the (log-deviation) output gap x̂t is defined as

follows:

x̂t = ŷt − ŷnt (13)

13I am aware that the α degree of price rigidity is likely to endogenously decrease as the trend
inflation rises. I assume, however, that the parameter remains constant for all values of trend
inflation as long as it is suffi ciently small (less than 5% year, for instance).
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The log-linearized IS curve is:

x̂t = Etx̂t+1 −
1

σ
Et (̂ıt − π̂t+1 − r̂nt ) (14)

The (log-deviation) stochastic discount factor q̂t from (t− 1) to t, which satisfies

ı̂t = −Etq̂t+1, evolves according to the following dynamics:

q̂t = (ε̂t − ε̂t−1)− σ (ŷt − ŷt−1)− π̂t (15)

The New Keynesian Phillips Curve (NKPC) under trend inflation, with indexa-

tion term π̂indt = γππ̂t−1, is described by the following system:

(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t + (ϑ− 1) κ̄$βEtφ̂t+1

φ̂t = ᾱϑβEtφ̂t+1 + θ (1 + ω)
(
π̂t − π̂indt

)
+ (1− ᾱϑβ) (ω + σ) x̂t

+ q̂t + π̂t + (ŷt − ŷt−1)

(16)

where φ̂t is an ancillary variable with no obvious interpretation.
14 As for the com-

posite parameters, ϑ ≡ Π̄(1+θω)(1−γπ) is a positive transformation of the level π̄ of

trend inflation and ᾱ ≡ αΠ̄(θ−1)(1−γπ) is the effective degree of price stickiness. They

increase as trend inflation rises and are bounded by max (ᾱ, ᾱϑ) < 1 to guaran-

tee the existence of an equilibrium with trend inflation. The remaining composite

parameters are

κ̄ ≡ (1−ᾱ)(1−ᾱβϑ)
ᾱ

(ω+σ)
(1+θω)

; κ̄$ ≡ (1−ᾱ)
(1+θω)

; ω ≡ (1+ν)
ε
− 1

As well documented in the literature of trend inflation, the trend inflation NKPC

becomes flatter (κ̄ decreases) and more forward looking ((ϑ− 1) κ̄$β and ᾱϑβ in-

creases) as trend inflation rises. It is due to the fact that ᾱ and ϑ increase as trend

inflation rises.

As Ascari and Ropele (2007) state, the trend inflation NKPC reduces to the

usual form
(
π̃t − π̃indt

)
= βEt

(
π̃t+1 − π̃indt+1

)
+ κx̃t when the level of trend inflation

14In the literature on trend inflation, there are two usual ways to describe trend inflation Phillips
curves: (i) with ancillary variables (e.g. Ascari and Ropele (2007)); and (ii) with infite sums (e.g.
Cogley and Sbordone (2008) and Coibion and Gorodnichenko (2011)).
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is zero, where κ is the coeffi cient on the output gap in the NKPC when π̄ = 0. In

this case, the ancillary variable φ̂t becomes irrelevant.

Note now that one of the relevant variables for inflation dynamics is not present

when trend inflation is zero: the (log-deviation) stochastic discount factor added to

the inflation rate and the expected growth rate, which is in the right hand side of

the law of motion of φ̂t:

τ̂ t ≡ q̂t + π̂t + (ŷt − ŷt−1)

Indeed, the term qtGtΠt is a relevant variable for the firm’s first order condition,

described by system (4)− (5), but becomes irrelevant when using the Zero StSt to

make log-linearizations. The reason for that is simple. Note that the Trend StSt

log-linearization of the firm’s first order condition is described by the system:

(1 + θω) ℘̂∗t = N̂t − D̂t

N̂t =
(
X̄
)(ω+σ)

(ω + σ) x̂t + n̄N̄Et

(
n̂t+1 + N̂t+1

)
D̂t = d̄D̄Et

(
d̂t+1 + D̂t+1

)
n̂t = q̂t + (ŷt − ŷt−1) + π̂t + θ (1 + ω)

(
π̂t − π̂indt

)
d̂t = q̂t + (ŷt − ŷt−1) + π̂t + (θ − 1)

(
π̂t − π̂indt

)
where ℘∗t ≡ p∗t/Pt is the optimal resetting relative price.

As long as the level of the trend inflation is not zero, the values of n̄N̄ and d̄D̄

are different. However, in the Zero StSt, those values converge to αβ/ (1− αβ). In

this case, the steady state level of the (gross) output gap is X = 1 and the whole

term Etτ̃ t+1 is simply eliminated from the final law of motion of the optimal relative

resetting price ℘̃∗t , after substituting back the dynamics of Ñt, D̃t, ñt and d̃t:

℘̃∗t =
(ω + σ)

(1 + θω)
x̃t +

αβ

(1− αβ)
Et
(
π̃t+1 − π̃indt+1

)
+

αβ

(1− αβ)
Et℘̃

∗
t+1

In the Trend StSt, the component τ̂ t plays two important roles in explaining

the inflation dynamics. First of all, it brings the traditional conflict between the

income and substitution effects into the dynamics of the inflation rate π̂t, by means

of the way its expectation Etτ̂ t+1 affects Etφ̂t+1. Indeed, a rise in the real interest

rate (̂ıt − Etπ̂t+1) induces households to substitute present consumption toward fu-
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ture consumption. In equilibrium, this substitution effect is captured by a rise in

Et (ŷt+1 − ŷt) and a fall in the expected stochastic discount rate Etq̂t+1. This effect

is in line with what is described by equations (15), using the fact that ı̂t = −Etq̂t+1.

As the rate rises, the expansion in future consumption leads households to raise

present consumption by means of the income effect, i.e. Et (ŷt+1 − ŷt) tends to fall.

This tension becomes clearer, in equilibrium, when using ı̂t = −Etq̂t+1 and equations

(14) and (13) to rewrite the component Etτ̂ t+1 as follows:

Etτ̂ t+1 = Et

[(
1

σ
− 1

)
(̂ıt − π̂t+1) +

1

σ
(ε̂t+1 − ε̂t)

]

If σ < 1, the substitution effect dominates: as the real interest rate (̂ıt − Etπ̂t+1)

increases, all being equal, the net effect is an increase in Etφ̂t+1, which induces

the inflation rate π̂t to rise. In this case, the effect is similar to the cost channel

introduced by Ravenna and Walsh (2006). When σ > 1, the income effect dominates

and the net effect is the opposite. In a nutshell, the coeffi cient
(

1
σ
− 1
)
summarizes

the tension between substitution and income effects.

The second role of τ̂ t is to create what I call the trend inflation cost-push shock,

which arises endogenously as a function of the preference and technology shocks.

Using (12), (15) and (13), I rewrite τ̂ t as a function of the output gap and the

exogenous shocks:

τ̂ t = (1− σ) (x̂t − x̂t−1) +
(1 + ω)

(ω + σ)

[
(1− σ)

(
Ât − Ât−1

)
+ (ε̂t − ε̂t−1)

]
where the tension between the substitution and income effects, represented now by

(1− σ), splits over the growth rates of the output gap and the technology shock.

As for the preference shock, the tension net effect is absent.

Therefore, the NKPC system can be rewritten in terms of the output gap as the

only demand variable:

(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t + (ϑ− 1) κ̄$βEt$̂t+1 + ût

$̂t = ᾱϑβEt$̂t+1 + θ (1 + ω)
(
π̂t − π̂indt

)
+ (1− ᾱϑβ) (ω + σ) x̂t + (1− σ) (x̂t − x̂t−1)

(17)
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ût = ᾱϑβEtût+1 + (ϑ− 1) βEtξ̂t+1

ξ̂t = κ̄$
(1+ω)
(ω+σ)

[
(1− σ)

(
Ât − Ât−1

)
+ (ε̂t − ε̂t−1)

]
where $̂t is an ancillary variable with no obvious interpretation, ξ̂t is an aggre-

gate shock term that collects the effects of the technology shock Ât and the utility

shock ε̂t, and ût is the endogenous trend inflation cost-push shock, which ultimately

depends only on the technology and preference shocks.

The effect of $̂t on the inflation dynamics is to make it even more forward

looking. This is due to the fact that the coeffi cients (ϑ− 1) on Et$̂t+1, in the first

equation, and ᾱϑβ on Et$̂t+1, in the second equation, increase as trend inflation

rises. The aggregate shock term ξ̂t collects the effects of the exogenous shocks Ât
and ε̂t. The trend inflation cost-push shock ût amplifies, by means of (ϑ− 1) and

the coeffi cient ᾱϑβ on Etût+1, the effect of the aggregate shock ξ̂t and transmits it

through the inflation dynamics.

Notice, however, that the effects of $̂t and ût on the inflation dynamics becomes

irrelevant as trend inflation converges to zero.

Using the equations in system (17), it is easy to verify the predictions of Theorem

1. Stabilizing the inflation rate around any level π̄ implies that π̂t = π̂indt = 0 ∀t.

In this case, the output gap must satisfy

x̂t = ᾱϑβEtx̂t+1 − (ϑ− 1)
κ̄$
κ̄
βEt

[
(1− ᾱϑβ) (ω + σ) x̂t+1 + (1− σ) (x̂t+1 − x̂t)

]
−1

κ̄
(ût − ᾱϑβEtût+1)

When ϑ = 1, i.e. when the trend inflation is exactly zero (π̄ = 0) or when firms

have exactly full indexation (γπ = 1), the equation simplifies to x̃t = αβEtx̃t+1,

whose solution is x̃t = 0 ∀t. Therefore, the divine coincidence holds when ϑ = 1.

When ϑ 6= 1, i.e. when the trend inflation is not zero (π̄ 6= 0) and when firms have

partial indexation (γπ 6= 1), the solution for the output gap depends on the data

generating process of ût. When the inflation rate is stabilized, the general solution

is x̂t = a (ût − ᾱϑβEtût+1), where a is an undetermined coeffi cient.15 In any solution,

15In the simplest case in which ût is a pure white noise, the solution for the undetermined
coeffi cient is a = − 1

κ̄b , where b ≡ 1 − (ϑ− 1)β κ̄$κ̄ (1− σ). In this case, the output gap evolves
according to x̂t = aût when the inflation rate is stabilized.
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the output gap oscillates with ût and cannot be stabilized. Therefore, the divine

coincidence does not hold when ϑ 6= 1.

4 Welfare analysis

Following, I present a pair of equations describing the evolution of the aggregate

disutility υt to labor supplied to all firms as a function of aggregate variables only.

This result is important because it allows the fully-fledged derivation of the trend

inflation welfare-based (TIWeB) loss function as a second order approximation of

the (negative) true welfare function around the steady state with trend inflation.

Let Pt denote a measure of aggregate relative prices:

P−θ(1+ω)
t ≡

∫ 1

0

(
pt (z)

Pt

)−θ(1+ω)

dz (18)

Using the Calvo (1983) price setting structure, I am able to derive the laws of

motion of Pt. The result is general and independent of any level of trend inflation.

The following system describes the evolution of the aggregate disutility function υt

and the aggregate relative price Pt:

υt =
χ

1 + ν

(
Yt
At

)(1+ω)

P−θ(1+ω)
t (19)

P−θ(1+ω)
t = (1− α) (℘∗t )

−θ(1+ω) + α

(
Πt

Πind
t

)θ(1+ω)

P−θ(1+ω)
t−1 (20)

where again ℘∗t ≡ p∗t/Pt is the optimal resetting relative price.

The way I derive the law of motion of Pt is very similar to how e.g. Yun (2005),

Ascari (2004), and Schmitt-Grohe and Uribe (2006) derive relevant price dispersion

variables for aggregate output, employment, or resource constraint in their models.

The price setting structure implies that the dispersion of relative prices rises

as the inflation to indexation ratio
(
Πt/Π

ind
t

)
increases (see e.g. Woodford (2003,

chap. 6)). Eq. (20) implies that Pt is negatively related to the inflation ratio, and

consequently to price dispersion, and that υt increases as price dispersion rises. The

distortion created by price dispersion on the aggregate disutility function is well

explained by the employment cycling and labor supply smoothing effects, defined
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in Graham and Snower (2004): as price dispersion increases with trend inflation,

the dispersion of production and hours also increases. If the individual marginal

disutility to work rises with hours, hours dispersion leads to an increasing aggregate

disutility to work as trend inflation rises.

Consider now the welfare function Wt, which evolves according to the Bellman-

shaped equationWt = ut−υt+βEtWt+1. An important issue regards its curvature.

In the Trend StSt, Wt decreases fast and becomes highly concave as the inflation

rate rises, as also shown in Coibion et al. (2012). For illustration, using a calibration

in line with accepted values for the USA in quarterly frequency (described below),

figure 1 depicts the steady state levels of the welfare function W̄, its second derivative

∂2W̄/∂π̄2, the aggregate output Ȳ and the natural output Ȳ n as the annual trend

inflation rises. Since Ȳ n does not vary with trend inflation, I normalize its level to

1. In this case, Ȳ is the same as the gross output gap X̄. All steady state levels

(barred variables) are described in the appendix.
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Figure 1: Steady state levels

As in Cooley and Prescott (1995), I set the subject discount factor at β = 0.99

and the elasticity to hours at the production function at ε = 1−0.36. I set α = 0.60

as the degree of price stickiness, which is consistent with micro evidence16 and recent

macro evidence.17 Using the central estimates18 obtained by Smets and Wouters
16Nakamura and Steinsson (2008), using micro data from 1988 to 2005, estimate the median

duration between price changes at roughly 4.5 months (including sales) and 10 months (excluding
sales). Those median durations τm are consistent with α = 0.63 and α = 0.81 in quarterly fequency,
using τm = − log (2) / log (α).
17Cogley and Sbordone (2008), for instance, report α = 0.588 as their median estimate), while

Smets and Wouters (2007) report α = 0.65 as the mode estimate, using the full sample period
from 1966:1 to 2004:4.
18More specifically the modes of the posterior distribution.
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(2007), I set the degree of indexation at γπ = 0.22, the reciprocal of the elasticity of

intertemporal substitution at σ = 1.39 and the reciprocal of the Frisch elasticity at

ν = 1.92. The latter is consistent with micro evidence (e.g. Chetty et al. (2011)).

Based on the median estimates of Cogley and Sbordone (2008) and Ascari and

Sbordone (2013), I set the elasticity of substitution at θ = 9.5 which implies a

monopolistic static markup of µ = 1.12. In this paper, I refer to this parameter set

as the benchmark calibration.

The concavity of the welfare function increases as trend inflation rises. For

instance, the curvature at the 2 percent annual trend inflation is 2.4 times as large

as the curvature at the Zero StSt. At the 3 percent annual trend inflation, it is

4.3 times as large. It implies that: (i) second order approximations around the

Zero StSt underestimate the appropriate curvature of the welfare function when the

inflation rate is actually oscillating around a positive value; and (ii) such second

order approximations do not internalize the large welfare loss achieved when trend

inflation is positive. When policy is meant to keep inflation at a positive level,

as in an inflation targeting framework, those findings suggest that a better policy

evaluation is obtained when the approximation is done around the level of trend

inflation.

Finally, notice that the steady state output sharply falls below the aggregate

output under flexible prices as trend inflation rises above zero, as documented in Yun

(2005), Ascari (2004), Ascari and Ropele (2009) and Ascari and Sbordone (2013).

This effect clearly shows the distortion caused by high trend inflation. When the

level of trend inflation is 2 percent, the output gap is open at about 1 percent. I

recognize that the degree of price rigidity is likely to endogenously decrease as trend

inflation rises, and hence part of the inflation distortion may not be as high as the

pictures suggest. However, empirical evidence for the US suggests that a Calvo

parameter larger than 0.60 is consistent with annual trend inflation of 3 percent.19

Therefore, my theoretical assessments may be quite reasonable in the inflation range

I consider.

In this stylized model, the optimal level of inflation is positive, but very close to

zero. A small positive level of trend inflation π̄ can minimize the distortion caused

19From 1984 to 2004, the CPI annual inflation rate averaged 3.05% in the US. Using data from
the same period, Smets and Wouters (2007) estimate the Calvo parameter at 0.73.
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by monopolistic competition,20 but also brings more distortions, as described in

the next section. For illustration, figure 2 depicts the levels of trend inflation that

maximize the steady state level of the welfare function W̄ as the static markup µ

rises from 1 to 1.3, using the benchmark calibration.
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Figure 2: Markup and Inflation

Therefore, it is optimal to prevent the output gap and inflation to be both

stabilized by keeping the trend inflation at the optimal (positive) value. Of course,

using a more comprehensive model augmented with important distortions (e.g. the

zero lower bound constraint), as done by Coibion et al. (2012), is necessary to justify

higher levels of optimal inflation rates.

4.1 Distortions

In order to cope with the distortion caused by trend inflation, I expand Woodford’s

analysis on the effi cient output under the Zero StSt (see Woodford (2003, chap. 6)).

Consider a central planner who chooses the prices and the output level to maximize

the welfare. The optimal solution clearly imposes every firm to produce the same

effi cient level Y ef
t , which implies that all prices are the same, i.e. Pt = 1. Thus

the solution is ∂υeft /∂Yt = ∂ueft /∂Yt. This result implies that the effi cient output

evolves according to Y ef
t = µ1/(ω+σ)Y n

t .

20When the level of trend inflation is positive, but suffi ciently small, the average markup (as
defined in King andWolman (1996)) decreases as trend inflation rises. See also Ascari and Sbordone
(2013, fn. 39) for a similar conclusion.
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In particular, the steady state levels of consumption utility and labor disutility

depend on the steady state aggregates as follows:

ū = Ȳ
1−σ

1−σ ; ῡ = 1
1+ω

Ȳ (1+ω)
(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω) (21)

Ignoring the indirect effect of Ȳ on P̄, the steady state level of the marginal rate

of substitution can be roughly approximated by the ratio of the derivatives of ῡ and

ū with respect to Ȳ , i.e. ῡY /ūY . Note that it is not the same as the steady state

level of the ratio of the derivatives of υt and ut with respect to Yt. However, this

approximation makes it easier to understand the first distortion component in this

model economy:

ῡY
ūY

= EµEπ̄ ; Eµ ≡ 1
µ

; Eπ̄ ≡ (1−ᾱβϑ)
(1−ᾱβ)

(1−ᾱ)
(1−ᾱϑ)

(22)

where again ϑ ≡ Π̄(1+θω)(1−γπ) is a positive transformation of the level π̄ of trend

inflation, and ᾱ ≡ αΠ̄(θ−1)(1−γπ) is the effective degree of price stickiness.

Following Woodford (2003, chap. 6), let Φ̄y ≡ 1− ῡY /ūY denote the ineffi ciency

degree of the steady state output. Under the Trend StSt, the term Eµ is driven by the

monopolistic competition distortion alone, while the second term Eπ̄ is driven by the

non-zero trend inflation. Note that the second term collapses to unity when π̄ = 0.

Considering only the Zero StSt, Woodford (2003, chap. 6) defines the ineffi ciency

degree as Φy = 1− Eµ.

The second component of distortionary effects of the non-zero trend inflation is

explained as follows. There is steady state dispersion of relative prices and produc-

tion under positive trend inflation, and the indirect effect ∂P̄/∂Ȳ omitted in the

previous computation of ῡY /ūY captures this additional distortion source. In this

regard, I define Φ̄ϑ ≡ (ϑ− 1) as an additional ineffi ciency parameter to measure

how much of the gross trend inflation is above one.

As it turns out, tracking those two ineffi ciency parameters (Φ̄y and Φ̄ϑ) is suffi -

cient for deriving the TIWeB loss function. Since effi ciency requires both parameters

to be zero, it is interesting to assume them to be small enough, as first order dis-

turbance terms.21 With such an assumption, linear terms multiplied by Φ̄y and Φ̄ϑ

21Woodford (2003, chap. 6) models the distortion variable Φy as a first order disturbance term,
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become of second-order importance and the TIWeB loss function is useful for policy

analysis using the log-linearized structural equations.

4.2 The welfare-based loss function under trend inflation

In this section, I present the trend inflation welfare-based (TIWeB) loss function,

derived as the second order log-approximation of the True loss function.

Before showing the main result, I clarify the reasons why my approach to (second-

order) approximate the aggregate disutility υt ≡
∫ 1

0
υt (z) dz differs from the one

in Woodford (2003, chap. 6). His approach consists of two parts. In the first,

he approximates the integrand υt (z), which is proportional to (pt (z) /Pt)
−θ(1+ω),

around the Zero StSt. This procedure is possible because there is no price dispersion

in this steady state. Next, he integrates the approximated result and uses the Calvo

price setting structure to rewrite the variance of (log) relative prices as a function

of the squared inflation rate.

Under the Trend StSt, this approach is not possible because the individual rel-

ative prices do not converge in the steady state. In order to fully approximate the

aggregate disutility under the Trend StSt, avoiding the problem arising from the

steady state dispersion of relative prices, I use the equations described in system

(19)− (20). The first equation describes the evolution of υt as a function of aggre-

gate variables only, such as Pt, which captures the effect of the dispersion of relative

prices. The second equation provides the law of motion of Pt. Therefore, I derive

the TIWeB loss function as follows:

Proposition 1 The true welfare function is (second-order) approximated as

Wt = −1

2
V̄Et

∞∑
τ=0

βτ L̄t+τ + tip
W
t (23)

where

L̄t ≡
(
π̂t − π̂indt + φ̄π

)2
+ X̄

(
x̂t − φ̄x

)2
(24)

is the trend inflation welfare-based (TIWeB) loss function,tip
W
t stands for terms

independent of policy at period t, φ̄π and φ̄x are constants that depend on the in-

in order to derive the SWeB loss function.
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effi ciency parameters Φ̄ϑ and Φ̄y, and V̄ corrects for the aggregate reduction in the

welfare when trend inflation increases. Those composite parameters are defined as

follows:

φ̄π ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φ̄ϑ ; φ̄x ≡ 1

(ω+σ)
Φ̄y ; V̄ ≡ (ω+σ)

X̄ Ȳ
1−σ

; X̄ ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ

(25)

The proof is shown in the appendix, in which I use the assumption that Φ̄y and Φ̄ϑ

are first-order parameters in order to cope with linear terms in the approximation.

As expected, the scale parameter V̄ is proportional to the steady state level of

the consumption utility, in equilibrium, by means of Ȳ
1−σ
. The critical effect of

trend inflation appears in the coeffi cient X̄ on the output gap term in (24). In the

SWeB loss function, this coeffi cient is given by X ≡ κ/θ, where κ is the coeffi cient

on the output gap in the NKPC when π̄ = 0. Let R ≡ X̄/X denote the coeffi cient

ratio of the output gap volatility. Figure 3 plots R as the annual trend inflation rate

increases for the benchmark calibration and for the cases α = 0.50 and α = 0.70.
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Figure 3: Coeffi cient Ratios (R)

Note: α = 0.50 (dashdotted blue), α = 0.60 (black), α = 0.70 (dashed red).

Note that R tends to decrease rapidly as trend inflation rises, and this effect is

amplified if the degree of price stickiness α is larger. At the 3 percent trend inflation

(α = 0.60), in particular, the TIWeB relative weight of the output gap is about

80 percent of the coeffi cient suggested by the Woodford’s standard welfare-based

(SWeB) loss function.
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The key factor is the increasing concavity of the true welfare function in the

steady state. The TIWeB loss function fully internalizes the large welfare loss due

to inflation volatility under positive trend inflation. Hence, the monetary authority

optimally places less weight into fighting volatility of the output gap, as opposed to

fighting inflation volatility. This result is also consistent with the findings of Ascari

and Ropele (2007). Studying optimal discretionary policy under trend inflation with

a loss function with constant coeffi cient X on the output gap volatility, they find

a decreasing upper bound for the central bank preference coeffi cient X . The upper

bound decreases as trend inflation rises to guarantee determinate equilibria with

rational expectations.

In the TIWeB loss function, however, R starts to rise when the combination of

higher levels of inflation trend and larger degrees of price stickiness22 starts to be

critical, as depicted by the dashed red line (α = 0.70). Indeed, output deteriorates

so much as trend inflation rises that there are welfare gains from avoiding larger

output gap volatility by allowing greater fluctuations in the inflation rate around

trend.

4.3 The static and the stochastic wedges

I identify two main wedges driven between the True loss function and any approxi-

mated assessment: the static wedge —defined as the difference between the True and

approximated loss functions, when evaluated in equilibria where the (gross) inflation

rate remains fixed at a certain level Π, the remaining endogenous variables are fixed

at the levels consistent with Π and the exogenous shocks are fixed at their means;

and the stochastic wedge —defined as the extra wedge arising in the difference of

the (unconditional) expected values of the loss functions in a stochastic equilibrium:

this is a direct application of the Jensen’s inequality.

Under the Zero StSt, the log-linearized aggregate demand and supply curves and

the SWeB loss function are:

x̃t = Etx̃t+1 − 1
σ
Et (̃ıt − π̃t+1 − r̃nt ) ; ∆̃π̃t = βEt∆̃π̃t+1 + κx̃t

Wt = −1
2
VEt

∞∑
τ=0

βτ L̃t+τ + t̃ip
W
t ; L̃t =

(
π̃t − π̃indt

)2
+ X (x̃t − φx)

2
(26)

22In the model, this combinatin is reflected in the composite parameters ᾱ and ϑ.
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where ∆̃π̃t ≡
(
π̃t − π̃indt

)
, π̃indt = γππ̃t−1, r̃nt = r̂nt , and

φx ≡ 1
θ(ω+σ)

; V ≡ (ω+σ)
X

(
ε
χµ

) 1−σ
ω+σ

; X ≡κ
θ

(27)

In order to compute the static wedge of the SWeB loss function, the nominal

interest rate is adjusted to keep the (gross) inflation rate fixed at a certain level Π

when satisfying the Zero StSt log-linearized equations. The SWeB static wedge is

computed as W̄ −W0, where

W0 = −1
2
V

(1−β)
L0 + tipW0 ; π0 = log (Π)

L0 = (1− γπ)2 π2
0 + κ

θ
(x0 − φx)

2 ; x0 = (1−γπ)(1−β)
κ

π0

(28)

Analogously, the static wedge of the TIWeB loss function on trend inflation Π̄ is

computed as W̄ −W π̄, where

Wπ̄ = −1
2
V̄

(1−β)
Lπ̄ + tipWπ̄ ; ππ̄ = log

(
Π/Π̄

)
Lπ̄ =

[
(1− γπ) ππ̄ + φ̄π

]2
+ X̄

(
xπ̄ − φ̄x

)2
; xπ̄ = cπ̄

(1−γπ)(1−β)
κ̄

ππ̄
(29)

where

cπ̄ ≡ (1−ᾱϑβ)(1−β)−θκ̄(c2−c1)
c2(1−ᾱϑβ)(1−β)

; c1 ≡ 1− (ϑ−1)βκ̄$(1−σ)
κ̄

; c2 ≡ 1 + (ϑ−1)βκ̄$(ω+σ)
κ̄
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Figure 4: Loss functions

Note: True (black), SWeB and TIWeB (dashdotted blue), Static Wedge(dotted red).
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Using the benchmark calibration, panel (a) from figure 4 compares the True and

the SWeB loss functions, showing the static wedges as the (red) vertical dashdotted

lines. For simplification, the values of the loss functions at the zero inflation rate

are normalized to zero. Note that both metrics agree pretty well both in level and

curvature at the vicinity of the zero trend inflation (up to about π̄ = 1). After that,

the curvature of the true loss function increases fast, while the SWeB curvature

remains constant. Therefore, static wedges increase as trend inflation rises.

The SWeB has a constant and small curvature ∂2SWeBLoss/∂Π̄2 relatively to

the curvature of the True loss function ∂2TrueLoss/∂Π̄2. The curvature ratio (True

over SWeB) jumps from 1.0 at π̄ = 0, to 2.6 at π̄ = 2 and 4.7 at π̄ = 3. Therefore,

the stochastic wedge of the SWeB loss function is relevant. Unfortunately, there are

no closed form expressions for the expected True loss function and for the stochastic

wedge. Due to the model’s nonlinearity, the stochastic wedge may only be obtained

by simulating the model’s higher order approximations. That is the reason why it

is not shown in figure 4.

The main message from the figure is that the approximation about the Zero StSt

becomes very quickly a bad approximation of the True Welfare Function as soon as

we move slightly from the zero trend inflation. This fact parallels the results in

the trend inflation literature, covered in the literature survey done by Ascari and

Sbordone (2013), that shows that the log-linearized Phillips curve about the Zero

StSt becomes very poor as soon as trend inflation moves slightly from zero.

Regarding the TIWeB loss function, its static wedge is zero at the specific trend

inflation π̄ used to approximate the True loss function. Because it also has a constant

curvature, the static wedge increases in the neighborhood of π̄. However, the TIWeB

loss wedges are smaller than the SWeB loss ones in the vicinities of each specific

trend inflation π̄. Panels (b) and (c) from figure 4 depict the performances of two

TIWeB loss functions, approximated at π̄a = 2 and π̄b = 3.

5 Optimal policies

Assume the central bank implements inflation targeting by keeping the unconditional

mean of the inflation rate at the central target π̄, or Eπt = π̄. When log-linearizing
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around the inflation target, Eπ̂t = 0.

I derive trend inflation optimal policies rules under commitment and discretion.

The former policy rules are derived for both unconditional (e.g. Damjanovic et al.

(2008)) and timeless (e.g. Woodford (2003)) perspectives. In all cases, the welfare-

concerned central bank minimizes the Lagrangian problem formed by the discounted

sum of the TIWeB loss function, subject to the IS, to the trend inflation NKPC

curves and to Eπ̂t = 0.

A problem arises in deriving optimal policies under discretion and from the time-

less perspective because the expectation operator considered in both welfare prob-

lems is conditioned on the information set at the initial period t, while the expec-

tation operator of the targeting objective is unconditional.23 A possible solution to

this problem is to assume that the Ergodic Theorem holds: Eπ̂t = lim
T→∞

1
T+1

∑T
τ=0 π̂τ .

This limiting sum can be reasonably approximated by (1− β)
∑∞

τ=0 β
τ π̂τ , provided

that the subject discount factor β is suffi ciently close to unity. The inflation tar-

geting objective is then approximated by (1− β)
∑∞

τ=0 β
τ π̂τ = 0, which implies

Et (1− β)
∑∞

τ=0 β
τ π̂t+τ = 0. That is what I use instead of Eπ̂t = 0.

Let Λ denote the Lagrange multiplier of the inflation target constraint. In equi-

librium achieved under each type of optimal policy, Λ is obtained by imposing the

inflation targeting constraint Eπ̂t = 0 into the equilibrium system described by the

IS, the NKPC and the first order conditions. Since the model is linear, it is easy to

verify that the inflation targeting constraint requires Λ to offset all constant terms

in the equations. Therefore the following proposition describes the optimal policies

under inflation targeting, using the TIWeB loss function.

Proposition 2 When a welfare-concerned central bank targets π̄ as the inflation

target and follows the recommendations of the TIWeB loss function, the optimal

policies under unconditional commitment, timeless perspective commitment and dis-

23Posing and solving the Lagrangian problem this way would require dealing with ratios such as
f (κt+j |It) /f (κt+j), where f (·) is the density function of the random variable κt+j and It is the
information set at period t. The ratios never cancel out in the first order conditions.
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cretion are described by the following targeting rules:

Unconditional:

0 =
(
π̂t − π̂indt

)
+ 1

c1

X̄
κ̄

(x̂t − βx̂t−1)− (c2−c1)
c1

X̄
κ̄

[c3−β(1−ᾱβϑ)L]
(c1−c4L)

x̂t−1

Timeless:

0 =
(
π̂t − π̂indt

)
+ 1

c1

X̄
κ̄

(x̂t − x̂t−1)− (c2−c1)
c1

X̄
κ̄

[βc3−β(1−ᾱβϑ)L]
(βc1−c4L)

x̂t−1

Discretion:

0 =
(
π̂t − π̂indt

)
+ X̄

κ̄
x̂t + X̄

κ̄
γπβ

(1−γπβL−1)
x̂t

(30)

where L is the lag operator, L−1 is the expected lead operator, and the composite

parameters are defined as follows:

c1 ≡ 1− (ϑ− 1) β κ̄$
κ̄

(1− σ) ; c2 ≡ 1 + (ϑ− 1) β κ̄$
κ̄

(ω + σ)

c3 ≡ θκ̄c1 + (1− ᾱβϑ) ; c4 ≡ c1 − (1− ᾱβϑ) c2
(31)

The proof closely follows the standard steps used in the literature (e.g. Dam-

janovic et al. (2008) and Woodford (2003)), and hence are not shown here.

In particular, the parameters c1, c2 and ϑ converge to 1 as trend inflation ap-

proaches zero. Therefore, the standard targeting rules (Damjanovic’s unconditional

and Woodford’s timeless) are retrieved in the vicinities of the zero inflation steady

state. Whenever there is indexation (γπ 6= 0) in price setting, the optimal rule under

discretion is future-dependent, i.e. the central bank takes the (given) expectations

of inflation and output gap in consideration when implementing the optimal policy.

If γπ = ε = ν = 0, the trend inflation targeting rule under discretion has the same

form as the one derived by Ascari and Ropele (2007). The only difference is the use

of the microfounded weight X̄ in (30).

An interesting property of the trend inflation optimal policies under uncondi-

tional and timeless perspective commitment is that the targeting rules are more

history-dependent than the ones derived under the Zero StSt. Multiplying the first

expression by (c1 − c4L), or the latter by (βc1 − c4L), we realize that the rules de-

pend on the second lag of the output gap and on the first lag of inflation even

when there is no price indexation. Also important, the persistency implied by both

targeting rules increases as trend inflation rises.
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It is important to stress that imposing the inflation targeting constraint Eπ̂t = 0

prevents the optimal policy under discretion to have an equivalent of the inflation

bias property held by the standard optimal policy under discretion. Imposing the

constraint prevents the bias even under zero trend inflation.

5.1 Gains from commitment

As in Ascari and Ropele (2007), I assess the gains from using the commitment

optimal policies against alternative monetary policies, as trend inflation rises from

1 percent to 4 percent.24 In order simplify the evaluation, I use a slightly modified

version of the TIWeB loss function:

L̄vt ≡ V (π̂t) + X̄V (x̂t) (32)

where V (·) stands for the unconditional variance operator. Note that L̄vt is not the

same as L̄t, but gives us similar information.

The first exercise is to test if the results of Damjanovic et al. (2008) extends under

trend inflation, i.e. if the TIWeB optimal policy under unconditional commitment

(TIu) dominates the one under timeless perspective commitment (TIt). Using the

benchmark calibration, table 1 reports Vi (π̂t), Vi (x̂t), L̄vit for i ∈ {TIu,TIt} and the

gain Gvit ≡
(
L̄vit/L̄vTIut − 1

)
from using the unconditional commitment policy over

optimasl policy i. All values are displayed in percentage notation.

Confirming the results of Damjanovic et al. (2008), the optimal policy under un-

conditional commitment slightly dominates the one under timeless perspective com-

mitment. Moreover, the gains increase as trend inflation rises. Since β is typically

very close to 1, both optimal policy rules imply almost indistinguishable dynamics

and unconditional moments. In this sense, the gains are expected to be small. Due

to this dominance, I use only the TIu optimal policy when assessing the gains from

commitment.

Using the benchmark calibration, the TIWeB optimal policy under discretion

(TId) ceases to be consistent with stability and determinacy in trend inflation equi-

libria with rational expectations at a very low level of trend inflation. This fact is

24When the trend inflation is at zero percent, the endogenous trend inflation cost push shock is
zero. In this case, the model is not disturbed by the exogenous shocks.
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Table 1: Gains of Commitment: TI Timeless and TI Unconditional
π̄ TIt TIu Gain (%)

1
2
3
4

V (π̂t) V (x̂t) L̄vTItt
0.002 0.183 0.002
0.009 0.607 0.011
0.022 0.954 0.025
0.042 0.888 0.045

V (π̂t) V (x̂t) L̄vTIut
0.002 0.183 0.002
0.009 0.610 0.011
0.022 0.962 0.025
0.042 0.899 0.045

GvTItt
0.125
0.210
0.292
0.330

Note: TIWeB timeless perspective commitment (TIt), TIWeB unconditional
commitment (TIu), unconditional variance of ŵt

(
V
(
ŵt

))
, variance-based

loss from using optimal policy i
(
L̄vit
)
, gain from using optimal policy TIu

over optimal policy i (Gvit). Standard calibration.

the first evidence towards the gain of commitment under trend inflation, and is basi-

cally the consequence of using non-linear functional forms for the disutility function

(ν > 0) and for the production function (ε < 1). Therefore, I use the alternative

calibration in which the reciprocal of the Frisch elasticity is reduced to ν = 0.50

(consistent with macro evidence) in the exercises below.

Table 2 reports the unconditional variances, the losses and the gain from using

the TIu optimal policy under commitment over the TId optimal policy under discre-

tion. As before, the gains increase as trend inflation rises. However, they are of two

orders of magnitude greater than before.

Table 2: Gains of Commitment: TI Commitment and TI Discretion
π̄ TId TIu Gain (%)

1
2
3
4

V (π̂t) V (x̂t) L̄vTIdt
0.002 0.127 0.003
0.010 0.482 0.012
0.023 1.004 0.028
0.043 1.612 0.050

V (π̂t) V (x̂t) L̄vTIut
0.001 0.127 0.002
0.005 0.487 0.008
0.013 1.030 0.018
0.024 1.679 0.031

GvTIdt
49.410
52.465
55.456
58.319

Note: TIWeB discretion (TId), TIWeB unconditional commitment (TIu),
unconditional variance of ŵt

(
V
(
ŵt

))
, variance-based loss from using

optimal policy i
(
L̄vit
)
, gain from using optimal policy TIu over optimal

policy i (Gvit). Alternative calibration.

Finally, I compare the use of the trend inflation optimal policy under uncondi-

tional commitment against both standard optimal policies (unconditional commit-

ment (Su) and discretion (Sd)), i.e. the ones that the monetary authority would

obtain if she considered instead the SWeB loss function as the appropriate metrics

for welfare optimization in a trend inflation equilibrium characterized by the equa-

31



tions described in Section 3.1. Those optimal policies are retrieved by substituting

X for X̄ in system (30).

Table 3 reports the unconditional variances and the losses from using the Su and

Sd optimal policies, under the alternative calibration, and computes the gains from

using the TIu optimal policy. For computing the gains, I use the same statistics

reported for the TIu optimal policy in table 2. Again, the gains increase as trend in-

flation rises. As expected, the TIWeB optimal policy under commitment dominates

the SWeB optimal policies under commitment and discretion.

Table 3: Gains of Commitment: TI Commitmen , S Commitment and S Discretion
π̄ Sd Su Gains (%)

1
2
3
4

V (π̂t) V (x̂t) L̄vSdt
0.002 0.115 0.003
0.010 0.392 0.012
0.025 0.727 0.028
0.047 1.027 0.051

V (π̂t) V (x̂t) L̄vSut
0.001 0.117 0.002
0.006 0.415 0.008
0.014 0.801 0.018
0.027 1.176 0.032

GvSdt GvSut
50.408 0.087
54.545 0.405
58.587 0.931
62.343 1.620

Note: SWeB discretion (Sd), SWeB unconditional commitment (Su), TIWeB
unconditional commitment (TIu), unconditional variance of ŵt

(
V
(
ŵt

))
,

variance-based loss from using optimal policy i
(
L̄vit
)
, gain from using

optimal policy TIu over optimal policy i (Gvit). Alternative calibration.
The statistics for optimal policy TIu are the same as in table 2.

The main message from table 3 is that policy recommendations under non-zero

trend inflation must be based on the TIWeB loss function.

6 Simulations

In this section, I study the dynamics implied by trend inflation optimal policies.

Paralelling the analysis done in Section 5.1, this section also compares the results

implied by trend inflation optimal policies with the ones that the monetary authority

would obtain if she considered instead the SWeB loss function as the appropriate

metrics for welfare optimization in a trend inflation equilibrium characterized by the

equations described in Section 3.1. Finally, the analysis compares the results with

the ones obtained when the monetary authority is assigned a inflation target π̄ ≥ 0

to pursuit and implements monetary policy according to the generalized Taylor rule:

ı̂t = 0.86ı̂t−1 + (1− 0.86) [2.20Etπ̂t+1 + 1.56 (ŷt − ŷt−1)] (33)

32



where the parameters are set at the central estimates of the Mixed Taylor rule, the

preferred specification estimated by Coibion and Gorodnichenko (2011).25 Based

on the results in the last section, I do not use the optimal policy under timeless

commitment in the simulations.

The analysis is done in terms of volatility schedules and impulse responses to

shocks as trend inflation rises, paralleling the exercises done by Ascari and Ropele

(2007). I assume that the structural shocks are independent, serially uncorrelated

and normally distributed, i.e. ε̂t
iid∼ N (0, σ2

ε) and Ât
iid∼ N (0, σ2

A). I use the bench-

mark calibration when assessing the results for optimal policies under commitment,

and the alternative calibration (ν = 0.50) when assessing the results for optimal poli-

cies under discretion. Computing volatility schedules are done in terms of relative

standard deviations, i.e. the unconditional standard deviations of the endogenous

variables divided by the unconditional standard deviation of the aggregate shock ξ̂t

(see eq. (17)). Using relative measures avoids scale problems due to the amplitude

of the shocks and to the calibrated parameter values.26 Relative standard deviations

are also invariant with respect to which shock is hitting the economy, i.e. either the

technology shock alone, the preference shock alone or both.

It is important to note that the results obtained using SWeB optimal policies

parallel those obtained by Ascari and Ropele (2007). The authors make exercises

similar to mine, with rising levels of trend inflation, except for using a loss function

with constant coeffi cient for the output gap variability, which mimics the SWeB loss

function. It means that the loss function does not internalize the distortions created

by rising trend inflation, and possibly places more weight on fighting output gap

25The authors find that reacting to the observed output growth rather than to the level of the
output gap has two major advantages: (i) it has more stabilizing properties when the trend inflation
is not zero; and (ii) it is empirically more relevant. To test the empirical dominance, they estimate
the generalized Taylor rule using Greenbook forecasts prepared for each meeting of the Federal
Open Market Committee (FOMC) as real-time measures of expected inflation, output growth, and
the output gap. This approach is advantageous because it avoids any extra assumption on how
the FED’s expectations are formed.
26The standard deviation of ξ̂t actually slightly decreases as trend inflation rises. In order to

check whether that variation was affecting my results, I tested different normalization measures

that were close enough to sd
(
ξ̂t

)
and were invariant with respect to trend inflation. The different

normalization measures were sd
(
ξ̂
π̄∗

t

)
, where ξ̂

π̄∗

t ≡
(
κ̄π̄

∗

$ /κ̄$
)
ξ̂t, κ̄

π̄∗

$ ≡ (1− ᾱπ̄∗) / (1 + θω), and

ᾱπ̄∗ is the effective degree of price rigidity when the trend inflation is fixed at invariant levels
π̄∗ ∈ {0, 1, 2, 3, 4, 5}. As it turns out, the shape and levels of the volatility schedules are robust to
the different normalization measures.
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volatility than it should.

Panels (a) and (b) of figure 5 depict the relative standard deviations of the

annualized inflation rate 4π̂t, the output gap x̂t and the aggregate output ŷt, for

optimal policies under unconditional commitment based on the TIWeB (black) and

SWeB (blue) loss functions, as the annual level of trend inflation rises. Panels (c)

and (d) of figure 5 depict the relative standard deviations of the output gap x̂t,

output ŷt and annualized inflation rate 4π̂t, when the monetary authority follows

the Taylor rule.

There are important lessons from figure 5. While the volatility of the inflation

rate monotonically increases as trend inflation rises, the volatility of the output

gap reverts its rising trend and starts to decrease if the level of trend inflation is

suffi ciently large. The reversion is due to the fact that the coeffi cients of (x̂t − x̂t−1)

and x̂t−1 in the trend inflation targeting rules (eq. (30)) are decreasing functions

of the level of trend inflation. This behavior induces the optimal volatilities of the

output gap to decrease as trend inflation rises past a critical level (about 3.5 percent

under the benchmark calibration).27

Optimal policies based on the SWeB loss function have the same reversion prop-

erty, but deliver smaller output gap volatility and slightly higher inflation volatility.

The reson for that is that the fixed Zero StSt coeffi cient X is smaller than the Trend

StSt coeffi cient X̄ and does not react to distortions created by the level of trend

inflation as X̄ does.

The main lesson is confirming that the central bank faces a policy trade off as

trend inflation rises: it is only possible to completely offset the volatilities of both

inflation and output gap when the level of trend inflation is zero. In a nutshell, the

divine coincidence ceases to hold as soon as the level of trend inflation departs from

zero, as shown in Section 3. Even though the volatilities of both the inflation rate

and the output gap are not completely offset at non-zero levels of trend inflation,

the monetary authority is still able to reduce significantly those volatilities when

compared to volatilities implied by following a Taylor rule.

Panels (a) and (b) of figure 6 depict the relative standard deviations of the

27The coeffi cients increase with trend inflation because their denominators have the composite
parameter κ̄, i.e. the coeffi cient of the output gap in the Phillips curve, which decreases as trend
inflation rises. If the optimal policies had a fixed coeffi cient κ instead of κ̄, the output gap volatility
would monotonically increase as trend inflation rises.
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annualized inflation rate 4π̂t, the output gap x̂t and the aggregate output ŷt, for

optimal policies under unconditional commitment based on the TIWeB (black) and

SWeB (blue) loss functions, as the annual level of trend inflation rises. Panels (c)

and (d) of figure 6 depict the relative standard deviations for the output gap x̂t,

output ŷt and annualized inflation rate 4π̂t, when the monetary authority follows an

optimal policy under discretion. Now, all relative volatilities are obtained using the

alternative calibration (ν = 0.50). As expected, following the optimal policy under

commitment allows for smaller relative volatilities. Again, the divine coincidence

holds only when the level of trend inflation is zero.

Figure 7 shows the relative responses of the annualized inflation rate 4π̂t and the

output gap x̂t to the preference shock ε̂t as trend inflation rises, using the benchmark

calibration, for the cases in which the monetary policy follows the Taylor rule or

the optimal policies under unconditional commitment based on the TIWeB and

SWeB loss functions. By relative responses, I mean that they are divided by the

unconditional standard deviation of the aggregate shock ξ̂t. Based on the definition

of the aggregate shock ξ̂t in (17), responses to the technology shock Ât look identical

to responses to the preference shock ε̂t whenever σ < 1, or perfectly symmetrical

when σ > 1.28 Due to this redundancy, I am not showing the responses to the

technology shock.

Panels (a1) and (a2) show the responses when the monetary policy follows the

optimal policy under unconditional commitment based on the TIWeB loss function.

Note that a positive preference shock has a negative impact on the endogenous

trend inflation cost-push shock ût. That is this way because the aggregate shock

hits the trend inflation cost-push shock by means of its expected value Etξ̂t+1. It

implies that the inflation rate is hit by a negative shock and falls on impact, as

shown in panel (a1). For lower levels of trend inflation, the optimal policy under

unconditional commitment brings back the aggregate price level to the vicinities

where the price trend was before the shock. For that reason, inflation has to remain

positive for a few quarters. Under higher levels of trend inflation, the third term

of the targeting rule (eq. (30)) becomes relevant and prevents the optimal policy

to bring back the aggregate price level to the vicinities where the price trend was

28The reason for this dependency on the value of σ is described in Section 3.1.
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before the shock.29 In any case, the higher is the level of the trend inflation, the

more amplified is the effect of the shock. In general, the output gap has to increase

to push the inflation rate to positive values, as shown in panel (a2). Recall, from

figure 5, that the volatility of the output gap starts to fall when the level of the trend

inflation is slightly higher than 3.5 percent. This fact is reflected in the response of

the output gap when the level of inflation trend hits about four percent: it is about

the same as the response at the three-percent level of trend inflation.

Panels (b1) and (b2) show the responses when the monetary policy follows the

optimal policy under unconditional commitment based on the SWeB loss function.

The qualitative dynamics are the same as the ones shown in panels (a1) and (a2).

The amplitude of the responses, however, are different. While the amplitude of

the responses of the inflation rate are slightly greater than ones obtained with the

TIWeB optimal policy, the amplitude of the responses of the output gap are much

smaller. This is due to the fact that the SWeB loss function has a constant weight

on output volatility, while the weights decrease as trend inflation rises in the TIWeB

loss function. That is, the TIWeB loss function is more hawkish against higher levels

of trend inflation.

As expected, there is no response when using optimal policies at the zero level

of trend inflation.

Panels (c1) and (c2) show the responses when the monetary policy follows the

Taylor rule. The main results are that there are non-zero responses even when the

level of trend inflation is zero, and the amplitude of the responses are of one order of

magnitude greater than the ones obtained using the optimal policies. In particular,

inflation responses are always positive because this particular form of the Taylor rule

responds to Etπ̂t+1 instead of π̂t. Since the main point of this exercise is to ilustrate

how the amplitudes increase when not using trend inflation optimal policies, I am

not comparing the responses obtained from Taylor rules with different forms.

29Note that this effect would also happen if the monetary authority followed the trend inflation
optimal policy under timeless commitment.
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Figure 5: Relative volatilities: unconditional commitment and Taylor rule

Note: Optimal policy based on the TIWeB loss function (black), optimal policy
based on the SWeB loss function (dashdotted blue), volatility pairs at
specific levels of trend inflation (dots). Panels (a) and (b): optimal policy
under commitment. Panels (c) and (d): Taylor rule.
Results were obtained using the benchmark calibration.
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Figure 6: Relative volatilities: unconditional commitment and discretion

Note: Optimal policy based on the TIWeB loss function (black), optimal policy
based on the SWeB loss function (dashdotted blue), volatility pairs at
specific levels of trend inflation (dots). Panels (a) and (b): optimal policy
under commitment. Panels (c) and (d): optimal policy under discretion.
Results were obtained using the alternative calibration.
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Figure 7: Relative responses to preference shock: Commitment TIWeB, Commit-
ment SWeB, and Taylor Rule

Note: π̄ = 0 (dashdotted), π̄ = 1 (dots), π̄ = 2 (crosses), π̄ = 3 (stars),
π̄ = 4 (diamonds). Responses obtained using the benchmark calibration.
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Figure 8: Relative responses to preference shock: Commitment and discretion TI-
WeB, Commitment and discretion SWeB

Note: π̄ = 0 (dashdotted), π̄ = 1 (dots), π̄ = 2 (crosses), π̄ = 3 (stars),
π̄ = 4 (diamonds). Responses obtained using the alternative calibration.

40



Figure 8 shows the relative responses of the annualized inflation rate 4π̂t and the

output gap x̂t to the utility shock ε̂t as the trend inflation rises, using the alternative

calibration (ν = 0.50), for the cases in which the monetary policy follows the opti-

mal policies under unconditional commitment and discretion, based on the TIWeB

and SWeB loss functions. Qualitatively, the responses using optimal policies under

unconditional commitment are very similar to the ones in figure 7, and amplitudes

increase as trend inflation rises. Therefore, the same comments apply. The only dif-

ference is that the amplitudes are smaller under the alternative calibration. This is

due to the fact that we use a smaller value for the reciprocal of the Frisch elasticity.

Using the optimal policies under discretion, the amplitudes are larger than the ones

obtained using optimal policies under unconditional commitment. Furthermore, the

policies do not bring the aggregate prices near where they were before the shocks.

For that reason, the responses of the output gap are short lived.

7 Conclusion

The (non-linear) standard New Keynesian model is usually assumed to be consistent

with the divine coincidence. When staggered price adjustment is the only nominal

friction, the monetary authority does not face a trade off between stabilizing the

inflation rate and the output gap in the face of preference and technology shocks.

In this paper, I have shown that the divine coincidence holds only in the particular

case in which the monetary authority stabilizes the inflation rate at exactly zero. A

policy trade-off emerges whenever trend inflation is non-zero.

When log-linearizing the model about the equilibrium with trend inflation, an

endogenous trend-inflation cost-push shock appears in the Phillips Curve. This

shock, which summarizes the effects of the exogenous preference and technology

shocks interacting with trend inflation, would be absent if average inflation equalled

zero. When trend inflation is not zero, the presence of a shock in the Phillips Curve

generates a policy trade off for the monetary authority, and the variance of this

cost-push shock increases as trend inflation rises.

Deriving a second order approximation to the welfare function under trend in-

flation, I show that a welfare-concerned monetary authority must be more hawkish
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by putting a smaller weight on (log-deviation) output gap volatility if, as is the

case for all inflation targeting central banks, average inflation is not equal to zero.

Optimal policies (unconditional and timeless) for non-zero trend inflation become

more inertial and history-dependent as trend inflation rises.

An analysis on the gains of commitment confirms that the trend-inflation optimal

policy under unconditional commitment dominates all other policies under trend

inflation: timeless perspective and discretion. Moreover, I find that following the

optimal policies suggested by the standard welfare-based loss function that assumes a

zero trend inflation rate can induce substantial welfare costs if, in fact, trend inflation

deviates from zero. As a consequence, the common practice of approximating welfare

around a zero-inflation steady-state may not be the best metric for policy evaluation;

it tends to underestimate the welfare loss when average inflation actually exceeds

zero. Empirical DSGEmodels in the new Keynesian tradition assume full indexation

of price setting decisions to eliminate any effects of trend inflation. Given that such

indexation is not observed in the micro evidence for many countries implies that the

design of optimal stabilization policy is not independent of an economy’s average

rate of inflation.
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A Steady state levels and composite parameters

Tables 4 and 5 define the structural and composite parameters. Table 6 describes

the steady state levels under trend inflation.

Table 4: Structural parameters
σ ≡ reciprocal of intertemp elast substit γπ ≡ coeff lag inf on index rule
ν ≡ reciprocal of the Frisch elasticity ε ≡ labor elasticity prod function
χ ≡ scale parameter on labor disutility α ≡ Calvo degree of price rigidity
θ ≡ elasticity of substit between goods π̄ ≡ level of trend inflation

Table 5: Composite parameters
µ ≡ θ

θ−1
κ̄ ≡ (1−ᾱ)(1−ᾱβϑ)

ᾱ
(ω+σ)
(1+θω)

X̄ ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ

ω ≡ 1+ν
ε
− 1 κ̄$ ≡ (1−ᾱ)

(1+θω)
V̄ ≡ (ω+σ)

X̄ Ȳ
1−σ

δ ≡ 1
1−γπ

Φ̄y ≡ 1− (1−ᾱβϑ)(1−ᾱ)
µ(1−ᾱβ)(1−ᾱϑ)

c1 ≡ 1− (ϑ− 1) β κ̄$
κ̄

(1− σ)

ᾱ ≡ α
(
Π̄
)(θ−1)(1−γπ)

Φ̄ϑ ≡ (ϑ− 1) c2 ≡ 1 + (ϑ− 1) β κ̄$
κ̄

(ω + σ)

ϑ ≡
(
Π̄
)(1+θω)(1−γπ)

φ̄x ≡ 1
(ω+σ)

Φ̄y c3 ≡ θκ̄c1 + (1− ᾱβϑ)

max (ᾱ, ᾱϑ) < 1 φ̄π ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φ̄ϑ c4 ≡ c1 − (1− ᾱβϑ) c2

Table 6: Steady state levels

Ī = β−1
(
Π̄
)

= 1
q̄

; Π̄ind = Π̄(γπ+γ) ; Ȳ n =
(

ε
χµ

) 1
(ω+σ)

; Ȳ ef =
(
ε
χ

) 1
(ω+σ)

℘̄∗ =
(

1−α
1−ᾱ
) 1
θ−1 ; N̄

D̄
= (℘̄∗)1+θω ; X̄ω+σ = 1−ᾱβϑ

1−ᾱβ
N̄
D̄

; Ȳ = X̄Ȳ n

W̄ = ū−ῡ
1−β ; ū = Ȳ

1−σ

1−σ ; ῡ = χȲ (1+ω)P̄−θ(1+ω)
1+ν

; P̄ =
(

1−ᾱϑ
1−α

) 1
θ(1+ω) ℘̄∗

B Proof of Proposition 1

PROPOSITION 1: The true welfare function is (second-order) approximated as

Wt = −1

2
V̄Et

∞∑
τ=0

βτLt+τ + tipWt

where

Lt ≡
(
π̂t − π̂indt + φ̄π

)2
+ X̄

(
x̂t − φ̄x

)2
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is the trend inflation welfare-based (TIWeB) loss function, tipWt stands for terms

independent of policy at period t, φ̄π and φ̄x are constants that depend on the ineffi -

ciency degrees Φ̄ϑ and Φ̄y, and V̄ corrects for the aggregate reduction in the welfare

when the trend inflation increases. Those coeffi cients are defined as follows:

φ̄π ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φ̄ϑ ; φ̄x ≡ 1

(ω+σ)
Φ̄y ; V̄ ≡ Ȳ

1−σ (ω+σ)

X̄ ; X̄ ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ

Proof. A) Second order approximation of P̂t
The strategy is to make second-order approximations of the system

1 = (1− α) (℘∗t )
−(θ−1) + α

(
Πt/Π

ind
t

)(θ−1)

P−θ(1+ω)
t = (1− α) (℘∗t )

−θ(1+ω) + α
(
Πt/Π

ind
t

)θ(1+ω)P−θ(1+ω)
t−1

and solve for P̂t and ℘̂∗t , where ℘∗t ≡ p∗t/Pt is the optimal resetting relative price,

and P−θ(1+ω)
t ≡

[∫ 1

0
(pt (z) /Pt)

−θ(1+ω) dz
]−1/θ(1+ω)

is a measure of aggregate relative

prices.

The (log) second-order approximation of the first equation is

℘̂∗t ≈
1

2
(θ − 1) (℘̂∗t )

2 +
ᾱ

(1− ᾱ)

[(
π̂t − π̂indt

)
+

1

2
(θ − 1)

(
π̂t − π̂indt

)2
]

which implies that the a first-order approximation of Ft is

℘̂∗t ≈
ᾱ

(1− ᾱ)

(
π̂t − π̂indt

)
I use this result to eliminate (℘̂∗t )

2 from the previous second-order approximation

and obtain

℘̂∗t ≈
ᾱ

(1− ᾱ)

(
π̂t − π̂indt

)
+

1

2
(θ − 1)

ᾱ

(1− ᾱ)2

(
π̂t − π̂indt

)2

The (log) second-order approximation of the second equation is

P̂t ≈
1

2
θ (1 + ω) P̂2

t + (1− ᾱϑ) ℘̂∗t − ᾱϑ
[(
π̂t − π̂indt

)
− P̂t−1

]
−1

2
θ (1 + ω) (1− ᾱϑ) (℘̂∗t )

2 − 1

2
θ (1 + ω) ᾱϑ

[(
π̂t − π̂indt

)
− P̂t−1

]2
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and then the a first-order approximation of Pt is

P̂t ≈ (1− ᾱϑ) ℘̂∗t − ᾱϑ
[(
π̂t − π̂indt

)
− P̂t−1

]
Replacing Φ̄ϑ for (ϑ− 1) and using the last results to eliminate ℘̂∗t , (℘̂∗t )

2 and P̂2
t

from the previous second-order approximation, I obtain

P̂t ≈ ᾱϑP̂t−1 −
ᾱΦ̄ϑ

(1− ᾱ)

(
π̂t − π̂indt

)
−1

2

ᾱ (1− ᾱϑ)
[
(1 + ωθ) + θ (1 + ω) Φ̄ϑ

]
(1− ᾱ)2

(
π̂t − π̂indt

)2

+θ (1 + ω) ᾱϑ (1− ᾱϑ)

[
1

(1− ᾱ)

(
π̂t − π̂indt

)
P̂t−1 −

1

2
P̂2
t−1

]

If Φ̄ϑ is assumed to be a first order term (the same order of the hatted variables),

then Φ̄ϑ

(
π̂t − π̂indt

)
is a second order term and Φ̄ϑ

(
π̂t − π̂indt

)2
is a third order term

which may be ignored in the approximation. This assumption implies that P̂t has

no first order dynamics, other than ᾱϑP̂t−1. Hence, P̂2
t−1 and

(
π̂t − π̂indt

)
P̂t−1 are

third order variables whenever Φ̄ϑ is a first order term. In this case the second order

approximation is simplified to:

P̂t ≈ ᾱϑP̂t−1 −
ᾱΦ̄ϑ

(1− ᾱ)

(
π̂t − π̂indt

)
− ᾱ (1 + ωθ) (1− ᾱϑ)

2 (1− ᾱ)2

(
π̂t − π̂indt

)2

Completing the squares and solving backwards to period t = −1, the expression

is rewritten as

P̂t ≈ (ᾱϑ)t+1 P̂−1 −
1

2

ᾱ (1− ᾱϑ)

(1− ᾱ)2 (1 + ωθ)

t∑
τ=0

(ᾱϑ)t−τ
(
π̂τ − π̂indτ + φ̄π

)2
+ tipPt

where φ̄π is a positive constant and tip
P
t denote a term independent of policy:

φ̄π ≡
(1−ᾱ)Φ̄ϑ

(1−ᾱϑ)(1+θω)
; tipPt ≡ 1

2
ᾱ

(1−ᾱ)
φ̄πΦ̄ϑ

(1−(ᾱϑ)t+1)
(1−ᾱϑ)
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Note then that

∞∑
t=0

βtP̂t ≈ tipβP−1 −
1

2

ᾱ (1− ᾱϑ)

(1− ᾱ)2 (1 + ωθ)

∞∑
t=0

βt
t∑

τ=0

(ᾱϑ)t−τ
(
π̂τ − π̂indτ + φ̄π

)2

≈ tipβP−1 −
1

2

ᾱ (1− ᾱϑ)

(1− ᾱ)2 (1 + ωθ)

∞∑
τ=0

∞∑
t=τ

βt (ᾱϑ)t−τ
(
π̂τ − π̂indτ + φ̄π

)2

Therefore the sum is rewritten as

∞∑
t=0

βtP̂t ≈ tipβP−1 −
1

2

(1− ᾱϑ) (ω + σ)

(1− ᾱ)

1

κ̄

∞∑
τ=0

βτ
(
π̂τ − π̂indτ + φ̄π

)2

where tipβP−1 denote a term independent of policy from period t = 0 onward:

tipβP−1 ≡
1

(1− ᾱβϑ)

(
ᾱϑP̂−1 +

1

2

ᾱ

(1− β) (1− ᾱ)
φ̄πΦ̄ϑ

)

B) Second order approximations of ut and υt

A second order approximation of ut is

ut ≈ Ȳ
1−σ
[
ŷt +

1

2
(1− σ) ŷ2

t + ŷtε̂t

]
+ tiput

where tiput ≡ ū
(
1 + ε̂t + 1

2
ε̂2t
)
.

Since Y ef (ω+σ)

t = (ε/χ) εtA(1+ω)
t , the aggregate disutility υt = χ

1+ν

(
Yt
At

)(1+ω)

P−θ(1+ω)
t

can be written as υt = 1
1+ω

(
Yt
Pθt

)(1+ω) (
Y ef
t

)−(ω+σ)

εt. Therefore, its second order

approximation is

υt ≈ ῡ +
Ȳ (1+ω)

(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω)

1 + ω

[
(1 + ω) ŷt − (ω + σ) ŷeft − θ (1 + ω) P̂t + ε̂t

]
+
Ȳ (1+ω)

(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω)

2 (1 + ω)

[
(1 + ω) ŷt − (ω + σ) ŷeft − θ (1 + ω) P̂t + ε̂t

]2

Note that Ȳ (ω+σ)
(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω) =

(
1− Φ̄y

)
, where Φ̄y is assumed to be

a first order disturbance term. Recall that P̂t is a second order variable whenever

Φ̄ϑ is assumed to be a first order disturbance term. Under such assumptions, the

approximation is simplified to

υt ≈ Ȳ
1−σ
[
ŷt − Φ̄yŷt − θP̂t +

1

2
(1 + ω) ŷ2

t − (ω + σ) ŷtŷ
ef
t + ŷtε̂t

]
+ tipυt
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where tipυt ≡ ῡ

[
1 +

(
ε̂t − (ω + σ) ŷeft

)
+ 1

2

(
ε̂t − (ω + σ) ŷeft

)2
]
.

C) Second order approximation of the welfare function

The instantaneous utility of the representative household is Ut = ut−υt, and thus

is the society instantaneous utility function. Moreover, note that Y ef
t = µ1/(ω+σ)Y n

t .

It implies that ŷeft = ŷnt . Using the last results, I obtain

Ut = Ȳ
1−σ
(
θ
(
1− Φ̄y

)
P̂t + Φ̄yŷt −

1

2
(ω + σ) ŷ2

t + (ω + σ) ŷtŷ
n
t

)
+Ȳ

1−σ
(

Φ̄yŷtε̂t − (ω + σ) Φ̄yŷtŷ
n
t +

1

2
(1 + ω) Φ̄yŷ

2
t

)
+Ȳ

1−σ (
1− Φ̄y

)(1

2
θ2 (1 + ω) P̂2

t − θ (1 + ω) ŷtP̂t + θ (ω + σ) ŷnt P̂t − θP̂tε̂t
)

+tiput − tipυt

Note that there are two linear terms:
(
1− Φ̄y

)
P̂t and Φ̄yŷt. Therefore, this

correct approximation is not useful for policy evaluation using the structural log-

linearized equations. That is the reason I parallel the analysis in Woodford (2003,

chap. 6) and assume Φ̄ϑ and Φ̄y to be first order disturbance terms. Since he assesses

the Zero StSt, he only makes this assumption with respect to Φ̄y. Under the Trend

StSt, I need to expand this assumption towards Φ̄ϑ. In this case, I have already

shown that P̂t becomes a second order variable. This implies that Φ̄yP̂t is a third

order term. Ignoring all third-order terms and completing the squares, I simplify

the second-order approximation to

Ut = Ȳ
1−σ
(
θP̂t −

1

2
(ω + σ)

(
x̂t − φ̄x

)2
)

+ tipUt + tiput − tipυt

where φ̄x ≡ 1
(ω+σ)

Φ̄y and tipUt ≡ 1
2(ω+σ)

Ȳ
1−σ [

Φ̄2
y + (ω + σ)2 (ŷnt )2]. Using the second-

order approximation on
∑∞

t=0 β
tP̂t, the social welfare Wt ≡ Et

∑∞
τ=0 β

τUt+τ is then

computed as

Wt ≡ −
1

2
V̄Et

∞∑
τ=0

βτ
[(
π̂t+τ − π̂indt+τ + φ̄π

)2
+

(1− ᾱ)

(1− ᾱϑ)

κ̄

θ

(
x̂t+τ − φ̄x

)2
]

+ tipWt

where V̄ ≡ Ȳ
1−σ (1−ᾱϑ)(ω+σ)

(1−ᾱ)
θ
κ̄
and tipWt ≡ θȲ

1−σ
tipβPt−1+Et

∞∑
τ=0

βτ
(
tipUt+τ + tiput+τ − tipυt+τ

)
.
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