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Abstract

This paper compares the properties of two particle filters – the Bootstrap Filter and

the Auxiliary Particle Filter – applied to the computation of the likelihood of artificial

data simulated from a basic DSGE model with nominal and real rigidities. Particle filters

are compared in terms of speed, quality of the approximation of the probability density

function of data and tracking of state variables. Results show that there is a case for the use

of the Auxiliary Particle Filter only when the researcher uses a large number of observable

variables and the number of particles used to characterize the likelihood is relatively low.

Simulations also show that the largest gains in tracking state variables in the model are

found when the number of particles is between 20,000 and 30,000, suggesting a boundary

for this number.
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1 Introduction

Models in state-space representation constitute a benchmark in today’s economic analysis. The

widespread use of linearized representation of equilibrium conditions made the Kalman Filter an

important tool for simulation of non-observed variables, helping on the estimation of economic

models. Particularly in the analysis of Dynamic Stochastic General Equilibrium (DSGE) Models,

the seminal contribution of Smets and Wouters (2003)[28] quickly became a standard method-

ology for estimating medium and large scale DSGE models, with several applications in current

literature. The authors rely on the Kalman Filter to obtain the likelihood of a model charac-

terizing the European economy and estimate it using Bayesian techniques. The Kalman Filter,

however, assumes a structure sometimes very restrictive if the researcher is interested in non-

linear phenomena usually observed in data1 . Additionally, Fernández-Villaverde, Rubio-Ramírez

and Santos (2006)[15] show that the errors in the approximation of equilibrium conditions of a

model accumulate over the sample. As a consequence, second-order errors of approximated pol-

icy functions still generate first-order changes in the approximation of the likelihood of a model2 .

In order to overcome these problems, Fernández-Villaverde and Rubio-Ramírez (2005, 2007)[13]

[14] propose the use of a particle filter to compute the likelihood of DSGE models, generalizing

the methodology described in Smets and Wouters (2003)[28]. This paper characterizes two par-

ticle filters applied on a standard DSGE model in terms of speed, the quality of the likelihood

approximation and the ability to track the model’s state variables. For all those features, the

number of particles characterizing the distribution of state variables plays a significant role.

Particle filters, also called Sequential Importance Sampling methods or Sequential Monte

Carlo methods, constitute an important set of procedures used in a large variety of applications in

different fields of science. In economics, however, only recently the Bootstrap Filter —a particular

implementation of particle filters —, proposed by Gordon, Salmond and Smith (1993)[18], got

some attention as a statistical tool to evaluate the likelihood function in complex, non-linear

models. As an example, Kim, Shephard and Chib (1998) and Pitt and Shephard (1999)[25]

study simple models with stochastic volatility. The large number of state variables in standard

models, combined with the large computational burden associated with frequent calls to the filter

in simulation procedures, resulted in prohibitive costs for a practical implementation. With the

increased use of parallel distribution of tasks in personal computers with multiple CPU cores

and GPU processing, the time constraints on procedures based on particle filtering are vastly

reduced.

The consistency of the particle filter is based on the number of particles used to approximate

1Among others, monetary and fiscal policy shifts of regime, the "fat-tails" usually verified in economic shocks,
the influence of risk aversion and precautionary savings on aggregates like consumption and investment are all
phenomena not well characterized in a linear framework. The combination of a linear state-space representation
with Gaussian disturbances — the basic framework underlying the Kalman Filter — is not appropriate to handle
these features.

2Alves (2011)[1] simulates a very long artificial dataset from a non-linear solution of the New-Keynesian model
and estimates the structural parameters using log-linear approximations of the equilibrium conditions. He finds
significant bias in the estimation of the labor supply elasticity and the price rigidity (Calvo) parameters.
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the probability density function of state variables in each point in time, at the expense of ad-

ditional time spent in computations. The trade-off between accuracy of the filter and the time

necessary to execute the procedure can be summarized by results in figure 1. In order to build

the results presented in the figure, the model in Christiano, Eichenbaum and Evans (2005)[9]

was simulated to generate an artificial data with 100 observations. Using the artificial data and

the true parameter set generating data, the Bootstrap Filter simulated the log-likelihood of the

model 1000 times for different sizes of the particle swarm. The only source of uncertainty in the

simulations is the random draw generating states.
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Figure 1: Bootstrap Filter: Standard-Deviation of Log-Likelihood and Time per Simulation

In figure 1, the horizontal axis shows the number of particles used to generate the simulations.

The vertical axis on the left shows the standard deviation of the 1000 draws of the log-likelihood,

while the axis on the right shows the average time per simulation measured in seconds. The

figure shows the importance of selecting an appropriate number of particles on the set up of

particle filters: simulated values of the log-likelihood become more precise as the number of

particles increase. However, as the gains in precision declines with the increase in the number of

particles, the average time per simulation, and the computational burden associated, increases

over an almost linear trend.

It is interesting, though, that there is not a clear setup on how to determine the appropri-

ate number of particles to use for likelihood inference. Indeed, there is a large discrepancy in
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literature regarding the relation between the size of the model —measured in terms of number

of state variables —and the number of particles used for simulation purposes. There are very

few papers specifically addressing this problem. One is presented in Fernández-Villaverde and

Rubio-Ramírez (2004)[12], where the authors simulate 50 times the log-likelihood of a model

under alternative calibrations. Using 40,000 particles, the standard-deviation of the simulated

log-likelihood is less than half-percentage point of the mean value of the log-likelihood. Andreasen

(2011)[4] proposes a new distribution for the importance sampling based on the Central Differ-

ence Kalman Filter and tests his version of the particle filter against the basic filter described

in Fernández-Villaverde and Rubio-Ramírez (2004)[12] and two alternative versions. The author

shows that his filter outperforms the basic particle filter in terms of standard-deviation of the

simulated log-likelihood for models with a small number of shocks and a low number of particles.

In a New Keynesian model with 3 and 4 shocks and with 50,000 particles, the standard-deviation

of simulations become very similar across filters.

In empirical applications, Fernández-Villaverde and Rubio-Ramírez (2005)[13] simulate the

likelihood function of Neoclassical Growth Model using 60,000 particles. Fernández-Villaverde

and Rubio-Ramírez (2007)[14] estimate an extended version of the Neoclassical Growth Model

with investment-specific technological change, preference shocks and stochastic volatility in

shocks. The extended version contains eight state variables against only two from the basic

model. The estimation used 80,000 particles in the setup of the particle filter. An and Schorfheide

(2007)[3] and An (2008)[2] estimate the basic New-Keynesian model with quadratic adjustment

costs for prices using US data. The Bootstrap Filter is set with 40,000 particles. Lombardi and

Sgherri (2007)[24] set a simple DSGE model without capital and use the particle filter to esti-

mate the model and track the path of the natural interest rate. The filter is set with only 10,000

particles. Fernández-Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010)[11] estimate a

fully-fledged DSGE model with sticky prices and wages, plus parameter drifts and stochastic

volatility to shocks, for a total of 19 state variables. For this large model, the likelihood is com-

puted using only 10,000 particles, mainly due to speed concerns when running the code. Flury

and Shephard (2011)[16] apply the particle filter for the estimation of several types of economic

models. They set the particle filter with 60,000 particles when simulating the likelihood of a very

simple DSGE model without nominal frictions.

This paper addresses the problem of selecting an appropriate number of particles while com-

paring two specific particle filters applied to DSGE models: the Bootstrap Filter, proposed by

Gordon, Salmond and Smith (1993)[18], and the extension known as the Auxiliary Particle Fil-

ter, proposed by Pitt and Shephard (1999)[25]. The problem of selecting the size of the particle

swarm is relevant not only in terms of properly characterizing the density of state variables, but

also due to the problem of sample depletion in common settings adopted in the estimation of

DSGE models. As will be shown, the problem of sample depletion manifests not only as a con-

sequence of an insuffi cient number of particles, but also when independent measurement errors

of observable variables —a priori unknown to the researcher —converges to zero. Most exercises
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are based on the computation of the number of effective particles proposed in Liu and Chen

(1995)[23], combined with the time necessary to compute the likelihood function. Additionally,

the ability of each filter to correctly track the path of state variables, emphasized by Boers

(1999)[7], is evaluated in each simulation. Robustness is checked changing the model for number

of observable and state variables. The Christiano, Eichenbaum and Evans (2005)[9] model was

selected because it is a well-known benchmark in terms of DSGE models. It has a relatively

large number of state variables and provides enough flexibility to alter the number of state and

observable variables with small changes in the baseline calibration. This flexibility is extensively

explored during robustness tests.

Note that, when discussing about an "appropriate number of particles", this paper is not pre-

senting a procedure to optimaly determine the size of the particle swarm. Instead, the approach

here consists in evaluating the ability of each filter in correctly tracking state variables of the

model. As shown in Boers (1999)[7], statistics related to the prediction error of state variables

stabilize after a given particle swarm size. Given the linear expansion of computational time as

the swarm gets larger, it is natural to not spend additional resources when gains become limited.

As a consequence, the appropriate number of particles can also be interpreted as the minimum

size of the particle swarm required to properly work with the particle filter.

In terms of results, this paper shows that the Auxiliary Particle Filter provides better results

over the Bootstrap Filter when the size of the particle swarm is small or the number of observable

variables is relatively large. The gains of the Auxiliary Particle Filter are mostly concentrated at

the tails of the distribution of the probability density function. However, as the size of the swarm

increases, the signal-to-noise ratio of the model is reduced or the number of observable variables is

reduced, there is not a clear advantage in using the Auxiliary Particle Filter, as the computational

burden offsets gains in accuracy of the filter. As a basic setup of both filters, results suggest that

a swarm between 20,000 and 30,000 particles has an adequate size to properly track the state

variables of the model. This result is not conditional on the number of state variables or the size

of measurement errors characterizing the model. The paper does not deal with complex proposals

of particle filters, as in Andreasen (2011)[4], but instead shows that, based on the quality of the

approximation of state variables, a large number of particles might not be necessary to properly

characterize the density of states. Results also stress the role of GPU computing to calculate

the likelihood of the model: in the model with 50,000 particles and three shocks, Andreasen

(2011)[4] spends around 15 seconds in the basic filter for each evaluation of the likelihood for a

sample with 200 observations; figure 1 shows that the average evaluation of the likelihood of a

sample of 100 observations takes less than 4.5 seconds.

The paper is organized as follows. Section 2 provides a brief description of both the Bootstrap

Filter and the Auxiliary Particle Filter. Section 3 presents the theoretical model, calibration and

solution method. Section 4 presents the main results while section 5 concludes.
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2 Two Particle Filters

In this section, two versions of the Particle Filter are presented: the Bootstrap Filter, which is

a basic filter using a specific function for the importance sampling procedure; and the Auxiliary

Particle Filter, an extension that includes more information when approximating the proba-

bility density function at the expense of additional computational time. The Bootstrap Filter

has been used in the literature applied to DSGE models, notably at Fernández-Villaverde and

Rubio-Ramírez (2005)[13], Fernández-Villaverde and Rubio-Ramírez (2007)[14] and Fernández-

Villaverde, Guerrón-Quintana and Rubio-Ramírez (2010)[11]. The Auxiliary Particle Filter is an

extension proposed by Pitt and Shephard (1999)[25] designed to incorporate information about

the current period when filtering information. Most of its applications are based on small models

due to the additional computational time.

Consider a model where the researcher has access to a vector of n observable variables3 in

each point in time Y T = {Yt}Tt=1 ∈ RnT with the elements of Y T given by yT = {yt}Tt=1 . There
is a set of state variables, St, and parameters γ ∈ Υ characterizing the model which are not

necessarily observed. The researcher would like to obtain a likelihood function given Y T and a

proposed parameter set γ :

L
(
Y T ; γ

)
= p

(
Y T ; γ

)
The solution of the dynamic system is composed by two general functions g and f describing the

evolution of state variables and relating observable and state variables:

Yt = g (St, Vt; γ) (1)

St = f (St−1,Wt; γ) (2)

In the representation, {Vt} and {Wt} are sequences of exogenous, not necessarily independent
variables. As a set of sequences, however, {Vt} and {Wt} are independent of each other. More
specifically, {Vt} is interpreted as noise to the set of observations, while {Wt} is a set of exogenous
shocks included in the characterization of the model. Note that, in principle, there are no

assumptions regarding the functional forms g and f and the distribution of {Vt} and {Wt} : it is

only necessary that the probability density functions p (Wt; γ) and p (Vt; γ) are known and can

be evaluated by the researcher. In terms of the size of the sequences, in order to avoid stochastic

singularity in the model, it is necessary that dim (Wt) + dim (Vt) ≥ dim (Yt) . Furthermore, to

clarify the exposition, assume that {Wt} can be partitioned in two sequences {W1,t} and {W2,t}
such that Wt = (W1,t,W2,t) and dim (W2,t) + dim (Vt) = dim (Yt) . Also, to make notation clear,

define WT
i = {Wi,t}Tt=1 , for i = 1, 2, V T = {Vt}Tt=1 and ST = {St}Tt=1 .

In order compute the likelihood, first note that, given the notation above, L
(
Y T ; γ

)
can be

3For the sake of simplicity, notation in this section follows closely Fernández-Villaverde and Rubio-Ramírez
(2005)[13] and Fernández-Villaverde and Rubio-Ramírez (2007)[14]. The reader is strongly encouraged to refer to
Fernández-Villaverde and Rubio-Ramírez (2007)[14] for a more technical exposition of the problem.
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factored as:

p
(
yT ; γ

)
=

T∏
t=1

p (yt|yt−1; γ)

=
T∏
t=1

∫∫
p
(
yt|W t

1 , S0, y
t−1; γ

)
p
(
W t
1 , S0|yt−1; γ

)
dW t

1dS0

The first step simply defines the likelihood function as the product of densities evaluated in each

period of time t, conditional on the information available in the previous period. The integrals

in the second step describes the density in each point in time: it decomposes past information in

terms of the sequence of exogenous variables and the initial state of the model, jointly integrated

over time. Assume, for a moment, that g and f are linear functions of the state St, and {Vt} and
{Wt} are both Normally distributed. In this specific case, the Kalman filter and its prediction
error decomposition can be easily applied to obtain exact expressions for both integrals in terms

of Riccati equations —the value of the likelihood L
(
Y T ; γ

)
is exact, not an approximation4 . In

the general case proposed here, where there is not a closed form solution available, alternative

methods are employed to obtain an approximation of L
(
Y T ; γ

)
.

The Bootstrap Filter allows a proper evaluation of the integrals, given that a suffi cient num-

ber of simulations are performed. The key step here is the assumption about the knowledge

of the distribution of p (Wt; γ): given a swarm of particles
{
wt−1,i1 , st−1,i0

}N
i=1

of size N from

the distribution in t − 1 of p
(
W t−1
1 , S0|yt−1; γ

)
, the distribution p (W1,t; γ) is used to gen-

erate a set of draws characterizing the proposed distribution of p
(
W

t|t−1
1 , S0|yt−1; γ

)
, since

p
(
W

t|t−1
1 , S0|yt−1; γ

)
= p (W1,t; γ) p

(
W t−1
1 , S0|yt−1; γ

)
. Moving from a proposal to the ac-

tual distribution p
(
W t
1 , S0|yt−1; γ

)
is an application of Importance Sampling methods (Geweke,

1989[17]), using p
(
W

t|t−1
1 , S0|yt−1; γ

)
as the so-called importance sampling distribution. Define

the importance weights derived from the importance sampling distribution as the probability

that a particle
(
w
t|t−1,i
1 , s

t|t−1,i
0

)
is chosen from the distribution p

(
W

t|t−1
1 , S0|yt−1; γ

)
:

qit =
p
(
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

)
∑N
i=1 p

(
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

)
The final distribution p

(
W t
1 , S0|yt−1; γ

)
is a result of a resample procedure with replacement of a

swarm of size N of
{
wt,i1 , s

t,i
0

}N
i=1

being chosen with probability qit from the proposal distribution

in p
(
W

t|t−1
1 , S0|yt−1; γ

)
. The algorithm below summarizes the procedure of the Bootstrap filter:

4See Hamilton (1989)[19] for a detailed description of the Kalman filter and the prediction error decomposition
used to calculate L

(
Y T ; γ

)
.
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Algorithm 1: Bootstrap Filter

1) Initialization: t = 0. For i = 1, ..., N, initialize p
(
W t−1
1 , S0|yt−1; γ

)
and set t = 1.

2) Prediction: Generate N proposals of
{
wt−1,i1 , st−1,i0

}N
i=1

from the distribution

p
(
W

t|t−1
1 , S0|yt−1; γ

)
= p (W1,t; γ) p

(
W t−1
1 , S0|yt−1; γ

)
.

3) Filtering: Evaluate importance weights qit.

4) Sampling: Resample with replacement N draws from
{
w
t|t−1,i
1 , s

t|t−1,i
0

}N
i=1

based on prob-

abilities qit. Call the draws
{
wt,i1 , s

t,i
0

}N
i=1
. If t < T , set t  t + 1 and go to step 2. Stop

otherwise.

The use of the model to simulate next period’s states, as defined in the prediction step,

is the main characteristic of the Bootstrap Filter described in Gordon, Salmond and Smith

(1993)[18]. Note that the move from the particle swarm at a period t − 1,
{
wt−1,i1 , st−1,i0

}N
i=1

,

to the conditional probabilities describing the likelihood function, p
(
yt|W t

1 , S0, y
t−1; γ

)
, requires

the propagation of the states and the matching to observable variables according to equations

1 and 2. The final value of the conditional probability is obtained from the ability to evaluate

the probability density function associated to measurement errors, p (Vt; γ) . Figure 2 shows the

evolution of density for one state variable in the theoretical model —capital —and a red line with

the time series of the observable over the sample simulation5 .

Another important issue regarding the algorithm is the initialization step. Despite the rele-

vance of the topic, associated with many diffi culties to obtain a good guess for the initial values

of the swarm, particle filters here were initialized using the true set of states in every simula-

tion —thus, S0 is assumed to be known to the researcher during simulations. This assumption

greatly simplifies the procedure and highlights the behavior of the filter excluding additional

noise associated to the choice of an initial value.

The basic idea of the Bootstrap Filter is that particles that do not contribute to characterize

the state vector in each point in time must be eliminated in favor of those with large weight in

the distribution. As a consequence, the filter concentrates particles around the relevant regions

of the state space of the model. From this perspective, the Sampling step in the algorithm, based

in a small modification from the baseline Importance Sampling method (or, more specifically,

the Sequential Importance Sampling method), is the core of the filter: with the basic Importance

Sampling, each particle generated in the prediction step would be sampled with equal probabili-

ties. However, it is well known that, for t→∞, there is a degeneracy problem such that, except

for one specific particle, all the importance weights converge to zero. Furthermore, even the one

particle with mass equal to one does not, necessarily, provide a good characterization of the state

vector6 .
5Density is more concentrated in the initial simulations because the Bootstrap filter was initialized, on purpose,

at the true state S0.
6See Robert and Casella (2002)[26], chapter 14.
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Figure 2: Probability Density Function of Capital —100 Periods, N = 30, 000

The degeneracy problem described above imposes, implicitly, a lower bound for the number

of particles N describing the system. It is also worth noting that the main theorems regarding

the convergence of the empirical distributions generated by Bootstrap Filter to their true values

are only valid as N → ∞. The main reason for that is the nature of the Importance Sampling
mechanism, as the estimate of the objective function p

(
W t
1 , S0|yt−1; γ

)
is based on the ratio of

two estimates —thus, a biased approximation of the true values for a fixed N. An almost-sure

convergence based in the Strong Law of Large Numbers holds as N increases. To be more precise,

Künsch (2005)[22] shows that the number of particles must increase at an exponential rate to

ensure convergence in total variation of the filter. Interestingly, the result holds irrespective

of the sample size7 . The result in Künsch (2005)[22] is particularly relevant, as it stresses the

trade-off between the accuracy (or convergence) of the Bootstrap Filter and the required time

to compute a large number of particles —it is the analytical proof of the argument made at the

introduction with figure 1.

One method to evaluate the quality of the approximation of the density of states in particle

filters is the computation of the so-called effective number of particles of the swarm8 . The main

idea is to use the variance of the importance weights as a tool to evaluate the quality of the

distribution. The number of effective particles characterizing the observations in period t in a

7Other results of convergence of particle filters are in Crisan and Doucet (2002)[10].
8See Liu and Chen (1995)[23].
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particle filter with swarm of size N is estimated as:

Neff =
1∑N

i=1

(
qit
)2

There are other methods to generate proposals of the state vector to the next period. Pitt

and Shephard (1999)[25], in particular, note that the presence of outliers in the data usually

requires larger values of N in the Bootstrap Filter in order to obtain a good approximation

of the density in that step, as the importance weights become heavily skewed towards a small

number of sample draws. They propose a filter where the importance weights are computed

using an auxiliary function including not only past, but also current values of the observable

variables, Y T , minimizing, thus, the effect of outliers in the distribution of weights.

The algorithm of the Auxiliary Particle Filter closely follows the last steps of the Bootstrap

Filter: it adds a preliminary approximation of the state variables before starting the prediction

step described in the Bootstrap Filter. The first step consists of a propagation of states and

evaluation of densities based on the functional form of the state space representation, except

for the distribution of shocks. With the initial step, information about the distribution of the

densities at time t is included in the prediction and filtering steps of the Bootstrap Filter, at the

cost of an extra computational time and some Monte Carlo noise from the additional resampling

step. The algorithm below summarizes the Auxiliary Particle Filter:

Algorithm 2: Auxiliary Particle Filter

1) Initialization: t = 0. For i = 1, ..., N, initialize p
(
W t−1
1 , S0|yt−1; γ

)
and set t = 1.

2) Auxiliary variable: Generate N proposals of
{
s̃t−1,i0

}N
i=1

from the distribution

p
(
W t−1
1 , S0|yt−1; γ

)
.

3) Auxiliary filtering/sampling: Evaluate importance weights q̃it and resample with replace-

ment N draws from
{
s̃
t|t−1,i
0

}N
i=1

based on probabilities q̃it.

4) Prediction: Generate N proposals of
{
wt−1,i1 , s̃

t|t−1,i
0

}N
i=1

from the distribution

p
(
W

t|t−1
1 , S̃0|yt−1; γ

)
= p (W1,t; γ) p

(
W t−1
1 , S̃0|yt−1; γ

)
.

5) Filtering: Evaluate importance weights qit.

6) Sampling: Resample with replacement N draws from
{
w
t|t−1,i
1 , s̃

t|t−1,i
0

}N
i=1

based on prob-

abilities qit. Call the draws
{
wt,i1 , s

t,i
0

}N
i=1
. If t < T , set t  t + 1 and go to step 2. Stop

otherwise.

Note from the description of algorithm 2 that steps 4, 5 and 6 are exactly the same as steps

2, 3 and 4 of the Bootstrap Filter, except for the use of the distribution S̃0, built based on

the auxiliary steps, and the definition of qit, now incorporating information about states in t on

prediction. The use of the state equation as the auxiliary variable before the filtering step has

one major problem, associated to the presence of outliers in the state variables: if the volatility
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of structural shocks —described in matrix Wt —is too high, the value of E [St|St−1] is not a good
approximation to p

(
W

t|t−1
1 , S0|yt−1; γ

)
. As Arulampalam et al. (2002)[5] point out, a large

variance of structural shocks might even deteriorate the performance of the Auxiliary Particle

Filter.

In a note on the computational requirements associated with particle filters, all computations

were made in a personal computer with Intel Core i7 processor and 8Gb of RAM, with all

programs compiled in C++ language. Significant reductions of the computational burden were

obtained through the use of a parallel distribution of tasks associated to the prediction step

in the algorithm. OpenCL code was written to distribute the tasks to a NVIDIA GeForce

GTX 570 graphics processing unit (GPU), easily integrating the parallel tasks to the main C++

code. Even with the use of OpenCL, the prediction step, including the propagation of states

and computation of p
(
yt|wt|t−1,i1 , s

t|t−1,i
0 , yt−1; γ

)
, represented between 30 and 72% of the time

spent in the evaluation of the likelihood, depending on the number of particles used. The time

presented in figure 1 and in the next sections is obviously a simple benchmark for particle filters

accelerated by GPU computation, as only trivial tasks were moved to parallel computation in

GPU and a preprocessed package —Dynare++ —was used to compute the solution of the model.

Other steps of the filter, mainly the sampling step, could also be run in parallel, as proposed

in Bolic, Djuric and Hong (2005)[8]. However, the sampling step, even applied at every step

of the algorithm with serial processing, represented only 2.2% of the time used to compute the

likelihood with 50,000 particles in the Bootstrap Filter

The next section describes the theoretical model used for simulations, its calibration, solution

method and a detailed description of the observation equations.

3 Theoretical Model

The model used for analysis is based on a version of Christiano, Eichenbaum and Evans’(2005)[9]

model presented in Schmitt-Grohé and Uribe (2004)[27]. The model contains the most common

features of a DSGE model in terms of real and nominal rigidities: sticky prices and wages, demand

for money from households justified by its presence in the utility function, firms’demand for

money in the form of a cash-in-advance constraint, investment adjustment costs, variable capacity

utilization of capital, internal habit formation in consumption and monopolistic competition in

the market of goods and labor. In terms of driving forces, the model is characterized by three

shocks: a stationary productivity shock affecting the production function, government spending

shocks characterizing exogenous shifts in demand and a monetary policy shock. Relative to the

original Christiano, Eichenbaum and Evans (2005)[9] model, Schmitt-Grohé and Uribe (2004)[27]

transformed the monetary policy function to have the monetary authority following a Taylor-

type policy rule to set interest rates, instead of a money supply function9 . The authors also

9The Taylor-type policy rule was used in Christiano, Eichenbaum and Evans (2005)[9] as a robustness test.
The estimation procedure, however, was conducted on the model with the money supply function.
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included the approach of Yun (1996)[30] to characterize the distortions in allocations generated

from sticky wages and prices in the economy, well suited for the use of non-linear methods to

solve the model in a steady state where inflation is not zero.

From a computational perspective, the model not only reflects the current size of most of

models used in the literature for empirical work, with a total of 13 state variables including

three structural shocks, but it also provides the necessary flexibility to reduce the number of

such state variables with small modifications in parameters. A modified version of the model,

with different number of state variables and shocks, will be used to evaluate the sensitivity of

the number of particles in the filter with respect to the size of the model. In this section, a

brief presentation highlights the main equilibrium conditions of the economy and emphasizes the

main parameters used to reset the number of state variables of the model. Original sources are

highly recommended for further details of the model. Notation is kept as close as possible to

Schmitt-Grohé and Uribe (2004)[27].

There is a large population of identical agents with utility function U
(
ct, ht,m

h
t

)
characterized

by the presence of internal habit persistence in consumption and a demand for real money

balances. Agents choose in each period the optimal bundle of consumption from a continuum

of differentiated goods indexed by i and aggregated using a Dixit-Stiglitz function. In each

period, agents minimize the expenditure in consumption for each of the i goods, given its prices.

Agents also supply labor to a central union able to negotiate wages in each of the j segments

of the labor market in the economy. Given aggregate wages and the overall demand of labor

of the economy, the union supplies all labor necessary to satisfy the demand in each market by

adjusting nominal wages W j
t . In terms of intertemporal decisions, agents choose the expenditure

in investment for next period’s capital, it, and the utilization of capital in the current period, ut.

Investment is subject to adjustment costs and agents solve a cost-minimization problem in each

period to determine the amount of good i that is used in investment. Capital is rented to firms

at the rate rkt . Still related to the intertemporal decisions of agents, there is a complete set of

nominal state-contingent assets in the economy characterized by the stochastic nominal discount

factor between period t and period t+ 1, rt,t+1.The presence of complete markets imply that the

nominal interest rate on a one-period bond, Rt, must be equal to the reciprocal of rt,t+1. Define

λt the Lagrange multiplier for the agents’budget constraint and λtqt the Lagrange multiplier for

the equation describing capital accumulation. The main equilibrium conditions for households

are given by:

Uc
(
ct, ht,m

h
t

)
− bβUc

(
ct+1, ht+1,m

h
t+1

)
= λt (3)

λtrt,t+1 = βEt
λt+1
πt+1

(4)

−Uh
(
ct, ht,m

h
t

)
=
λtwt
µ̃t

(5)

λtqt = βEtλt+1
[
rkt+1ut+1 − a (ut+1) + qt+1 (1− δ)

]
(6)
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λt = λtqt

[
1− S

(
it
it−1

)
−
(

it
it−1

)
S′
(

it
it−1

)]
+ βEtλt+1qt+1

(
it+1
it

)2
S′
(
it+1
it

)
(7)

rkt = a′ (ut) (8)

λt = Um
(
ct, ht,m

h
t

)
+ βEt

λt+1
πt+1

(9)

kt+1 = (1− δ) kt + it

(
1− S

(
it
it−1

))
(10)

rt,t+1Rt = 1 (11)

In these equations, a (ut) is the cost for changing the utilization of capital in each period,

S
(

it
it−1

)
is the adjustment cost of investment, πt = Pt

Pt−1
is inflation, wt = Wt

Pt
is the average

real wage across the j sectors of the economy and Uc, Uh and Um are the first order derivatives

of the utility function in terms of consumption, labor supply and money, respectively. The

parameter characterizing the degree of habit persistence in consumption is given by b, while δ is

the depreciation rate.

The intratemporal condition relating the disutility of labor and real wages shows an extra

term given by µ̃t originated at the Lagrange multiplier of the constraint relating the demand for

labor in sector j and the aggregate demand for labor: ht = hdt
∫ 1
0

(
wjt
wt

)−η̃
dj. This wedge in the

equilibrium condition is a result of sticky wages, as the marginal rate of substitution between

consumption and labor is always equal to the real wage only in a world with flexible wages. The

sticky wage mechanism takes the form of a Calvo-style function, with a share of 1 − α̃ of the
labor market where the union can set wages optimally in period t. The share of labor market

not allowed to optimally adjust nominal wages in the current period follows the indexation rule

given in market j by W j
t = W j

t−1π
χ̃
t−1, for χ̃ ∈ [0 1] . The presence of Calvo stickiness in the

model generates the usual equilibrium condition to determine real wages in each period:

Et

∞∑
s=0

α̃sλtβ
s

(
w̃t
wt+s

)−η̃
hdt+s

s∏
k=1

(
πt+k

πχ̃t+k−1

)η̃  η̃ − 1

η̃

w̃t
s∏

k=1

(
πt+k

πχ̃t+k−1

) − wt+s
µ̃t+s

 = 0

where w̃t is the optimal wage defined in markets that were allowed to do so. At this point,

Schmitt-Grohé and Uribe (2004)[27] define two auxiliary variables, f1t and f
2
t , to split the equi-

librium condition and rewrite the equation in a recursive form given by:

f1t = λt

(
w̃t
wt

)−η̃
hdt + α̃βEt

(
πt+1

πχ̃t

)η̃−1(
w̃t+1
w̃t

)η̃
f1t+1 (12)

f2t =
λt
µ̃t
wt

(
w̃t
wt

)−η̃
hdt + α̃βEt

(
πt+1

πχ̃t

)η̃ (
w̃t+1
w̃t

)η̃
f2t+1 (13)
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(η̃ − 1)

η̃
w̃tf

1
t = f2t (14)

Firms use capital and labor to produce a differentiated good i in order to satisfy the demand of

consumption and investment from households and the government spending. Firms must finance

a share ν of the labor costs in order to produce, characterizing the cash-in-advance constraint of

the firm. The first order conditions of the cost minimization problem in each period of the firm,

the firms’s demand and the cash-in-advance constraint of the firm are given by:

wt

[
1 + ν

Rt − 1

Rt

]
= mcitztFh (kit, hit) (15)

rkt = mcitztFk (kit, hit) (16)

ztF (kit, hit)− ψ =

(
Pit
Pt

)−η
(ct + it + gt + a (ut) kt) (17)

mf
it ≥ νwthit (18)

log (zt) = αz log (zt−1) + εzt εzt ∼ N (0, σz) (19)

In the equations above, F (kit, hit) is the production function, zt is a technological shock,

mcit is the inverse of the markup over prices, derived from the Lagrange multiplier of the firms’

problem with respect to the equation describing the demand for goods and mf
it is the money

demand of firm i. The technology for production is non-convex because of the presence of a fixed

cost measured by ψ. The first term next to real wages in equation 15 characterizes the effect of

the cash-in-advance constraint for firms and the extra-cost to obtain money to finance the wage

bill.

Prices are set by firms following the basic Calvo model with indexation: a share 1 − α of
firms is allowed in each period to optimally set their prices. Firms not allowed to optimally

choose prices follow the indexation rule Pit = Pit−1π
χ
t−1, as in the rule applied to the sticky wage

process. If a firm is allowed to reoptimize prices, the new price P̃t, which is the same for all firms

in the same situation in that period, characterizes the first-order condition of the maximization

problem:

Et

∞∑
s=0

rt,t+sPt+sα
s

(
P̃t
Pt

)−η s∏
k=1

(
πχt+k−1
πt+k

)−η
yt+s

[
η − 1

η

(
P̃t
Pt

)
s∏

k=1

(
πχt+k−1
πt+k

)
−mcit+s

]
= 0

Using the same approach described for wage stickiness, define p̃t = P̃t/Pt and rewrite the first-

order condition in recursive terms, after defining two auxiliary variables x1t and x
2
t :

x1t = ytmctp̃
−η−1
t + αβEt

(
λt+1
λt

)(
p̃t
p̃t+1

)−η−1(
πχt
πt+1

)−η
x1t+1 (20)

x2t = ytp̃
−η
t + αβEt

(
λt+1
λt

)(
p̃t
p̃t+1

)−η (
πχt
πt+1

)1−η
x2t+1 (21)
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x1t =
η − 1

η
x2t (22)

In the model, the government collects lump sum taxes and print money in order to finance an

exogenous stream of expenditure. Money supply satisfies the demand from firms and households.

The budget constraint of the government is given by:

gt = τ t +mt −
mt−1
πt

(23)

mt = mf
t +mh

t mf
t =

∫ 1
0
mf
itdi (24)

log
(
gt
g

)
= αg log

(
gt−1
g

)
+ εgt εgt ∼ N (0, σg) (25)

Monetary policy is described by the Taylor rule described in Christiano, Eichenbaum and

Evans (2005)[9] as an alternative formulation for the process characterizing interest rates:

log

(
Rt
R

)
= ρ log

(
Rt−1
R

)
+ (1− ρ)

(
απ log

(πt
π

)
+ αy log

(
yt
y

))
+ εrt (26)

εrt ∼ N (0, σr)

In the equation, nominal interest rates Rt are determined based on deviations of inflation and

output from their steady state values, an autoregressive term and an exogenous shock εrt .

Finally, in terms of aggregation, it is important to characterize the evolution of aggregate

prices and wages and the effect of Calvo stickiness in terms of price and wage dispersion in the

cross-sectional dimension. First, note that the price and wage indexes of the economy change as

a result of the share of firms and workers allowed to optimize prices. With little algebra, prices

and wages are expressed by:

1 = α

(
πχt−1
πt

)1−η
+ (1− α) p̃1−ηt (27)

1 = α̃

(
wt−1
wt

)1−η̃ (πχ̃t−1
πt

)1−η̃
+ (1− α̃)

(
w̃t
wt

)1−η̃
(28)

In order to characterize the effects of price dispersion, consider the relation between supply

and demand for good i in equation 17. It is possible to prove that the capital-labor ratio is the

same across firms. Thus, aggregating both sides of equation 17 and noting that utkt =
∫ 1
0
kitdi

and hdt =
∫ 1
0
hitdi, the only term containing variables at the firm level is st =

∫ 1
0

(
Pit
Pt

)−η
di. It

is possible to express st in recursive form as:

st = (1− α) p̃−ηt + α

(
πt
πχt−1

)η
st−1 (29)
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Equilibrium in the labor market follows a similar pattern in terms of supply and demand:

ht = s̃th
d
t (30)

s̃t = (1− α̃)
∞∑
s=0

α̃s
(
W̃t−s
Wt

s∏
k=1

πχ̃t+k−s−1

)−η̃

The new variable s̃t, measuring the distortion generated in labor markets due to wage dis-

persion, can be expressed recursively as:

s̃t = (1− α̃)

(
w̃t
wt

)−η̃
+ α̃

(
wt−1
wt

)−η̃ (πχ̃t−1
πt

)η̃
s̃t−1 (31)

The model contains three shocks, εgt , ε
z
t and ε

r
t , two autoregressive processes, gt and zt and a

total of 29 variables: yt, ct, it, gt, kt, ht, hdt ,mct, πt, p̃t, wt, w̃t, r
k
t , Rt, st, s̃t, τ t,mt,m

f
t ,m

h
t , λt, x

1
t , x

2
t ,

zt, f
1
t , f

2
t , µ̃t, rt,t+1, qt and ut. The system characterizing the economy is given by the set of

equations 3 to 31. The characterization of a stationary equilibrium of the economy requires

initial conditions for c−1, i−1, g−1, k0, π−1, w−1, R−1, s−1, s̃−1, z−1, and exogenous processes for

{εgt , εzt , εrt}
∞
t=0 .

3.1 Functional forms and calibration

In order to close the model, it is necessary to specify functional forms for the utility function, the

production function, the investment adjustment cost and the rate of capital utilization. Sticking

to the literature, functional forms are the same as in Christiano, Eichenbaum and Evans (2005)[9]:

U = log (ct − bct−1)−
φ0
2
h2t + φ1

(
mh
t

)1−σm
1− σm

F (k, h) = kθh1−θ

S

(
it
it−1

)
=
κ

2

(
it
it−1

− 1

)2
a (u) = γ1 (u− 1) +

γ2
2

(u− 1)
2

The baseline calibration is composed by the same parameters describing the structural model

in Christiano, Eichenbaum and Evans (2005)[9]. It assumes quarterly frequency of data, an

annual real interest rate of 3% per year, capital share of 36% of value added and an annual

depreciation rate of 10%. There is full indexation of prices and wages to the past inflation

and long run inflation is set at 4.2% per year. It also assumes that households hold 44% of real

money holdings and firms must finance 100% of the wage bill. The Taylor rule is characterized by

values given in Christiano, Eichenbaum and Evans (2005)[9] for the US. The calibration of shocks

assumes the same first-order serial correlation for government spending and productivity used
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in Schmitt-Grohé and Uribe (2004)[27]. Parameters describing the volatility of shocks, σz and

σg, also follows Schmitt-Grohé and Uribe (2004)[27], matching moments estimated for the Solow

residual and the government purchases estimated in the literature. In order to match output

volatility in the model, a scale parameter is used to adjust these two values, thus preserving

the ratio of the volatilities. The volatility of the monetary policy shock, σr, is calibrated to

match the share of output’s variance explained by the shock 20 quarters ahead, as estimated in

Christiano, Eichenbaum and Evans (2005)[9] for the US. Table 1 shows the calibrated values.

Table 1: Calibration – CEE (2005)
Parameter Parameter Parameter

β 1.03−0.25 κ 2.48 ρ 0.8
θ 0.36 b 0.65 απ 1.5
δ 0.025 φ1 0.539 αy 0.1
α 0.60 σm 10.62 αg 0.96
α̃ 0.64 γ2/γ1 0.01 σg 0.02
η 6 ν 1 αz 0.979
η̃ 21 χ 1 σz 0.0072
π 1.0420.25 χ̃ 1 σr 0.0024

"Big Ratios"
u 1 Profits share 0 g/y 0.18

As discussed in the introduction, the model is flexible enough to accommodate simpler for-

mulations using small changes in the baseline calibration. The alternative model used for testing

robustness of results has flexible wages (α̃ = 0), no habit persistence in consumption (b = 0),

no adjustment cost in investment (κ = 0), no inflation indexation (χ = 0) and the Taylor rule

does not have an autoregressive component (ρ = 0). In terms of the definition of a competitive

equilibrium, these modifications result in a requirement of initial conditions for only four state

variables: g−1, k0, s−1, z−1.

3.2 Solution method, state vector and observable variables

The non-linear nature of the model imposes the use of a solution method capable of numerically

approximating the policy functions. Here, the model is solved using a second-order perturbation10

due to the good properties in terms of accuracy reported in Aruoba, Fernández-Villaverde and

Rubio-Ramírez (2006)[6]. Perturbation approximates the policy functions of the model in terms

of Taylor expansions around the deterministic steady state of the state variables, St and the

vector of shocks Wt defined in equations 1 and 2. Set a vector stacking both vectors of states

and structural shocks Zt = [(St−S);Wt]. For a given variable Yt, the second-order perturbation

10See Judd (1998)[20] for an introduction to perturbation methods. Solutions of the models were obtained using
the package Dynare++, due to the use of symbolic computation to obtain the coeffi cients of the approximations.
For details on Dynare++, please refer to Kamenik (2011)[21].
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results in the following functional form for the policy function:

Y (Zt) = Y +G0 +G1Zt +G2(Zt ⊗ Zt)

From the solution, Y is the deterministic steady state value of the variable Yt, G0 is a matrix

adjusting for the steady state of the volatility of shocks and matrices G1 and G2 are functions of

the derivatives of Y with respect to the vector Z. Note, particularly, that second-order pertur-

bations highlight the role of uncertainty in the economy described above, as the solution is not

certainty-equivalent as in the case of linear approximations of the policy functions.

In order to compute the likelihood of the model, simulated time series of output, consumption,

investment, nominal interest rates and inflation were generated for the general model —with the

complete set of states —and used throughout the exercises. Time series were simulated for 200

periods starting at the deterministic steady state, keeping only the last 100 observations. Additive

independent Gaussian measurement errors were included to set the observable variables. The

volatility of the measurement errors is arbitrarily set to the same value of the ergodic volatility

of each variable11 . Observation equations describing the model are linear with respect to the

variables:

yobst = yt + εyt , εyt ∼ N
(
0, σobsy

)
cobst = ct + εct , εct ∼ N

(
0, σobsc

)
iobst = it + εit, εit ∼ N

(
0, σobsi

)
Robst = Rt + εRt , εRt ∼ N

(
0, σobsR

)
πobst = πt + επt , επt ∼ N

(
0, σobsπ

)
4 The Size of the Swarm and Filters’Performance

The main characteristics of the two particle filters are evaluated using a small Monte Carlo

exercise, where the likelihood of the model is simulated 1000 times over 20 artificial samples of

100 periods. The same set of 20 samples is used in each exercise, changing only the number of

particles characterizing the particle filter. Each time series was simulated for 200 periods, with

the first half of the sample discarded in order to minimize the effects of initial values, reaching,

thus, the target of 100 observations.

The first exercise to evaluate the performance of the Bootstrap and the Auxiliary Parti-

cle Filter computes an estimate of the number of effective particles and the ratio between the

standard-deviation and the mean of the simulated log-likelihood. The last statistic was the base

11The use of noisy observations helps simulations in two dimensions: first, it provides a more realistic framework
compared to empirical work using real data; second, the high volatility of measurement errors stabilizes the
evaluation of densities in the particle filter, as the covariance matrix of the measurement errors does not get too
close to singularity.
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for Fernández-Villaverde and Rubio-Ramírez (2004)[12] exercise on setting the appropriate num-

ber of particles in the Bootstrap Filter. Results comparing both filters are presented in table

2. Under the baseline framework, the Bootstrap Filter presents a gap between the actual and

the effective number of particles estimated around 42%, irrespective of the size of the particle

swarm. The two main thresholds used in the literature to evaluate the filter’s quality, based on

the ratio between effective and actual number of samples, are violated in a significant number of

cases: 60% of the total number of simulations moves below the first threshold (Neff = 2N/3)

and almost one third of simulations have an effective number of particles below N/2. It is worth

noting that the increase in the size of the swarm clearly affects the tails of the probability density

function of states, as the smallest number of effective particles found in simulations grows at a

higher rate than the average number of effective particles.

Table 2: Effective Particles —Bootstrap Filter and Auxiliary Particle Filter

Samples N̂eff min
(
N̂eff

)
N̂eff ≤ 2N

3 (%) N̂eff ≤ N
2 (%) Std(L)

µ(L) (%)

1000 B.Filter 579.52 3.13 59.94 32.87 0.047
Aux.Filter 690.97 37.99 36.52 13.60 0.056

5000 B.Filter 2892.8 19.55 60.29 32.90 0.021
Aux.Filter 3448.2 333.83 36.63 13.83 0.026

10000 B.Filter 5784.0 47.28 60.36 32.91 0.015
Aux.Filter 6893.8 562.35 36.67 13.88 0.018

20000 B.Filter 11566 113.48 60.39 32.92 0.011
Aux.Filter 13784 1203.08 36.71 13.91 0.013

30000 B.Filter 17349 257.08 60.41 32.94 0.009
Aux.Filter 20674 1650.5 36.72 13.92 0.011

40000 B.Filter 23131 333.93 60.41 32.93 0.007
Aux.Filter 27563 1976.1 36.73 13.92 0.010

50000 B.Filter 28913 714.03 60.42 32.94 0.007
Aux.Filter 34453 1964.8 36.71 13.92 0.009

Table 2 also shows the improvement in terms of effective particles of using the Auxiliary

Particle Filter. There is a significant gain on the gap between the actual and the effective size

of the particle swarm, reducing the number of lost particles from 42% in the Bootstrap Filter to

31% in the Auxiliary Particle Filter. Improvements are also verified at the tails of the probability

density function, specially when the size of the swarm is small. The minimum value of the number

of effective particles is more than ten times larger in the Auxiliary Particle Filter when compared

to the Bootstrap filter when N is set between 1,000 and 20,000 particles. The improvement in

the characterization of the tails of the probability density function also reflects in the number of

times the estimated size of the effective swarm violates the thresholds of two-thirds (36.7%) and

half the size of the actual swarm (only 13.9%).

In terms of accuracy, the ratio between the standard-deviation and the mean of the log-

likelihood, measuring the Monte Carlo variation of the filter, shows that the Bootstrap Filter

is always more precise than the Auxiliary Particle Filter. However, the largest difference across
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filters is smaller than 0.01%. One reason for the result is related to the resampling procedure

applied twice for every evaluation of the density in the Auxiliary Particle Filter, which is known

to increase the variation of Monte Carlo simulations. Some authors propose using the resampling

step only at the end of the algorithm, skipping step 3 in algorithm 2.

An alternative way to compare the two particle filters is proposed in Smith (2011)[29]. The

main idea is to compare the time necessary to generate one effective particle during the evaluation

of the likelihood. Table 3 shows the average time, measured in seconds, to compute the log-

likelihood and the average number of effective samples for each particle filter. The last column

is ratio of average seconds per effective sample measured in the Auxiliary Particle Filter over

the measurement of the Bootstrap Filter. This measure considers the cost of using a more

demanding filter, in terms of computational requirements, adjusted by the gains expressed as a

better characterization of the probability density function of states.

Table 3: Average Seconds per Effective Particles
Samples Bootstrap Filter Auxiliary Particle Filter

Seconds per Sample N̂eff Seconds per Sample N̂eff Speedup
(1) (2) (3) (4) [(3)(2)]/[(4)(1)]

1000 1.2211 579.52 1.7294 690.97 1.1878
5000 1.3524 2892.8 1.9670 3448.2 1.2202
10000 1.7493 5784.0 2.8558 6893.8 1.3697
20000 2.3210 11566 4.0242 13784 1.4549
30000 2.8764 17349 5.4048 20674 1.5768
40000 3.6333 23131 7.0359 27563 1.6251
50000 4.1767 28913 8.3208 34453 1.6719

Table 3 shows that the use of the Auxiliary Particle Filter results in significant gains relative to

the Bootstrap Filter, despite the large computational requirements associated with the former.

With 50,000 particles in the swarm, as an example, while the average time to compute the

likelihood almost doubles, the increase in the number of effective particles results in a loss of

only 67%. For the smallest size of the swarm tested, time to compute the log-likelihood increases

by 41%, while the loss adjusted for effective particles is only 18%.

Finally, it is worth establishing a minimum size of the particle swarm. Boers (1999)[7] pro-

poses tracking the errors in model’s state variables. Despite the significant number of variables

that are not observable to the researcher, tracking the ability of the particle filter to match state

variables in a DSGE model using artificial data can provide a benchmark in terms of the smallest

number of particles necessary to properly describe the density function. For dataset d, the mean

absolute percentage error of state variable s from the vector of state variables Zt simulated in N

particles across all periods t is defined as:

MAEd,s =
1

DT

T∑
t=1

D∑
d=1

∣∣∣∣∣∣ Ẑ
s,d
t − Z

s,d
t

Zs,dt

∣∣∣∣∣∣
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where Ẑs,dt is the simulated mean state vector Zt approximated by N particles.

Figure 3 shows the mean absolute percentage error for each state variable of the model

derived from each particle filter. For the sake of clarity, MAE values from the Bootstrap Filter

are presented in the left axis, while values from the Auxiliary Particle Filter are shown in the

right axis. First, note that, as expected, when comparing the scale of the two axis that the MAE

for the Auxiliary Particle Filter is, most of the time, smaller than the MAE of the Bootstrap

Filter. More specifically, the Bootstrap Filter only presents a better performance for productivity,

government spending and price dispersion, with similar MAE for capital when the size of the

swarm is large. The use of information on the current period, added by the extra two steps on

the Auxiliary Particle Filter, reduces the dispersion of samples around the true value of state

variables.

10000 20000 30000 40000
0.776

0.777

0.778

BF

10000 20000 30000 40000
0.792

0.794

0.796

10000 20000 30000 40000
0.175

0.180

0.185

10000 20000 30000 40000
0.160

0.170

AP
F

10000 20000 30000 40000
0.370

0.380

0.390

BF

10000 20000 30000 40000
0.375

0.380

0.385

10000 20000 30000 40000
0.020

0.040

0.060

10000 20000 30000 40000
0.020

0.040

0.060

AP
F

10000 20000 30000 40000
0.040

0.060

0.080

BF

10000 20000 30000 40000
0.050

0.100

10000 20000 30000 40000
0.328

0.330

0.332

10000 20000 30000 40000
0.274

0.276

0.278

AP
F

10000 20000 30000 40000
0.215

0.220

0.225

BF

10000 20000 30000 40000
0.185

0.190

0.195

10000 20000 30000 40000
0.180

0.190

0.200

10000 20000 30000 40000
0.160

0.170

0.180

AP
F

10000 20000 30000 40000
0.210

0.220BF

Particles
10000 20000 30000 40000

0.175

0.180

0.185

10000 20000 30000 40000
1.036

1.038

1.040

Particles
10000 20000 30000 40000

0.949

0.949

0.950

AP
F

BF APF

Figure 3: Mean Absolute Error (%) —State Variables

The second relevant observation is that MAE values seems to stabilize for values of N larger

than 20,000. For all state variables, there is a large volatility in MAE values when the number

of particles is small. However, for swarms with more than 20,000 particles, MAE fluctuations

are very small, implying that moving to larger number of particles does not significantly changes
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the quality of the approximation of density of states. Also, the MAE of some state variables —

notably investment and capital —computed by the Auxiliary Particle Filter does not decrease

when the size of the swarm is large —it only becomes less volatile. On the other hand, there is

a clear downward path for MAE in the Bootstrap Filter as N increases.

4.1 Sensitivity to the Number of Time Series

The strategy here consists on testing both filters after removing one observable variable at a

time, evaluating the number of effective particles, the speedup between the Bootstrap and the

Auxiliary Particle Filter and the errors in tracking state variables. Observable variables are

removed in the following sequence: inflation, interest rates, investment and consumption. Thus,

the simulation using only one observable variable has output as the single time series in the

observation equation. Table 4 shows the results of simulations in terms of mean of estimated

effective particles for each filter, the speedup of using the Auxiliary Particle Filter over the

Bootstrap Filter. The last column shows the standard deviation of the measurement error of

the variable removed for the simulation. Thus, the value presented in the last column when

the number of observations is equal to 4 is the standard deviation of the measurement error of

inflation; the value when the number of observations is equal to 3 is the standard deviation of

the measurement error of interest rates, and so on.

Table 4: Effective Particles and Number of Observables

Sample Obs. Vars. N̂eff (BF ) N̂eff (APF ) Speedup σobsi —Last Var.

1000 5 579.52 690.97 1.1878 –

4 675.00 769.10 1.1842 0.0039

3 790.19 867.48 1.2514 0.0040

2 796.85 870.88 1.2501 0.0765

1 828.03 889.84 1.2602 0.0159

20000 5 11566 13784 1.4549 –

4 13493 15384 1.5237 0.0039

3 15801 17347 1.5683 0.0040

2 15933 17415 1.5903 0.0765

1 16556 17791 1.6376 0.0159

50000 5 28913 34453 1.6719 –

4 33731 38457 1.7141 0.0039

3 39502 43364 1.8241 0.0040

2 39833 43534 1.7658 0.0765

1 41391 44474 1.8393 0.0159

There are two striking results on table 4. First, irrespective of the size of the particle swarm,

removing observable variables of the system increases the cost of using the Auxiliary Particle
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Filter, measured by the increase in the cost in seconds to generate one effective particle. Second,

the improvements in the number of effective particles is directly correlated with the standard

deviation of the measurement errors: the smallest is the volatility of the measurement error

associated with the removed variable, the largest is the change in the estimated number of

effective particles. As an example, notice that, when inflation and interest rates are removed

from the estimation (model with 4 and 3 observable variables), the number of effective particles

in the filter increases around 17% in the Bootstrap Filter and 12% in the Auxiliary Particle

Filter, compared to the model with one more observable. When investment and consumption

are removed (model with 2 and 1 observable variable), the increase in the number of effective

particles is smaller than 4%.

The previous result is a consequence of the relation between the matrix of measurement

errors and the estimated number of effective samples. The presence of Multivariate Gaussian

and independent measurement errors implies that the inclusion of variables with a small volatility

of measurement errors (i.e. standard error smaller than one) reduces the overall standard-error of

the distribution. Thus, a larger number of samples drawn in the particle filter are lost in regions of

negligible probability, reducing the estimated number of effective particles characterizing states.

In order to avoid the problem of depletion from a tight distribution of measurement errors, An

and Schorfheide (2007)[3] and An (2008)[2] fix the standard deviation of measurement errors to

20% of the standard error of observations.

Another consequence of changing the number of observable variables in the particle filter is

the quality of tracking of state variables. Figure 4 shows the changes in MAE as a function of

the number of observable variables for N = 20, 000. For almost all states, there is a continu-

ous reduction in the mean absolute error of state variables with the increase in the number of

observable variables. This result is particularly impressive given the amount of noise added to

observable variables as measurement error in the exercise.

Results in this section suggests that the number of time series used as observable variables

can be one reason to choose the Auxiliary Particle Filter over the Bootstrap Filter in empirical

applications. Reducing the number of observable variables favors the use of the Bootstrap Filter;

however, it may also imply problems associated with the identification of structural parameters

in the model in empirical applications.

4.2 Sensitivity to the Number of States

The objective of this section is to present results in a more realistic framework, as now the model

used to compute the log-likelihood is not the same model generating artificial data. The model

computing the likelihood is a special, simpler case of the baseline Christiano, Eichenbaum and

Evans (2005)[9] model. It has flexible wages, no habit persistence in consumption, no adjustment

cost in investment, no inflation indexation and no interest rate persistence in the Taylor rule,

as discussed at the end of the calibration section. The simpler model has only four states

(productivity, capital, price dispersion and government spending) and it is simulated with all 5

25



1 2 3 4 5
0.7673

0.8066
(%

)

1 2 3 4 5
0.1572

0.2266

(%
)

1 2 3 4 5
0.3686

0.5381

(%
)

1 2 3 4 5
4.8253

4.9675
x 10 3

(%
)

1 2 3 4 5
0.0299

0.0349

(%
)

1 2 3 4 5
0.2723

0.4886

(%
)

1 2 3 4 5
0.1832

0.2557

(%
)

1 2 3 4 5
0.1566

0.2592

(%
)

1 2 3 4 5
0.1723

0.2916

(%
)

Obs. Vars.
1 2 3 4 5

0.9483

1.5583

(%
)

Obs. Vars.

BF APF

Figure 4: Mean Absolute Error and Number of Observables —N = 20, 000

time series of the baseline exercise in the previous section. This exercise provides a more realistic

framework since, for the econometrician, it is usually impossible to determine the exact data

generating process, justifying the use of models to approximate relevant features of data.

Results on table 5 show that simpler models does not result in significant gains in terms

of the number of effective particles, but increases the variability of the filter. The average

number of effective particles is slightly higher than the estimated in simulations presented in

table 2. The average loss of particles reduces in the Bootstrap Filter to 39%, which is a small

gain when compared to the loss of 42% estimated in the baseline simulation. On the other

hand, the Auxiliary Particle Filter shows a slightly larger loss of particles and larger variability

of simulated likelihood. There is an average gap of 33% between the actual and the effective

number of particles (31% in the complete model) and the Monte Carlo variation reaches 0.1%

of the average value of the likelihood for a swarm of 1,000 particles. Based on this statistic, the

precision of the Auxiliary Particle Filter is considerably smaller when compared to the Bootstrap

Filter, as the Monte Carlo variation of the Auxiliary Particle Filter with a swarm of 50,000

particles is similar to the ratio of the Bootstrap Filter with only 10,000 particles.

In terms of time to obtain one effective particle, table 6 shows that the Auxiliary Particle

Filter has a better performance when simulating the likelihood of a smaller model for a large

number of particles. While the loss of using the Auxiliary Particle Filter reached 66% in the
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Table 5: Effective Particles —Small Model

Samples N̂eff min
(
N̂eff

)
N̂eff ≤ 2N

3 (%) N̂eff ≤ N
2 (%) Std(L)

µ(L) (%)

1000 B.Filter 609.97 2.50 52.96 28.55 0.037
Aux.Filter 667.34 15.48 42.50 18.72 0.100

5000 B.Filter 3049.7 19.92 52.92 28.60 0.016
Aux.Filter 3337.0 104.76 42.31 18.73 0.033

10000 B.Filter 6099.4 41.81 52.93 28.59 0.012
Aux.Filter 6675.6 196.44 42.26 18.70 0.022

20000 B.Filter 12199 99.40 52.95 28.60 0.008
Aux.Filter 13354 357.57 42.22 18.67 0.017

30000 B.Filter 18299 156.31 52.93 28.59 0.007
Aux.Filter 20033 389.99 42.21 18.66 0.015

40000 B.Filter 24400 248.14 52.92 28.59 0.006
Aux.Filter 26713 601.57 42.20 18.66 0.013

50000 B.Filter 30500 296.65 52.92 28.57 0.005
Aux.Filter 33394 689.40 42.19 18.66 0.012

complete model, the smaller model resulted in a loss of almost 56% for a swarm of 50,000

particles. This result is important to highlight the gains of better computational resources when

simulating the likelihood of these models: not only the average time to compute the likelihood is

significantly reduced when the number of states is small, but also the effective loss of computing

one effective particle is reduced, even for large values of N .

Table 6: Average Seconds per Effective Particles —Small Model
Samples Bootstrap Filter Auxiliary Particle Filter

Seconds per Sample N̂eff Seconds per Sample N̂eff Speedup
(1) (2) (3) (4) [(3)(2)]/[(4)(1)]

1000 0.4693 609.97 0.5731 667.34 1.1162
5000 0.5066 3049.7 0.6472 3337.0 1.1676
10000 0.5742 6099.4 0.7736 6675.6 1.2310
20000 0.6811 12199 0.9896 13354 1.3272
30000 0.7683 18299 1.1929 20033 1.4183
40000 0.8844 24400 1.4542 26713 1.5018
50000 0.9955 30500 1.6986 33394 1.5583

Figure 5 shows the MAE for state variables of the small model. The simulation of the likeli-

hood using a model that is different from the true data generating process results, as expected,

in an increase of the error associated with tracking these variables. However, it is still surprising,

when comparing with results in figure 4, that the increase in MAE is very small. The largest

increase was on capital, where the MAE estimated changed from 0.37% with the complete model

to 0.58% with the small model. There is also an important change with the MAE associated

with price dispersion, but the average value in the small model is still very small —only 0.16%.

It is also worth noting that MAEs for capital and government spending are higher for the
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Figure 5: Mean Absolute Error (%) —State Variables —Small Model

Auxiliary Particle Filter, when compared to the outcome of the Bootstrap Filter. Despite ap-

pearing only for one state variable, it might be the case that the simple version of the model

results in excessive volatility for capital, deteriorating the performance of the Auxiliary Particle

Filter, as described in Arulampalam et al. (2002)[5].

Another feature presented on figure 5 is the relative stability of MAE for simulations with

more than 20,000 particles in the swarm. Simulated MAE is very volatile when the particle swarm

is small, with significant gains in MAE of capital and productivity for simulations with more

than 10,000 particles. After 20,000 particles, the MAE for government spending, productivity

and capital reach a stable level, especially for the Bootstrap Filter. Again, relating to results

with the complete model, simulations with a swarm between 20,000 and 30,000 particles seem to

present a good trade-off between accuracy in tracking state variables and computational time.

4.3 Small Measurement Errors

In this section, the log-likelihood is simulated under the baseline model and a new set of observ-

able variables. The objective of this section is to evaluate both filters when the signal-to-noise

ratio on data is high. The new observable variables are built with the same simulated states,

but less volatile measurement errors. In previous exercises, measurement errors have the same

standard-deviation as the ergodic values for each variable; in this section, standard-deviation of
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measurement errors are reduced to 10% of the ergodic standard-deviation of each variable.

Table 7 summarizes information on the effective number of particles, Monte Carlo variation of

each filter and the speedup across filters. The average loss between effective and actual number

of particles increases in this framework to 94% and 90% in the Bootstrap Filter and in the

Auxiliary Particle Filter, respectively. Despite smaller losses on average, the Auxiliary Particle

Filter seems to miss correct path of states. Notice, first, how both filters eventually collapse, with

a degenerate effective particle characterizing the state of distribution. Second, in terms of Monte

Carlo variation, while the Bootstrap Filter converges as the number of particles in the system

increases, the Auxiliary Particle Filter presents larger and increasing losses as the size of the

swarm grows. This result is a consequence of the joint distribution of measurement errors, which

is too narrow in the model with five observables. In alternative tests, available upon request,

the Auxiliary Particle Filter presents the proper and expected convergence when only output is

used as an observable variable.

Table 7: Effective Particles —Small Measurement Errors

Samples N̂eff min
(
N̂eff

)
Std(L)
µ(L) (%) Seconds per Sample Speedup

1000 B.Filter 53.35 1 0.233 1.2263 0.7733
Aux.Filter 93.10 1 0.956 1.6547

5000 B.Filter 259.65 1 0.095 1.3299 0.8131
Aux.Filter 466.89 1 0.991 1.9444

10000 B.Filter 516.98 1 0.066 1.7608 0.8742
Aux.Filter 935.64 1 1.000 2.7857

20000 B.Filter 1031.0 1 0.046 2.3083 0.9642
Aux.Filter 1874.8 1 1.076 4.0471

30000 B.Filter 1545.1 1 0.037 2.8816 1.0403
Aux.Filter 2814.8 1 1.113 5.4612

40000 B.Filter 2059.1 1 0.032 3.6425 1.0482
Aux.Filter 3753.8 1 1.194 6.9607

50000 B.Filter 2573.2 1.01 0.028 4.1708 1.1000
Aux.Filter 4693.7 1 1.196 8.3686

In terms of speedup, the Auxiliary Particle Filter, for the first time, presents a similar perfor-

mance compared to the Bootstrap Filter. There is a 23% gain in terms of seconds per effective

particles for the smallest particle swarm and the two filters have similar performance at 30,000

particles. At the largest particle swarm, the Auxiliary Particle Filter presents a loss of only 10%,

value unmatched by any size of the particle swarm in the baseline exercise presented in table 3.

Figure 6 shows the MAE for the model with small measurement errors. Results associating

smaller gains in terms of MAE to a swarm with more than 20,000 particles are still robust, as

expected. When compared to the outcome of figure 3, the increase in the signal-to-noise ratio

is reflected by the overall increased precision of the predicted state variables. This result holds

irrespective of the particle filter used, which is a little surprising given the poor performance of

the Auxiliary Particle Filter in terms of Monte Carlo variation.
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Figure 6: Mean Absolute Error (%) —State Variables —Small Measurement Errors

5 Conclusion

This note presented an evaluation of the number of particles necessary to properly approximate

the likelihood of a prototypical DSGE model. It also compared the performance of two particle

filters usually seen in the literature: the Bootstrap Filter and the Auxiliary Particle Filter. Results

based on the accuracy of the simulated likelihood and the tracking of state variables show that

a particle filter with a swarm of 20,000 and 30,000 particles seem to provide good performance,

irrespective of the size of the model.

In the comparison of the two filters, the Auxiliary Particle Filter provided good performance

when the number of observables in the model is large and the size of the particle swarm is

relatively small. This is due to the fact that, under the baseline setup of the exercise, the Auxiliary

Particle Filter provides a better characterization of the tails of the state vector distribution. On

the other hand, the Bootstrap Filter is significantly less demanding in terms of computational

resources. Thus, it might be possible, depending on the setup of the problem, to obtain better

performance in the Bootstrap Filter with a large number of particles in the swarm, instead of

using the Auxiliary Particle Filter.

The poor performance of the Auxiliary Particle Filter under alternative settings of the prob-
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lem, combined with the high computational requirements, demands a deeper investigation in

terms of alternative proposal distributions for states in the prediction step of the filter. The use

of current information to draw states generate most of the time generate gains in the performance

of particle filters. It should not be different in the problem proposed in this paper. Results, how-

ever, show that there might room to improve performance if different proposals are adopted to

draw states. Also, the final choice between the Auxiliary Particle Filter and the Bootstrap Filter

is still conditional to the computational resources available and the type of problem being solved.

This note tried to provide some guidelines in the choice between these alternatives.
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