A Sticky-Dispersed Information Phillips Curve: a model with partial and delayed information

Marta Areosa, Waldyr Areosa and Vinicius Carrasco

April, 2012
A Sticky-Dispersed Information Phillips Curve: a model with partial and delayed information*

Marta Areosa†
Waldyr Areosa‡
Vinicius Carrasco§

Abstract

This Working Paper should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the paper are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

We study the interaction between dispersed and sticky information by assuming that firms receive private noisy signals about the state in an otherwise standard model of price setting with sticky-information. We compute the unique equilibrium of the game induced by the firms’ pricing decisions and derive the resulting Phillips curve. The main effect of dispersion is to magnify the immediate impact of a given shock when the degree of stickiness is small. Its effect on persistence is minor: even when information is largely dispersed, a substantial amount of informational stickiness is needed to generate persistence in aggregate prices and inflation.

JEL Classification: D82, D83, E31

Keywords: Sticky information, Dispersed information, Phillips curve

*This paper is based on the first chapter of Marta Areosa’s PhD thesis. We are indebted to Vinicius Carrasco for his advice and encouragement. We would like to thank Márcia Leon, Leonardo Rezende, Luciano Vereda and Fábio Araújo. We are also grateful for comments from many seminar participants at PUC-Rio and Banco Central do Brasil. The financial support from Banco Central do Brasil is gratefully acknowledged.

†Research Department, Central Bank of Brazil and Department of Economics, PUC-Rio, Brazil.

‡Research Department, Central Bank of Brazil and Department of Economics, PUC-Rio, Brazil.

Corresponding author: marta.areosa@bcb.gov.br.

§Department of Economics, PUC-Rio, Brazil.
1 Introduction

Mankiw and Reis (2002) sticky information model achieves two important goals at once: (i) explains why prices fail to respond quickly to nominal shocks and (ii) reconciles the backward-looking behavior needed to generate the observed persistence in aggregate prices with the assumption that agents are fully rational. Nevertheless, in a world in which information becomes more frequently available, the assumption that information is sticky is less plausible. Consequently, one would expect that the power of a sticky-information model in explaining the observed degree of persistence in prices to diminish. Morris and Shin’s (2006), however, conjecture that only a small incidence of informational stickiness is needed to generate substantial persistence in aggregate prices in a world of differential information. This paper puts such conjecture to test.\footnote{Morris and Shin’s (2006) last sentence is "The incidence of sticky information or rational inattention that is necessary to account for the observed degree of persistence may be quite small when embedded in a world of differential information."}

We do so by studying how individual firms set prices when information is both sticky and dispersed, and analyze the resulting dynamics for aggregate prices and inflation rates. In our model, firms’ optimal price is a convex combination of the current state of the economy and the aggregate price level. Nevertheless, as firms do not observe the current state nor other firm’s pricing decisions, they have to use the available information to infer the optimal price. As in Mankiw and Reis (2002), only a fraction of firms update their information set at each period. Those who update receive two sources of information: the first piece is the value of all previous periods’ states, while the second piece is a noisy, idiosyncratic, private signal about the current state of the economy. Since noisy signals are idiosyncratic, the firms that update their information set will have heterogenous information about the state (as in Morris and Shin (2002) and Angeletos and Pavan (2007)). Hence, in our model, heterogenous information disseminates slowly in the economy.

Firms must not only form beliefs about the current state but also form beliefs about the other firms’ beliefs about the current state of the economy, and so on, so that higher-order beliefs play a key role in our model. Hence, the pricing decisions by firms induce
an incomplete information game among them.

In our main result, we prove that there exists a unique equilibrium of such game. The uniqueness of the equilibrium allows us to unequivocally speak about the sticky-dispersed-information (henceforth, SDI) aggregate price level and Phillips curve. The SDI aggregate price level we derive depends on all the current and past states of the economy. This is so for two reasons. First, there are firms in the economy for which the information set has been last updated in the far past. This is a direct effect of sticky information. Second, firms that have just received new information will behave, at least partly, as if they were backward-looking. This happens because of a strategic effect: their optimal relative price depends on how they believe all other firms (including those that have outdated information sets) in the economy are setting prices.

From aggregate prices, we are able to derive the SDI Phillips curve and show that inflation also depends on all the current and past states of the economy. This result is linked to the one obtained in Mankiw and Reis (2002), in which inflation depends on past expectations of current economic conditions, due to the fact that firms compute expectations based on outdated information. This is an implication of the stickiness of information in our model and was already present in Mankiw and Reis (2002). In our model, however, in addition to being sticky, information is also noisy and dispersed. The fact that information is noisy leads a firm that has its information set updated in t to find it optimal to place positive weight on the states from periods $t - j, j > 0$, to predict the state in period t. Hence, in comparison to the model economy stated in Mankiw and Reis (2002), the adjustment of prices to shocks will be slower in an economy with noisy information. Through the complementarities in price setting, the fact that, on top of being noisy, information is dispersed magnifies such effect.

Hence, we establish analytically that dispersion magnifies the effects of stickiness on persistence. To evaluate the quantitative importance of dispersion in increasing the effect of stickiness, we perform some numerical simulations. These simulations suggest that, on the one hand, in settings with small incidence of sticky information, dispersion plays at most a minor role in generating persistence. However, for such cases, dispersion
substantially magnifies the immediate impact of a given shock. Without a substantial
amount of price stickiness, although much larger than what would have been if there
were no dispersion, the effect of a shock tends to quickly vanish.

On the other hand, when there is a large amount of price stickiness, the effects of
dispersion on both the immediate impact of a given shock and its persistence in the
economy tend to be very small. Therefore, in a model of sticky-dispersed information,
what is key for the generation of persistence is a substantial amount of price stickiness.

Related Literature. To the best of our knowledge, this is the first paper to build
a dynamic model of pricing setting decisions where information is both sticky and dis-
persed. There is, however, a large number of papers that are connected to what we
do. Among those papers, in addition to those that were already mentioned, our work
follows a large number of papers that sheds new light into the tradition that dates back
to Phelps (1968) and Lucas (1972) of considering the effects of imperfect information on
price-setting decisions. Mankiw and Reis (2010) provide the most recent survey on the
impact of informational frictions on pricing decisions, comparing a partial (dispersed)
information model with a delayed (sticky) information model, and deriving their com-
mon implications. In turn, Angeletos and La’O (2009) introduce dispersed information
(and explicitly discuss the role of higher-order beliefs) in an otherwise standard setting
with sticky prices à la Calvo (1983). Veldkamp (2009) covers a myriad of topics re-
lated to informational asymmetries and information acquisition in macroeconomics and
finance.

Our paper connects to this broad literature through two strands. In our model,
information is sticky (as in, for example, Mankiw and Reis (2002)) and dispersed (as
in, among others, Morris and Shin (2002)). Also, by focusing on informational stickiness
(rather than price stickiness), we complement the analysis of Angeletos and La’O (2009).

The paper that is the closest to ours is Baeriswyl and Cornand (2010), who also
combines in a single model both dispersed information and informational stickiness to

2The theories of "rational inattention" proposed by Sims (2009, 2003) and "inattentiveness" pro-
posed by Reis (2006a, 2006b) have been used to justify models of dispersed information and sticky
information.
study the signaling role of policy actions. There are two main differences between their paper and ours. First, and most important, the relevant fundamental in our economy evolves dynamically, whereas they assume that that the fundamental is i.i.d. over time. Dynamics change substantially the way agents form their beliefs. Over time, different agents have different pieces of information regarding the fundamental. In fact, since the fundamental evolves according to a process which has time dependence, any two agents which had their information sets updated in different points of time will have different beliefs regarding the state. As a consequence, at a given point in time, there is heterogeneity in beliefs regarding the fundamental (and aggregate prices) even within the agents who have outdated information sets. Such cross-section of beliefs has non-trivial impacts on both aggregate prices and inflation. Also, by explicitly incorporating dynamics, we are also able to obtain impulse responses of aggregate prices and inflation rates to structural and informational shocks that hit the economy.

Second, we focus on a different question. While they are interested in understanding the signaling role of policy actions in a world of dispersed information, we wish to understand the interaction between informational stickiness and dispersion and their (combined) effect on aggregate prices and inflation.

Organization. The paper is organized as follows. We describe the set-up of the model in Section 2 and derive the unique equilibrium of the pricing game played by the firms in Section 3. In Section 4, we analytically derive the contributions of stickiness and dispersion on a measure of persistence of a shock in our setting and perform some numerical simulations to evaluate the quantitative importance of each of these factors. Section 5 draws the concluding remarks. All derivations that are not in the text can be found in the Appendix.
2 The Model

The model is a variation of Mankiw and Reis’s (2002) sticky information model. There is a continuum of firms, indexed by $i \in [0, 1]$, that set prices at every period $t \in \{1, 2, \ldots \}$.

Although prices can be re-set at no cost at each period, information regarding the state of the economy is made available to the firms infrequently. At period t, only a fraction $\lambda \in (0, 1)$ of firms is selected to update their information sets about the current state. For simplicity, the probability of being selected to adjust information sets is the same across firms and independent of history.

We depart from a standard sticky-information model by allowing information to be heterogeneous and dispersed: a firm that updates its information set receives public information regarding the past states of the economy as well as a private signal about the current state.

Pricing Decisions. Under complete information, any given firm $z \in [0, 1]$ set its (log-linear) price $p_t (z)$ equal to the optimal price decision p_t^* given by

$$ p_t^* \equiv rP_t + (1 - r) \theta_t, \quad (1) $$

where $P_t \equiv \int_0^1 p_t (z) dz$ is the aggregate price level, and θ_t is the nominal aggregate demand, the current state of the economy. This pricing rule is standard, and, although we don’t do it explicitly, can be derived from a firm’s profit maximization problem in a model of monopolistic competition in the spirit of Blanchard and Kiyotaki’s (1987).4

Information. The state θ_t follows a random walk

$$ \theta_t = \theta_{t-1} + \epsilon_t, \quad (2) $$

3Subsequent refinements of the sticky information models can be found in Mankiw and Reis (2006, 2007, 2010) and Reis (2006a, 2006b, 2009).
4See Woodford (2002) for details.
with $\epsilon_t \sim N(0, \alpha^{-1})$.

If firm $z \in [0,1]$ is selected to update its information set in period t, it observes all previous periods realizations of the state, $\{\theta_{t-j}, j \geq 1\}$. Moreover, it obtains a noisy private signal about the current state. Denoting such signal by $x_t(z)$, we follow the literature and assume:

$$x_t(z) = \theta_t + \xi_t(z),$$

(3)

where $\xi_t(z) \sim N(0, \beta^{-1})$, β is the precision of $x_t(z)$, and the error term $\xi_t(z)$ is independent of ϵ_t for all z, t.

As a result, if one defines

$$\Theta_{t-j} = \{\theta_{t-k}\}_{k=j}^{\infty},$$

(4)

at period t, the information set of a firm z that was selected to update its information j periods ago is

$$I_{t-j}(z) = \{x_{t-j}(z), \Theta_{t-j-1}\}.$$

(5)

3 Equilibrium

Using (1), the best response for a firm z that was selected to update its information j periods ago – and, therefore, has $I_{t-j}(z)$ as its information set – is its forecast of p_t^*, given the available information $I_{t-j}(z)$:

$$p_t(z) = E[p_t^* | I_{t-j}(z)].$$

(6)

Denoting by Λ_{t-j} the set of firms that last updated its information set at period $t - j$, we can express the aggregate price level P_t as

$$P_t = \int_{\Lambda_{t-j}} p_t(z) \, dz$$

$$= \sum_{j=0}^{\infty} \int_{\Lambda_{t-j}} E[p_t^* | I_{t-j}(z)] \, dz.$$

(7)

Since the optimal price p_t^* is a convex combination of the state, θ_t, and the aggregate
price level, firm \(z\) needs to forecast the state of the economy \textit{and} the pricing behavior of the other firms in the economy. The pricing behavior of each of these firms, in turn, depends on their own forecast of the other firms’ aggregate behavior. It follows that firm \(z\) must not only forecast the state of the economy but also, to predict the behavior of the other firms in the economy, must make forecasts of these firms’ forecasts about the state, forecasts about the forecasts of these firms forecasts about the state, and so on and so forth. In other words, higher-order beliefs will play a key role in the derivation of equilibrium in our model.

Indeed, if one defines the average \(k\)-th order belief about the current state recursively as follows:

\[
E^k [\theta_t] = \begin{cases}
\theta_t, & : k = 0, \\
\sum_{j=0}^{\infty} \int_{\Theta} E \left[E^{k-1} [\theta_t | I_{t-j}(z)] \right] dz, & : k \geq 1,
\end{cases}
\]

we have that, in equilibrium, the aggregate price level is

\[
P_t = (1 - r) \sum_{k=1}^{\infty} r^{k-1} E^k [\theta_t].
\]

3.1 Computing the Equilibrium

In this section, we derive the unique equilibrium of the pricing game played by the firms. First, we obtain the higher-order beliefs. After, we compute the aggregate price level in period \(t\) as a weight average of all higher-order beliefs about the state \(\theta_t\).

3.1.1 Posterior Distribution

In the Appendix, we show that, given the distribution of the private signals and the process \(\{\theta_t\}\) implied by (2), a firm \(z\) that updated its information set in period \(t - j\) makes use of the variables \(x_{t-j}(z) = \theta_{t-j} + \xi_{t-j}(z)\) and \(\theta_{t-j-1} = \theta_{t-j} - \epsilon_{t-j}\), to form

\[5\] We could also follow Morris and Shin (2002) and first derive an equilibrium for which the aggregate price level is a linear function of fundamentals. We could then establish, using (9), that this linear equilibrium is the unique equilibrium of our game.
the following belief about the current state θ_{t-j}:

$$\theta_{t-j} \mid I_{t-j} (z) \sim N \left((1 - \delta) x_{t-j} (z) + \delta \theta_{t-j-1}, (\alpha + \beta)^{-1} \right), \quad (10)$$

where

$$\delta \equiv \frac{\alpha}{\alpha + \beta} \in (0, 1). \quad (11)$$

Hence, a firm that updated its information set in $t-j$ expects the current state to be a convex combination of the private signal $x_{t-j} (z)$ and a (semi-) public signal θ_{t-j-1} – the only relevant piece of information that comes from learning all previous states $\{\theta_{t-j-k}\}_{k \geq 1}$. The relative weights given to $x_{t-j} (z)$ and θ_{t-j-1} when the firm computes the expected value of state θ_{t-j} depend on the precision of such signals.

Using (2), one has that, for $m \leq j$,

$$\theta_{t-m} = \theta_{t-j} + \sum_{k=0}^{j-m-1} \epsilon_{t-m-k}. \quad (12)$$

Thus, the expectation of a firm z that last updated its information set at $t-j$ about θ is

$$E [\theta_{t-m} \mid I_{t-j} (z)] = \begin{cases}
E [\theta_{t-j} \mid I_{t-j} (z)] = (1 - \delta) x_{t-j} (z) + \delta \theta_{t-j-1} : m \leq j, \\
\theta_{t-m} : m > j.
\end{cases} \quad (13)$$

In words, a firm that last updated its information set in period $t-j$ expects that all future values of the fundamental θ will be the same as the expected value of the fundamental at the period $t-j$. Moreover, since at the moment it adjusts its information set the firm observes all previous states, the firm will know for sure the value of θ_{t-m} for $m > j$.

$^6\theta_{t-j-1}$ is the only piece of information in $\Theta_{t-j} = \{\theta_{t-j-k}\}_{k=1}^\infty$ the firm needs to use because the state’s process is Markovian.
3.1.2 Beliefs

We establish that there is a unique linear equilibrium in the game by computing the aggregate price level in period t as an weighed average of all (average) higher-order beliefs about the state θ_t, as stated in (9).

First-Order Beliefs. Using (13), we are able to compute (8) for the case $k = 1$.

$$\bar{E}^1 [\theta_t] = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] .$$ \hspace{1cm} (14)

Higher-Order Beliefs. In the Appendix, we use (14) and the recursion (8) to derive the following useful result:

Lemma 1 The average k-th order forecast of the state is given by

$$\bar{E}^k [\theta_t] = \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [\kappa_{m,k} \theta_{t-m} + \delta_{m,k} \theta_{t-m-1}] ,$$ \hspace{1cm} (15)

with the weights $(\kappa_{m,k}, \delta_{m,k})$ are recursive defined for $k \geq 1$

$$\begin{bmatrix} \kappa_{m,k+1} \\ \delta_{m,k+1} \end{bmatrix} = [1 - (1 - \lambda)^m] \begin{bmatrix} (1 - \delta) \\ \delta \end{bmatrix} + A_m \begin{bmatrix} \kappa_{m,k} \\ \delta_{m,k} \end{bmatrix} ,$$

where the matrix A_m is given by

$$A_m \equiv \begin{bmatrix} [(1 - \delta) [1 - (1 - \lambda)^{m+1}] + \delta [1 - (1 - \lambda)^m]] & 0 \\ \delta ([1 - (1 - \lambda)^{m+1}] - [1 - (1 - \lambda)^m]) & [1 - (1 - \lambda)^{m+1}] \end{bmatrix} ,$$

and the initial weights are $(\kappa_{m,1}, \delta_{m,1}) \equiv (1 - \delta, \delta)$.

3.1.3 Equilibrium Price Level and SDI Phillips curve

We obtain the equilibrium aggregate price level by plugging (15) into expression (9) for P_t and the SDI Phillips curve by taking the first difference.
Proposition 1 In an economy in which information is sticky and dispersed, and the state follows (2), there is a unique equilibrium in the pricing game played by the firms. In such equilibrium, the aggregate price level is given by

\[P_t = \sum_{m=0}^{\infty} K_m \left[(1 - \Delta_m) \theta_{t-m} + \Delta_m \theta_{t-m-1} \right], \]

and the SDI Phillips curve is given by

\[\pi_t = \sum_{m=0}^{\infty} K_m \left[(1 - \Delta_m) (\theta_{t-m} - \theta_{t-m-1}) + \Delta_m (\theta_{t-m-1} - \theta_{t-m-2}) \right], \]

where

\[K_m \equiv \frac{(1 - r) \lambda (1 - \lambda)^m}{(1 - r [1 - (1 - \lambda)^m]) (1 - r [1 - (1 - \lambda)^{m+1}] + \delta [1 - (1 - \lambda)^m])}, \]

\[\Delta_m \equiv \frac{\delta [1 - r (1 - \lambda)^m + \delta (1 - (1 - \lambda)^{m+1})]}{1 - r [(1 - \delta) (1 - (1 - \lambda)^{m+1}) + \delta (1 - (1 - \lambda)^m)]}. \]

Note that the current aggregate price level \(P_t \) depends on current and past states of the economy. This is so for two reasons. First, there are firms in the economy for which the information set has been last updated in the far past. This is a direct effect of sticky information, captured by the term \(K_m \). Second, even firms that have just adjusted their information set will be, at least partly, backward-looking. This happens because of a strategic effect: their optimal relative price depends on how they believe all other firms (including those that have outdated information sets) in the economy are setting prices. This strategic effect is captured by the terms \(\Delta_m \). While they depend on \(\delta \), they reflect a non trivial interaction between dispersion and stickiness due to strategic complementarity in pricing decisions. As the weight firms attach to other firms’ behavior vanishes, \(r \to 0 \), the effects of dispersion and stickiness are completely disentangled in the resulting weights \(\Delta_m \to \delta \) and \(K_m \to \lambda (1 - \lambda)^m \).

From aggregate prices, it is immediate to show that inflation also depends on the current and all past states of the economy. This result is linked to the one obtained in Mankiw and Reis (2002), in which inflation depends on past expectations of current
economic conditions, due to the fact that in our model, as shown in (9), individual expectations about the current state are functions of the past states of the economy.

In our model, however, on top of being sticky, information is also dispersed. The effect of dispersion is captured by the positive weight given to the state in period \(\theta_{t-m-1} \) by a firm that has its information set updated in \(t-m \). If, instead of having a private signal of \(\theta_{t-m} \), firms knew the state, they would ignore the information given by \(\theta_{t-m-1} \). But, as the private signal the firm observes is noisy, it is always optimal to place some weight on past states to forecast the current state. Hence, in comparison to an economy à la Mankiw and Reis (2002), the adjustment of prices to shocks will be slower in an economy with disperse information. This result, in line with Morris and Shin (2006), shows that the introduction of differential information in an otherwise standard sticky information model tends to magnify the effect of stickiness on the persistence of aggregate prices and inflation rates. In the next section, we aim to quantify the potential contribution of dispersion for persistence.

As a side remark, we point out that the introduction of dispersion in a sticky information model leads to price and inflation inertia irrespective of assumptions regarding the firms’ capacity to predict equilibrium outcomes. Indeed, although they may not have their information sets up to date, the firms in our model correctly predict the equilibrium behavior of their opponents. In spite of correctly predicting the strategies (i.e., contingent plans) adopted by the opponents in equilibrium, a firm cannot infer what is the actual price set by them (i.e., the action taken), since it cannot observe its opponents’ private signals. Hence, a firm that hasn’t updated its information set cannot infer the current state from the behavior of its opponents. This is in contrast to Mankiw and Reis (2002) who, in order to obtain price and information inertia in a model with sticky but non-dispersed information, (implicitly) assume that agents cannot condition on equilibrium behavior from the opponents. In fact, in their main experiment, there is a (single) nominal shock that only a fraction of the firms observe. Trivially, the prices set by those firms (as well as aggregate prices) will reflect such change in the fundamental. Hence, a firm that hasn’t observed the shock but can predict the equilibrium
behavior of the opponents will be able to infer the fundamental from such behavior.\footnote{The argument here is similar to the one in Rational Expectations Equilibrium models as in Grossman (1981).}

It follows that all firms will adjust prices in response.

4 The Relative Importance of Stickiness and Dispersion of Information for Persistence

This section evaluates the importance of dispersion in a setting in which information is sticky. We first define a measure of persistence in our setting. We then (i) analytically derive the effects of the parameters that capture stickiness and dispersion in the model on our measure of persistence and (ii) perform some numerical simulations to evaluate the quantitative importance of each of these factors.

4.1 The Effects of Dispersion and Stickiness on Persistence

Note that we can rewrite (17) as

\[\pi_t = \sum_{m=0}^{\infty} c_m \pi_{C_{t-m}}, \]

where the coefficients \(c_m, m \geq 0, \) are given by

\[c_m \equiv \begin{cases} \left(\frac{1-r}{r} \right) \left(\frac{1}{1-(1-r)(1-\rho)} - 1 \right) & : m = 0, \\ \left(\frac{1-r}{r} \right) \left[\frac{1}{1-(1-r)(1-\lambda)^m} - \frac{1}{1-(1-r)(1-\lambda)^{m-1}} \right] & : m \geq 1, \end{cases} \]

and \(\rho = 1 - \lambda (1 - \delta). \)

Therefore, using equations (2), that describes the evolution of \(\theta, \) and (17), one can write the SDI inflation as

\[\pi_t = \sum_{k=0}^{\infty} c_k \varepsilon_{t-k}. \]
The direct impact of a period t shock, ε_t, on the inflation rate in period $t + m$, π_{t+m}, is c_m. Hence, the cumulative impact of a shock ε_t on period π_{t+m} is

$$C_m = \sum_{k=0}^{m} c_k = \frac{1}{\left(1 - \frac{r}{1 - r + r \rho (1 - \lambda)^m}\right)} \frac{1}{1 - r + r \rho (1 - \lambda)^m} - 1.$$

Since

$$C_\infty = \lim_{m \to \infty} \sum_{k=0}^{m} c_k = 1,$$

$1 - C_m$ can be interpreted as the impact of a shock ε_t that still remains to be propagated after m periods. Hence, we take $1 - C_m$ as the measure of persistence of a shock in our setting. We now evaluate how dispersion and stickiness affect persistence.

Not surprisingly, when information becomes less sticky, persistence falls

$$\frac{\partial (1 - C_m)}{\partial \lambda} = \left[\frac{1 - r}{[1 - r + r \rho (1 - \lambda)^m]^2}\right] \frac{\partial \rho (1 - \lambda)^m}{\partial \lambda} = - \left(\frac{1 - r}{r}\right) \left[\frac{1}{[1 - r + r \rho (1 - \lambda)^m]^2}\right] \left[(1 - \lambda)^m (1 - \delta) + \rho m (1 - \lambda)^{m-1}\right] < 0.$$

It is natural to take δ, the weight placed by an agent on the previous values of the state vis-à-vis his private information, as a measure of information dispersion. The higher δ, the more dispersed is the information. Hence, as expected, dispersion increases the persistence of a shock.

$$\frac{\partial (1 - C_m)}{\partial \delta} = - \frac{\partial C_m}{\partial \delta} = \frac{(1 - r) (1 - \lambda)^m \lambda}{[1 - r + r \rho (1 - \lambda)^m]^2} > 0,$$

whenever $\lambda \in (0, 1)$.

We are also interested in understanding how the effect of stickiness on persistence varies with the degree of dispersion as captured by δ. Notice that

$$\frac{\partial^2 (1 - C_m)}{\partial \lambda \partial \delta} = \left(\frac{1 - r}{r}\right) \left[\frac{(1 - \lambda)^m}{[1 - r + r \rho (1 - \lambda)^m]^2}\right] > 0,$$

The weight δ depends on the relative precision of an agent’s private information, β.

16
so that the effect of sticky information on persistence is higher in a world of differential information.

We summarize this discussion in the following result.

Proposition 2 For a given degree of dispersion (stickiness), the higher the degree of stickiness (dispersion), the more persistent in the effect of a shock on inflation rates. Moreover, the effect of stickiness on persistence increases with the amount of dispersion in the economy.

4.2 Numerical Simulations

Proposition 2 shows that dispersion magnifies the effects of stickiness. Through numerical simulations, we now aim to evaluate whether this effect is quantitatively relevant. In particular, we want to verify whether a small incidence of price stickiness can lead to a large amount of persistence in aggregate prices in a world of differential information.

A first hint of an answer comes from the fact that both \(\frac{\partial (1-C_m)}{\partial \delta} \) and \(\frac{\partial^2 (1-C_m)}{\partial \lambda \partial \delta} \) are very close to zero when \(\lambda \), the fraction of agent getting new information, is close to one. Our simulations confirm such impression.

Figure 1 deals with the case in which information stickiness is small (\(\lambda = 0.95 \)) and one raises the amount of dispersion by moving from \(\delta = 0.01 \) to \(\delta = 0.99 \). The effect on persistence is minimal. While the shock fully vanishes after 3 periods when \(\delta = 0.01 \), it takes only an extra period to vanish when \(\delta = 0.99 \). It seems that, when the degree of price stickiness is low, the main effect of dispersion (in any degree) is to substantially magnify the immediate impact of a given shock. Indeed, when compared to a setting in which \(\lambda = 0.05 \), the price increase after a shock when \(\lambda = 0.95 \) is larger by a factor of 40 (see Figure 2).

Figure 2 analyzes the effect of dispersion when information stickiness is large (\(\lambda = 0.05 \)). It is worth noticing that the effect of a substantial increase in the amount of dispersion (moving from \(\delta = 0.01 \) to \(\delta = 0.99 \)) is minor both in terms of the size of the impact of a shock as well as in terms of its persistence.
Figure 1: The effect of information dispersion in the persistence of aggregate prices when information stickiness is small.

Figure 2: The effect of information dispersion in the persistence of aggregate prices when information stickiness is large.
This is true throughout all simulations we have performed: whenever the degree of price stickiness is large, the quantitative contribution of dispersion tends to be small.

5 Conclusion

In this paper, we have considered the impact of sticky and dispersed information on individual price setting decisions, and the resulting effect on the aggregate price level and the inflation rate. We also evaluated Morris and Shin’s (2006) conjecture that, in a world of dispersed information, a small incidence of information stickiness can lead to large amounts of persistence in aggregate prices. Contrary to their conjecture, we show that, with a small incidence of price stickiness, while dispersion substantially magnifies the immediate impact of a shock, its effect on persistence tends to be minor.

The model we put forth nests the dispersed information model and the sticky information model as special cases, and can be extended in many directions. One could, for instance, consider the case in which agents receive public information from, say, a central banker about the state of the economy. In such a setting, it would be natural to evaluate what is the best disclosure policy for a benevolent central banker. One could also use our model to analyze how communication interacts with other policy instruments (e.g., interest rates) available to a central banker. We believe these extensions/applications are interesting avenues for future research.

References

6 Appendix

6.1 Posterior Distribution

At this appendix, we calculate the distribution of the fundamental θ_{t-j} given that the firm updated its information set at period $t-j$. We can compute $f(\theta_{t-j} \mid \Theta_{t-j-1}, x_{t-j})$ as
\[
f(\theta_{t-j} \mid \theta_{t-j-1}, x_{t-j}) = \frac{f(\theta_{t-j}, \theta_{t-j-1}, x_{t-j})}{\int_{-\infty}^{\infty} f(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}) \, d\theta_{t-j}}
\]

\[
= \frac{f(\theta_{t-j-1}, x_{t-j} \mid \theta_{t-j}) f(\theta_{t-j})}{\int_{-\infty}^{\infty} f(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}) \, d\theta_{t-j}}
\]

\[
= \frac{f(\theta_{t-j-1} \mid \theta_{t-j}) f(x_{t-j} \mid \theta_{t-j}) f(\theta_{t-j})}{\int_{-\infty}^{\infty} f(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}) \, d\theta_{t-j}},
\]

where the last equality holds due to the independence of \(\xi_t(z) \) and \(\epsilon_{t-j} \). As

\[
x_{t-j}(z) = \theta_{t-j} + \xi_{t-j}(z), \]

\[
\theta_{t-j-1} = \theta_{t-j} - \epsilon_{t-j},
\]

where \(\xi_t(z) \sim N(0, \beta^{-1}) \) and \(\epsilon_{t-j} \sim N(0, \alpha^{-1}) \), we have that \(f(x_{t-j} \mid \theta_{t-j}) = N(\theta_{t-j}, \beta^{-1}) \) and \(f(\theta_{t-j-1} \mid \theta_{t-j}) = N(\theta_{t-j}, \alpha^{-1}) \). If the dynamics of \(\theta_t \) was

\[
\theta_{t-j-1} = \rho \theta_{t-j} - \epsilon_{t-j}
\]

we would have

\[
E[\theta_{t-j}] = E[\theta_t] = \frac{E[\epsilon_t]}{1 - \rho} = 0,
\]

\[
Var[\theta_{t-j}] = Var[\theta_t] = \frac{Var[\epsilon_t]}{1 - \rho^2} = \frac{\alpha^{-1}}{1 - \rho^2}.
\]
Therefore, the distribution of θ_{t-j} would be given by $f(\theta_{t-j}) = N(0, \Psi^{-1})$ where $\Psi = \alpha(1 - \rho^2)$. Thus, we would obtain

$$f(\theta_{t-j}, \theta_{t-j-1}, x_{t-j}) = c \exp \left\{ \frac{-1}{2} \left[\frac{(x_{t-j}(z) - \theta_{t-j})^2}{\beta^{-1}} + \frac{(\theta_{t-j-1} - \rho^{-1}\theta_{t-j})^2}{(\rho^2\alpha)^{-1}} + \frac{\theta_{t-j}^2}{\Psi^{-1}} \right] \right\}$$

$$= c \exp \left\{ -\frac{1}{2} \left[(\beta + \alpha + \Psi) \theta_{t-j}^2 - 2(\beta x_{t-j}(z) + \alpha \rho \theta_{t-j-1}) \theta_{t-j} \right] \right\}$$

$$\times \exp \left\{ -\frac{1}{2} \left[\beta x_{t-j}^2(z) + \alpha \rho^2 \theta_{t-j-1}^2 \right] \right\}$$

$$= \frac{c d}{\sqrt{2\pi}\sigma \Sigma} \exp \left\{ -\frac{1}{2} \left(\frac{(\theta_{t-j} - \mu)^2}{\Sigma^2} \right) \right\},$$

where

$$c = (2\pi)^{-3/2} (\beta \alpha \Psi)^{1/2}, \quad d = \sqrt{2\pi}\sigma \exp \left\{ -\frac{1}{2} \left[-\mu^2 \Sigma^{-2} + \beta x_{t-j}^2(z) + \alpha \rho^2 \theta_{t-j-1}^2 \right] \right\},$$

$$\mu = [\Delta x_{t-j}(z) + (1 - \Delta)\theta_{t-j-1}], \quad \Delta = \beta (\beta + \alpha + \Psi)^{-1},$$

$$z_{t-j-1} = \Lambda \rho \theta_{t-j-1}, \quad \Lambda = \alpha (\beta + \alpha)^{-1},$$

$$\Sigma^2 = (\beta + \alpha + \Psi)^{-1}.$$

As $\rho \to 1$, we have $\Psi \to 0, \Delta \to \delta$, and $\Sigma^2 \to (\beta + \alpha)^{-1}$. Thus $f(\theta_{t-j} | \theta_{t-j-1}, x_{t-j}) = N(\mu, \sigma^2)$ where $\mu = [\delta x_{t-j}(z) + (1 - \delta)\theta_{t-j-1}]$, and $\sigma^2 = (\beta + \alpha)^{-1}$.

6.2 Higher-Order Beliefs

In this appendix we derive the general formula of the k-th order average expectation

$$E^k[\theta_t] = \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [\kappa_{m,k} \theta_{t-m} + \delta_{m,k} \theta_{t-m-1}],$$

with the weights $(\kappa_{m,k}, \delta_{m,k})$ are recursive defined for $k \geq 1$

$$\begin{bmatrix} \kappa_{m,k+1} \\ \delta_{m,k+1} \end{bmatrix} = \begin{bmatrix} (1 - \delta) \\ \delta \end{bmatrix} \left[1 - (1 - \lambda)^{m+1} \right] + A_m \begin{bmatrix} \kappa_{m,k} \\ \delta_{m,k} \end{bmatrix},$$

23
where the matrix A_m is given by

$$A_m \equiv \begin{bmatrix}
(1 - \delta) [1 - (1 - \lambda)^{m+1}] + \delta [1 - (1 - \lambda)^m] & 0 \\
\delta [1 - (1 - \lambda)^{m+1}] - [1 - (1 - \lambda)^m] & [1 - (1 - \lambda)^{m+1}]
\end{bmatrix},$$

and the initial weights are $(\kappa_{1,k}, \delta_{1,k}) \equiv (1 - \delta, \delta)$.

We start by computing $\bar{E}^1[\theta_t]$ as

$$\bar{E}^1[\theta_t] = \sum_{j=0}^{\infty} \int_{\Lambda_j} E\left[\bar{E}^0[\theta_t] \mid I_{t-j}(z) \right] dz$$
$$= \sum_{j=0}^{\infty} \int_{\Lambda_j} E[\theta_t \mid I_{t-j}(z)] dz$$
$$= \sum_{j=0}^{\infty} \int_{\Lambda_j} [(1 - \delta) x_{t-j}(z) + \delta \theta_{t-j-1}] dz$$
$$= \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}].$$

We can use this result to obtain $\bar{E}^2[\theta_t]$ as

$$\bar{E}^2[\theta_t] = \sum_{m=0}^{\infty} \int_{\Lambda_m} E\left[\bar{E}^1[\theta_t] \mid I_{t-m}(z) \right] dz$$
$$= \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} E\left[\sum_{j=0}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] \mid I_{t-m}(z) \right] dz.$$

We know that

$$E[\theta_{t-j} \mid I_{t-m}(z)] = \begin{cases}
(1 - \delta) x_{t-m}(z) + \delta \theta_{t-m-1} : m \geq j, \\
\theta_{t-j} : m < j.
\end{cases}$$

Thereafter

$$\bar{E}^2[\theta_t] = \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} \sum_{j=0}^{m-1} (1 - \lambda)^j \{(1 - \delta) E[\theta_{t-j} \mid I_{t-m}(z)] + \delta E[\theta_{t-j-1} \mid I_{t-m}(z)]\} dz$$
$$+ \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} (1 - \lambda)^m \{(1 - \delta) E[\theta_{t-m} \mid I_{t-m}(z)] + \delta \theta_{t-m-1}\} dz$$
$$+ \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} \sum_{j=m+1}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] dz.$$
\[\begin{align*}
&= \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} \sum_{j=0}^{m-1} (1 - \lambda)^j [(1 - \delta) x_{t-m}(z) + \delta \theta_{t-m-1}] \, dz \\
&+ \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} (1 - \lambda)^m \left[(1 - \delta) [(1 - \delta) x_{t-m}(z) + \delta \theta_{t-m-1}] + \delta \theta_{t-m-1} \right] \, dz \\
&+ \lambda \sum_{m=0}^{\infty} \int_{\Lambda_m} \sum_{j=m+1}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] \, dz
\end{align*}\]

\[\begin{align*}
&= \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [(1 - \delta) \theta_{t-m} + \delta \theta_{t-m-1}] \sum_{j=0}^{m-1} (1 - \lambda)^j \\
&+ \lambda^2 \sum_{m=0}^{\infty} (1 - \lambda)^{2m} \left[(1 - \delta)^2 \theta_{t-m} + [1 - (1 - \delta)^2] \theta_{t-m-1} \right] \\
&+ \lambda \sum_{j=1}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] \sum_{m=0}^{j-1} (1 - \lambda)^m
\end{align*}\]

\[\begin{align*}
&= \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [1 - (1 - \lambda)^m] [(1 - \delta) \theta_{t-m} + \delta \theta_{t-m-1}] \\
&+ \lambda^2 \sum_{m=0}^{\infty} (1 - \lambda)^{2m} \left[(1 - \delta)^2 \theta_{t-m} + [1 - (1 - \delta)^2] \theta_{t-m-1} \right] \\
&+ \lambda \sum_{j=1}^{\infty} (1 - \lambda)^j [(1 - \delta) \theta_{t-j} + \delta \theta_{t-j-1}] \left[1 - (1 - \lambda)^j \right]
\end{align*}\]

We can write this expression as

\[\bar{E}^2 \theta_t = \lambda \sum_{j=0}^{\infty} (1 - \lambda)^j [\kappa_{j,2} \theta_{t-j} + \delta_{j,2} \theta_{t-j-1}] ,\]

where

\[\begin{align*}
\kappa_{j,2} &= (1 - \delta^2) \left[1 - (1 - \lambda)^{j+1} \right] + (1 - \delta)^2 \left[1 - (1 - \lambda)^{j+1} \right] \\
&= \left[1 - (1 - \lambda)^{j+1} \right] \kappa_{j,1}^2 + \left[1 - (1 - \lambda)^{j+1} \right] (1 - \delta_{j,1}) ,
\end{align*}\]

\[\begin{align*}
\delta_{j,2} &= \delta^2 \left[1 - (1 - \lambda)^{j+1} \right] + [1 - (1 - \delta)^2] \left[1 - (1 - \lambda)^{j+1} \right] \\
&= \left[1 - (1 - \lambda)^{j+1} \right] (1 - \kappa_{j,1}^2) + \left[1 - (1 - \lambda)^{j+1} \right] \delta_{j,1}^2 .
\end{align*}\]
Note that
\[\kappa_{j,2} + \delta_{j,2} = \sum_{n=0}^{1} \left[1 - (1 - \lambda)^j \right]^n \left[1 - (1 - \lambda)^{j+1} \right]^{1-n}. \]

We use induction to obtain the general case. Suppose that (15) holds for \(k - 1 \).
Then
\[\bar{E}^{k-1} [\theta_t] = \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m \left[\kappa_{m,k-1} \theta_{t-m} + \delta_{m,k-1} \theta_{t-m-1} \right], \]
where
\[\sum_{j=0}^{m-1} (1 - \lambda)^j (\kappa_{j,k-1} + \delta_{j,k-1}) = \frac{1}{\lambda} [1 - (1 - \lambda)^m]^{k-1}. \]
As a result
\[
\bar{E}^k [\theta_t] = \sum_{m=0}^{\infty} \int_{A_m} E \left[\bar{E}^{k-1} [\theta_t] \mid I_{t-m} (z) \right] dz \\
= \sum_{m=0}^{\infty} \int_{A_m} E \left[\lambda \sum_{j=0}^{m} (1 - \lambda)^j \{ \kappa_{j,k-1} \theta_{t-j} + \delta_{j,k-1} \theta_{t-j-1} \} \mid I_{t-m} (z) \right] dz \\
= \lambda \sum_{m=0}^{\infty} \int_{A_m} \sum_{j=0}^{m-1} (1 - \lambda)^j \{ \kappa_{j,k-1} \theta_{t-j} + \delta_{j,k-1} \theta_{t-j-1} \} dz \\
+ \lambda \sum_{m=0}^{\infty} \int_{A_m} (1 - \lambda)^m \{ \kappa_{m,k-1} \theta_{t-m} + \delta_{m,k-1} \theta_{t-m-1} \} dz \\
+ \lambda \sum_{m=0}^{\infty} \int_{A_m} \sum_{j=m+1}^{\infty} (1 - \lambda)^j \{ \kappa_{j,k-1} \theta_{t-j} + \delta_{j,k-1} \theta_{t-j-1} \} dz \\
= \lambda^2 \sum_{m=0}^{\infty} (1 - \lambda)^m \{ (1 - \delta) \theta_{t-m} + \delta \theta_{t-m-1} \} \sum_{j=0}^{m-1} (1 - \lambda)^j (\kappa_{j,k-1} + \delta_{j,k-1}) \\
+ \lambda^2 \sum_{m=0}^{\infty} (1 - \lambda)^{2m} \{ \kappa_{m,k-1} (1 - \delta) \theta_{t-m} + [\kappa_{m,k-1} \delta + \delta_{m,k-1}] \theta_{t-m-1} \} \\
+ \lambda^2 \sum_{j=1}^{\infty} (1 - \lambda)^j \{ \kappa_{j,k-1} \theta_{t-j} + \delta_{j,k-1} \theta_{t-j-1} \} \sum_{m=0}^{j-1} (1 - \lambda)^m.
\[
\begin{align*}
&= \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [1 - (1 - \lambda)^m]^{k-1} [(1 - \delta) \theta_{t-m} + \delta \theta_{t-m-1}] \\
&\quad + \lambda^2 \sum_{m=0}^{\infty} (1 - \lambda)^{2m} [\kappa_{m,k-1} (1 - \delta) \theta_{t-m} + [\kappa_{m,k-1} \delta + \delta_{m,k-1}] \theta_{t-m-1}] \\
&\quad + \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [1 - (1 - \lambda)^m] [\kappa_{m,k-1} \theta_{t-m} + \delta_{m,k-1} \theta_{t-m-1}] .
\end{align*}
\]

We can rewrite the last three lines as

\[
\tilde{E}^k [\theta_t] = \lambda \sum_{m=0}^{\infty} (1 - \lambda)^m [\kappa_{m,k} \theta_{t-m} + \delta_{m,k} \theta_{t-m-1}] ,
\]

where

\[
\begin{align*}
\kappa_{m,k} &\equiv (1 - \delta) [1 - (1 - \lambda)^m]^{k-1} + [(1 - \delta) \lambda (1 - \lambda)^m + [1 - (1 - \lambda)^m] \kappa_{m,k-1} \\
&= (1 - \delta) [1 - (1 - \lambda)^m]^{k-1} \\
&\quad + [(1 - \delta) [1 - (1 - \lambda)^{m+1}] + \delta [1 - (1 - \lambda)^m]] \kappa_{m,k-1}, \\
\delta_{m,k} &\equiv \delta [1 - (1 - \lambda)^m]^{k-1} + \delta \lambda (1 - \lambda)^m \kappa_{m,k-1} + [\lambda (1 - \lambda)^m + [1 - (1 - \lambda)^m]] \delta_{m,k-1} \\
&= \delta [1 - (1 - \lambda)^m]^{k-1} \\
&\quad + \delta \left[[1 - (1 - \lambda)^{m+1}] - [1 - (1 - \lambda)^m] \right] \kappa_{m,k-1} + [1 - (1 - \lambda)^{m+1}] \delta_{m,k-1},
\end{align*}
\]

since

\[
\lambda (1 - \lambda)^m = [1 - (1 - \lambda)^{m+1}] - [1 - (1 - \lambda)^m].
\]

Rewriting these weights in matrix format, we obtain

\[
\begin{bmatrix}
\kappa_{m,k+1} \\
\delta_{m,k+1}
\end{bmatrix} = \begin{bmatrix}
(1 - \delta) \\
\delta
\end{bmatrix} \begin{bmatrix}
[1 - (1 - \lambda)^m]^{k} \\
[1 - (1 - \lambda)^{m+1}] + A_m \begin{bmatrix}
\kappa_{m,k} \\
\delta_{m,k}
\end{bmatrix},
\end{align*}
\]

where the matrix \(A_m \) is given by

\[
A_m \equiv \begin{bmatrix}
[(1 - \delta) [1 - (1 - \lambda)^{m+1}] + \delta [1 - (1 - \lambda)^m]] & 0 \\
\delta \left[[1 - (1 - \lambda)^{m+1}] - [1 - (1 - \lambda)^m] \right] & [1 - (1 - \lambda)^{m+1}]
\end{bmatrix},
\]

which is exactly our result.
Working Paper Series

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>236</td>
<td>Optimal costs of sovereign default</td>
<td>Leonardo Pio Perez</td>
<td>Apr/2011</td>
</tr>
<tr>
<td>238</td>
<td>Choques não Antecipados de Política Monetária e a Estrutura a Termo das Taxas de Juros no Brasil</td>
<td>Fernando N. de Oliveira e Leonardo Ramos</td>
<td>Abr/2011</td>
</tr>
<tr>
<td>240</td>
<td>Fiscal Policy in Brazil through the Lens of an Estimated DSGE Model</td>
<td>Fabia A. de Carvalho and Marcos Valli</td>
<td>Apr/2011</td>
</tr>
<tr>
<td>241</td>
<td>Macro Stress Testing of Credit Risk Focused on the Tails</td>
<td>Ricardo Schechtman and Wagner Piazza Gaglianone</td>
<td>May/2011</td>
</tr>
<tr>
<td>242</td>
<td>Determinantes do Spread Bancário Ex-Post no Mercado Brasileiro</td>
<td>José Alves Dantas, Otávio Ribeiro de Medeiros e Lúcio Rodrigues Capelletto</td>
<td>Maio/2011</td>
</tr>
<tr>
<td>243</td>
<td>Economic Activity and Financial Institutional Risk: an empirical analysis for the Brazilian banking industry</td>
<td>Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures</td>
<td>May/2011</td>
</tr>
<tr>
<td>244</td>
<td>Profit, Cost and Scale Efficiency for Latin American Banks: concentration-performance relationship</td>
<td>Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro</td>
<td>May/2011</td>
</tr>
<tr>
<td>245</td>
<td>Pesquisa Trimestral de Condições de Crédito no Brasil</td>
<td>Clodoaldo Aparecido Annibal e Sérgio Mikio Koyama</td>
<td>Jun/2011</td>
</tr>
<tr>
<td>246</td>
<td>Impacto do Sistema Cooperativo de Crédito na Eficiência do Sistema Financeiro Nacional</td>
<td>Michel Alexandre da Silva</td>
<td>Ago/2011</td>
</tr>
<tr>
<td>247</td>
<td>Forecasting the Yield Curve for the Euro Region</td>
<td>Benjamin M. Tabak, Daniel O. Cajueiro and Alexandre B. Sollaci</td>
<td>Aug/2011</td>
</tr>
</tbody>
</table>
248 Financial regulation and transparency of information: first steps on new land
Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures
Aug/2011

249 Directed clustering coefficient as a measure of systemic risk in complex banking networks
Aug/2011

250 Recolhimentos Compulsórios e o Crédito Bancário Brasileiro
Paulo Evandro Dawid and Tony Takeda
Ago/2011

251 Um Exame sobre como os Bancos Ajustam seu Índice de Basileia no Brasil
Leonardo S. Alencar
Ago/2011

252 Comparação da Eficiência de Custo para BRICs e América Latina
Lycia M. G. Araujo, Guilherme M. R. Gomes, Solange M. Guerra and Benjamin M. Tabak
Set/2011

253 Bank Efficiency and Default in Brazil: causality tests
Benjamin M. Tabak, Giovana L. Craveiro and Daniel O. Cajueiro
Oct/2011

254 Macropurudential Regulation and the Monetary Transmission Mechanism
Pierre-Richard Agénor and Luiz A. Pereira da Silva
Nov/2011

255 An Empirical Analysis of the External Finance Premium of Public Non-Financial Corporations in Brazil
Fernando N. de Oliveira and Alberto Ronchi Neto
Nov/2011

256 The Self-insurance Role of International Reserves and the 2008-2010 Crisis
Antonio Francisco A. Silva Jr
Nov/2011

257 Cooperativas de Crédito: taxas de juros praticadas e fatores de viabilidade
Clodoaldo Aparecido Annibal and Sérgio Mikio Koyama
Nov/2011

258 Bancos Oficiais e Crédito Direcionado – O que diferencia o mercado de crédito brasileiro?
Eduardo Luís Lundberg
Nov/2011

259 The impact of monetary policy on the exchange rate: puzzling evidence from three emerging economies
Emanuel Kohlscheen
Nov/2011

260 Credit Default and Business Cycles: an empirical investigation of Brazilian retail loans
Arnildo da Silva Correa, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras das Neves and Antonio Carlos Magalhães da Silva
Nov/2011

261 The relationship between banking market competition and risk-taking: do size and capitalization matter?
Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro
Nov/2011

262 The Accuracy of Perturbation Methods to Solve Small Open Economy Models
Angelo M. Fasolo
Nov/2011
263 The Adverse Selection Cost Component of the Spread of Brazilian Stocks
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo and José Valentim Machado Vicente
Nov/2011

264 Uma Breve Análise de Medidas Alternativas à Mediana na Pesquisa de Expectativas de Inflação do Banco Central do Brasil
Fabia A. de Carvalho
Jan/2012

265 O Impacto da Comunicação do Banco Central do Brasil sobre o Mercado Financeiro
Marcio Janot e Daniel El-Jaick de Souza Mota
Jan/2012

266 Are Core Inflation Directional Forecasts Informative?
Tito Nícias Teixeira da Silva Filho
Jan/2012

267 Sudden Floods, Macroprudential Regulation and Stability in an Open Economy
P.-R. Agénor, K. Alper and L. Pereira da Silva
Feb/2012

268 Optimal Capital Flow Taxes in Latin America
João Barata Ribeiro Blanco Barroso
Mar/2012

269 Estimating Relative Risk Aversion, Risk-Neutral and Real-World Densities using Brazilian Real Currency Options
José Renato Haas Ornelas, José Santiago Fajardo Barbachan and Aquiles Rocha de Farias
Mar/2012

270 Pricing-to-market by Brazilian Exporters: a panel cointegration approach
João Barata Ribeiro Blanco Barroso
Mar/2012

271 Optimal Policy When the Inflation Target is not Optimal
Sergio A. Lago Alves
Mar/2012

272 Determinantes da Estrutura de Capital das Empresas Brasileiras: uma abordagem em regressão quantífica
Guilherme Resende Oliveira, Benjamin Miranda Tabak, José Guilherme de Lara Resende e Daniel Oliveira Cajueiro
Mar/2012

273 Order Flow and the Real: Indirect Evidence of the Effectiveness of Sterilized Interventions
Emanuel Kohlscheen
Apr/2012

274 Monetary Policy, Asset Prices and Adaptive Learning
Vicente da Gama Machado
Apr/2012

275 A geographically weighted approach in measuring efficiency in panel data: the case of US saving banks
Benjamin M. Tabak, Rogério B. Miranda and Dimas M. Fazio
Apr/2012