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Optimal Policy When the Inflation Target is not
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Abstract

The Working Papers should not be reported as representing the views of the Banco

Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily reflect those of the Banco Central do Brasil.

I assess the optimal policy to be followed by a welfare-concerned central
bank when assigned an inflation target that is not necessarily welfare-optimal.
I treat the inflation target as the trend inflation and I have three main contri-
butions: (i) a welfare-based loss function fully derived under trend inflation,
showing how the non-optimal inflation target acts as an extra ineffi ciency
source; (ii) I show that the trend inflation does affect the relative weight of
the output gap: they are inversely related; (iii) under trend inflation, I derive
time consistent optimal policies with both unconditional and timeless com-
mitment, and I show how to translate the pursuit of the inflation target into
an additional constraint in the minimization step.
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1 Introduction

As of 2011, 27 central banks have adopted inflation targeting (IT) as their framework

for monetary policy. The central government sets positive inflation targets, ranging

between 2% to 5% in most countries,1 and defines acceptance bands and horizons in

which the targets are supposed to be met. The central banks are assigned the task

to pursuit the targets by means of their monetary policy decisions. However, the

inflation targets are not guaranteed to be welfare-optimal. Non-optimality may arise

from measurement error of empirical CPIs, political economy issues (median voter

preferences, lobbies, etc.) or model uncertainty, which may include a mismatch

between the preferred models used by the government and the ones used by the

central bank.

Currently, dynamic stochastic general equilibrium (DSGE) models not only are

the preferred policy evaluation tool in central banks, but also are gauging monetary

policy decisions in industrial countries.2 While most of those models have zero

(e.g. Woodford’s (2003) cashless economy) or negative (e.g. Friedman’s (1969) rule)

inflation as the optimal level to be pursued by the monetary authority, inflation

targets around the world have always been positive.3

Even though the targets are exogenously given, central banks have flexibility to

choose what they perceive as the best policy to pursue them. Hence, I address the

following question: if a welfare-concerned central bank is not seeking to bring the

inflation rate back to its welfare optimum, which tool should be used to evaluate

policies and pick the best one from the policy family that brings the inflation back

to the target?

For this task, I treat the inflation target as a trend inflation4 and borrow Wood-

1See e.g. Hammond (2011) and Roger (2010) for features of the inflation targeting frameworks
and the inflation targets pursuited in each country.

2The Bank of Canada, Bank of England and the European Central Bank are among the central
banks offi cially using DSGE models as their main forecasting tools. See e.g. Christoffel et al (2008),
Harrison et al (2005), Murchison and Rennison (2006), Sbordone et al (2010) and Tovar (2008) for
reviews on how DSGE models have been used by central banks for policy analysis and decision.

3Even though some authors have been imposing additional constraints to the standard DSGE
model to justify higher inflation rates as the welfare-optimal, a consensus approach is yet to come.
Coibion et al (2011), for instance, embed the zero lower bound for the nominal interest rates but
find that the optimal level of inflation is smaller than the typical targets adopted by developed
economies, even after considering different types of nominal frictions.

4The trend inflation, as it came to be known, is the level of the inflation rate in the steady state
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ford’s (2003) standard model with Calvo price setting,5 flexible wages and a rep-

resentative household, as described in Section 2. It is a simple model, but it is

comprehensive enough to allow me to answer the question and obtain analytical

results of easy interpretation.

Addressing the paper’s question is not a simple quest in equilibria with non-

zero trend inflation and staggered Calvo pricing. Even though aggregate variables

have steady state levels in such equilibria,6 there is also a steady state dispersion

of relative prices. This fact is well documented in the literature of trend inflation

(e.g. Ascari (2004), Ascari and Ropele (2007a, 2007b), Coibion and Gorodnichenko

(2011), among others).7

I show that this fact is particularly critical when computing the steady sate level

and the second order approximation of the aggregate labor disutility under non-zero

trend inflation. Therefore I start by describing how to compute the evolution of the

aggregate labor disutility considering only aggregate variables. For that purpose,

I define a relevant aggregate relative price and obtain an equation describing its

dynamics in a very similar way that Schmitt-Grohé and Uribe (2006) derive the

aggregate relative price relevant for their model’s resource constraint.

Using this result, I am able to assess the negative of the welfare function (True

loss function), evaluated at steady state equilibria with different trend inflation

levels. In particular, I show that the second-order derivative (curvature) of the True

loss function sharply increases as the trend inflation rises above zero. With standard

calibration, the curvature at the 2% annual trend inflation is about two and a half

times as large as the curvature at the steady state with zero inflation. At the 4%

annual trend inflation, it is ten times as large. As for the steady state level of the

aggregate output, it sharply falls below the aggregate output under flexible prices,

equilibrium.
5I am aware that the degree of price rigidity a la Calvo is likely to endogenously decrease as

the trend inflation rises. I assume, however, that the parameter remains constant for all values of
trend inflation as long as it is suffi ciently small (less than 5% year, for instance).

6Broadly speaking, the non-stochastic steady state equilibrium is defined as the one achieved
when all disturbances are fixed at their means.

7More reference in trend inflation is found in Amano et al (2006), Blake and Fernandez-Corugedo
(2006), Cogley and Sbordone (2008), Coibion and Gorodnichenko (2011), Coibion et al (2011),
Fernandez-Corugedo (2007), Kichian and Kryvtsov (2007), and Sahuc (2006). The old approach
to deal with trend inflation was to embed it in full indexation rules (e.g. Yun (1996), Alves and
Areosa (2005)). Analysis from micro data suggests however that there is very small or no indexation
at all on individual prices (e.g. Klenow and Kryvtsov (2008) and Bils and Klenow (2004)).
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which does not vary with the trend inflation. Finally, as it is expected, the True

loss function has a minimum when the trend inflation is very close to zero.

Those findings are relevant because they impose limitations on any second-order

approximation of the True loss function, such asWoodford’s (2003) standard welfare-

based loss function. The strong curvature variation implies that the Woodford’s

loss function is only accurate if the inflation rate oscillates suffi ciently close to zero,

around which the True loss function is approximated. For larger inflation rates,

this approximation underestimates welfare losses. This is due to the fact that the

curvature of the True loss function is relatively small around the zero trend inflation.

In this regard, I identify two main wedges between the True loss function and

its approximated assessment: the static wedge —defined as the difference between

the True and approximated loss functions, when evaluated at the steady state; and

the stochastic wedge —defined as the extra wedge arising in the difference of the

expected values of the loss functions in a stochastic equilibrium.

I also derive the trend inflation welfare-based loss function, as a second order

approximation of the True loss function around the steady state with trend inflation

—see Proposition 2, in Section 3.

In important aspects, it differs from the trend inflation welfare-based loss func-

tion obtained by Coibion et al. (2011), the closest paper in this regard. The authors

do not completely approximate the aggregate labor disutility around the steady state

with trend inflation. Instead, the main part of their approximation closely follows

Woodford’s (2003) approach and is done around the steady state with flexible prices,

which is the same as the steady state with zero inflation. This approach leads to a

component that directly depends on the dispersion of relative prices. The authors

then depart from Woodford by approximating this term around the steady state

with trend inflation. For this reason, I refer to their result as the hybrid welfare-

based loss function.8 As I conjecture, the authors must have faced the aggregation

problem in the steady state with trend inflation when adapting Woodford’s steps.

Without an expression to describe the evolution of the aggregate disutility, they

decided for the hybrid approach instead.

Since the first part of the hybrid loss function is derived around the steady state

8I thank Guido Ascari for suggesting this term.
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with flexible prices, the endogenous weights on inflation and output gap volatilities

are not the same as mine. As in any (log) second order approximation, the coeffi -

cients depend strongly on the curvature of the non-linear function. As I mentioned

before, the True loss function is much flatter and its curvature is very small in the

steady state with flexible prices. Therefore the weights of the hybrid loss function

do not depend on the trend inflation as much as they do in the trend inflation loss

function.

In particular, one of the authors’findings is that the weight of the output gap

volatility does no depend on the trend inflation. My results, on the other hand,

suggest that it strongly depends on the trend inflation. Using standard calibration,

the relative weight of the output gap volatility decreases as the trend inflation rises.

As the annual trend inflation rises from 2% to 4%, the relative weight falls from 85%

of what the Woodford’s loss function suggests to 70%.

Using the trend inflation loss function, I derive in Section 4 the time consistent

optimal policies under both unconditional (e.g. Damjanovic et al. (2005)) and time-

less (e.g. Woodford (1999 and 2003)) commitment, and show how to translate the

pursuit of the inflation target into an additional constraint in the loss-minimization

problem. It is known that the unconditionally optimal policy slightly dominates

the timeless one (e.g. Jensen (2001), Jensen and McCallum (2002)). I show that

this approach is also well-suited to cope with the pursuit of the inflation target, if

defined as the unconditional expectation of the inflation rate.

An interesting feature of both trend inflation optimal policies (unconditional

and timeless) is that their targeting rules are more history-dependent than the ones

derived under the steady state with zero inflation, in which they only depend on

the first lag of output gap and on current inflation rate (e.g. Woodford (2003) and

Damjanovic et al. (2005)). Under the steady state with trend inflation, the rules

also depend on the second lag of the output gap and on the first lag of the inflation

rate. Finally, the inertia of the targeting rules increases as the trend inflation rises.
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2 The structural model

For simplicity, I use the standard DSGE model with Calvo price-setting and flexible

wages, as presented in Woodford (2003). The economy consists of a representative

infinite-lived household that consumes an aggregate bundle and supplies differen-

tiated labor to a continuum of differentiated firms indexed by z ∈ (0, 1), which

produce and sell goods in a monopolistic competition environment. Firms follow a

Calvo type price-setting and maximize their expected flow of profits, subjected to

their own demand curves.

2.1 Households

The representative household chooses the sequence of Ct, ht (z) and Bt+1 to maxi-

mize

E0

∞∑
t=0

βt

(
εut
C1−σ
t

1− σ − χ
∫ 1

0

ht (z)1+ν

1 + ν
dz

)
,

subjected to the flow budget constraint PtCt+Etqt+1Bt+1 ≤ Bt+
∫ 1

0
wt (z)ht (z) dz+

dt, and a standard no-Ponzi condition. Financial markets are complete, Et is the

time-t expectations operator, Ct is the aggregate consumption bundle, Pt is the

consumption price index, ht (z) is the labor supplied to firm z, εut is a preference

shock, Bt is the state-contingent value of the portfolio of financial securities held

at the beginning of period t, wt (z) is the nominal wage rate at firm z, dt denotes

nominal dividend income, and qt+1 is the stochastic discount factor from (t+ 1) to

t. Finally, β denotes the subject discount factor, σ−1 is the intertemporal elasticity

of substitution and ν−1 is the Frisch elasticity of labor supply.

Consumption over all differentiated goods ct (z) is aggregated into a bundle Ct,

as in Dixit and Stiglitz (1977). Aggregation and expenditure minimization rela-

tions are described by: C
θ−1
θ

t =
∫ 1

0
ct (z)

θ−1
θ dz, P 1−θ

t =
∫ 1

0
pt (z)1−θ dz, PtCt =∫ 1

0
pt (z) ct (z) dz and a demand function ct (z) = CtP

θ
t (pt (z))−θ, where θ > 1 is

the elasticity of substitution between goods. In equilibrium,9 the optimal real wage

satisfies wt(z)
Pt

= χht(z)
ν

εut C
−σ
t

and the optimal consumption plan is described by the Euler

9As usual, equilibrium is defined as the equations describing the first order conditions of the
representative household and firms, a transversality condition lim

T→∞
ET qt,TBT = 0, where qt,T ≡

ΠT
τ=t+1qτ , and the market clearing conditions.
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equation qt = β
Πt

εut
εut−1

(
Ct
Ct−1

)−σ
, where Πt = 1 + πt and It = 1 + it are the gross infla-

tion and interest rates at period t, which satisfies It = 1
Etqt+1

, and it is the riskless

one-period nominal interest rate.

The market clearing conditions are Ct = Yt and ct (z) = yt (z), ∀z, where Yt and

yt (z) are the aggregate and firm z production levels.

2.2 Firms

Following Calvo (1983), firms optimally adjust their prices with probability (1− α).

With probability α firms index their prices according to pt (z) = pt−1 (z) Πind
t , in

which Πind
t ≡ Π

γπ
t−1Π̄γ is the indexation term and Π̄ is the gross inflation trend.

Finally, γπ ∈ (0, 1) and γ ∈ (0, 1). Firms z ∈ (0, 1) produce differentiated goods

using the technology yt (z) = εatht (z)ε, where εat is the aggregate technology shock

and ε ∈ (0, 1).

When optimally readjusting at period t, firms choose the price p∗t to maximize the

expected discounted flow of each firm’s nominal profits, given the demand function

and the price readjusting structure. Consider the transformations ω ≡ 1+ν
ε
− 1,

µ ≡ θ
θ−1
, ξut ≡ log (εut ), ξ

a
t ≡ log (εat ). The first order condition can be conveniently

written as (p∗t/Pt)
1+θω = Nt/Dt, where Nt and Dt can be written in recursive forms,

avoiding infinite sums:

Nt = (Xt)
(ω+σ) + αEtnt+1 , nt = qtGtΠt

(
Πt

Πindt

)θ(1+ω)

Nt

Dt = 1 + αEtdt+1 , dt = qtGtΠind
t

(
Πt

Πindt

)θ
Dt

in which Gt ≡ Yt/Yt−1 denotes the gross output growth rate, Xt ≡ Yt/Y
n
t is the

gross output gap, and Y n
t is the natural (flexible prices) output.10 Finally, the

Calvo pricing structure implies the following dynamics:

1 = (1− α)

(
Nt

Dt

) 1−θ
1+θω

+ α

(
Πind
t

Πt

)1−θ

(1)

An important feature of the staggered price structure under trend inflation is

that there is a steady state dispersion of relative prices. Clarifying this point is

10The natural output evolves according to (Y nt )
(ω+σ)

= ε
χµ exp ((1 + ω) ξat + ξut ).
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important before presenting the main contributions of this paper.

Under trend inflation with Calvo price setting, the steady state is still dynamic at

the firm level. Indeed, while structural shocks are constrained to remain at their zero

means, the positive trend inflation induces a stationary dispersion of relative prices.

The Calvo staggered price structure implies that there is always a fraction of firms

whose prices lag behind their optimal levels.11 As a consequence, firms adjust above

the aggregate price trend when they are set to optimize. This particularity makes

the individual prices and production levels to be dispersed, even under the steady

state. Interestingly, the aggregate output converges to a time invariant steady state

Ȳ —the individual output dispersion is such that it cancels out when aggregating.

2.3 Welfare computation

Following, I present one of the contributions of this paper: a pair of equations

describing the evolution of the aggregate disutility function υ̃t ≡ χ
∫ 1

0
ht(z)

1+ν

1+ν
dz from

labor supplied to all firms, as a function of aggregate variables only. This result is

important because it allows the fully-fledged derivation of the trend inflation welfare-

based (TIWeB) loss function as a second order approximation of the (negative) true

welfare function around the steady state with trend inflation. For contrast, Coibion

et al. (2011) derives their hybrid loss function as a mixed approximation: some

steps around the steady state with flexible prices (Flex StSt) and others around the

steady state with trend inflation (Trend StSt). Their approach, I conjecture, was

chosen due to the lack of an expression for the aggregate disutility such as the one

I derive here. The hybrid approach is inadequate because it avoids dealing with

the price dispersion in the Trend StSt12 by making a first approximation around

the Flex StSt, and only then approximating the remaining terms around the Trend

StSt.

The following result is general and independent of any trend inflation. Using the

11If price indexation is full (γ + γπ = 1) then this problem never arises. However, empirical
evidence suggests that indexation is almost absent (e.g. Cogley and Sbordone (2005 and 2008),
Klenow and Malin (2010), and Levin et al. (2005)).
12Recall that the production levels of individual firms and the corresponding individual relative

prices do not have a steady state when the trend inflation is positive.
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production and demand functions, I rewrite the aggregate disutility υ̃t as follows

υ̃t = χ
1∫
0

ht(z)
1+ν

1+ν
dz = χ

1+ν

1∫
0

(
yt (z)

1
ε exp

(
−1
ε
ξat
))1+ν

dz

= χ exp(−(1+ω)ξat )
(1+ν)

Y
(1+ω)
t

∫ 1

0

(
pt(z)
Pt

)−θ(1+ω)

dz

Let Pt denote an aggregate relative price, relevant for the aggregate disutility:

P−θ(1+ω)
t ≡

∫ 1

0

(
pt (z)

Pt

)−θ(1+ω)

dz

Using the structure of the Calvo price setting, I am able to derive the law of

motion of Pt in a very similar way Schmitt-Grohé and Uribe (2006) derive the ag-

gregate relative price relevant for the resource constraint in their model. Proposition

1 describes the evolution of the aggregate disutility function υ̃t and the aggregate

relative price Pt as functions of aggregate variables only. The aggregate relative

price Pt summarizes all information about price dispersion.

Proposition 1 The aggregate disutility is computed as

υ̃t =
χ

1 + ν
Y

(1+ω)
t P−θ(1+ω)

t exp (− (1 + ω) ξat ) (2)

where the relevant relative price Pt evolves according to

P−θ(1+ω)
t = (1− α)

(
Nt

Dt

)− θ(1+ω)
1+θω

+ α

(
Πind
t

Πt

)−θ(1+ω)

P−θ(1+ω)
t−1 (3)

Let Wt denote the welfare function, computed as the discounted flow of utility

evaluated at the equilibrium variables. In this case, Wt evolves according to a

Bellman-shaped equation Wt = ut − υ̃t + βEtWt+1, where ut =
C1−σ
t

1−σ ε
u
t .

An important issue regards the concavity of the welfare function. In the Trend

StSt, Wt decreases fast and becomes highly concave as the inflation rate rises. For

illustration, figure 1 depicts the steady state levels (see Appendix A) of the welfare

function W̄, its second derivative ∂2W̄
∂π̄2 , the aggregate output Ȳ and the natural

output Ȳ n as the annual trend inflation rises from 0% to 4.5%. Since Ȳ n does not

vary with the trend inflation, I normalize its level to 1. In this case, Ȳ is the same
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as the gross output gap X̄.

My calibration is in line with accepted values for the USA.13 Based on Cogley

and Sbordone (2008): α = 0.6, β = 0.99 (quarterly), θ = 10 , γπ = γ = 0 ,

ε = 0.75.14 Based on Smets and Wouters (2007): σ = 1.50 , ν = 1.50.15 In this

paper, I refer to this parameter set as the benchmark calibration. As known in the

literature, the effects of larger indexation are equivalent to smaller inflation trend,

keeping the remaining parameters constant.16
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Figure 1: Steady state levels

Note on third panel: output (full line), natural output (dotted line).

As expected, the welfare function hits its maximum when the trend inflation is

close to 0%. However, it is much more concave for positive values. For instance, the

curvature at the 2% annual trend inflation is about two and a half times as large as

the curvature at the steady state equilibrium with zero inflation (Zero StSt). At the

4% annual trend inflation, it is ten times as large. It implies that: (i) second order

approximations around the Zero StSt underestimate the appropriate curvature of

the welfare function when the inflation rate is actually oscillating around a positive

value; and (ii) such second order approximations do not internalize the large welfare

loss achieved when the trend inflation is positive. When policy is meant to keep

inflation at a positive level, as in an inflation targeting framework, those findings

13The Calvo parameter α is also in line with micro evidence (e.g. Bils and Klenow (2004),
Klenow and Kryvtsov (2008), Klenow and Malin (2010), and Nakamura and Steinsson (2008)).
14The authors’point estimates are α = 0.588, θ = 9.8, and γπ = 0. They also calibrate ε = 0.70,

β = 0.99.
15The authors actually estimate the posterior modes at σ−1 = 1.39, and ν = 1.92.
16The effects ultimately depend on the term Π̄(1−γπ−γ).

12

12



suggest that a better policy evaluation is obtained when the approximation is done

around the trend inflation.

Finally, notice that the steady state output sharply falls below the aggregate

output under flexible prices as the trend inflation rises above zero. This effect clearly

shows the distortion caused by high trend inflation. When the trend inflation is 2%,

the output gap is open at about 1%. I recognize that the degree of price rigidity is

likely to endogenously decrease as the trend inflation rises, and hence part of the

inflation distortion may not be as high as the pictures suggest. However, empirical

evidence for the US suggests that a Calvo parameter larger than 0.60 is consistent

with annual inflation trend of 3%.17 Therefore, my theoretical assessments may be

quite reasonable in the inflation range I consider.

The bottom line is that relevant discrepancies may arise in hybrid approaches to

approximate the True loss function, as the one used by Coibion et al. (2011), for

they disregard the sharp increase of its curvature, and the strong fall in the level of

the aggregate output, as the trend inflation rises.

2.3.1 Distortions

In order to cope with the distortion caused by the trend inflation, I expand Wood-

ford’s (2003) analysis on the effi cient output under the Zero StSt. Consider a central

planner who chooses the prices and the output level to maximize the welfare. The

optimal solution clearly imposes every firm to produce the same effi cient level Y ef
t ,

which implies that all prices are the same, i.e. Pt = 1. Thus the solution (see

Woodford (2003)) is ∂υ̃eft /∂Yt

∂ueft /∂Yt
= 1.18

Appendix A shows the steady state levels of all endogenous variables in the Trend

StSt. In particular, the steady state consumption utility and the labor disutility

17From 1984 to 2004, the CPI annual inflation rate averaged 3.05% in the US. Using data from
the same period, Smets and Wouters (2007) estimate the Calvo parameter at 0.73. Nakamura
and Steinsson (2008), using micro data from 1988 to 2005, estimate the median duration between
price changes at roughly 4.5 months (including sales) and 10 months (excluding sales). Those
median durations τm are consistent with α = 0.63 and α = 0.81 in quarterly fequency, using
τm = − log (2) / log (α).
18This result implies that the the effi cient output evolves according to

(
Y eft

)(ω+σ)
=

ε
χ exp ((1 + ω) ξat + ξut ).
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under trend inflation depends on the steady state aggregates as follows:

ū = Ȳ
1−σ

1−σ , υ̃ = 1
1+ω

Ȳ (1+ω)
(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω)

where barred variables stand for steady state levels.

Ignoring the indirect effect of Ȳ on P̄, the steady state value of the marginal

rate of substitution can be roughly approximated by the ratio of the derivatives of

the steady state levels υ̃ and ū with respect to Ȳ , i.e. υ̃Y /ūY . Note that it is not

the same as the steady state level of the ratio of the derivatives of υ̃t and ut with

respect to Yt. However, this approximation makes it easier to understand the first

distortion component that exists in this model economy:

υ̃Y
ūY

=
1

µ

(1− ᾱβϑ)

(1− ᾱβ)

(1− ᾱ)

(1− ᾱϑ)
(4)

where µ ≡ θ
θ−1
, ω ≡ 1+ν

ε
− 1, Π̄ ≡ (1 + π̄), ᾱ ≡ α

(
Π̄
)(θ−1)(1−γπ−γ)

and ϑ ≡(
Π̄
)(1+θω)(1−γπ−γ)

.

Whenever the trend inflation is positive, i.e. Π̄ ≥ 1, note that ϑ is larger than

one and the effective degree of price stickiness ᾱ is greater than the Calvo degree α.

Moreover, since ϑ is a positive transformation of the trend inflation, it is a convenient

variable to reflect the effects of the trend inflation.

Following Woodford (2003), let Φy ≡ 1 − υ̃Y /ūY denote the ineffi ciency degree

of the steady state output.19 Under the Trend StSt, the first term 1
µ
of υ̃Y

ūY
is driven

by the monopolistic competition distortion alone, while the second (1−ᾱβϑ)
(1−ᾱβ)

(1−ᾱ)
(1−ᾱϑ)

is

driven by the non-zero trend inflation. Note that the second term collapses to unity

when ϑ = 1.

The second component of distortionary effects of the non-zero trend inflation

is explained as follows. Under Calvo price setting, there is steady state dispersion

of individual output and relative prices when the trend inflation is positive. In a

nutshell, the indirect effect ∂P̄/∂Ȳ omitted in the previous computation of of υ̃Y /ūY
captures this additional source of distortion. In this regard, I define Φϑ ≡ (ϑ− 1)

as an additional ineffi ciency parameter to measure how much of the gross inflation

19He only considers the Zero StSt, and hence his ineffi ciency degree is Φy = 1− 1
µ = 1

θ .
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trend is above one.

As it turns out, tracking those two ineffi ciency parameters (Φy and Φϑ) is suffi -

cient for deriving the TIWeB loss function. Since effi ciency requires both parameters

to be zero, it is interesting to assume them to be small enough, as first order dis-

turbance terms.20 With such an assumption, linear terms multiplied by Φy and Φϑ

become of second-order importance and the TIWeB loss function is useful for policy

analysis using the loglinearized structural equations.

2.4 The loglinearized model

The Euler equation and the pricing first order conditions can be log-linearized as the

IS curve, and New Keynesian Phillips Curve (NKPC) under trend inflation. I omit

the log-linearization steps, as similar ones are well documented in the literature on

trend inflation.21 For any variable Ut, the hatted representation ût ≡ log
(
Ut/U

)
rep-

resents its log-deviation from its Trend StSt level U, which is shown in Appendix A.

The model parameters and their descriptions are also shown in the same appendix.

The loglinearized IS curve is:

x̂t = Etx̂t+1 −
1

σ
Et (̂ıt − π̂t+1 − r̂nt ) (5)

where r̂nt ≡ Et
[(
ŷnt+1 − ŷnt

)
− (1 + ω)

(
ξt+1 − ξt

)]
is the real interest rate under

flexible prices, ŷnt = (1+ω)ξat+ξut
(ω+σ)

is the natural output and ξt ≡
(1−σ)ξat+ξut

(ω+σ)
is an

aggregate shock.

The NKPC under trend inflation, with indexation term π̂indt = γππ̂t−1, is:

(
π̂t − π̂indt

)
= βEt

(
π̂t+1 − π̂indt+1

)
+ κ̄x̂t

+ (ϑ−1)
(1−ᾱβϑL−1)

ᾱκ̄βEtx̂t+1 + (ϑ−1)
(1−ᾱβϑL−1)

ϕ1θβEt
(
π̂t+1 − π̂indt+1

)
+ (ϑ−1)

(1−ᾱβϑL−1)
ϕ2κ̄βEt (x̂t+1 − x̂t) + (ϑ−1)

(1−ᾱβϑL−1)
(1−ᾱ)
(1−α)

ξcpst

(6)

where L−1 is the lead operator and ξcpst ≡ ϕ3βEt
(
ξt+1 − ξt

)
is the model consistent

20Woodford (2003) was the first author to model the distortion variable Φy as a first order
disturbance term, in order to derive the SWeB loss function.
21See e.g. Ascari (2004), Ascari and Ropele (2007 and 2007b), Cogley and Sbordone (2008),

Coibion and Gorodnichenko (2008).
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cost push shock, which does not depend on the trend inflation and only affects the

dynamics if the trend inflation is not zero (it is multiplied by (ϑ− 1)).

Finally, the existence of the steady state with trend inflation requires ᾱϑ < 1

and ᾱ < 1, which implies that the maximum level for the trend inflation to exist

under the premises of the model is Π̄ ≤ min
(
α

−1
θ(1+ω)(1−(γπ+γ)) , α

−1
(θ−1)(1−(γπ+γ))

)
. Under

the benchmark calibration, the annualized threshold is π̄∗ = 6.3%.

Recall that ϑ equals 1 in the Zero StSt. In this case, all terms multiplied by

(ϑ− 1) disappear and the standard form is obtained. I prefer this form to write the

trend inflation NKPC because it requires only one equation and no infinite sums,

as opposed to the way commonly presented in the literature.22

The term ξcpst is model consistent because it is generated by the same structural

shocks that affect both the natural and the effi cient outputs. In the Zero StSt

paradigm, cost push shocks are usually thought as proportional to the components

of the natural output that do not affect the effi cient one. Most often they are

modelled as time varying tax rates on firms income or time varying markups (e.g.

Clarida et al. (1999), Galí (2003), Smets and Wouters (2003, 2005, 2007), Ascari

and Ropele (2007)). Nonetheless, cost push shocks play an important role in optimal

policy analyses. If the only nominal rigidity is the Calvo price setting, and if the

only sources of shocks are the ones considered in this paper, there is no policy trade

off under the Zero StSt paradigm. As a consequence, the optimal policy is able

to obtain the result of stabilizing both the inflation and the output gap. In order

to obtain the trade off between both objectives, cost push shocks are more than

necessary (e.g. Walsh (2003), Woodford (2003)).

3 The welfare-based loss function under trend in-

flation

In this section I present the trend inflation welfare-based (TIWeB) loss function,

derived as the second order log-approximation of the True loss function.

22Since the denominators of most of the terms in the right hand side depend on the lead operator
L−1, there are equivalent forms with infinite sums or with the expected inflation of two periods
ahead, among others.
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Before showing the main result, I clarify why my approach to (second-order)

approximate the aggregate disutility υ̃t ≡ χ
∫ 1

0
ht(z)

1+ν

1+ν
dz differs from Woodford’s

(2003). His approach consists of two parts. In the first, he approximates the inte-

grand ht (z)1+ν , which is proportional to
(
pt(z)
Pt

)−θ(1+ω)

, around the Zero StSt. This

procedure is possible because there is no price dispersion in this steady state. Next,

he integrates the approximated result and uses the Calvo structure to rewrite the

variance of (log) relative prices in terms of the squared inflation rate.

Under the Trend StSt, this approach is not possible because the individual rel-

ative prices do not converge in the steady state. I conjecture that Coibion et al.

(2010) must have faced this problem, and hence they decided for the hybrid ap-

proach. They start by following the first part of Woodford’s steps and approximate

the integrand around the Flex StSt, which is the same as the Zero StSt. The ap-

proximation around the Trend StSt is done only in the second part, in which they

use the Calvo structure to cope with the variance of relative prices.

They also assume log-utility on consumption, which minimizes the effects of the

hybrid approach in their final result. However, under the Trend StSt, the traditional

conflict between the income and substitution effects is important in price setting.

Firms discount their profit flow using the stochastic discount factor, which is linked

to the household’s Euler equation in equilibrium. Hence, the conflict is spread

towards firms’decisions. Under the particular Zero StSt approach, this conflict is

algebraically offset in the log-linearized Phillips curve. That is not the case anymore

as the inflation trend becomes larger. The coeffi cient ϕ2 and the aggregate shock ξt

depend on the term (1− σ), which reflects this conflict. As the following proposition

states, the coeffi cient Vϑ of the TIWeB loss function also depends on this term.

Using proposition 1, I approximate the aggregate disutility under the Trend StSt,

avoiding the problem arising from the steady state dispersion of relative prices, and

derive the TIWeB loss function as follows:

Proposition 2 The true welfare function is (second-order) approximated as

Wt = −1

2
VϑEt

∞∑
τ=0

βτLt+τ + tipWt (7)
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where

Lt ≡
(
π̂t − π̂indt + φπ

)2
+

(1− ᾱ)

(1− ᾱϑ)

κ̄

θ
(x̂t − φx)

2

is the trend inflation welfare-based (TIWeB) loss function, tipWt stands for terms

independent of policy at period t, φπ and φx are constants that depend on the ineffi -

ciency degrees Φϑ and Φy, and Vϑ corrects for the aggregate reduction in the welfare

when the trend inflation increases. Those coeffi cients are defined as follows:

φπ ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φϑ φx ≡ 1

(ω+σ)
Φy Vϑ ≡ Ȳ

1−σ (1−ᾱϑ)(ω+σ)
(1−ᾱ)

θ
κ̄

The proof and details are shown in Appendix B, in which I use the assumptions

that Φy and Φϑ are first-order parameters in order to cope with linear terms in the

approximation.

The first important feature is that the relative coeffi cient on the output gap

volatility X̄ ≡ (1−ᾱ)
(1−ᾱϑ)

κ̄
θ
decreases as the trend inflation rises under reasonable para-

metrization and inflation trend levels. This result is expected due to the increasing

concavity of the true welfare function in the steady state. The TIWeB loss function

internalizes the big welfare loss due to inflation volatility under positive inflation

trend. Hence, the monetary authority optimally places less weight into fighting

volatility of the output gap, as opposed to fighting inflation volatility.

Let R denote the ratio of X̄ and the relative coeffi cient X ≡κ
θ
under the Zero

StSt, where κ is the coeffi cient of the output gap in the NKPC under the Zero StSt

(defined in Appendix A).

R =
X̄
X =

α

(1− α) (1− αβ)

(1− ᾱ)2 (1− ᾱβϑ)

ᾱ (1− ᾱϑ)
(8)

The elasticity of R to the trend inflation Π̄ is then computed as

∂R
∂Π̄

Π̄

R =
α (1− γπ − γ) (θ − 1) (1 + ᾱ)

(1− α) (1− αβ) (1− ᾱ)

[
µ (1 + ω) ᾱϑ (1− ᾱ) (1− β)

(1− ᾱϑ) (1 + ᾱ) (1− ᾱβϑ)
− 1

]
(9)

Therefore, there is a critical level of the inflation trend π̄c above which the

elasticity is positive, i.e. in which the first term in the brackets is larger than 1.

However, reasonable parametrization leads to negative elasticity when the trend
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inflation is not large enough. Using the benchmark calibration, and additional ones

with α = 0.50 and α = 0.65, figure 2 plots R for the trend inflation ranging from

0% to 4.5%.

Note that R decreases fast as the inflation trend rises. This effect is slightly mit-

igated if the Calvo parameter α is reduced. At the 3% inflation trend, in particular,

the optimal relative weight of the output gap is about 75% of the coeffi cient sug-

gested by the Woodford’s standard welfare-based (SWeB) loss function. The main

message is that the monetary policy must increase the weight on inflation volatility

when the inflation trend is larger.

0 1 2 3 4
0.5

0.6

0.7

0.8

0.9

1

Annual Inf lation (%)

R

Coef f icient Ratio

Figure 2: Coeffi cient Ratio (R)

Note: α = 0.50 (dotted blue), α = 0.60 (black), α = 0.65 (dashed red).

3.1 The static and the stochastic wedges

I identify two main wedges driven between the True loss function and any approx-

imated assessment: the static wedge —defined as the difference between the True

and approximated loss functions, when evaluated in equilibria where the inflation

remains fixed at the trend inflation, the remaining endogenous variables are fixed

at the levels consistent with the trend inflation and the exogenous shocks are fixed

at their means; and the stochastic wedge —defined as the extra wedge arising in the

difference of the (unconditional) expected values of the loss functions in a stochastic

equilibrium: this is a direct application of the Jensen’s inequality.

Under the Zero StSt, I use plain lower case variables to represent the logdevia-

tions. In this case, the loglinearized aggregate demand and supply curves and the
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SWeB loss function are:

xt = Etxt+1 − 1
σ
Et (it − πt+1 − rnt ) ,

(
πt − πindt

)
= βEt

(
πt+1 − πindt+1

)
+ κxt

Wt = −1
2
V0Et

∞∑
τ=0

βτL0,t+τ + tipWt , L0,t =
(
πt − πindt

)2
+ κ

θ
(xt − φx0)2

where πindt = γππt−1, rnt = r̂nt , φx0 = 1
θ(ω+σ)

and V0 = θ (ω + σ)
(

ε
χµ

) 1−σ
ω+σ

/κ.

In order to compute the static wedge of the SWeB loss function, the nominal

interest rate is adjusted to keep inflation fixed at the trend when satisfying the Zero

StSt loglinearized equations. The SWeB static wedge is computed asW − W̃, where

W = W̄π=0 − 1
2
V0

1−βL0 , π = log
(
Π̄
)

L0 = (1− γπ)2 π2 + κ
θ

(x− φx0)2 , x = (1−β)(1−γπ)
κ

π

Using the benchmark calibration, panel (a) from figure 3 compares the True

and the SWeB loss functions, showing the static wedges as the (red) vertical dotted

lines. For simplification, the values of the loss functions at the zero inflation rate

are normalized to zero. Note that both metrics agree pretty well both in level and

curvature at the vicinity of the zero trend inflation (up to about π̄ = 1%). After

that, the curvature of the true loss function increases fast, while the SWeB curvature

remains constant. Therefore the static wedges increase fast as the trend inflation

rises.
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(a) True and SWeB Loss
Functions at π = 0%
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Annual Inf lation (%)
0 1 2 3 4

­5

0

5

10

15

(c) True and SWeB Loss
Functions at π = 4%
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Figure 3: Loss functions

Note: True (black), SWeB and TIWeB (dotted blue), Static Wedge(dotted red).

The SWeB has a constant and small curvature relatively to the curvature of the
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True loss function. The curvature ratio of both metrics
(
∂2TrueLoss

∂Π̄2 /∂
2SWeBLoss

∂Π̄2

)
jumps from 2.6 at π̄ = 2% to 11.4 at π̄ = 4%. Therefore, the stochastic wedge of the

SWeB loss function is relevant. Unfortunately, there are no closed form expressions

for the expected True loss function and for the stochastic wedge. Due to the model’s

nonlinearity, the stochastic wedge may only be obtained by simulating the model’s

higher order approximations. That is the reason why it is not shown in figure 3.

Regarding the TIWeB loss function, its static wedge is zero at the specific trend

inflation π̄ used to approximate the True loss function. Because it also has a constant

curvature, the static wedge increases in the neighborhood of π̄. However, the TIWeB

loss wedges are smaller than the SWeB loss ones in the vicinities of each specific

trend inflation π̄. Panels (b) and (c) from figure 3 depict the performances of two

TIWeB loss functions, approximated at π̄a = 2 and π̄b = 4.

4 Optimal policies when the trend inflation is not

optimal

In order to simplify the task of having a tractable inflation targeting model, I define

the objective of the inflation targeting central bank as to keep the unconditional

mean of the inflation rate at the central target. Such modelling assumption is

flexible enough, as it allows deviations from the central target, during different

period lengths, as long as the unconditional mean is not affected. The inflation

targeting objective EΠt = Π̄ is thus loglinearized as Eπ̂t = 0.

I search for time-consistent optimal policy rules under the unconditional and

timeless perspectives. The unconditional approach is based on Damjanovic et al.

(2005) adapted for the inflation targeting environment. The welfare-concerned cen-

tral bank minimizes the unconditional expectation of the Lagrangian problem formed

by the discounted sum of the TIWeB loss function, subjected to the IS, to the trend

inflation NKPC curves and to Eπ̂t = 0.

In order to obtain the optimal policy under the timeless perspective, the inflation

targeting objective must be slightly approximated. A problem arises here because

the expectation operator considered in the welfare problem is conditioned on the in-
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formation set at the initial period t, while the expectation operator of the targeting

objective is unconditional.23 A possible solution to this problem is to assume that

the Ergodic Theorem holds: Eπ̂t = lim
T→∞

1
T+1

∑T
τ=0 π̂τ . This limiting sum can be

reasonably approximated by (1− β)
∑∞

τ=0 β
τ π̂τ , provided that the subject discount

factor β is close enough to unity. The inflation targeting objective is then approxi-

mated by (1− β)
∑∞

τ=0 β
τ π̂τ = 0, which implies Et (1− β)

∑∞
τ=0 β

τ π̂t+τ = 0. That

is what I use instead of Eπ̂t = 0.

Let λt, µt and Λ denote the Lagrange multipliers of the IS, the trend inflation

NKPC, and the inflation target constraint. Λ is obtained by imposing the inflation

targeting constraint into the equilibrium system described by the IS, the NKPC

and the first order conditions. Since the model is linear, it is easy to verify that the

inflation targeting constraint requires Λ to offset all constant terms in the equations.

Therefore the following proposition describes both optimal policies under inflation

targeting:

Proposition 3 The unconditional and the timeless optimal policies under inflation

targeting are time-consistent and represented by the following targeting rules:

0 =
(
π̂t − π̂indt

)
+ z4

θ
(x̂t − βx̂t−1)− (ϑ− 1) z4

θ
(z7 − βf31L) βx̂t−1

(1−βf21L)
(10)

0 =
(
π̂t − π̂indt

)
+ z4

θ
(x̂t − x̂t−1)− (ϑ− 1) z4

θ
(z7 − f31L) x̂t−1

(1−f21L)
(11)

where L is the lag operator.

The coeffi cients, all of them positive, are defined in Appendix A. In particular,

both z4 and ϑ converge to 1 as the trend inflation approaches zero. Therefore, the

standard targeting rules (Damjanovic’s unconditional and Woodford’s timeless) are

retrieved in the vicinities of the zero inflation steady state.

An interesting property of the time consistent optimal policies under trend infla-

tion is that the targeting rule is more history-dependent than the one derived for the

Zero StSt (see Woodford (2003)). Multiplying the first expression by (1− βf21L),

23Posing and solving the Lagrangian problem this way would require dealing with ratios such as
f(κt+j |It)
f(κt+j) , where f (·) is the density function of the random variable κt+j and It is the information
set at period t. The ratios never cancel out in the first order conditions.

22

22



or the latter by (1− f21L), we realize that the rules depend on the second lag of the

output gap and on the first lag of inflation even when there is no price indexation.

Also important, the inertial intensity of both targeting rules increases as the trend

inflation rises.

4.1 Simulations

Since β is typically very close to 1, both optimal policy rules imply almost indistin-

guishable dynamics and unconditional moments. Therefore, I use only the uncondi-

tional optimal policy to simulate the model, compute volatility schedules and obtain

impulse responses to shocks. I use the benchmark calibration and assume that the

structural shocks are independent, serially uncorrelated and normally distributed:

ξut
iid∼ N (0, σ2

u) and ξ
a
t
iid∼ N (0, σ2

a).

Figure 4 depicts the relative standard deviations of the output gap and annu-

alized inflation, and the ratio of their unconditional standard deviations, as the

annual inflation trend rises from 0 to 5%. The relative standard deviations are de-

fined as the unconditional standard deviation of the endogenous variables divided

by the unconditional standard deviation of the internally consistent cost push shock

ξcpst ≡ ϕ3βEt
(
ξt+1 − ξt

)
. Using the relative measures avoids scale problems due to

the amplitude of the shocks and to the calibrated parameter values.
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Figure 4: Relative volatilities (unconditional optimal policy)

Note: the dotted lines are the 45o schedule in panel (a), and the point at which
both volatilities are the same in panel (b).

The main lessons from the pictures are: (i) as in Ascari and Ropele (2007), both
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volatilities generally increase as the inflation trend rises; (ii) there is a threshold

π̄1 ∈ (4, 5) for the trend inflation above which the inflation volatility is larger than

the output gap volatility; (iii) the schedule depicting the relative volatilities is hump-

shaped: it initially increases with the trend inflation, but after a second threshold

π̄2 ∈ (3, 4) it is optimal to reduce the output gap volatility as the inflation trend

rises; (iv) the ratio of the inflation volatility to the output gap volatility always

increases as the trend inflation rises, irrespective of whether the inflation thresholds

have been achieved or not; and (v) as the trend inflation rises, the central bank

faces a policy trade off: it is not possible to completely offset the volatilities of both

inflation and output gap. That is only possible when the trend inflation is zero.

The intuition behind the third lesson comes from the fact that the effi cacy of the

monetary policy in controlling the inflation rate is significantly reduced as the trend

inflation rises: the coeffi cient of the output gap fades to zero as the inflation trend

approaches the upper limit. Since the central bank’s ability to affect the aggregate

demand is not affected by the trend inflation, stabilizing the output gap eventually

becomes the primary focus.

The qualitative effects of innovations in the utility ξut and in the technology ξ
a
t

shocks are similar when the economy evolves around the Zero StSt: the endoge-

nous variables respond in the same direction to positive innovations in both shocks.

However, this is not the case under positive trend inflation. Consider the following

reasoning: (a) the cost push shock ξcpst only affects the dynamics if the trend infla-

tion is not zero; and (b) ξcpst is proportional to the expected growth of the aggregate

shock ξt ≡
(1−σ)ξat+ξut

(ω+σ)
. Therefore, as long as the trend inflation is not zero, the

direction of the direct impact of the technology shock on inflation depends on the

traditional trade off between the income and substitution effects, captured in the

model by the term (1− σ). If σ is larger than 1 then the technology shock causes

the current inflation to rise, while the utility shock causes the inflation to fall. Of

course, the effect of the technology shock can be either absent (σ = 0) or negative

(σ < 1).

For that reason, I also consider the alternative cases σ = 1 and σ = 0.5 in the

impulse responses exercises, depicted in figure 5.
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Figure 5: Relative responses to 1 St. Dev. utility and technology shocks.

Note: π̄ = 0 (dotted black), π̄ = 1 (green), π̄ = 2 (dotted blue), π̄ = 3 (blue),
π̄ = 4 (dotted red with circles), π̄ = 5 (red with circles).
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The pictures show the relative responses (divided by the standard deviation of

the cost push shock ξcpst ) of the annualized inflation rate 4π̂t and the output gap x̂t

to one-time shocks to ξut and ξ
a
t , when the central bank follows the unconditional

optimal policy. Since I only use shocks that also affect the effi cient output (central

planner equilibrium), there is no response when the trend inflation is zero. In this

case, the monetary authority faces no policy trade off and it manages to stabilize

both output gap and inflation. As expected, the relative responses to ξut and ξ
a
t are

very similar when σ < 1, and the opposite when σ > 1. Also expected is that the

amplitude of the inflation response increases as the trend inflation rises. As for the

output gap, the responses on impact stop rising (in absolute value) as the inflation

trend rises past a threshold. Beyond that point, responses on impact start to decline

as the inflation trend rises. In line with result (iii), this fact reflects the optimal

choice for enforcing output gap stabilization if the trend inflation is large enough.

The complexity and non-linearity of the coeffi cients make it very diffi cult for an

analytical derivation of the thresholds.

5 Conclusion

The concavity of the welfare function increases rapidly as trend inflation rises above

zero. As a consequence, the standard welfare-based loss function (Woodford (2003))

may not be the best metric for policy evaluation: it tends to underestimate the

welfare loss under positive trend inflation.

Deriving a second order approximation of the welfare function under trend in-

flation, I show that a welfare-concerned monetary authority must be more hawkish

by putting smaller weights on the (log-deviation) output gap volatility if she is as-

signed a non-zero inflation target to pursue. The time-consistent optimal policies

(unconditional and timeless) for non-zero inflation targets become more inertial and

history-dependent as the trend inflation rises.

The simulations show that there exists an inflation threshold beyond which the

volatility of the output gap starts to fall. This result comes from the fact that large

inflation trend levels reduce the ability of the central bank to control inflation using

the demand channel. As a result, optimality switches the focus of the monetary
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authority towards reducing the volatility of the output gap if the inflation trend is

suffi ciently large.

I also highlight an important feature that has not been given proper attention in

the literature of trend inflation. Under the Calvo price setting, with non-zero trend

inflation, a cost push shock term naturally appears in the trend inflation Phillips

curve and is generated by the same shocks that affect the effi cient output (solution

to the central planner problem). This holds even when nominal wages are flexible.

As the inflation trend rises, the central bank loses the ability to simultaneously

stabilize the inflation rate and the output gap.
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A The steady state under trend inflation

Considering that the gross trend inflation rate is Π̄, the steady state levels for the
equilibrium variables:

Steady state levels

Ī = β−1
(
Π̄
)

= 1
q̄

; Π̄ind = Π̄(γπ+γ) ; Ȳ n =
(

ε
χµ

) 1
(ω+σ)

N̄
D̄

=
(

1−α
1−ᾱ
) 1+θω
θ−1 ; X̄ω+σ = 1−ᾱβϑ

1−ᾱβ
N̄
D̄

; Ȳ = X̄Ȳ n

W̄ = ū−υ̃
1−β ; ū = Ȳ

1−σ

1−σ ; υ̃ = χȲ (1+ω)P̄−θ(1+ω)

1+ν
; P̄θ(1+ω) = 1−ᾱϑ

1−α

(
N̄
D̄

) θ(1+ω)
1+θω

Parameters

σ ≡ reciprocal of intertemp elast substit γπ ≡ coeff lag inf on index rule
ν ≡ reciprocal of the Frisch elasticity γ ≡ coeff inf trend on index rule
χ ≡ scale parameter on labor disutility ε ≡ labor elasticity prod function
θ ≡ lasticity of substit between goods α ≡ Calvo degree of price rigidity

Coeffi cients and restrictions

µ ≡ θ
θ−1

Φy ≡ 1− (1−ᾱβϑ)(1−ᾱ)
µ(1−ᾱβ)(1−ᾱϑ)

z1 ≡ 1− (ϑ− 1) βϕ2

ω ≡ 1+ν
ε
− 1 Φϑ ≡ (ϑ− 1) z2 ≡ ᾱ− (ϑ− 1)ϕ2

δ ≡ 1
1−γπ

Vϑ ≡ Ȳ
1−σ (1−ᾱϑ)(ω+σ)

(1−ᾱ)
θ
κ̄

z3 ≡ ᾱ + (1− ᾱβϑ)ϕ2

ᾱϑ < 1 ᾱ < 1 φx ≡ 1
(ω+σ)

Φy z4 ≡ (1−ᾱ)
(1−ᾱϑ)

1
z1

ᾱ ≡ α
(
Π̄
)(θ−1)(1−γπ−γ)

φπ ≡
(1−ᾱ)

(1−ᾱϑ)(1+θω)
Φϑ z5 ≡ 1 + (ϑ− 1) θϕ1

ϑ ≡
(
Π̄
)(1+θω)(1−γπ−γ)

ϕ1 ≡
(1−ᾱ)(1+ω)

(1+θω)
z6 ≡ ᾱϑ+z5

κ̄ ≡ (1−ᾱ)(1−ᾱβϑ)
ᾱ

(ω+σ)
(1+θω)

ϕ2 ≡
(1−ᾱ)(1−σ)

(1+θω)κ̄
z7 ≡ θϕ1 + f31

κ ≡ (1−α)(1−αβ)
α

(ω+σ)
(1+θω)

ϕ3 ≡
(1−α)(1+ω)

(1+θω)
f21 ≡ z2

z1
f31 ≡ z3

z1

B Second order (log) approximation of the wel-
fare function

B.1 Second order approximation of P̂t
The approximation of Pt is easier done using the auxiliary variable Ft ≡ Nt/Dt.
The strategy is to make second-order approximations of the system described by (1)
and (3), and solve for P̂t and F̂t.
The (log) second-order approximation of equation (1) is

F̂t ≈ 1
2

(θ−1)
(1+θω)

F̂ 2
t + ᾱ

(1−ᾱ)
(1+θω)

[
(π̂t−π̂indt ) + 1

2
(θ−1)(π̂t−π̂indt )

2
]

which implies that the a first-order approximation of Ft is F̂t ≈ ᾱ(1+θω)
(1−ᾱ)

(
π̂t − π̂indt

)
.

I use this result to eliminate F̂ 2
t from the previous second-order approximation and
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obtain
F̂t ≈ ᾱ(1+θω)

(1−ᾱ) (π̂t−π̂indt ) + 1
2
ᾱ(θ−1)(1+θω)

(1−ᾱ)2
(π̂t−π̂indt )

2

The (log) second-order approximation of equation (3) is

P̂t − 1
2
θ(1+ω)P̂2

t ≈
(1−ᾱϑ)
(1+θω)

F̂t − ᾱϑ(π̂t−π̂indt ) + ᾱϑP̂t−1

− 1
2
θ(1+ω)(1−ᾱϑ)

(1+θω)2
F̂ 2
t − 1

2
θ(1+ω)ᾱϑ[(π̂t−π̂indt ) − P̂t−1]

2

and then the a first-order approximation of Pt is P̂t ≈ (1−ᾱϑ)
(1+θω)

F̂t − ᾱϑ
(
π̂t − π̂indt

)
+ᾱϑP̂t−1. Replacing Φϑ for (ϑ− 1) and using the last results to eliminate F̂t, F̂ 2

t

and P̂2
t from the previous second-order approximation, I obtain

P̂t ≈ ᾱϑP̂t−1 −
ᾱΦϑ

(1−ᾱ)(π̂t−π̂
ind
t ) − 1

2

ᾱ(1−ᾱϑ)[(1+ωθ)+θ(1+ω)Φϑ]
(1−ᾱ)2

(π̂t−π̂indt )
2

+ θ(1+ω)ᾱϑ(1−ᾱϑ)[ 1
(1−ᾱ)(π̂t−π̂

ind
t )P̂t−1 − 1

2
P̂2
t−1]

If Φϑ is assumed to be a first order term (the same order of the hatted variables),
then Φϑ

(
π̂t − π̂indt

)
is a second order term and Φϑ

(
π̂t − π̂indt

)2
is a third order term

which may be ignored in the approximation. This assumption implies that P̂t has
no first order dynamics, other than ᾱϑP̂t−1. Hence, P̂2

t−1 and
(
π̂t − π̂indt

)
P̂t−1 are

third order variables whenever Φϑ is a first order term. In this case the second order
approximation is simplified to:

P̂t ≈ ᾱϑP̂t−1 −
ᾱΦϑ

(1−ᾱ)(π̂t−π̂
ind
t ) − ᾱ(1+θω)(1−ᾱϑ)

2(1−ᾱ)2
(π̂t−π̂indt )

2

Completing the squares and solving backwards to period t = −1, the expression is
rewritten as P̂t ≈ (ᾱϑ)(t+1) P̂−1− 1

2
ᾱ(1−ᾱϑ)(1+θω)

(1−ᾱ)2

∑t
τ=0 (ᾱϑ)t−τ

(
π̂τ − π̂indτ + φπ

)2
+tip,

where φπ ≡
(1−ᾱ)Φϑ

(1−ᾱϑ)(1+θω)
and tip denote a term independent of policy. Let tipP−1

denote a term independent of policy from period t = 0 onward. Note then that

∞∑
t=0

βtP̂t = tip +
∞∑
t=0

βt(ᾱϑ)(t+1)P̂−1 − 1
2
ᾱ(1−ᾱϑ)(1+θω)

(1−ᾱ)2

∞∑
t=0

βt
t∑

τ=0
(ᾱϑ)t−τ(π̂τ−π̂indτ +φπ)

2

= tipP−1 −
1
2
ᾱ(1−ᾱϑ)(1+θω)

(1−ᾱ)2

∞∑
τ=0

∞∑
t=τ

βt(ᾱϑ)t−τ(π̂τ−π̂indτ +φπ)
2

Therefore the sum is rewritten as
∞∑
t=0

βtP̂t ≈ tip−1 − (1−ᾱϑ)(ω+σ)
2(1−ᾱ)κ̄

∞∑
τ=0

βτ(π̂τ−π̂indτ +φπ)
2

where tip−1 ≡
[
ᾱϑP̂−1 + ᾱΦϑφπ

2(1−ᾱ)(1−β)

]
/ (1− ᾱβϑ).

B.2 Second order approximations of ut and υ̃t

A second order approximation of ut is

ut ≈ Ȳ
1−σ

[Ŷt + 1
2

(1−σ)Ŷ 2
t + Ŷtξ

u
t ] + tiput
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where tiput ≡ ū
(
1 + ξut + 1

2
(ξut )

2). Since (Y ef
t

)−(ω+σ)

= χ
ε

exp (− (1 + ω) ξat − ξut ),

the aggregate disutility υ̃t can be written as υ̃t = 1
1+ω

(
Yt
Pθt

)(1+ω) (
Y ef
t

)−(ω+σ)

exp (ξut ).
Therefore, its second order approximation is

υ̃t ≈ υ̃ + 1
1+ω

Ȳ (1+ω)(Ȳ ef)
−(ω+σ)P̄−θ(1+ω)[(1+ω)Ŷt − (ω+σ)Ŷ eft −θ(1+ω)P̂t+ξut ]

+ 1
2(1+ω)

Ȳ (1+ω)(Ȳ ef)
−(ω+σ)P̄−θ(1+ω)[(1+ω)Ŷt − (ω+σ)Ŷ eft −θ(1+ω)P̂t+ξut ]

2

Note that Ȳ (ω+σ)
(
Ȳ ef
)−(ω+σ) P̄−θ(1+ω) = (1− Φy), where Φy is assumed to be

a first order disturbance term. Recall that P̂t is a second order variable whenever
Φϑ is assumed to be a first order disturbance term. Under such assumptions, the
approximation is simplified to

υ̃t ≈ Ȳ
1−σ

[Ŷt − ΦyŶt − θP̂t + 1
2

(1+ω)Ŷ 2
t − (ω+σ)ŶtŶ

ef
t + Ŷtξ

u
t ] + tipυt

where tipυt = υ̃

[
1 +

(
ξut − (ω + σ) Ŷ ef

t

)
+ 1

2

(
ξut − (ω + σ) Ŷ ef

t

)2
]
.

B.3 Second order approximation of the welfare function

The instantaneous utility of the representative household is Ut = ut − υt, and thus
is the society instantaneous utility function. Moreover, note that

(
Y ef
t

)(ω+σ)

=

µ (Y n
t )(ω+σ). It implies that Ŷ ef

t = Ŷ n
t . Using the last results, I obtain

Ut = Ȳ
1−σ

(θ(1−Φy)P̂t + ΦyŶt − 1
2

(ω+σ)Ŷ 2
t + (ω+σ)ŶtŶ nt )

+ Ȳ
1−σ

(ΦyŶtξ
u
t − (ω+σ)ΦyŶtŶ nt + 1

2
(1+ω)ΦyŶ 2

t )

+ Ȳ
1−σ

(1−Φy)( 1
2
θ2(1+ω)P̂2

t − θ(1+ω)ŶtP̂t + θ(ω+σ)Ŷ nt P̂t − θP̂tξut ) + tiput − tipυt

Note that there are two linear terms: (1− Φy) P̂t and ΦyŶt. Therefore, this
correct approximation is not useful for policy evaluation using the structural log-
linearized equations. That is why I parallel Woodford’s (2003) analysis and assume
Φϑ and Φy to be first order disturbance terms. Since he assesses the Zero StSt, he
only makes this assumption with respect to Φy. Under the Trend StSt, I need to
expand this assumption towards Φϑ. In this case, I have already shown that P̂t
becomes a second order variable. This implies that ΦyP̂t is a third order term. Ig-
noring all third-order terms and completing the squares, I simplify the second-order
approximation to

Ut = Ȳ
1−σ

(θP̂t − 1
2

(ω+σ)(x̂t−φx)2) + tipUt + tiput − tipυt

where φx ≡ 1
(ω+σ)

Φy and tipUt ≡ 1
2(ω+σ)

Ȳ
1−σ
[
Φ2
y + (ω + σ)2

(
Ŷ n
t

)2
]
. Using the

second-order approximation on
∑∞

t=0 β
tP̂t, the social welfare Wt ≡ Et

∑∞
τ=0 β

τUt+τ
is then computed as

Wt = − 1
2
VϑEt

∞∑
τ=0

βτ
[
(π̂t+τ−π̂indt+τ+φπ)

2
+

(1−ᾱ)
(1−ᾱϑ)

κ̄
θ

(x̂t+τ−φx)2
]

+ tipWt
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where Vϑ ≡ Ȳ
1−σ (1−ᾱϑ)(ω+σ)

(1−ᾱ)
θ
κ̄
and

tipWt ≡ θȲ
1−σ

tipt−1 + Et
∞∑
τ=0

βτ(tipUt+τ + tiput+τ − tipυt+τ)
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