Directed Clustering Coefficient as a Measure of Systemic Risk in Complex Banking Networks

August, 2011
Directed clustering coefficient as a measure of systemic risk in complex banking networks

B. M. Tabak¹ M. Takami² J. M. C. Rocha³ D. O. Cajueiro⁴

Abstract

Recent literature has focused on the study of systemic risk in complex networks. It is clear now, after the crisis of 2008, that the aggregate behavior of the interaction among the agents is not straightforward and it is very difficulty to predict. Contributing to this debate, this paper shows that the directed clustering coefficient may be used as a measure of systemic risk in complex networks. Furthermore, using data from the Brazilian bank interbank network, we show that the directed clustering coefficient is negatively correlated with domestic interest rates.

Key Words: dynamic topology, clusters, interbank markets, systemic risk.

PACS: 64.60.aq, 89.65.Gh, 87.23.Ge

¹Banco Central do Brasil, Research Department.E-mail:benjamin.tabak@bcb.gov.br.
²Banco Central do Brasil, SECRE.
³Universidade de Brasília, Department of Economics.
⁴Universidade de Brasília, Department of Economics and INCT.
1 Introduction

Recent literature has focused on the issue of modeling, measuring and avoiding systemic risk in complex networks Vespignani [2010]. The literature is divided in general approaches such as Watts [2002], Lorenz et al. [2009], Buldyrev et al. [2010], Cajueiro and Andrade [2010a, b, c] and techniques that deal with specific kinds of networks such as technological networks Motter [2004], Albert et al. [2004], Crucitti et al. [2004], Huang et al. [2008], social and biological networks Dodds and Watts [2004] and financial and economic networks Eisenberg and Noe [2001], Boss et al. [2004a], Elsinger et al. [2006], Iori et al. [2006]. In the particular case of financial and economic systems, based on the events that took place in the crisis of 2008, it is clear that the aggregate behavior of the interaction among the agents is not straightforward and it is very difficulty to predict Schweitzer et al. [2009a]. Furthermore, the challenging of understanding aggregate behavior of economic and financial systems require tools belonging to the field of econometrics of times series, complex systems, game theory and agent-based models Schweitzer et al. [2009b].

Banking lending networks are one of the most important financial systems that are subjected to systemic risk. In fact, small shocks constrained only to a few banks can be spread by contagion and affect the entire system Allen and Gale [2000]. These authors show that in a banking system with a homogeneous topology, the possibility of financial contagion depends strongly on the completeness of the structure of the system. It is worth mentioning that due to the development of the theory of complex networks Albert and Barabasi [2002], Boccaletti et al. [2006], Costa et al. [2007], it has been possible to improve our knowledge on banking networks. Now, knowing that banking networks have complex structure and dynamics Boss et al. [2004a], Müller [2003], Inaoka et al. [2004], Cajueiro and Tabak [2008], Wan et al. [2006], Masi et al. [2006], Lublòy [2006], Soramaki et al. [2007], models of heterogeneous banking networks have replaced the homogeneous ones. For instance, exploring the interconnections among banks in the Italian overnight market, Iori et al. [2008] have investigated potential implications of the current institutional system on the banking stability. In Nier et al. [2007], simulated banking systems show how systemic risk depends on their structures.

In this context, this paper shows that the directed clustering coefficient Fagiolo [2007] may be used as a measure of systemic risk in complex networks. In particular, exploring data from the Brazilian bank interbank network, we show that the way that banks make clusters of lending relationships have different impact in terms of systemic risk.

The remainder of this paper is structured in the following way. Section
2 revisits the measure known as directed clustering coefficient. Section 3 describes the data of the Brazilian interbank market used in this paper. Section 4 presents the main results of the paper. In particular, we show that the directed clustering coefficient is negatively correlated with interest rate chances and it varies strongly among banks. Finally, section 5 presents the main conclusions of this work.

2 Clustering coefficients for directed networks

In Fagiolo [2007], the standard clustering coefficient Watts and Strogatz [1998] used for unweighted and undirected networks were generalized for binary directed networks and weighted directed networks. Consider the following notation: Let A and W be respectively the directed adjacency matrix of the network and directed matrix of weights that represents the network. Let also d_i^in, d_i^out and $d_i^\text{tot} = d_i^\text{in} + d_i^\text{out}$, be respectively the in-degree of node i, the out-degree of node i the total degree of node i. Furthermore, let $d_i^- = \sum_{j \neq i} a_{ij}a_{ji} = A_{ii}^2$.

In binary directed networks, the clustering coefficient of node i for a binary network may be defined as the ratio between all the possible triangles formed by i and the number of all possible triangles that could be formed

$$C_i^D(A) = \frac{(A + A^T)^3_{ii}}{2[\sum_{i}^{} d_i^{\text{tot}}(d_i^{\text{tot}} - 1) - 2d_i^-]}.$$ \hspace{1cm} (1)

This clustering coefficient defined for the unweighted case can be easily extended to the weighted case by replacing the number of directed triangles formed with its weighted counterpart

$$\hat{C}_i^D(W) = \frac{[\hat{W} + (\hat{W}^T)]^3_{ii}}{2[\sum_{i}^{} d_i^{\text{tot}}(d_i^{\text{tot}} - 1) - 2d_i^-]}.$$ \hspace{1cm} (2)

where $\hat{W} = W^{\frac{1}{3}} = [w_{ij}^{\frac{1}{3}}]$.

However, as pointed in Fagiolo [2007], these two definitions (1) and (2) are not enough to characterize the richness of patterns that take place in a complex directed network. In fact, equations (1) and (2) treat all the possible triangles as if they were the same. However, in directed graphs, edges that point in different directions should be interpreted differently. Therefore, four more definitions are necessary, which are represented in Figure 1:

(a) cycle, when there is a cyclical relation among i and its neighbors. In this case, the associated clustering coefficient for the binary case is
\[
C^{\text{cyc}}_i = \frac{(A)^3_{ii}}{d^{\text{in}}_i d^{\text{out}}_i - d^+_i}
\]

and for the weighted case is given by

\[
\tilde{C}^{\text{cyc}}_i = \frac{(\hat{W})^3_{ii}}{d^{\text{in}}_i d^{\text{out}}_i - d^+_i}.
\]

(b) Middleman, when one of the neighbor of node \(i\) holds two outward edges and the other holds two inward edges. In this case, the associated clustering coefficient for the binary case is

\[
C^{\text{mid}}_i = \frac{(AA^T A)_{ii}}{d^{\text{in}}_i d^{\text{out}}_i - d^+_i}
\]

and for the weighted case is given by

\[
\tilde{C}^{\text{mid}}_i = \frac{(\hat{W} \hat{W}^T \hat{W})_{ii}}{d^{\text{in}}_i d^{\text{out}}_i - d^+_i}.
\]

(c) In, when \(i\) holds two inward edges. In this case, the associated clustering coefficient for the binary case is

\[
C^{\text{in}}_i = \frac{(A^T A^2)_{ii}}{d^{\text{in}}_i (d^{\text{in}}_i - 1)}
\]

and for the weighted case is given by

\[
\tilde{C}^{\text{in}}_i = \frac{(\hat{W}^T \hat{W}^2)_{ii}}{d^{\text{in}}_i (d^{\text{in}}_i - 1)}.
\]

(d) Out, when \(i\) holds two outward edges. In this case, the associated clustering coefficient for the binary case is

\[
C^{\text{out}}_i = \frac{(A^2 A^T)_{ii}}{d^{\text{out}}_i (d^{\text{out}}_i - 1)}
\]

and for the weighted case is given by

\[
\tilde{C}^{\text{out}}_i = \frac{(\hat{W}^2 \hat{W}^T)_{ii}}{d^{\text{out}}_i (d^{\text{out}}_i - 1)}.
\]

Both unweighed and weighted clustering coefficients are interesting. Although the former uses less information, it counts the number of triangles of a given type. The latter uses more information, but it is strongly affected by the largest weights. Since our network is directed weighed we study here the
Figure 1: Representations of the triangles that can arise in a directed network: (a) cycle; (b) middleman; (c) in; (d) out.
dynamics of the cycles, middle, In and Out clustering coefficients using the weighed formulation.

In the following discussion, we assume that an edge that arrives to node \(i\) coming from node \(j\) mean that bank \(i\) borrowed money from node and bank \(j\) lent money to bank \(i\). Note that in terms of systemic risk, these four patterns presented in figure 1 offer different interpretations.

The first type of clustering that we present is the \(\tilde{C}_i^{yc}\), which is shown in Figure 1(a). In this case bank \(i\) lends to bank \(j\), which lends to bank \(h\), which in its turn lends back to bank \(i\). Therefore, large values do not represent a higher risk for the banking system.

The \(\tilde{C}_i^{mid}\) is presented in Figure 1(b) and represents the case in which the counterpart of bank \(i\), bank \(h\) and \(j\), are either borrowing or lending from the other two banks. In this case, large values imply a higher systemic risk. Figure 1(c) presents the case in which \(\tilde{C}_i^{in}\) bank \(i\) is borrowing from both banks. Therefore, it represents a situation in which bank \(i\) is increasing the risk of the banking system. If bank \(i\) fails then it will not pay some or all the loans that it has made and subsequently the other two banks may not be able to meet their own obligations with each other, increasing the losses within the system.

In Figure 1(d) we present the case in which \(\tilde{C}_i^{out}\) bank \(i\) is increasing it’s own exposure at it is lending to two counterparties. If one of these bank fails, as it may not pay the other bank the losses suffered from bank \(i\) may increase. Therefore, if this clustering coefficient is high we can say that bank \(i\) has a large exposure and higher risk within the interbank network. Overall, higher values for the coefficients \(\tilde{C}_i^{mid}\) and \(\tilde{C}_i^{in}\) imply higher systemic risk and higher values of \(\tilde{C}_i^{out}\) imply higher exposure of bank \(i\).

3 Data

All financial institutions report their counterpart in the interbank market and their size exposure. We have collected data on daily loans made between financial institutions within the Brazilian financial system for all banks and financial institutions that have exposures in the interbank market, for the period from January 2004 to November 2007.

Our sample, which consists of 86 banks and 23 non-bank financial institutions, allows us to analyze interbank lending between banks that do not belong to the same financial institution. The sample comprises public, private domestic and foreign banks. The role of these types of bank is examined through analyzing their relative importance in the interbank network.
Table 1: Descriptive statistics of the averaged clustering coefficients for the period of the sample and for each type of bank.

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Skewness</th>
<th>Kurtosis</th>
<th>Jarque-Bera</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C^{cyc} Public</td>
<td>2.64×10^{-5}</td>
<td>3.60×10^{-5}</td>
<td>1.3846</td>
<td>3.9403</td>
<td>16.7490</td>
<td>0.0002</td>
</tr>
<tr>
<td>C^{cyc} Domestic</td>
<td>9.33×10^{-5}</td>
<td>1.32×10^{-5}</td>
<td>-0.7146</td>
<td>4.0066</td>
<td>5.9846</td>
<td>0.0502</td>
</tr>
<tr>
<td>C^{cyc} Foreign</td>
<td>8.37×10^{-5}</td>
<td>1.78×10^{-5}</td>
<td>-0.1479</td>
<td>1.7767</td>
<td>3.1021</td>
<td>0.2120</td>
</tr>
<tr>
<td>C^{mid} Public</td>
<td>7.31×10^{-5}</td>
<td>6.57×10^{-5}</td>
<td>0.9123</td>
<td>2.8967</td>
<td>6.5410</td>
<td>0.0380</td>
</tr>
<tr>
<td>C^{mid} Domestic</td>
<td>6.75×10^{-4}</td>
<td>9.88×10^{-5}</td>
<td>-0.5120</td>
<td>4.8929</td>
<td>9.0701</td>
<td>0.0107</td>
</tr>
<tr>
<td>C^{mid} Foreign</td>
<td>9.76×10^{-4}</td>
<td>5.57×10^{-5}</td>
<td>1.2324</td>
<td>5.2336</td>
<td>21.6681</td>
<td>0.0000</td>
</tr>
<tr>
<td>C^{out} Public</td>
<td>8.54×10^{-5}</td>
<td>8.78×10^{-5}</td>
<td>1.2668</td>
<td>3.8146</td>
<td>13.8711</td>
<td>0.0010</td>
</tr>
<tr>
<td>C^{out} Domestic</td>
<td>1.89×10^{-4}</td>
<td>3.87×10^{-5}</td>
<td>-0.9146</td>
<td>2.5583</td>
<td>6.9347</td>
<td>0.0312</td>
</tr>
<tr>
<td>C^{out} Foreign</td>
<td>3.45×10^{-4}</td>
<td>3.59×10^{-4}</td>
<td>-1.2701</td>
<td>3.9728</td>
<td>14.4901</td>
<td>0.0007</td>
</tr>
<tr>
<td>C^{out} Public</td>
<td>2.81×10^{-5}</td>
<td>6.95×10^{-5}</td>
<td>3.1776</td>
<td>12.7655</td>
<td>265.8519</td>
<td>0.0000</td>
</tr>
<tr>
<td>C^{out} Domestic</td>
<td>2.09×10^{-4}</td>
<td>6.74×10^{-5}</td>
<td>0.6892</td>
<td>2.5788</td>
<td>4.0685</td>
<td>0.1308</td>
</tr>
<tr>
<td>C^{out} Foreign</td>
<td>5.35×10^{-4}</td>
<td>9.26×10^{-5}</td>
<td>1.9484</td>
<td>6.9723</td>
<td>60.6385</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

4 Results

We now study how frequent are the patterns of lending presented in figure 1 in the Brazilian interbank market. Since there is a relation between systemic risk and each pattern of lending, we want to know how each type of bank influences the systemic risk of the interbank market.

Table 1 presents the descriptive statistics of the averaged clustering coefficients for the period of the sample and for each type of bank. It is worth noticing that the distribution of these figures is not normal, which implies in a large heterogeneity between banks.

In Figure 2, we also show the evolution of these clustering coefficients over time reinforcing that different bank types have different strategies when dealing with the interbank market. Furthermore, although the clustering coefficients vary strongly over time, most of them vary around their mean value.

We also test for the correlation of clustering coefficients with domestic interest rates. In theory banks can change their exposure due to changes in interest rates. We find evidence of a negative correlation between the C^{mid}
coefficient and interest rates changes (CDI), which imply that as interest rates increases banks decrease their relative exposure within the network. The correlation coefficients for all, private, public and foreign banks with interest rates are -0.257423, -0.302239, -0.136349 and -0.370078, respectively.

Therefore, we also find that the effects are different depending on ownership. These results suggests that banks pursue different strategies within the interbank network, which may be due to diversity in obtaining funds domestically and internationally.

Figure 2: The types of banks are identified by the following notation: Public (solid), Domestic (dashes) and Foreign (dot-dashes). Different panels represent different clustering coefficients: (a) Cycle; (b) Middle; (c) In; (d) Out.
5 Conclusions

In this paper, we have interpreted the directed clustering coefficients as a measure of systemic risk. We have evaluated these clustering coefficients for the Brazilian interbank market data and we have shown that these measures vary strongly over the banks and they are negatively correlated with interest rate change. Therefore, banks change their risk exposure with changes in interest rates. Overall, systemic risk within this market is very limited.
References

Banco Central do Brasil

Trabalhos para Discussão
Os Trabalhos para Discussão do Banco Central do Brasil estão disponíveis para download no website http://www.bcb.gov.br/?TRABDISCLISTA

Working Paper Series
The Working Paper Series of the Central Bank of Brazil are available for download at http://www.bcb.gov.br/?WORKINGPAPERS

211 Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002
Sandro C. Andrade and Emanuel Kohlscheen
Aug/2010

212 The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges
Tito Nícias Teixeira da Silva
Sep/2010

213 Estimation of Economic Capital Concerning Operational Risk in a Brazilian banking industry case
Heldor Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falcí Villela Loures
Oct/2010

214 Do Inflation-linked Bonds Contain Information about Future Inflation?
José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen
Oct/2010

215 The Effects of Loan Portfolio Concentration on Brazilian Banks’ Return and Risk
Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro
Oct/2010

216 Cyclical Effects of Bank Capital Buffers with Imperfect Credit Markets: international evidence
A.R. Fonseca, F. González and L. Pereira da Silva
Oct/2010

217 Financial Stability and Monetary Policy – The case of Brazil
Benjamin M. Tabak, Marcela T. Láz and Daniel O. Cajueiro
Oct/2010

218 The Role of Interest Rates in the Brazilian Business Cycles
Nelson F. Souza-Sobrinho
Oct/2010

219 The Brazilian Interbank Network Structure and Systemic Risk
Edson Bustos e Santos and Rama Cont
Oct/2010

220 Eficiência Bancária e Inadimplência: testes de Causalidade
Benjamin M. Tabak, Giovana L. Craveiro and Daniel O. Cajueiro
Out/2010

221 Financial Instability and Credit Constraint: evidence from the cost of bank financing
Bruno S. Martins
Nov/2010

222 O Comportamento Cíclico do Capital dos Bancos Brasileiros
R. A. Ferreira, A. C. Noronha, B. M. Tabak and D. O. Cajueiro
Nov/2010
223 Forecasting the Yield Curve with Linear Factor Models
Marco Shinobu Matsumura, Ajax Reynaldo Bello Moreira and José Valentim Machado Vicente
Nov/2010

224 Emerging Floaters: pass-throughs and (some) new commodity currencies
Emanuel Kohlscheen
Nov/2010

225 Expectativas Inflacionárias e Inflação Implícita no Mercado Brasileiro
Flávio de Freitas Val, Claudio Henrique da Silveira Barbedo e Marcelo Vordini Maia
Nov/2010

226 A Macro Stress Test Model of Credit Risk for the Brazilian Banking Sector
Francisco Vazquez, Benjamin M.Tabak and Marcos Souto
Nov/2010

227 Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo
Emanuel Kohlscheen
Nov/2010

228 Forecasting Brazilian Inflation Using a Large Data Set
Francisco Marcos Rodrigues Figueiredo
Dec/2010

229 Financial Fragility in a General Equilibrium Model: the Brazilian case
Benjamin M. Tabak, Daniel O. Cajueiro and Dimas M. Fazio
Dec/2010

230 Is Inflation Persistence Over?
Fernando N. de Oliveira and Myrian Petrassi
Dec/2010

231 Capital Requirements and Business Cycles with Credit Market Imperfections
P. R. Agénor, K. Alper and L. Pereira da Silva
Jan/2011

232 Modeling Default Probabilities: the case of Brazil
Benjamin M. Tabak, Daniel O. Cajueiro and A. Luduvice
Jan/2011

233 Emerging Floaters: pass-throughs and (some) new commodity currencies
Emanuel Kohlscheen
Jan/2011

234 Cyclical Effects of Bank Capital Requirements with Imperfect Credit Markets
Pierre-Richard Agénor and Luiz A. Pereira da Silva
Jan/2011

235 Revisiting bank pricing policies in Brazil: Evidence from loan and deposit markets
Leonardo S. Alencar
Mar/2011

236 Optimal costs of sovereign default
Leonardo Pio Perez
Apr/2011

237 Capital Regulation, Monetary Policy and Financial Stability
P.R. Agénor, K. Alper, and L. Pereira da Silva
Apr/2011

238 Choques não Antecipados de Política Monetária e a Estrutura a Termo das Taxas de Juros no Brasil
Fernando N. de Oliveira e Leonardo Ramos
Abr/2011
239 SAMBA: Stochastic Analytical Model with a Bayesian Approach
Marcos R. de Castro, Solange N. Gouvea, André Minella, Rafael C. Santos and Nelson F. Souza-Sobrinho
Apr/2011

240 Fiscal Policy in Brazil through the Lens of an Estimated DSGE Model
Fabia A. de Carvalho and Marcos Valli
Apr/2011

241 Macro Stress Testing of Credit Risk Focused on the Tails
Ricardo Schechtman and Wagner Piazza Gaglianone
May/2011

242 Determinantes do Spread Bancário Ex-Post no Mercado Brasileiro
José Alves Dantas, Otávio Ribeiro de Medeiros e Lúcio Rodrigues Capelletto
Maio/2011

243 Economic Activity and Financial Institutional Risk: an empirical analysis for the Brazilian banking industry
Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures
May/2011

244 Profit, Cost and Scale Efficiency for Latin American Banks: concentration-performance relationship
Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro
May/2011

245 Pesquisa Trimestral de Condições de Crédito no Brasil
Clodoaldo Aparecido Annibal e Sérgio Mikio Koyama
Jun/2011

246 Impacto do Sistema Cooperativo de Crédito na Eficiência do Sistema Financeiro Nacional
Michel Alexandre da Silva
Aug/2011

247 Forecasting the Yield Curve for the Euro Region
Benjamin M. Tabak, Daniel O. Cajueiro and Alexandre B. Sollaci
Aug/2011

248 Financial regulation and transparency of information: first steps on new land
Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures
Aug/2011