Cyclical Effects of Bank Capital Requirements with Imperfect Credit Markets

Pierre-Richard Agénor and Luiz A. Pereira da Silva

January, 2011
Cyclical Effects of Bank Capital Requirements with Imperfect Credit Markets*

Pierre-Richard Agénor†
Luiz A. Pereira da Silva‡

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

This paper analyzes the cyclical effects of bank capital requirements in a simple model with credit market imperfections. Lending rates are set as a premium over the cost of borrowing from the central bank, with the premium itself depending on firms’ effective collateral. Basel I- and Basel II-type regulatory regimes are defined and a capital channel is introduced through a signaling effect of capital buffers on the cost of bank deposits. The macroeconomic effects of various shocks (a drop in output, an increase in the refinance rate, and a rise in the capital adequacy ratio) are analyzed, under both binding and nonbinding capital requirements. Factors affecting the procyclicality of each regime (defined in terms of the behavior of the risk premium) are also identified and policy implications are discussed.

Keywords: capital requirements; credit market; financial regulation.
JEL Classification: E44, H52, G28.

*We are grateful to Koray Alper, Charles Goodhart, and seminar participants at the Bank for International Settlements, Banque de France, the International Center for Monetary and Banking Studies, the OECD, the University of Clermont-Ferrand, and the World Bank, for helpful comments. Financial support from the World Bank is gratefully acknowledged. The views expressed are our own.
†School of Social Sciences, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom, and Centre for Growth and Business Cycle Research.
‡Deputy Governor of Banco Central do Brasil.
1 Introduction

The global financial crisis triggered by the collapse of the subprime mortgage market in the United States has led to a reassessment of the policies and rules that have allowed the buildup of financial fragilities. The regulatory framework, and the distortions in bank behavior and the financial intermediation process that it may have led to, have come under renewed scrutiny. Indeed, it is now well recognized that the Basel I regulatory capital regime that U.S. banks were subject to gave them strong incentives to reduce required capital by shifting loans off their balance sheets.\(^1\) Banks turned to an “originate and distribute” model, in which standardized loans, mostly high-risk mortgages—involving no money down, interest only or less as the initial payment, with no documentation on borrowers’ capacity to pay, and initial “teaser” interest rates that would adjust upward even if market rates remained constant—could be bundled and sold as securities, thereby leaving the originating bank free to use its capital elsewhere. As the housing market deteriorated, and uncertainty about the underlying value of subprime mortgage-backed securities mounted, efforts to maintain capital adequacy led to massive deleveraging, capital hoarding, liquidity shortages, and contractions in credit supply, with adverse consequences for the functioning of both real and financial markets (see Calomiris (2009), and Kashyap, Rajan, and Stein (2009)).

Since consultations on the Basel II accord started, and since its eventual adoption in 2004, there has been a broader debate on the procyclicality effect of prudential and regulatory rules and practices.\(^2\) With Basel II, capital requirements are based on asset quality rather than only on asset type, and banks must use “marking to market” to price assets, rather than book value. As the rules make bank capital requirements more sensitive to changes in the banks’ risk exposure, and as the riskiness of loan books changes over the business cycle, the required regulatory capital varies with the business cycle. For instance, when asset prices start declining, banks may be forced to undertake continuous writedowns (accompanied by increased provisioning), and this raises their need for capital. Capital requirements may therefore increase in a cyclical downturn. If banks are highly leveraged, to maintain their capital ratio during a recession, they must either raise capital (which is difficult and/or costly in bad times) or cut back their lending, which in turn tends to amplify the downturn. Thus, the “common view” is that the introduction of risk-sensitive capital charges may not only

\(^{1}\) The 1988 Basel I Accord prescribed that banks hold capital of at least 8 percent of their risk-weighted assets. Critics noted early on that it treated all corporate credits alike and thereby invited regulatory arbitrage, and that it failed to take account of the distortions induced by capital regulation.

\(^{2}\) The 2004 Basel II allows banks to use their internal models to assess the riskiness of their portfolios and to determine their required capital cushion—provided that their internal model is validated by the regulatory authority. It also acknowledges the importance of two complementary mechanisms to safeguard financial stability, namely supervision and market discipline.
increase the volatility of regulatory capital, it may also (by limiting banks’ ability to lend) exacerbate an economic downturn.

Most existing studies of the cyclicity of capital regulatory regimes, both theoretical and empirical, are based on industrialized countries. However, the pervasiveness of financial market imperfections in developing countries, coupled with their greater vulnerability to shocks, makes a focus on these countries warranted. For middle-income countries, in particular, these imperfections cover a broad spectrum: underdeveloped capital markets, which imply limited alternatives (such as corporate bonds and commercial paper) to bank credit; limited competition among banks; more severe asymmetric information problems, which make screening out good from bad credit risks difficult and fosters collateralized lending; a pervasive role of government in banking, both directly or indirectly; uncertain public guarantees; inadequate disclosure and transparency, coupled with weak supervision and a limited ability to enforce prudential regulations; weak property rights and an inefficient legal system, which makes contract enforcement difficult and also encourages collateralized lending; and a volatile economic environment, which increases exposure to adverse shocks and magnifies (all else equal) both the possibility of default by borrowers and the risk of bankruptcy of financial institutions. One implication is that a large majority of small and medium-size firms (operating mostly in the informal sector) are simply squeezed out of the credit market, whereas those who do have access to it—well-established firms, often belonging to members of the local elite—face an elastic supply of loans and borrow at terms that depend on their ability to pledge collateral. Credit rationing—which results fundamentally from the fact that inadequate collateral would have led to prohibitive rates—is therefore largely “exogenous.” A second implication is the importance of the cost channel, which becomes a key part of the monetary transmission mechanism. The goal of this paper is to analyze the cyclical effects of Basel I- and Basel II-type capital standards in a simple macroeconomic model that captures some of these financial features and implications. As it turns out, a key variable in the determination of macroeconomic equilibrium is the risk premium that banks charge their customers, depending on the effective collateral that they can pledge.

The paper continues as follows. Section II presents the model. Basel I- and Basel II-type

3 For empirical studies on industrial countries, see for instance Ayuso, Pérez, and Saurina (2004), Bikker (2004), Gordy and Howells (2006), and Van Roy (2008). For theoretical contributions, see Blum and Hellwig (1995), Zechino (2005), Cecchetti and Li (2008), and the literature surveys by Drumond (2008), and VanHoose (2008). Pereira (2009) provides references to the limited literature on middle-income countries. He also provides a critical review of the empirical evidence, based on the general equilibrium implications of the present paper.

4 The direct effect of lending rates on firms’ marginal production costs is a common feature of developing economies, and there is evidence that it may be important also in industrial countries. See the references in Agénor and Alper (2009), for instance.
regulatory capital regimes are defined, the latter by linking the risk premium on loans to risk weights. A “bank capital channel” is accounted for by introducing a signaling effect of capital buffers on bank deposit rates; this differs significantly from the literature on this topic, which tends to focus on the financing choices of banks in an environment where the Modigliani-Miller theorem fails (see, for instance, Van den Heuvel (2007)). Section III focuses on the case where capital requirements are not binding and studies the impact of three types of shocks on macroeconomic equilibrium and the degree of cyclicality of lending and interest rates: a negative supply shock, an increase in the central bank’s policy rate, and an increase in the capital adequacy ratio. Considering a range of shocks is important because a regulatory regime may impart a procyclical bias to some variables for certain shocks and a countercyclical bias to the same variables for other shocks. In addition, considering a shock to the policy interest rate allows us to assess how the regulatory regime affects the transmission of monetary policy in the context of a middle-income country—an issue that has not received much attention in the literature. The final section offers some concluding remarks.

2 The Model

The model that we develop builds on the static framework with monopolistic banking developed by Agénor and Montiel (2008a). Specifically, it combines the cost channel of monetary policy with an explicit analysis of the links between collateral, capital requirements, and bank pricing behavior. Both features capture key aspects of credit market imperfections in middle-income countries, as documented earlier. Because borrowers’ ability to repay is uncertain, lending is collateralized, and effective collateral affects the terms of credit through a risk premium that banks incorporate in lending rates. Moreover, at the prevailing lending rate, the supply of loans is perfectly elastic. There is therefore no endogenous credit rationing, as noted earlier. As is now standard, we also assume that the central bank’s supply of liquidity is perfectly elastic at a target interest rate. Monetary policy is therefore implemented through a standing facility. In what follows we describe the behavior of the four types of agents that populate the economy, firms, households, a commercial bank, and the central bank.

2.1 Firms

Firms produce a single, homogeneous good. To finance their working capital needs, which consist solely of labor costs, firms (which have no retained earnings, for simplicity) must borrow from the bank. Total production costs faced by the representative firm are thus
equal to the wage bill plus the interest payments made on bank loans. For simplicity, we will assume that loans contracted for the purpose of financing working capital (which are short-term in nature), are fully collateralized by the firm’s capital stock, and are therefore made at a rate that reflects only the cost of borrowing from the central bank, \(i_R\).\(^5\) Firms repay working capital loans, with interest, at the end of the period, after goods have been produced and sold. Loans are therefore one-period debt contracts. Profits are transferred at the end of each period to the firms’ owners, households.

Let \(W\) denote the nominal wage, \(N\) the quantity of labor employed, and \(i_R\) the official rate charged by the central bank to the commercial bank (or the refinance rate, for short); the wage bill (inclusive of borrowing costs) is thus \((1 + i_R)WN\). The maximization problem faced by the representative firm can be written as

\[
N = \arg \max [PY - (1 + i_R)WN],
\]

where \(Y\) denotes output and \(P\) the price of the good.

The production function takes the form

\[
Y = AN^\alpha K_0^{1-\alpha},
\]

where \(A > 0\) is a supply or productivity shock, \(K_0\) is the beginning-of-period stock of physical capital (which is therefore predetermined), and \(\alpha \in (0, 1)\).

Solving problem (1) subject to (2), taking \(i_R\), \(P\) and \(W\) as given, yields

\[
\alpha APN^{\alpha-1} K_0^{1-\alpha} - (1 + i_R)W = 0.
\]

This condition yields the demand for labor as

\[
N^d = \left[\frac{\alpha AK_0^{1-\alpha}}{(1 + i_R)(W/P)}\right]^{1/(1-\alpha)},
\]

which can be substituted in (2) to give

\[
Y^s = \left[\frac{\alpha A}{(1 + i_R)(W/P)}\right]^{\alpha/(1-\alpha)}K_0.
\]

These equations show that labor demand and supply of the good are inversely related to the effective cost of labor, \((1 + i_R)(W/P)\).

Given the short-run nature of the model, the nominal wage is assumed to be rigid at \(\bar{W}\).\(^6\) This implies, from (3) and (4), that

\[
N^d = N^d(P; i_R; A), \quad Y^s = Y^s(P; i_R; A),
\]

\(^5\)Adding a fixed profit margin over and above the refinance rate would not affect the results qualitatively.

\(^6\)Assuming that the nominal wage is indexed to the price level would not alter qualitatively our results as long as indexation is less than perfect.
with $N_P^d, Y_P^V > 0$, $N_{r^a}^d, Y_{r^a}^V < 0$, and $N_A^d, Y_A^V > 0$. An increase in borrowing costs or a reduction in prices (which raises the real wage) exert a contractionary effect on output and employment.

Real investment is negatively related to the real lending rate:

$$I = h\left(\frac{1 + i_L}{1 + \pi^a}\right), \quad \text{(6)}$$

where i_L is the nominal lending rate, π^a the expected rate of inflation, and $h' < 0$.\footnote{Throughout the analysis, we assume that inflation expectations are exogenous. In a static model such as ours, this is a reasonable assumption if expectations have a strong backward-looking component. There is evidence that this is indeed the case for many middle-income countries; see Agénor and Bayraktar (2010).}

Using (5) and (6), the total amount of loans demanded (and allocated by the bank) to finance labor costs and capital accumulation, L^F, is thus

$$L^F = \bar{W}^d N^d(P; r, A) + P h\left(\frac{1 + i_L}{1 + \pi^a}\right). \quad \text{(7)}$$

2.2 Households

Households supply labor inelastically, consume goods, and hold two imperfectly substitutable assets: currency (which bears no interest), in nominal quantity $BILL$, and bank deposits, in nominal quantity D. Because households own the bank, they also hold equity capital, which is fixed at \bar{E}.\footnote{It could be assumed, as in Cecchetti and Li (2008), that bank capital is directly and positively related to aggregate output, because an increase in that variable raises the value of bank assets—possibly because borrowers are now more able to repay their debts. However, our assumption that E is fixed is quite reasonable, given the short time frame of the analysis. Note also that there is no distinction between the book value and market value of equity. Our implicit assumption is that equity prices are determined by future dividends, which are taken as given.}

Household financial wealth, F^H, is thus defined as:

$$F^H = BILL^H + D + \bar{E}. \quad \text{(8)}$$

The relative demand for currency is assumed to be inversely related to its opportunity cost:

$$\frac{BILL^H}{D} = \nu(i_D), \quad \text{(9)}$$

where i_D is the interest rate on bank deposits and $\nu' < 0$. Using (8), this equation can be rewritten as

$$\frac{D}{F^H - \bar{E}} = h_D(i_D), \quad \text{(10)}$$

\footnote{Except otherwise indicated, partial derivatives are denoted by corresponding subscripts, whereas the total derivative of a function of a single argument is denoted by a prime.}
where \(h_D(i_D) = 1/[1 + \nu(i_D)] \) and \(h_D' > 0 \). Thus,
\[
\frac{BILH}{F^H - E} = h_B(i_D),
\]
where \(h_B = \nu(i_D)/[1 + \nu(i_D)] \) and \(h_B' < 0 \).

Real consumption expenditure by households, \(C \), depends negatively on the real deposit rate (which captures an intertemporal effect) and positively on labor income and the real value of wealth at the beginning of the period:\(^{10}\)
\[
C = \alpha_0 + \alpha_1 \frac{\bar{W}N}{P} - \alpha_2 \left(\frac{1 + i_D}{1 + \pi^a} \right) + \alpha_3 \left(\frac{F^H}{P} \right),
\]
where \(\pi^a \) is the exogenous expected inflation rate, \(\alpha_1 \in (0, 1) \) the marginal propensity to consume out of disposable income, and \(\alpha_0, \alpha_2, \alpha_3 > 0 \). The positive effect of current labor income on private spending is consistent with the evidence regarding the pervasiveness of liquidity constraints in middle-income countries (see Agénor and Montiel (2008b)) and the (implicit) assumption that households cannot borrow directly from banks to smooth consumption.

2.3 Commercial Bank

Assets of the commercial bank consist of total credit extended to firms, \(L^F \), and mandatory reserves held at the central bank, \(RR \). The bank’s liabilities consist of the book value of equity capital, \(\bar{E} \), household deposits, and borrowing from the central bank, \(L^B \). The balance sheet of the bank can therefore be written as:
\[
L^F + RR = \bar{E} + D + L^B,
\]
where all variables are measured in nominal terms. Reserves held at the central bank pay no interest and are set in proportion to deposits:
\[
RR = \mu D,
\]
where \(\mu \in (0, 1) \).

2.3.1 Interest Rate Pricing Rules

The bank is risk-neutral and sets both deposit and lending rates.\(^{11}\) We consider both decisions in turn.

\(^{10}\) Recall that profits are distributed only at the end of each period. For simplicity, we also assume that interest on deposits is paid at the end of the period; current income consists therefore only of wages.

\(^{11}\) In our simple framework, the bank only borrows from households and the central bank, and only lends to firms. In addition, we also assume that the (operational) costs of raising funds and to produce loans—which
Deposit Rate and Capital Buffers From the monopoly bank optimization problem described in Agénor and Montiel (2008a), the deposit rate is given by

\[
i_D = (1 + \frac{1}{\eta^D})^{-1}(1 - \mu)i_R. \tag{15}\]

where \(\eta^D\) is the interest elasticity of the supply of deposits.

We also consider a more general specification, in which the bank’s capital position affects its funding costs, through a “signaling” effect. Specifically, we assume that the bank’s capital buffer (as measured by the ratio of actual to required capital) allows it to raise deposits more cheaply, because households internalize the fact that bank capital increases its incentives to screen and monitor its borrowers. Depositors, therefore, are willing to accept a lower, but safer, return.\(^{12}\)

Formally, let \(E^R\) be the capital requirement (defined below); the capital buffer, measured as a ratio, is thus \(\bar{E}/E^R\). The alternative specification that we consider is thus

\[
i_D = \varepsilon^D(1 - \mu)i_Rf\left(\frac{\bar{E}}{E^R}\right), \tag{16}\]

where \(\varepsilon^D = (1 + 1/\eta^D)^{-1}, 0 < f(\cdot) \leq 1, f' < 0,\) and \(f(1) = 1.\) The last condition implies that if \(\bar{E} = E^R,\) bank capital has no effect on the deposit rate, as specified in (15).\(^{13}\) The strength of the bank capital channel, as defined here, can therefore be measured by \(|f'|\). However, from (12), whether the existence of this channel (which operates through the deposit rate) matters depends on the presence of an intertemporal substitution effect on consumption.

Models consistent with this idea (and with more rigorous micro foundations) are developed in Chen (2001), where banks, which act as delegated monitors, must be well-capitalized to convince depositors that they have enough at stake in funding risky projects, and with Allen et al. (2009), who have argued that market forces lead banks to keep capital buffers, even when capital is relatively costly, as bank capital commits the bank to monitor and, without deposit insurance, allows the bank to raise deposits more cheaply. Our specification is also consistent with the view, discussed by Calomiris and Wilson (2004), that depositors have a low preference for high-risk deposits and may demand a “lemons premium” (or penalty interest rate) as a result of a perceived increase in bank debt risk. To limit this

\(^{12}\)We could assume that the absolute magnitude of equity capital exerts also a signaling effect. However, given that we keep \(\bar{E}\) constant, this modification would not have any substantive implication for our results.

\(^{13}\)Note that we also assume implicitly that depositors do not observe the risk premium set by the bank; otherwise, if they are to some degree risk averse, a positive relationship could arise between \(\theta_L\) and \(i_D.\)
risk (and therefore reduce deposit rates), banks may respond by accumulating capital. This view is supported by the empirical results of Demirgüç-Kunt and Huizinga (2004), which show a negative relationship between deposits rates and the ratio of bank capital to bank assets. More direct support is provided by Fonseca et al. (2010), in a study of pricing behavior by more than 2,300 banks in 92 countries over the period 1990 to 2007. They found that capital buffers (defined as \((E - \bar{E})/(\bar{E}^R)\), rather than \(\bar{E}/\bar{E}^R\)) are negatively and significantly associated with deposit rate spreads, regardless of the regulatory regime. Moreover, this association appears to be stronger for developing countries, compared to industrial countries.

Alternatively, the link between the capital buffer and deposit rates could reflect the fact that well-capitalized banks face lower expected bankruptcy costs (that is, lower \textit{ex post} monitoring costs in case of default) and hence lower funding costs \textit{ex ante} from households. Whatever the interpretation, the general point is that in a volatile economic environment, where the risk of adverse shocks is high, signals about a bank’s solvency can have a significant effect on depositors’ behavior—particularly when government deposit guarantees (in the form of a deposit insurance system, for instance) do not exist or are not reliable.14

\textbf{Lending Rate and the Risk Premium} Again, from the bank optimization problem described in Agénor and Montiel (2008a), the contractual lending rate, \(i_L\), is given by

\[i_L = \varepsilon^L(1 + \theta_L)\bar{i}_R, \]

where \(\varepsilon^L = (1 + 1/\eta^L)^{-1}\), with \(\eta^L\) denoting (the absolute value of) the interest elasticity of the demand for investment loans, and \(\theta_L\) is the risk premium, which is inversely related to the repayment probability. Thus, the lending rate is set as a premium over the central bank refinance rate, which represents the marginal cost of funds. With non-binding capital requirements, we assume that the premium is inversely related to the asset-to-liability ratio of the borrower, given by the “effective” value of collateral pledged by the borrower (that is, assets that can be borrowed against) divided by its liabilities, that is, borrowing for investment purposes, \(PI\). In turn, the “effective” value of collateral consists of a fraction \(\kappa \in (0, 1)\) of the value of the firm’s nominal output:15

\[\theta_L = g(\kappa PY^s/\hat{P}_I), \]

14Interestingly enough, in the empirical part of their study, Calomiris and Wilson (2004) focus on the behavior of New York City banks during the 1920s and 1930s. They argue that doing so is important because during that time the U.S. deposit insurance system either did not exist or did not have much impact on the risk choices of these banks—therefore allowing them to better assess the link between deposit default risk and bank capital.

15Note that, in this static framework, the interest rate-setting decision and the loan demand decision are simultaneously determined: to set the risk premium the bank must know actual output (and thus
where \(g' < 0 \). This specification is consistent with the view that collateral, by increasing borrowers’ effort and reducing their incentives to take on excessive risk, reduces moral hazard and raises the repayment probability—inducing the bank therefore to reduce the premium on its loans for investment purposes.\(^{16}\) Thus, an increase in goods or asset prices, or a reduction in borrowing, tends to raise the firm’s effective asset-to-liability ratio and to reduce the risk premium demanded by the bank. As discussed in subsequent sections, the fact that the premium depends endogenously on the price of the domestic good (through its impact on output) allows monetary policy to generate financial accelerator or decelerator effects, implying that the premium may be either procyclical or countercyclical.

\subsection*{2.3.2 Capital Requirements}

Capital requirements are based on the bank’s risk-weighted assets. Suppose that the risk weight on “safe” assets (reserves and loans for working capital needs) is 0, whereas the risk weight on investment loans is \(\sigma > 0 \), respectively. Risk-weighted assets are thus \(\sigma P_i \). The capital requirement constraint can therefore be written as

\[E^R = \sigma \rho P_i, \]

(19)

where \(\rho \in (0,1) \) is the capital adequacy ratio (the so-called Cooke ratio). If the penalty (monetary or reputational) cost of holding capital below the required level is prohibitive, we can exclude the case where \(\bar{E} < E^R \); the issue is therefore whether \(\bar{E} = E^R \) or \(\bar{E} > E^R \).

We consider two alternative regimes for the determination of the risk weight \(\sigma \). Under the first regime, which corresponds to Basel I, the risk weight is exogenous at \(\sigma_R \); the bank keeps a flat minimum percentage of capital against loans provided for the purpose of investment. Under the second, which corresponds to Basel II, capital requirements are risk-based; the risk weight is endogenous and inversely related to loan quality, which in turn is inversely related to the risk premium imposed by the bank, \(\theta_L \). This is similar in spirit to linking the risk weight to the probability of default of borrowers, as proposed by Heid (2007). Thus, as allowed under Basel II, we assume that the bank uses an IRB approach, or its own default risk assessment, in calculating the appropriate risk weight—and by implication required regulatory capital. This assumes in turn that the standards embedded in the bank’s risk management system have been validated by the regulator—the central bank here—through employment and credit demand), whereas to determine employment and credit demand firms must know the cost of borrowing.

\(^{16}\)Note also that (18) is based on flows, rather than stocks, as in Agénor and Montiel (2008). There is therefore no “balance sheet” or “net worth” effect on the premium, as in the Bernanke-Gertler tradition, but rather a (flow) collateral effect.
an Internal Capital Adequacy Assessment Process (ICAAP).\footnote{The Standardized Approach in Basel II can be modeled by making the risk weight a function of output (in a manner similar to Zicchino (2006) for instance), under the assumption that ratings are procyclical.}

Formally, the two regimes can be defined as\footnote{Under Basel II, it is technically possible for \(\sigma \) to exceed unity.}

\[
\sigma = \begin{cases}
\sigma_R \leq 1 & \text{under Basel I} \\
\sigma(\theta_L), \ \sigma' > 0 & \text{under Basel II}
\end{cases}
\] \hspace{1cm} (20)

Inspection of equations (5), (7), (17), (18), (19), and (20) yields the following result:

Proposition 1. In partial equilibrium, a negative supply shock (a fall in \(A \)) lowers effective collateral and raises the risk premium on investment loans; under Basel II, the risk weight associated with these loans and capital requirements also increase and bank lending for investment must fall if the capital constraint is binding \((E = E^R) \).

The link between \(\sigma \) and \(\theta_L \) under Basel II is consistent with specifications that relate risk weights to the borrower’s probability of default over the business cycle, as for instance in Tanaka (2002) and Heid (2007). Proposition 1 captures one of the general concerns about Basel II: during a recession for instance (say, a negative supply shock, as discussed here), if lending to firms is considered riskier because collateral values fall, the bank will be required to hold more capital—or, failing that, to reduce lending (indirectly in the present case, by increasing the risk premium). In turn, the credit crunch will exacerbate the economic downturn, making capital requirements procyclical.

However, in the present setting there are also a number of other (endogenous) factors that will affect the premium. The fall in lending that may result from a binding capital constraint following an increase in risk tends not only to reduce output but also the collateral required by the bank; this dampens the initial increase in the premium. In addition, changes in lending and aggregate supply will affect prices, which will affect the equilibrium value of the premium as well. With the bank capital channel embedded in the model, changes in the capital buffer will also affect the deposit rate and consumption, which in turn will affect aggregate demand and prices. These interactions imply that the net effect of shocks can be fully assessed only through a general equilibrium analysis.

2.3.3 Borrowing from the Central Bank

Given that firms’ demand for credit determines the actual supply of loans, and that the required reserve ratio is set by the monetary authority, the balance sheet condition (13) can
be solved residually for borrowing from the central bank, L^B. Because there is no reason for
the bank to borrow if it can fund its loan operations with deposits, and using (14), we have
$L^B = \max[0, L^F - (1 - \mu)D - E].$\(^{19}\)

2.4 Central Bank

The balance sheet of the central bank consists, on the asset side, of loans to the commercial
bank, L^B. On the liability side, it consists only of the monetary base, MB:

$$L^B = MB,$$

with the monetary base given also by the sum of total currency in circulation, $BILL$, and
reserves:

$$MB = BILL + RR.$$ \hspace{1cm} (22)

Monetary policy is operated by setting the refinance rate at the constant rate i_R and
providing liquidity (at the discretion of the commercial bank) through a standing facility.

Because central bank liquidity is endogenous, the monetary base is also endogenous; this
implies, using (14) and (21), that the supply of currency is

$$BILL^s = L^B - \mu D.$$ \hspace{1cm} (23)

2.5 Market-Clearing Conditions

There are five market equilibrium conditions to consider: four financial (deposits, loans,
central bank credit, and cash), and one for the goods market. Markets for deposits and
loans adjust through quantities, with the bank setting prices in both cases. The supply of
central bank credit is perfectly elastic at the official refinance rate i_R and the market also
equilibrates through quantity adjustment.

The equilibrium condition of the goods market, which determines the goods price P, is
given by:

$$Y^s = C + I.$$ \hspace{1cm} (24)

The last equilibrium condition relates to the market for cash, and (under the assumption
that the counterpart to bank loans is held by firms in the form of currency) involves (11)

\(^{19}\)Note that in the present setting the bank’s profits are not necessarily zero. Just like firms’ profits, we
assume that this income is distributed to households only at the end of the period.
and (23). However, there is no need to write this condition explicitly, given that by Walras’ Law it can be eliminated.\footnote{A simple proof that Walras’ Law holds is as follows. Consider an end-of-period specification where the savings-investment equilibrium refers to flows within the period, whereas the equilibrium of the asset markets refer to stocks at the end of the period (see Buitier (1980)). Thus, the outstanding stock of X at the end of the period, after taking account of changes (accumulation or decumulation) within the period, is given by $X_1 = X_0 + \Delta X$, where X_0 is the beginning-of-period stock; it must equal stock demand. Formally, given that there is no market \textit{per se} for equity, Walras’ Law takes the following form for the five markets (deposits, credit to firms, borrowing by the commercial bank, cash holdings by private agents, and goods):

\[
(D_1^d - D_0 - \Delta D) + (L_1^{Fc,d} - L_0^{Fc} - \Delta L^F) + (L_1^{B,d} - L_0^B - \Delta L^B) = 0,
\]

where D_1^d is the demand for deposits from (10), $L_1^{Fc,d}$ is total credit demanded by firms, $L_1^{B,d}$ is the demand for central bank liquidity from (14), and $BILL_1^{H,d}$ is the demand for cash from (11). With markets in deposits, credit to firms, borrowing by the commercial bank, and goods always in equilibrium (through either a perfectly elastic supply or demand curve in the first four markets, and flexible prices in the last), $\Delta D = D_1^d - D_0$, $\Delta L^F = L_1^{Fc,d} - L_0^{Fc}$, $\Delta L^B = L_1^{B,d} - L_0^B$, and $I = Y - C$; this condition yields

\[
BILL_1^{H,d} - BILL_0 - DBILL = 0.
\]

Now, from (13), (14) and (23),

\[
DBILL = \Delta L^B - \mu \Delta D = \Delta L^F - (1 - \mu) \Delta D - \mu \Delta D = \Delta L^F - \Delta D.
\]

Combining the above two equations yields

\[
BILL_1^{H,d} = BILL_0 + (\Delta L^F - \Delta D).
\]

Intuitively, any expansion in credit that is not funded by a change in deposits translates into a change in central bank borrowing, which in this economy is the only counterpart to cash in circulation (see (21)); it must therefore be matched by a change in the demand for cash.}

3 Non-Binding Capital Requirements

We first consider the case where existing equity capital is higher than the required value, that is, $\bar{E} > E^R$, regardless of whether σ is endogenous or not. This is consistent with the evidence suggesting that, in normal times, banks often hold more capital than the regulatory minimum—possibly as a result of market discipline (see Rochet (2008)). However, although bank capital is not a binding constraint on the bank’s behavior, it still plays an indirect role,
by affecting how the bank sets the deposit rate.21

3.1 Macroeconomic Equilibrium

The solution of the model is described in the Appendix, under the assumptions that $\pi^a = \mu = 0$ and $\bar{W} = 1$. As shown there, the model can be condensed into two equilibrium conditions in terms of the risk premium, θ_L, and the price of the domestic good, P:

$$\theta_L = g \frac{\kappa Y^s(P; i_R, A)}{h[\varepsilon^L(1 + \theta_L)i_R]},$$

$$Y^s(P; i_R, A) = \alpha_1 \frac{N^d(P; i_R, A)}{P} - \alpha_2 \varepsilon^d_i R \left\{ \frac{\bar{E}}{\sigma \rho \bar{p} h[\varepsilon^L(1 + \theta_L)i_R]} \right\} $$

$$+ \alpha_3 \left(\frac{F_0^H}{P} \right) + h[\varepsilon^L(1 + \theta_L)i_R].$$

The first is the financial equilibrium condition, defined by (18), whereas the second is the goods market equilibrium condition (24), after substitution from (5), (6), (12), (16), (17), and (20).

A graphical presentation of the equilibrium is shown in Figure 1. In the northeast quadrant of the figure, the financial equilibrium curve is labeled FF. As shown in the Appendix, FF does not depend on the regulatory regime; it slope is given by

$$\frac{d\theta_L}{dP}\bigg|_{I, I}^{NB, FF} = \frac{g'}{\Sigma}(\frac{\kappa Y^s}{h}) < 0,$$

where NB stands for “nonbinding” and $\Sigma > 0$ is defined in the Appendix. Intuitively, a rise in prices stimulates output and increases the effective value of firms’ collateral relative to the initial demand for loans; the risk premium must therefore fall, at the initial level of investment.

The goods market equilibrium condition yields the curves labeled G^1G^1 (which corresponds to the Basel I regime) and G^2G^2 (corresponding to the Basel II regime). The slopes of these curves are given by, respectively

$$\frac{d\theta_L}{dP}\bigg|_{I}^{NB, GG} = \frac{1}{\Delta_1} \left\{ Y^s_P + \frac{\alpha_1}{P^2}(N^d - P N^d) - \alpha_2 (1 + i_R) f' \frac{\bar{E}}{\sigma \rho \bar{p} P^2 h} + \alpha_3 \left(\frac{F_0^H}{P^2} \right) \right\},$$

$$\text{where } \Delta_1 < 0 \text{ if } \alpha_2 \text{ is not too large (see the Appendix) and, with } \sigma(\theta_L) = \sigma_R \text{ initially,}$$

$$\frac{d\theta_L}{dP}\bigg|_{I}^{NB, GG} = \left(\frac{\Delta_1}{\Delta_2} \right) \frac{d\theta_L}{dP}\bigg|_{I}^{NB, GG},$$

21Equivalently, the condition $\bar{E} > E_R$ sets an upper bound on investment, $PI < \bar{E}/\sigma \rho$. We will assume that this restriction is not binding.
where $\Delta_2 < 0$ and $|\Delta_2| > |\Delta_1|$. Thus, a comparison of (27) and (28) implies that G^2G^2 is flatter than G^1G^1. Inspection of these results also shows that curves G^1G^1 and G^2G^2 have a steeper slope than in the absence of a bank capital channel ($f' = 0$), given by

\[
\frac{d\theta_L}{dP}_{GG} = \frac{1}{(1 + i_R)h} \left\{ Y^*_P + \frac{\alpha_1}{P^2} (N^d - PN^d_P) + \alpha_3 \left(\frac{F^H_0}{P^2} \right) \right\},
\]

which is the slope of curve GG in Figure 1.

Intuitively, the negative slope of the GG curves can be explained as follows. A rise in prices tends to lower aggregate demand through a negative wealth effect on consumption. At the same time, it increases the nominal value of loans and thus capital requirements; the fall in the capital buffer raises the deposit rate, which (through intertemporal substitution) lowers current consumption. However, the increase in P also boosts aggregate supply, by reducing the real (effective) wage, and may stimulate consumption, as a result of higher labor demand and distributed wage income.\(^{22}\) Because the shift in supply outweighs the wage income effect, and because the wealth and capital buffer effects are unambiguously negative, an increase in prices creates excess supply. The risk premium must therefore fall to stimulate investment and restore equilibrium in the goods market. This implies that the GG curves have a negative slope, as shown in the figure.

Curves G^1G^1 and G^2G^2 are steeper than curve GG (which corresponds to $f' = 0$) because the bank capital channel adds additional downward pressure on consumption—requiring therefore a larger fall in the premium to generate an offsetting expansion in investment.

By implication, the intuitive reason why G^2G^2 is flatter than G^1G^1 is because under Basel II there is an additional effect—the fall in the risk premium alluded to earlier lowers the risk weight. This mitigates therefore the initial drop in the capital buffer (at the initial level of investment) induced by the rise in prices. In turn, this dampens the increase in the deposit rate and the drop in consumption. Given that aggregate supply and wage income increases in the same proportion in both regimes, the risk premium must fall by less under Basel II to stimulate investment and reestablish equilibrium between supply and demand.

Under standard dynamic assumptions, local stability requires the GG curves to be steeper than FF.\(^{23}\) The positive relationship between the risk premium and the lending rate is shown in the northwest quadrant, whereas the negative relationship between the lending

\(^{22}\)The net effect of distributed wage income on consumption depends on the sign of $PN^d_P - N^d$. Thus, a positive effect requires that $PN^d_P/N^d > 1$, or equivalently that the elasticity of labor demand with respect to prices be sufficiently high.

\(^{23}\)Local stability can be analyzed by postulating an adjustment mechanism that relates changes in P to
rate and investment is displayed in the southwest quadrant. The supply of goods, which is an increasing function of the price level, is shown in the southeast quadrant. The difference between supply and investment in the southwest quadrant gives private spending, C. The economy’s equilibrium is determined at points E, D, H, and J.\(^{24}\)

We now turn to an analysis of the adjustment process to a supply shock, a change in the refinance rate, and a change in the capital adequacy ratio.

3.2 Negative Supply Shock

Consider first a negative shock to output, that is, a drop in A.\(^{25}\) The results are illustrated in Figure 2; because the difference between the two regulatory regimes is only in terms of the slope of curve GG, we consider only the Basel I regime, to avoid cluttering the graph unnecessarily. Differences between the two regimes are pointed out later. We also focus at first on the movement that leads to point E'.

The first effect of the shock is of course a drop in output; as shown in the southeast quadrant, the supply curve shifts inward, with output (at the initial level of prices) dropping from H to M. The drop in output lowers the value of collateral at the initial level of investment; the premium must therefore increase to account for the fact that lending has now become more risky. Curve FF therefore shifts upward, and θ_L rises first from E to B. The fall in output also leads to excess demand on the goods market; at initial prices, the risk premium must therefore increase to restore equilibrium (by lowering investment). Curve G^1G^1 therefore shifts also upward.

There is, however, “overshooting” in the behavior of the premium; the initial increase in not sufficient to eliminate excess demand through a drop in investment only—to do so would require an increase from E to B'', which is not feasible. Accordingly, prices must increase, which tend (through a negative wealth effect) to lower consumption as well. Because the increase in prices also lowers real wages, the initial drop in output is dampened; after falling

\(^{24}\)Of course, GG, G^1G^1, and G^2G^2 would not normally intersect FF at the same point E. This is shown only for convenience.

\(^{25}\)Instead of a supply shock, we could also consider a negative demand shock, as measured by a fall in α_0 in (12). Although the transmission mechanism is different, the conclusion about the procyclicality of Basel I and Basel II in this case are qualitatively similar to those discussed below. We therefore do not report them to save space.
from H to M, output recovers gradually from M to H'. The associated increase in the value of collateral allows the premium to fall, from B to the new equilibrium point, E'. In the new equilibrium, the lending rate is higher, investment lower, and so is consumption.

However, it is also possible for the new equilibrium to be characterized by a lower premium and higher prices; this is illustrated by the curves intersecting at point E'' in Figure 2. This corresponds to a case where curve FF shifts only slightly (which occurs if the risk premium does not adjust rapidly to changes in the collateral-loan ratio, that is, g' is small) and G^1G^1 shifts by a large amount (which occurs if investment is not very sensitive to the lending rate). Following an upward jump (from E to B'), the premium undergoes a prolonged \textit{“decelerator”} effect, eventually with a smaller adverse effect on investment, but at the cost of higher prices.

How does the \textit{“capital channel”} operate in this setting? Because investment falls, capital requirements also fall. This implies that the bank’s capital buffer increases. Through the signaling effect discussed earlier ($f' < 0$), the deposit rate falls; this, in turn, tends to increase consumption today (all else equal), through intertemporal substitution. This result can be summarized as follows:

\textbf{Proposition 2.} \textit{With non-binding capital requirements, the bank capital channel induces (all else equal) an expansion of consumption in response to a negative supply shock.}

Put differently, although bank capital has no direct effect on loans, it does have indirect effects, to the extent that it affects deposit rates, aggregate demand, and thus prices—which in turn affect output, collateral, and the risk premium. This transmission channel is similar under both regulatory regimes—except that with Basel II the effect on price are magnified and the effect on the risk premium is mitigated.

More formally, consider the following definition:

\textbf{Definition.} A variable x is procyclical (countercyclical) with respect to an exogenous shock z if its movement in response to z, as measured by the first derivative dx/dz, is such as to amplify (mitigate) the movement in equilibrium output in response to that shock, dY/dz.

26If the premium does not adjust at all following a drop in A—so that FF remains at its initial position—the new equilibrium point would be at E''. The case where FF does not change would occur if, for instance, effective collateral was measured, as in Agénor and Montiel (2008a), in terms of the value of the beginning-of-period capital stock, PK_0.

27Although not represented in Figure 2, it is also possible for the equilibrium outcome to entail a rise in the premium and a fall in prices (that is, an equilibrium point located to the northwest of E). This would occur if FF shifts by a large amount and G^1G^1 shifts only a little.

28Borio and Zhu (2008) for instance use a definition that is essentially similar. Note that, in the literature, procyclicality is often defined in terms of required capital only.
In the present setting, we can focus on the risk premium, given that the supply of loans is perfectly elastic, and that the demand for credit for the purpose of financing working capital needs is (by definition) procyclical. Here, we have \(\frac{d\theta_L}{dA} \leq 0 \), which implies that the risk premium can be either procyclical with respect to \(A \)—falling during booms and rising during downswings, thereby exacerbating the initial movement in output, as per the definition above—or countercyclical (\(\frac{d\theta_L}{dA} > 0 \)). This ambiguity exists regardless of the regulatory regime, because it holds even in the absence of a bank capital channel (\(f' = 0 \) or \(\alpha_2 = 0 \))—given that in this case neither \(FF \), nor \(GG \), depends on \(\sigma \). In the case where \(f' > 0 \) (and \(\alpha_2 > 0 \)), the impact of the regulatory regime on the degree of procyclicality of the risk premium can be formally assessed by calculating the derivative of the equilibrium outcome \(\frac{d\theta_L}{dA} \) with respect to \(\sigma \), that is, \(\frac{d^2\theta_L}{dAd\sigma} \), in a manner similar to Heid (2007). More intuitively, this outcome can be gauged by examining how \(\sigma \) affects the slopes of \(FF \) and \(GG \). As noted earlier, \(FF \) does not depend on \(\sigma \); \(G^2G^2 \) is flatter than \(G^1G^1 \); and both \(G^1G^1 \) and \(G^2G^2 \) have a steeper slope with \(f' > 0 \) than with \(f' = 0 \). This leads to the following proposition:

Proposition 3. With non-binding capital requirements, and a bank capital channel, both regulatory regimes magnify the procyclical effect of a negative supply shock on the risk premium; all else equal, Basel II is less procyclical than Basel I.

Intuitively, the reason why the regulatory capital regime magnifies an upward movement in the risk premium compared to the case where the regime does not matter (\(f' = 0 \)) is because the improvement in the capital buffer tends (as noted in Proposition 2) to stimulate private consumption; consequently, at the initial level of prices, “bringing down” aggregate demand to the lower level of output requires a larger drop in investment—and therefore a larger increase in the premium. This movement is also more significant in the Basel I regime, because in the case of Basel II the initial increase in the premium raises the risk weight—which in turn limits the downward effect on capital requirements resulting from the fall in the level of investment (that is, \(E^R \) falls by less than the drop in \(I \) because \(\sigma \) rises); as a result, the increase in the capital buffer is less significant, the deposit rate falls by less, and the stimulus to consumption is mitigated. The rise in the risk premium required to restore equilibrium to the goods market is thus of a lower magnitude.

\(^{29}\)Note that the cyclicity of the nominal value of loans for investment purposes, \(PI \), depends on the behavior of prices as well. Our focus on the risk premium is equivalent to focusing on real lending for investment, given that these two variables always vary in opposite directions.
3.3 Increase in Official Refinance Rate

The macroeconomic effects of an increase in the refinance rate are illustrated in Figure 3. The immediate effect of an increase in \(i_R \) is twofold. First, it raises production costs and lowers output, which drops from point \(H \) to \(M \) in the southeast quadrant, following an inward shift in the supply curve. The resulting drop in effective collateral tends to put upward pressure on the risk premium. Second, there is a direct effect on the lending rate; because an increase in the refinance rate raises the cost of marginal funds, it is “passed on” directly to borrowers. In the northeast quadrant, the curve linking \(\theta_L \) and \(i_L \) shifts outward. The increase in the lending rate lowers investment, which in turn tends to lower the risk premium by reducing the volume of bank loans. The net impact effect on the premium is thus ambiguous. We assume in what follows that the net effect of an increase in \(i_R \) is to raise the premium. As formally established in the Appendix, this requires that the elasticity of output with respect to the refinance rate be higher (in absolute terms) than the elasticity of investment with respect to that rate. The “collateral” effect therefore dominates the “loan demand” effect.\(^{30}\) If so, then, curve \(FF \) shifts upward and the premium jumps from point \(E \) to point \(B \).

On the goods market, there are several effects at play at the initial level of prices. As noted earlier, both aggregate supply and investment fall. In addition, consumption changes as well, as a result of two effects. On the one hand, the refinance rate raises directly the deposit rate, thereby lowering consumption as a result of the standard intertemporal effect. On the other, the fall in investment reduces capital requirements, thereby increasing the capital buffer, which in turn tends to lower the deposit rate and stimulate consumption. The net effect on consumption is thus ambiguous in general. We assume in what follows that the net effect on aggregate demand is negative; a sufficient (although not necessary) condition for that to occur is for the direct cost effect of \(i_R \) on \(i_D \) to dominate the indirect capital buffer effect. Because aggregate supply and aggregate demand both fall, prices may either increase or fall to restore equilibrium in the goods market. Graphically, curve \(G^1G^1 \) may shift either left or right. If excess demand (supply) prevails at the initial level of prices, the price level must increase (fall) and \(G^1G^1 \) shifts to the left (right).

Thus, following its initial jump from \(E \) to \(B \), the risk premium can either continue increasing, from \(B \) to \(E' \), or fall from \(B \) to \(E'' \). In the first case, there is a financial accelerator

\(^{30}\)This is quite appropriate for middle-income countries where bank loans are essential for short-term economic activity.
effect; the drop in prices stimulates consumption (through the wealth effect), raises real wages and lowers output (which falls from M to H'), and the fall in collateral tends to increase the premium—despite the drop in the demand for loans. In the second case, the increase in prices tends to stimulate output and to raise the effective value of collateral while reducing consumption; there is therefore a financial “decelerator” effect.31

Again, what is the role of the regulatory capital regime? The capital buffer effect mitigates the drop in consumption (as before) and reinforces the possibility that aggregate demand falls by less than supply—and therefore increases the likelihood of a drop in prices and the occurrence of a financial accelerator effect. Thus, even if capital requirements are not binding, they do affect the transmission process of monetary policy. Indeed, the bank capital channel, as modeled here, may enhance the effectiveness of a contractionary monetary policy—in contrast to some of the predictions in the literature (see, for instance, Tanaka (2002)). Moreover, under the Basel II regime, the effects described above operate in similar fashion. But because $G^2 G^2$ is less steep than $G^1 G^1$, price effects are magnified, whereas changes in the premium are mitigated. Moreover, from Proposition 2, both of these curves are steeper than curve GG with $f' = 0$. We therefore have the following result:

Proposition 4. With non-binding capital requirements, and under either regulatory regime, the bank capital channel magnifies the impact of an increase in the central bank refinance rate on the risk premium and mitigates its impact on prices, compared to the case where it does not exist. In addition, the Basel II regime imparts less procyclicality to the risk premium compared to the Basel I regime.

3.4 Increase in Capital Adequacy Ratio

The effects of an increase in the capital adequacy ratio are illustrated in Figure 4. Curve FF does not change, given that the financial equilibrium condition does not depend directly on that ratio. The increase in ρ increases capital requirements and lowers the capital buffer. The cost of deposits therefore increases, which tends to lower consumption as households engage in intertemporal substitution. At the initial level of the risk premium, prices must fall to stimulate consumption (through the wealth effect) and eliminate the excess supply of goods. Curve GG therefore shifts downward (or to the left), and prices fall from E to B. In turn, the fall in prices raises the real wage and leads to a contraction in output, from H to

31Note also that even if $G^2 G^2$ does not shift—which is the case if $\alpha_2 = 0$—there would still be a financial accelerator effect (this time from B to C, the new equilibrium), but the financial decelerator effect cannot emerge. The reason is that excess demand cannot occur in that case.
Because the fall in output lowers the value of collateral, the risk premium starts rising, from E to E', while output continues to drop, from M to H'. During the transition period, prices decline continuously. The new equilibrium point is located at E', characterized by a higher lending rate, lowers prices, a lower level of investment, and lower output.

Thus, tighter capital regulation reduces bank leverage while at the same time increasing the cost of (market) funding for the bank and the cost of borrowing for firms. The fact that an increase in the capital adequacy ratio leads to a higher equilibrium loan rate and reduced lending is consistent with the prediction of various other models based on very different premises (see VanHoose (2007)). Of course, if the bank capital channel is not present ($f' = 0$), curve GG would not shift and a change in ρ would have no effect on output and prices as long as $\bar{E} > \sigma \rho L^P$.\footnote{Of course, this also depends on the assumption $\alpha_2 > 0$.}

4 Binding Capital Requirements

We now consider the case where the capital requirement constraint (19) is continuously binding, that is, $\bar{E} = \sigma \rho PI$. Because equity is predetermined, bank lending for investment must adjust to satisfy the capital requirement:

$$PI = \bar{E}/\sigma \rho,$$ \hspace{1cm} (29)

regardless of whether σ is endogenous or not.\footnote{If $\sigma_R = 1$, the capital adequacy requirement is a leverage ratio, which restricts on-balance-sheet assets to a simple multiple of available capital ($L^F = E/\rho$). Note also that because the bank holds no other risky assets in its portfolio, it cannot engage in regulatory arbitrage.} We assume that constraint (29) is continuously binding, due possibly to heavy penalties or reputational costs associated with default on regulatory requirements, as noted earlier.

With (29) determining investment, equation (6) is now solved for the lending rate:

$$1 + i_L = h^{-1}(\frac{E}{P\sigma \rho}),$$ \hspace{1cm} (30)

where $\pi^a = 0$ for simplicity. The interest rate-setting condition (17) is now used to solve for the risk premium:

$$\theta_L = (\frac{1 + i_L}{1 + i_R}) - 1 = (\frac{1}{1 + i_R})h^{-1}(\frac{E}{P\sigma \rho}) - 1.$$ \hspace{1cm} (31)

Collateral therefore plays no longer a direct role in determining the risk premium; equation (18) serves now to determine the effective collateral required, that is, coefficient κ. Of
course, for the solution to be feasible requires $\kappa < 1$, which we assume is always satisfied. Thus, we continue to assume that credit rationing does not emerge.

In addition to the financial equilibrium condition (31), whose solution now depends on the regulatory regime, macroeconomic equilibrium requires equality between supply and demand in the goods market. Using (29), this condition takes now the form:

$$Y^s(P; i_R, A) = \alpha_1 \frac{N^d(P; i_R, A)}{P} - \alpha_2 \frac{e_d}{i_R}$$

$$+ \alpha_3 \left(\frac{F^H_0}{P} \right) + \frac{\bar{E}}{P\sigma P},$$

whose solution depends also on the regulatory regime.

With a binding capital requirement, the capital buffer is unity, and because $f(1) = 1$, the deposit rate-setting condition is (15). Thus, the bank capital channel, as identified in the previous section, does not operate. However, the adjustment process to shocks continues to depend in important ways on the regulatory regime; for clarity, we consider them separately.

4.1 Constant Risk Weights

Macroeconomic equilibrium Under the Basel I regime is now illustrated in Figure 5. As before, the southeast quadrant shows the positive relationship between output and prices. From (29), and with σ constant at σ_R, investment and prices are inversely related, as shown in the southwest quadrant. Equations (30) and (31) also imply a negative relationship between investment and the risk premium, as displayed in the northwest quadrant. Because both the risk weight and investment and independent of the risk premium, the goods market equilibrium condition, shown as curve G^3G^3 in the northeast quadrant, is vertical. The financial equilibrium condition, shown as curve F^3F^3, has now a positive slope, given by (see the Appendix):

$$\left. \frac{d\theta_I}{dF} \right|_{I}^{B,FF} = \frac{1}{1 + i_R} h^{-\nu} \left(\frac{\bar{E}}{F^2\sigma_R P} \right) > 0,$$

where B stands for “binding.”

Intuitively, the reason why FF is positively sloped is because higher prices now reduce real investment (as implied by (29)), which in turn can only occur if the premium increases. The equilibrium obtains at points E, H, J, and D. Graphically, F^3F^3 is steeper the larger σ_R is, so that $\partial \left[\left. \frac{d\theta_I}{dF} \right|_{I}^{B,FF} \right] / \partial \sigma_R > 0$. All else equal, the higher σ_R is, the larger the effect of
any shock that leads to a shift in the financial equilibrium condition on the risk premium, and the smaller the effect on prices.

Figures 6, 7, and 8 illustrate the macroeconomic effects of the same three shocks analyzed earlier. A negative supply shock leads to an inward shift of the supply curve (as before), but this has no direct effect on the premium at the initial level of prices, in contrast to the case of nonbinding requirements. Thus, \(F^3 F^3 \) does not shift. Excess demand of goods requires an increase in prices to clear the market and \(C^3 G^3 \) shifts to the right. The increase in prices lowers investment, and this must be accompanied by an increase in the risk premium. The price hike also lowers consumption, through a negative wealth effect. Thus, the adjustment to a negative supply shock entails both an increase in prices and a reduction in aggregate demand. The new equilibrium position is at points \(E', H', J', \) and \(D' \). The risk premium is thus unambiguously procyclical \((d\theta_L / dA < 0) \).

To analyze the role of the capital regime in the transmission process of this shock, recall that with a binding requirement the deposit rate-setting condition (16) becomes independent of the capital buffer. However, as can be inferred from (29), the higher the risk weight (and the capital adequacy ratio), the larger the drop in investment and lending; the smaller therefore the adjustment in prices required to equilibrate supply and demand. Thus, the “capital channel” operates now through investment, rather than consumption. At the same time, however, a larger drop in investment must be accompanied by a larger increase in the risk premium. Formally, it can be shown that the general equilibrium effect is \(|d^2 \theta_L / dAd\sigma_R| > 0 \).

The effects of an increase in the refinance rate are illustrated in Figure 7. For the reasons discussed in the previous section, the goods market equilibrium condition can move either left or right, depending on whether excess demand or supply prevails at the initial level of prices. However, for \(P \) given, the increase in the refinance rate must now be accompanied by a fall in the risk premium, in contrast to the nonbinding case, to keep investment at its initial level. The curve linking \(I \) and \(\theta_L \) in the northwest quadrant shifts inward, and the premium drops from \(E \) to \(B \) (or equivalently from \(D \) to \(L \)). If excess demand prevails initially, prices must increase to restore equilibrium, and curve \(C^3 G^3 \) must shift to the right; after its initial drop, the risk premium begins to rise, to validate the drop in investment. By contrast, if there is excess supply initially, prices must fall, thereby increasing investment and consumption (the latter through the wealth effect) and curtailing aggregate supply. The risk premium adjusts gradually downward from \(B \) to \(E'' \) to validate the increase in investment. As can be inferred from (29), if prices fall, and given that \(\sigma \) is constant at \(\sigma_R \), investment
always increases in equilibrium (from J to J''). The larger σ_R is, the smaller this increase (or the larger the fall, if prices rise). The regulatory regime therefore magnifies changes in the risk premium ($|d^2\theta_L/d\rho d\sigma_R| > 0$).

Figure 8 shows the impact of an increase in the capital adequacy ratio. The immediate effect, as can be inferred from (29), is a reduction in investment at the initial level of prices; the curve in the southwest quadrant shifts inward. Investment drops from J to L, and this must be accompanied by an upward jump in the premium, from E to point B, located on the new F^3F^3 curve positioned to the left of the original curve. Because of the incipient excess supply, prices must fall; thus, curve G^3G^3 also shifts to the left. The drop in prices mitigates the initial drop in investment, which recovers from L to J'. Although output (and thus collateral) falls during the transition, the gradual increase in investment must be associated with a drop in the risk premium, from B to E'. At E', the risk premium is higher than in the initial equilibrium; however, if the shift in F^3F^3 is not large, the end result may be a fall in the risk premium (point E''). In either case, prices always fall, as in the nonbinding case (Figure 4). Again, regardless of the direction of the effect, the larger σ_R is, the larger the equilibrium change in the risk premium ($|d^2\theta_L/d\rho d\sigma_R| > 0$).

The results of these experiments can be summarized in the following proposition:

Proposition 5. With binding capital requirements, and under Basel I, a negative supply shock is unambiguously procyclical, whereas an increase in the refinance rate or the capital adequacy ratio may be either procyclical or countercyclical. The higher the risk weight σ_R is, the stronger the effect of all these shocks on the risk premium.

4.2 Endogenous Risk Weights

Under the Basel II regime, the endogeneity of σ precludes the use of a four-quadrant diagram to illustrate the determination of equilibrium; it is now shown in a single quadrant, in Figure 9. The determination of the financial equilibrium condition F^4F^4 follows the same logic as before; it therefore has a positive slope, given now by (see the Appendix):

$$\frac{d\theta_L}{dP}\bigg|_{II}^{B,FF} = -\frac{1}{\Sigma_4}(1 + \frac{1}{i_R})h^{-1}\left(\frac{E}{P^2\sigma_R}\right) > 0,$$

where $\Sigma_4 > 0$ if σ' is not too large, and $|\Sigma_4| < 1$. A comparison of (33) and (34) shows that this slope is steeper than under Basel I. Intuitively, the reason is that now the direct, positive effect of an increase in prices on the premium (which validates the fall in real investment, as noted earlier), is compounded by an increase in the risk weight. Thus, all else equal, shocks
would now tend to have larger effects on the risk premium, and more muted effects on prices, than under the previous regime.

The goods market equilibrium condition, however, is no longer vertical; because \(\sigma \) depends on \(\theta_L \), it can be displayed as a negative relationship between the risk premium and the price level, denoted \(G^4G^4 \) in Figure 9, with slope

\[
\frac{d\theta_L}{dP}\bigg|_{II}^{B,GG} = \frac{1}{\Delta_4} \left\{ Y_P^s + \frac{\alpha_1}{P^2} (N^d - P N^d_P) + \alpha_3 \left(\frac{F^H_0}{P^2} + \frac{\bar{E}}{P^2 \sigma_{\bar{R}R}} \right) \right\},
\]

where \(\Delta_4 < 0 \).

The reason why \(GG \) is downward-sloping is now different from the nonbinding case: here an increase in the price level lowers real investment, as implied by the binding constraint (29); this must be validated by an increase in the risk premium. However, the price increase also lowers consumption and stimulates output (for reasons outlined earlier); in turn, this requires a fall in the risk premium to stimulate investment and restore equilibrium between supply and demand. The figure assumes that the second effect dominates the first (or equivalently that \(\sigma' \) is not too large), so \(G^4G^4 \) has indeed a negative slope. Thus, the goods market equilibrium condition is now less steep; all else equal, shocks would tend to have more muted effects on the risk premium, and larger effects on prices, than under Basel I. Because the slopes of the two curves are affected in opposite direction by a switch from Basel I to Basel II, it cannot be ascertained a priori whether shocks would tend to have larger effects on the risk premium, as under the nonbinding case—where only \(GG \) was affected by a switch in regime.

Figure 10 illustrates the impact of a negative supply shock; curve \(G^4G^4 \) shifts to the right and the equilibrium is characterized by a higher risk premium and higher prices, as in Figure 6. Thus, the shock is procyclical, as under Basel I. But even though only the \(GG \) curve shifts (as is the case under Basel I), the initial position of \(FF \) matters for the final outcome. Thus, whether Basel II is more procyclical or less procyclical than Basel I cannot be determined unambiguously.

The impact of an increase in the refinance rate is illustrated in Figure 11. Because \(G^4G^4 \) can move either left or right, a range of outcomes is possible—just like under the nonbinding case (Figure 3) and the Basel I regime under the binding case (Figure 7). Whether a change in the risk premium is procyclical or not cannot therefore be ascertained a priori. Finally, Figure 12 shows the effects of an increase in the capital adequacy ratio. Both \(G^4G^4 \) and \(F^4F^4 \) shift to the left. Although prices fall unambiguously, as before, the risk premium can
either fall (point E') or increase (point E''), depending on the magnitude of the shift in $F^4 F^4$, as with Basel I (see Figure 8). Thus, whether the increase in the capital adequacy ratio is procyclical or countercyclical is again ambiguous.

The following proposition summarizes the results of these experiments:

Proposition 6. *With binding capital requirements, and under Basel II, a negative supply shock is unambiguously procyclical; an increase in the refinance rate or the capital adequacy ratio may be either procyclical or countercyclical. Whether these shocks entail more procyclicality (with respect to Basel I) in the risk premium cannot be ascertained a priori.*

5 Concluding Remarks

The purpose of this paper has been to analyze the procyclical effects of Basel I- and Basel II-type capital standards in a simple model that captures some of the most salient credit market imperfections that characterize middle-income countries. In our model, capital requirements are essentially aimed at influencing bank decision-making regarding exposure to loan default. They affect both the quantity of bank lending and the pricing of bank deposits. The bank cannot raise additional equity capital—a quite reasonable assumption for a short-term horizon. The deposit rate is sensitive to the size of the buffer, through a signaling effect. Well-capitalized banks face lower expected bankruptcy costs and hence lower funding costs from the public. We also establish a link between regulatory risk weights and the bank’s risk premium under Basel II; this is consistent with the fact that in that regime the amount of capital that the bank must hold is determined not only by the institutional nature of its borrowers (as in Basel I), but also by the riskiness of each particular borrower. Thus, capital adequacy requirements affect not only the levels of bank lending rates, and thus investment and output; they also affect the sensitivity of bank rates (through the risk premium) to changes in output and prices.

Our analysis showed that different types of bank capital regulations affect in different ways the transmission process of exogenous shocks to bank interest rates, prices, and economic activity. As discussed in the existing literature, and regardless of the regulatory regime, capital requirements can have sizable real effects if they are binding, because in order to satisfy them banks may need to curtail lending through hikes in interest rates. However, we also showed that, even if capital requirements are not binding, a “bank capital channel” may operate through a signaling effect of capital buffers on deposit rates. If there is some degree of intertemporal substitution in consumption, this channel may generate significant
effects on the real economy.

Several policy lessons can be drawn from our analysis. First, regulators should pay careful attention to the impact of risk weights on bank portfolio behavior when they implement regulations. Second, capital buffers may not actually mitigate the cyclical effects of bank regulation; in our model, capital buffers, by lowering deposit rates, are actually expansionary. Thus, if capital buffers are increased during an expansion, with the initial objective of being countercyclical, they may actually turn out to be procyclical. This is an important conclusion, given the prevailing view that counter-cyclical regulatory requirements may be a way to reduce the buildup of systemic risks: if the signaling effects of capital buffers are important, “leaning against the wind” may not reduce the amplitude of the financial-business cycle.\footnote{There are also other problems associated with “forward-looking provisioning” or “buffer stock approach,” as advocated by some—including the issue of coordination and roles of prudental policies and accounting rules, and the fact that if countercyclical constraints were to be applied to banks, regulatory arbitrage may encourage market funding to step in, thereby inducing risks to migrate elsewhere in the financial system.}

A more detailed study of the empirical importance of these signaling effects, building perhaps on Fonseca et al. (2010), is thus a pressing task for middle-income countries. Moreover, the possibility of asymmetric effects should also be explored; for instance, a high capital buffer in good times may lead households (as owners of banks) to put pressure on these banks to generate more profits, in order to guarantee a “minimum” return on equity; by contrast, the signaling effect alluded to earlier may be strengthened in bad times.

Our analysis can be extended in several directions. One avenue could be to extend the bank capital channel as modeled here by assuming that a large capital buffer induces banks not only to reduce deposit rates (as discussed earlier) but also to engage in more risky behavior, which may lead them to relax lending standards and lower the cost of borrowing, in order to stimulate the demand for loans and increase profits. However, because this would lead to an expansionary effect on investment, it would go in the same direction as the consumption effect alluded to earlier. Thus, our results would not be affected qualitatively.

A second direction would be to examine the links between capital requirements and risk taking. If capital requirements reduce incentives for risk taking by banks (as in Rochet (1992) and Repullo and Suarez (2009)), we should have more collateralized lending; this could lead in the present model to a positive link between the reserve adequacy ratio, ρ, and the collateral parameter, κ. However, at the same time this could increase volatility in the risk premium, and thus the amplitude of macroeconomic fluctuations.
A third direction would be to relax the assumption of portfolio separation, for instance by introducing a “joint” cost function for the production/management of loans and deposits. In that case, equilibrium conditions for profit maximization would be interdependent; both bank rates would depend on the capital buffer, and this would substantially affect the way the bank capital channel operates in the model. Alternatively, it could be assumed, as in Agénor, Alper, and Pereira da Silva (2009), that bank capital has no effect on the deposit rate but instead reduces the probability of default (by increasing incentives for banks to monitor borrowers) and that excess capital generates benefits in terms of reduced regulatory scrutiny. As shown there, a similar ambiguity in ranking the procyclicality of Basel I and Basel II may emerge.

In Agénor, Alper, and Pereira da Silva (2009), we have also embedded the financial features of the present model in a dynamic optimizing framework, in line with other contributions such as Markovic (2006), Aguiar and Drumond (2007), and Meh and Moran (2010). This allows us to account for the fact that, in practice, banks can and do issue stocks, hybrid debt capital instruments, and subordinated term debt instruments. In a dynamic perspective, capital requirement may also depend on the growth rate of assets; this would help banks to strengthen buffers in good times. In a dynamic setting, where equity is endogenous, there is also a possibility that the capital requirement can limit the bank’s ability to extend credit because increasing the capital base may be more costly than alternative funding sources at the margin (that is, as compared with the deposit base). This is the case if there is a liquidity premium. In Aguiar and Drumond (2007) for instance, households demand a liquidity premium to hold bank capital. This, combined with a standard financial accelerator effect, implies that introducing capital requirements significantly amplifies monetary policy shocks through a liquidity premium effect on the external finance premium faced by firms. This amplification effect is greater under Basel II than under Basel I regulatory rules. Determining the extent to which these results hold with the type of credit market imperfections highlighted in this paper is an important task for middle-income countries.

35The use of a model with proper micro foundations instead of postulated behavioral functions (no matter how plausible) would also mitigate the extent of the Lucas critique, which (taken literally) would invalidate a comparison across regulatory regimes.
References

Table 1
Variable Names and Definitions

<table>
<thead>
<tr>
<th>Variable</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Households</td>
<td></td>
</tr>
<tr>
<td>$BILL$</td>
<td>Currency held by households</td>
</tr>
<tr>
<td>C</td>
<td>Private expenditure</td>
</tr>
<tr>
<td>D</td>
<td>Bank deposits held by households</td>
</tr>
<tr>
<td>F_0^H</td>
<td>Household financial wealth (beginning of period)</td>
</tr>
<tr>
<td>π^a</td>
<td>Expected inflation rate</td>
</tr>
<tr>
<td>Firms</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Supply shock</td>
</tr>
<tr>
<td>I</td>
<td>Real investment</td>
</tr>
<tr>
<td>K_0</td>
<td>Capital stock (beginning of period)</td>
</tr>
<tr>
<td>N</td>
<td>Employment</td>
</tr>
<tr>
<td>P</td>
<td>Price of homogeneous good</td>
</tr>
<tr>
<td>Y</td>
<td>Aggregate output</td>
</tr>
<tr>
<td>W</td>
<td>Nominal wage</td>
</tr>
<tr>
<td>Commercial bank</td>
<td></td>
</tr>
<tr>
<td>E, E^R</td>
<td>Total, required bank equity</td>
</tr>
<tr>
<td>L^F</td>
<td>Bank loans (working capital and investment)</td>
</tr>
<tr>
<td>i_D, i_L</td>
<td>Bank interest rates, deposits and investment loans</td>
</tr>
<tr>
<td>θ_L</td>
<td>Risk premium on investment loans</td>
</tr>
<tr>
<td>RR</td>
<td>Required reserves</td>
</tr>
<tr>
<td>Central bank</td>
<td></td>
</tr>
<tr>
<td>L^B</td>
<td>Loans to commercial bank</td>
</tr>
<tr>
<td>MB</td>
<td>Monetary base</td>
</tr>
<tr>
<td>i_R</td>
<td>Policy or refinance rate</td>
</tr>
<tr>
<td>ρ</td>
<td>Capital adequacy ratio</td>
</tr>
<tr>
<td>σ</td>
<td>Risk weight on investment loans</td>
</tr>
<tr>
<td>μ</td>
<td>Required reserve ratio</td>
</tr>
</tbody>
</table>
Figure 1
Macroeconomic Equilibrium
with Nonbinding Capital Requirements
Figure 2
Negative Supply Shock with Nonbinding Capital Requirements
Figure 3
Increase in the Refinance Rate with Nonbinding Capital Requirements
Figure 4
Increase in the Capital Adequacy Ratio
with Nonbinding Capital Requirements
Figure 5
Macroeconomic Equilibrium with Binding Capital Requirements (Basel I Regime)

\[I = \frac{E}{P_{\sigma p}} \]
Figure 6
Negative Supply Shock with Binding Capital Requirements (Basel I Regime)
Figure 7
Increase in the Refinance Rate with Binding Capital Requirements (Basel I Regime)
Figure 8
Increase in Capital Adequacy Ratio
with Binding Capital Requirements
(Basel I Regime)
Figure 9
Macroeconomic Equilibrium with Binding Capital Requirements (Basel II Regime)
Figure 10
Negative Supply Shock with Binding Capital Requirements (Basel II Regime)
Figure 11
Increase in the Refinance Rate with Binding Capital Requirements (Basel II Regime)
Figure 12
Increase in Capital Adequacy Ratio with Binding Capital Requirements (Basel II Regime)
Appendix

To solve the model, we consider separately the cases of nonbinding \((\bar{E} > E^R)\) and binding \((\bar{E} = E^R)\) capital requirements. In both cases we also discuss separately the two regulatory regimes.

Nonbinding Capital Requirements

The first step is to solve for the financial equilibrium condition, that is, the risk premium equation (18). Using (5), (6), and (17), and setting \(\pi^a = 0\) for simplicity, this equation yields

\[
\theta_L = g_i \frac{(\kappa Y^s(P; i_R, A))}{\varepsilon^L (1 + \theta_L i_R)},
\]

which does not depend directly on \(\sigma\). Thus, this equilibrium condition is independent of the regulatory regime.

Solving the above expression for \(\theta_L\) yields

\[
\theta_L = FF(P; i_R, A), \tag{A1}
\]

where

\[
\Sigma = 1 + g_i (\frac{\kappa Y^s}{\varepsilon^L i_R h}) > 0,
\]

\[
FF_P = \frac{g_i (\kappa Y^s_i)}{\Sigma} < 0,
\]

\[
FF_{ir} = \frac{g_i \kappa}{\Sigma} \left\{ \frac{h Y^s_i - Y^s h' \varepsilon^L (1 + \theta_L)}{h^2} \right\} \leq 0,
\]

\[
FF_A = \frac{g_i \kappa Y^A}{\Sigma} < 0,
\]

and \(FF_p = 0\).

A rise in prices lowers the risk premium, because it stimulates (real) output and increases the effective value of firms’ collateral relative to the (real) demand for longer-term loans (see Figures 1 to 4).

An increase in the refinance rate raises the cost of funds for the bank, and this is “passed on” directly to borrowers. This lowers the demand for loans for both working capital needs and investment. In turn, the fall in investment raises the collateral ratio (which tends to lower the risk premium), whereas the fall in output tends to reduce that ratio (and therefore to raise the premium). We assume in the text that the net effect of an increase in \(i_R\) is to raise the premium \((FF_{ir} > 0)\); in turn, this requires that

\[
h Y^s_i - Y^s h' \varepsilon^L (1 + \theta_L) < 0,
\]

or equivalently, with \(1 + \theta_L = i_L / \varepsilon^L i_R\) from (17),

\[
\left| i_R Y^s_i / Y^s \right| > \left| i_L h' / h \right|,
\]

or that the elasticity of output with respect to the refinance rate be higher (in absolute terms) than the elasticity of investment with respect to the lending rate. The “collateral” effect
therefore dominates the “loan demand” effect. This condition may be quite appropriate for middle-income countries where bank loans are essential for short-term economic activity.

A positive supply shock raises output and the value of collateral, without affecting directly the level of investment; this tends to reduce the risk premium ($FF_A < 0$).

The second step is to solve the equilibrium condition of the goods market, (24). Using (5), (6), (12), (16), and (17), condition (24) can be written as, setting $\mu = \pi^a = 0$ and $\bar{W} = 1$

for simplicity,

$$Y^*(P; i_R, A) = \alpha_1 \frac{N^d(P; i_R, A)}{P} - \alpha_2 \varepsilon^D i_R f' \left\{ \frac{\bar{E}}{\sigma_R P h \varepsilon^L (1 + \theta_L) i_R} \right\}$$

$$+ \alpha_3 \left(\frac{F_H}{P} \right) + h \varepsilon^L (1 + \theta_L) i_R].$$

This expression can be solved for the risk premium as a function of the goods price. The exact solution depends now on the capital requirements regime.

Basel I regime, $\sigma = \sigma_R$

With $\sigma = \sigma_R$, we have

$$\theta_L = GG^1(P; i_R, A, \rho),$$

where

$$\Delta_1 = \left\{ 1 + \alpha_2 \varepsilon^D i_R f' \frac{\bar{E}}{\sigma_R P h^2} \right\} \varepsilon^L i_R h',$$

$$GG^1_p = \frac{1}{\Delta_1} \left\{ Y^*_p - \alpha_1 \frac{\alpha_1}{P^2} (N^d - P N^d_p) - \alpha_2 \varepsilon^D i_R f' \frac{\bar{E}}{\sigma_R P h^2} + \alpha_3 \left(\frac{F_H}{P^2} \right) \right\},$$

$$GG^1_{i_R} = \frac{1}{\Delta_1} \left\{ Y^*_i - \alpha_1 \frac{\alpha_1}{P} N^d - \alpha_2 \varepsilon^D f' + \frac{\alpha_2}{\sigma_R} \varepsilon^L f' \frac{E h'}{\sigma_R P h^2} + \varepsilon^L (1 + \theta_L) h' \right\},$$

$$GG^1_A = \frac{1}{\Delta_1} (Y^*_A - \alpha_1 \frac{\alpha_1}{P} N^d_A),$$

$$GG^1_p = - \frac{\alpha_2}{\Delta_1} \varepsilon^D i_R f' \frac{\bar{E}}{\sigma_R P h^2}.$$

In general, Δ_1 is ambiguous in sign. In the absence of a bank capital channel ($f' = 0$), or if the intertemporal substitution effect is not too strong (that is, α_2 small enough), we have $\Delta_1 < 0$. We assume that this is indeed the case in what follows.

The effect of an increase in prices on the risk premium, as measured by GG^1_P, can be decomposed as follows. A rise in prices tends to lower aggregate demand through a negative wealth effect on consumption. At the same time, it increases the nominal value of loans and thus capital requirements; the fall in the capital buffer raises the deposit rate, which (through intertemporal substitution) lowers consumption. However, the increase in P also boosts aggregate supply, by reducing the real (effective) wage, and may stimulate consumption, as a result of higher labor demand and distributed wage income.36 The net effect depends on

36 The net effect of distributed wage income on consumption depends on the sign of $P N^d_p - N^d$. Thus, a positive effect requires that $P N^d_p / N^d > 1$, or equivalently that the elasticity of labor demand with respect to prices be sufficiently high.
the shift in supply Y^s (which increases unambiguously) relative to aggregate demand (which depends on the behavior of private spending). It can readily be established that the supply effect always dominates the wage income effect. Given that consumption falls, an increase in prices creates excess supply at the initial level of investment. The risk premium must therefore fall to stimulate investment and restore equilibrium in the goods market. Thus, GG has a negative slope ($GG^*_1 < 0$, see Figures 1 to 4).

To establish this result more formally, first it can be shown that $Y^s - \alpha \lambda P^{\alpha-2}(N^d - PN^d) > 0$. Indeed, with $W = 1$, (3) and (4) yield $N^d = [\alpha AP/(1 + i_R)]^{1/(1-\alpha)}K_0$, and $Y^s = [\alpha AP/(1 + i_R)]^{\alpha/(1-\alpha)}K_0$. This implies that $N^d = N^d/ (1-\alpha)P$ and $Y^s = \alpha Y^s/ (1-\alpha)P$, so that $PN^d - N^d = \alpha N/(1-\alpha)$. Combining these last two expressions yields $Y^s - \alpha \lambda P^{\alpha-2}(PN^d - N^d) = \alpha(Y^s - \alpha L^{-1}N^d)/[(1 - \alpha)P]$. From the above results, it can also be established that $Y^s - \alpha \lambda P^{-1}N^d = K_0 \alpha [\alpha \lambda/(1-\alpha)]^1/[(1-\alpha)\alpha^{-1}(1 + i_R) - \alpha_1] > 0$, where the last inequality holds because $\alpha^{-1}(1 + i_R) > \alpha^{-1} > 1 > \alpha_1$, or equivalently $1 + i_R > \alpha \alpha_1$, given that $\alpha, \alpha_1 \in (0, 1)$. Now, given that

\[-\alpha \lambda P^\alpha f^\alpha f^\alpha (E \sigma_R^\alpha P^2 h + \alpha_3 \frac{\bar{F}^H}{P^2}) > 0,\]

the expression in brackets in the definition of GG^*_1 is also positive. And because $\Delta_1 < 0$, we indeed have $GG^*_1 < 0$.

An increase in the refinancing rate also has an ambiguous effect on the risk premium. First, it raises directly the deposit rate, which tends to lower consumption, as a result of the standard intertemporal effect; to maintain equilibrium in the goods market, investment must increase, and this in turn requires a fall in the risk premium. Second, by increasing directly the lending rate, it lowers investment; this tends to reduce capital requirements, thereby increasing the capital buffer, which in turn tends to lower the deposit rate and stimulate consumption. Third, it reduces also the supply of domestic goods (through its effect on the effective cost of labor, captured through Y^s) and labor income. The latter effect (captured by the term $\alpha_1 N^d_{ir}$) compounds the direct negative effect on aggregate demand. If the capital buffer effect on consumption is so strong that aggregate demand rises, the goods market will be characterized unambiguously by excess demand; if so, then, the risk premium must increase to further reduce investment ($GG^*_1 < 0$). But if the net effect on aggregate demand is negative (a sufficient condition for that being that the direct cost effect of i_R on i_D dominates the indirect capital buffer effect), then both aggregate supply and aggregate demand fall, and the risk premium may either increase or fall to maintain equilibrium in the goods market.

In the absence of any intertemporal effect ($\alpha_2 = 0$), the direct and indirect effects of i_R on i_D do not operate, but the result may still be ambiguous. As before, the supply-side effect of i_R dominates the demand-side wage income effect, that is, $Y^s_{ir} > \alpha_1 N^d_{ir}/P$. Thus, because investment falls, both aggregate demand and aggregate supply fall. If aggregate supply falls by less (as can be expected in the short run), the risk premium will need to increase to dampen investment and eliminate excess demand ($GG^*_1 < 0$). Alternatively, it will have to fall ($GG^*_1 < 0$). Both cases are illustrated in Figure 3.

A positive supply shock raises output and wage income. Given that the supply-side effect dominates the demand-side effect ($Y^s_A > \alpha_1 N^d_A/P$), to eliminate the excess supply of goods at the initial level of prices necessitates an increase in aggregate demand, and this in turn requires a fall in the risk premium to stimulate investment ($GG^*_A < 0$).
An increase in the capital adequacy ratio lowers the capital buffer and therefore raises the deposit rate, which in turn lowers consumption. To eliminate the excess supply of goods at the prevailing price, the risk premium must fall to stimulate investment \((GG^{1}_\rho < 0 \).

To determine the general equilibrium effects of shocks, equations (A1) and (A3) must be solved simultaneously for \(\theta_L \) and \(P \). The equilibrium response to each shock can also be evaluated in the same way; for instance, the solution of a shock to \(A \) is

\[
\begin{bmatrix}
1 & -FF_p \\
1 & -GG^1_p
\end{bmatrix}
\begin{bmatrix}
d\theta_L \\
dP
\end{bmatrix} =
\begin{bmatrix}
FF_A \\
GG^1_A
\end{bmatrix}
dA,
\]

which gives

\[
\frac{d\theta_L}{dA} = \frac{FF_A GG^1_p - GG^1_A FF_p}{FF_p - GG^1_p}, \quad \frac{dP}{dA} = \frac{FF_A - GG^1_A}{FF_p - GG^1_p}.
\]

Dynamic stability requires the slope of \(GG^1 \) to be steeper than the slope of \(FF \) (see Agénor and Montiel (2008a)); in turn, this imposes \(|GG^1_p| > |FF_p|\). Thus, \(FF_p - GG^1_p > 0 \). However, \(GG^1_A FF_p - FF_A GG^1_p \) is ambiguous, so \(\frac{d\theta_L}{dA} \leq 0 \). Similarly, \(GG^1_A - FF_A \) is ambiguous, so \(\frac{dP}{dA} \leq 0 \) as well. A shock to \(\rho \), by contrast, yields

\[
\begin{bmatrix}
1 & -FF_p \\
1 & -GG^1_p
\end{bmatrix}
\begin{bmatrix}
d\theta_L \\
dP
\end{bmatrix} =
\begin{bmatrix}
0 \\
GG^1_p
\end{bmatrix}
dA,
\]

which implies

\[
\frac{d\theta_L}{d\rho} = \frac{GG^1_p FF_p}{FF_p - GG^1_p} > 0, \quad \frac{dP}{d\rho} = -\frac{GG^1_p}{FF_p - GG^1_p} < 0.
\]

Similar results can be established for a shock to \(i_R \).

Basel II regime, \(\sigma = \sigma(\theta_L) \)

With \(\sigma = \sigma(\theta_L) \), and assuming that the initial value of \(\sigma \) is also \(\sigma_R \) in this case, the solution of the goods market equilibrium condition (A2) now yields

\[
\theta_L = G^2(G; i_R, A, \rho), \quad (A4)
\]

where

\[
\Delta_2 = \varepsilon^L i_R h' + \alpha_2 \varepsilon^D i_R f' \frac{\bar{E}}{\rho P(\sigma_R h)^2} [\sigma' h + \sigma_R \varepsilon^L i_R h'],
\]

\[
GG^2_j = GG^1_j \left(\frac{\Delta_1}{\Delta_2} \right), \quad j = P, i_R, A, \rho.
\]

Again, in the absence of the bank capital channel \((f' = 0)\), or if the intertemporal substitution effect is not too strong (that is, \(\alpha_2 \) small enough), we will also have \(\Delta_2 < 0 \).

If this condition is satisfied, the sign of the derivatives given earlier does not change. However, it can also be established that, given that \(\sigma' > 0, |\Delta_2| > |\Delta_1| \), which implies that curve \(G^2 G^2 \) is now flatter (see Figure 1).

Equations (A1) and (A3), or (A1) and (A4), can be solved simultaneously for the equilibrium values of the risk premium and the price level under non-binding capital requirements, and to analyze the impact of shocks on these variables, as illustrated above.

\[\text{In fact, } \Delta_1 < 0 \text{ implies that } \Delta_2 < 0.\]
Binding Capital Requirements

Under a binding capital requirement \(\bar{E} = E^R \), and given that \(f(1) = 1 \), the capital buffer effect disappears; however, the goods market equilibrium condition is still dependent on the regulatory regime. Indeed, from (29), \(I = \bar{E}/P\sigma \rho \). Substituting this expression, together with (12) and (16) in condition (24) yields, instead of (A2),

\[
Y^s(P; i_R, A) = \alpha_1 \frac{N^d(P; i_R, A)}{P} - \alpha_2 \varepsilon^D i_R \tag{A5}
\]

\[
+ \alpha_3 \left(\frac{F_H}{P} \right) + \frac{\bar{E}}{P\sigma \rho},
\]

whose solution depends on the regulatory regime.

Regarding the financial equilibrium condition, and as noted in the text, under a binding capital requirement the risk premium is determined by combining (30) and (31):

\[
\theta_L = \left(\frac{1}{\varepsilon^L i_R} \right) h^{-1} \left(\frac{\bar{E}}{P\sigma \rho} \right) - 1, \tag{A6}
\]

whose solution also depends on the regulatory regime.

Basel I regime, \(\sigma = \sigma_R \)

If \(\sigma = \sigma_R \), equation (A5) is independent of \(\theta_L \). The GG curve is now a vertical line at

\[
P = GG^3(i_R, A, \rho),
\]

where

\[
\Delta_3 = Y^s_R + \frac{\alpha_1}{P^2} (N^d - PN^d_R) + \alpha_3 \left(\frac{F_H}{P^2} \right) + \frac{\bar{E}}{P^2 \sigma \rho},
\]

\[
GG^3_{i_R} = \frac{1}{\Delta_3} \left\{ \frac{\alpha_1}{P} N^d_{i_R} - Y^s_R - \alpha_2 \varepsilon^D \right\},
\]

\[
GG^3_A = \frac{1}{\Delta_3} \left(\frac{\alpha_1}{P} N^d_A - Y^s_A \right),
\]

\[
GG^3_\rho = - \frac{1}{\Delta_3} \left(\frac{\bar{E}}{P^2 \sigma \rho^2} \right).
\]

As before, it can be establish that \(Y^s_R + \alpha_1 P^{-2} (N^d - PN^d_R) > 0 \); given that \(\alpha_3 P^{-2} F_H + \bar{E}/P^2 \sigma \rho > 0 \), we have \(\Delta_3 > 0 \). However, even so the effect of \(i_R \) is ambiguous. On the one hand, an increase in the refinance rate induces consumers to spend less today; on the other, the increase in the effective cost of labor depresses output—which lowers labor income and thus consumption. Thus, both aggregate supply and demand fall (as a result only of a drop in consumption, given that investment does not change).\(^{38}\) If aggregate supply falls by less (more), the price level will need to increase (fall) to dampen investment and eliminate excess demand (supply); thus \(GG^3_{i_R} > 0 \) \((GG^3_{i_R} < 0) \). Both cases are illustrated in Figure 7.

\(^{38}\)In the absence of any intertemporal effect \((\alpha_2 = 0) \), the assumption \(\alpha > \alpha_1 \) is sufficient to ensure that \(GG^3_{i_R} < 0 \).
A positive supply shock raises excess supply and requires a fall in the price level to stimulate consumption (through the wealth effect) and investment ($GG^3_A < 0$). An increase in the capital adequacy ratio lowers investment and requires also a lower price level to offset the impact on investment, stimulate consumption, and reduce output ($GG^3_P < 0$).

Regarding the financial market equilibrium condition (A6), under Basel I we have

$$\theta_L = FF^3(P; i_R, \sigma_R, \rho),$$

(A7)

where

$$FF^3_P = -\frac{1}{\varepsilon L_i R} h^{-1}(\frac{E}{P^2 \sigma_R \rho}) > 0,$$

$$FF^3_{iR} = -\frac{h^{-1}}{(\varepsilon L_i R)^2} < 0,$$

$$FF^3_\rho = -\frac{1}{\varepsilon L_i R} h^{-1}(\frac{E}{P^2 \sigma_R \rho}) > 0.$$

An increase in the price level raises the value of investment; with a binding (nominal) capital requirement, real investment must fall. In turn, this requires a higher risk premium ($FF^3_P > 0$, see Figures 5 to 8). An increase in the refinace rate exerts a direct negative effect on real investment; with a binding capital requirement and a given price level, the risk premium must fall to offset this effect and keep investment at its initial value ($FF^3_{iR} < 0$). An increase in the capital adequacy ratio requires real investment to fall given the capital requirement, and this in turn entails an increase in the risk premium ($FF^3_\rho > 0$). A supply shock no longer affects directly the premium, given that collateral does not play any direct role ($FF^3_A = 0$).

Basel II regime, $\sigma = \sigma(\theta_L)$

Under the Basel II regime, the solution of (A5) can be written in a form similar to (A3):

$$\theta_L = GG^4(P; i_R, A, \rho),$$

where

$$\Delta_4 = -\frac{\bar{E} \sigma^*}{P^2 \sigma_R \rho^2} < 0,$$

$$GG^4_P = \frac{1}{\Delta_4} \left\{ Y^s + \frac{\alpha_1}{P^2} (N^d - P N^d_P) + \alpha_3 (\frac{F^H_0}{P^2}) + \frac{\bar{E}}{P^2 \sigma_R \rho} \right\} = \frac{\Delta_3}{\Delta_4},$$

$$GG^4_{iR} = \frac{1}{\Delta_4} (Y^s_{iR} - \frac{\alpha_1}{P} N^d_{iR} - \alpha_2 \varepsilon^D),$$

$$GG^4_A = \frac{1}{\Delta_4} (Y^s_A - \frac{\alpha_1}{P} N^d_A) < 0,$$

$$GG^4_\rho = \frac{1}{\Delta_4} \left(\frac{\bar{E}}{P^2 \sigma_R \rho^2}\right) < 0.$$

Given that $\Delta_3 > 0$ and $\Delta_4 < 0$, we have $GG^4_P < 0$ (see Figures 9 to 12). Thus, an increase in the price level, which lowers consumption and investment, requires a lower risk premium to raise investment back. An increase in i_R also has ambiguous effects, for reasons
similar to those discussed before; in Figure 11, we consider both $GG_{iR}^4 < 0$ and $GG_{iR}^4 > 0$. A positive supply shock creates again excess supply, which requires a reduction in the risk premium to lower the risk weight and “relax” the binding capital requirement, stimulate investment, and restore equilibrium in the goods market ($GG_A^4 < 0$). An increase in the capital adequacy ratio “tightens” the capital requirement, forcing a fall in investment—and therefore an offsetting drop in the risk premium ($GG_p^4 < 0$).

From the financial market equilibrium condition (A6), under Basel II, we now have

$$\theta_L = FF^4(P; i_R, \rho), \quad (A8)$$

where

$$\Sigma_4 = 1 + \left(\frac{1}{\varepsilon^L_{i_R}} \right) h^{-\mu} \left(\frac{E}{P^2 \sigma_R \rho^2} \right) \sigma' \leq 0,$$

$$FF_P^4 = - \frac{1}{\Sigma_4} \left(\frac{1}{\varepsilon^L_{i_R}} \right) h^{-\mu} \left(\frac{E}{P^2 \sigma_R \rho^2} \right) = \frac{FF_P^3}{\Sigma_4},$$

$$FF_{iR}^4 = - \frac{h^{-1}}{\Sigma_4 (\varepsilon^L_{i_R})^2} = \frac{FF_{iR}^3}{\Sigma_4},$$

$$FF_p^4 = - \frac{1}{\Sigma_4} \left(\frac{1}{\varepsilon^L_{i_R}} \right) h^{-\mu} \left(\frac{E}{P \sigma_R \rho^2} \right) = \frac{FF_p^3}{\Sigma_4},$$

and $FF_A^4 = 0$.

Assuming that $\Sigma_4 > 0$ (or equivalently that σ' is not too large) implies that $FF_P^4 > 0$ (see Figures 9 to 12), $FF_{iR}^4 < 0$, and $FF_p^4 > 0$, as under the Basel I regime. In addition, we also have $|\Sigma_4| < 1$; now the slope of FF is steeper than under Basel I, or equivalently $|FF_P^4| > |FF_P^3|$.
1 Implementing Inflation Targeting in Brazil
Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
Jul/2000

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
Eduardo Lundberg
Monetary Policy and Banking Supervision Functions on the Central Bank
Eduardo Lundberg
Jul/2000

3 Private Sector Participation: a Theoretical Justification of the Brazilian Position
Sérgio Ribeiro da Costa Werlang
Jul/2000

4 An Information Theory Approach to the Aggregation of Log-Linear Models
Pedro H. Albuquerque
Jul/2000

5 The Pass-Through from Depreciation to Inflation: a Panel Study
Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
Jul/2000

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks
José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira
Jul/2000

7 Leading Indicators of Inflation for Brazil
Marcelle Chauvet
Sep/2000

8 The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
José Alvaro Rodrigues Neto
Sep/2000

9 Estimating Exchange Market Pressure and Intervention Activity
Emanuel-Werner Kohlscheen
Nov/2000

Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flóres Júnior
Mar/2001

11 A Note on the Efficient Estimation of Inflation in Brazil
Michael F. Bryan and Stephen G. Cecchetti
Mar/2001

12 A Test of Competition in Brazilian Banking
Márcio I. Nakane
Mar/2001
<table>
<thead>
<tr>
<th></th>
<th>Título</th>
<th>Autor</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nicías Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisio Araújo and Márzia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getulio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo and Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e
do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza
and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfouri Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de
Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest
Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros
Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmani
Teixeira de C. Guillen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – uma
Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções
Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das
Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency
Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
76 Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Jul/2003

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
Out/2003

81 Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Claudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
Mar/2004

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbosa
May/2004

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
Maio/2004

87 Mercado de Crédito: uma Análise Econômétrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Bank Privatization and Productivity: Evidence for Brazil</td>
<td>Márcio I. Nakane and Daniela B. Weintraub</td>
<td>Dec/2004</td>
</tr>
<tr>
<td>92</td>
<td>Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil</td>
<td>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>93</td>
<td>Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial</td>
<td>Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Abr/2005</td>
</tr>
<tr>
<td>95</td>
<td>Comment on Market Discipline and Monetary Policy by Carl Walsh</td>
<td>Maurício S. Bugarin and Fábia A. de Carvalho</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>96</td>
<td>O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina</td>
<td>Anthero de Moraes Meirelles</td>
<td>Ago/2005</td>
</tr>
<tr>
<td>100</td>
<td>Targets and Inflation Dynamics</td>
<td>Sérgio A. L. Alves and Waldyr D. Areosa</td>
<td>Oct/2005</td>
</tr>
<tr>
<td>101</td>
<td>Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates</td>
<td>Marcelo Kfoury Muinhos and Márcio I. Nakane</td>
<td>Mar/2006</td>
</tr>
<tr>
<td>102</td>
<td>Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans</td>
<td>Ana Carla A. Costa and João M. P. de Mello</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>103</td>
<td>The Effect of Adverse Supply Shocks on Monetary Policy and Output</td>
<td>Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva</td>
<td>Apr/2006</td>
</tr>
</tbody>
</table>
104 Extração de Informação de Opções Cambiais no Brasil
Eui Jung Chang e Benjamin Miranda Tabak
Abr/2006

105 Representing Roommate's Preferences with Symmetric Utilities
José Alvaro Rodrigues Neto
Apr/2006

106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
May/2006

107 Demand for Bank Services and Market Power in Brazilian Banking
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
Jun/2006

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais
Eduardo A. S. Rodrigues, Victório Chu, Leonardo S. Alencar and Tony Takeda
Jun/2006

109 The Recent Brazilian Disinflation Process and Costs
Alexandre A. Tombini and Sergio A. Lago Alves
Jun/2006

110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
Jul/2006

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira and Myrian Beatriz Eiras das Neves
Jul/2006

112 Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets
Angelo Marsiglia Fasolo
Jul/2006

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil
Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro
Ago/2006

114 The Inequality Channel of Monetary Transmission
Marta Areosa and Waldyr Areosa
Aug/2006

115 Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
Sep/2006

116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Joint Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Josète Florencio dos Santos
Sep/2006

117 An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak
Sep/2006

118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint
Aloísio P. Araújo and José Valentim M. Vicente
Oct/2006
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(a/s)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>120</td>
<td>Forecasting Interest Rates: an Application for Brazil</td>
<td>Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak</td>
<td>Oct/2006</td>
</tr>
<tr>
<td>121</td>
<td>The Role of Consumer’s Risk Aversion on Price Rigidity</td>
<td>Sergio A. Lago Alves and Mirta N. S. Bugarin</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>123</td>
<td>A Neoclassical Analysis of the Brazilian “Lost-Decades”</td>
<td>Flávia Mourão Graminho</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>125</td>
<td>Herding Behavior by Equity Foreign Investors on Emerging Markets</td>
<td>Barbara Alemanni and José Renato Haas Ornelas</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>126</td>
<td>Risk Premium: Insights over the Threshold</td>
<td>José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>128</td>
<td>Term Structure Movements Implicit in Option Prices</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>129</td>
<td>Brazil: Taming Inflation Expectations</td>
<td>Afonso S. Bevilaqua, Mário Mesquita and André Minella</td>
<td>Jan/2007</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>136</td>
<td>Identifying Volatility Risk Premium from Fixed Income Asian Options</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>May/2007</td>
</tr>
<tr>
<td>137</td>
<td>Monetary Policy Design under Competing Models of Inflation Persistence</td>
<td>Solange Gouvea e Abhijit Sen Gupta</td>
<td>May/2007</td>
</tr>
<tr>
<td>140</td>
<td>Inflation Targeting, Credibility and Confidence Crises</td>
<td>Rafael Santos and Aloísio Araújo</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>141</td>
<td>Forecasting Bonds Yields in the Brazilian Fixed income Market</td>
<td>Jose Vicente and Benjamin M. Tabak</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>142</td>
<td>Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall</td>
<td>Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski and Renato da Silva Carvalho</td>
<td>Ago/2007</td>
</tr>
<tr>
<td>143</td>
<td>Price Rigidity in Brazil: Evidence from CPI Micro Data</td>
<td>Solange Gouvea</td>
<td>Sep/2007</td>
</tr>
<tr>
<td>144</td>
<td>The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options</td>
<td>Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>145</td>
<td>The Stability-Concentration Relationship in the Brazilian Banking System</td>
<td>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>146</td>
<td>Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial</td>
<td>Caio Almeida, Romeu Gomes, André Leite e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>148</td>
<td>Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial</td>
<td>Felipe Pinheiro, Caio Almeida e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>149</td>
<td>Joint Validation of Credit Rating PDs under Default Correlation</td>
<td>Ricardo Schechtman</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>150</td>
<td>A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>151</td>
<td>Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>152</td>
<td>Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>153</td>
<td>Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>154</td>
<td>Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>Does Curvature Enhance Forecasting?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>156</td>
<td>Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>157</td>
<td>Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>158</td>
<td>Characterizing the Brazilian Term Structure of Interest Rates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>159</td>
<td>Behavior and Effects of Equity Foreign Investors on Emerging Markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td>160</td>
<td>The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>161</td>
<td>Evaluating Value-at-Risk Models via Quantile Regressions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>162</td>
<td>Balance Sheet Effects in Currency Crises: Evidence from Brazil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>163</td>
<td>Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case</td>
<td></td>
<td></td>
</tr>
<tr>
<td>164</td>
<td>Foreign Banks’ Entry and Departure: the recent Brazilian experience (1996-2006)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>165</td>
<td>Avaliação de Opções de Troca e Opções de Spread Européias e Americanas</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Authors:

- Roberta Blass Staub and Geraldo da Silva e Souza
- Eduardo José Araújo Lima and Benjamin Miranda Tabak
- Fernando N. de Oliveira and Walter Novaes
- Jaqueline Terra Moura Marins
- Adriana Soares Sales and Maria Tannuri-Pianto
- Caio Almeida, Romeu Gomes, André Leite and José Vicente
- Sérgio Mikio Koyama e Márcio I. Nakane
- Tito Nícias Teixeira da Silva Filho
- Osmani T. Guillen and Benjamin M. Tabak
- Barbara Alemanni and José Renato Haas Ornelas
- Fábia A. de Carvalho and Cyntia F. Azevedo
- Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton
- Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes
- Tito Nícias Teixeira da Silva Filho
- Pedro Fachada
- Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo

Publication Dates:

- Oct/2007
- Nov/2007
- Dec/2007
- Dez/2007
- Dec/2007
- Jan/2008
- Feb/2008
- Feb/2008
- Feb/2008
- Feb/2008
- Feb/2008
- Apr/2008
- May/2008
- Jun/2008
- Jul/2008
<table>
<thead>
<tr>
<th>166</th>
<th>Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study</th>
<th>Jul/2008</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fernando de Holanda Barbosa and Tito Nicías Teixeira da Silva Filho</td>
<td></td>
</tr>
<tr>
<td>167</td>
<td>O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras</td>
<td>Jul/2008</td>
</tr>
<tr>
<td></td>
<td>Clodoaldo Aparecido Annibal</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td>An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks</td>
<td>Jul/2008</td>
</tr>
<tr>
<td></td>
<td>Wenersamy Ramos de Alcântara</td>
<td></td>
</tr>
<tr>
<td>169</td>
<td>Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas</td>
<td>Jul/2008</td>
</tr>
<tr>
<td></td>
<td>Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar</td>
<td></td>
</tr>
<tr>
<td>170</td>
<td>Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação</td>
<td>Jul/2008</td>
</tr>
<tr>
<td></td>
<td>Adriana Soares Sales</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td>Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil</td>
<td>Ago/2008</td>
</tr>
<tr>
<td></td>
<td>Sérgio Mikio Koyama e Márcio Issao Nakane</td>
<td></td>
</tr>
<tr>
<td>172</td>
<td>Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap</td>
<td>Aug/2008</td>
</tr>
<tr>
<td></td>
<td>Marta Areosa</td>
<td></td>
</tr>
<tr>
<td>173</td>
<td>Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions</td>
<td>Aug/2008</td>
</tr>
<tr>
<td></td>
<td>Eduardo José Araújo Lima and Benjamin Miranda Tabak</td>
<td></td>
</tr>
<tr>
<td>174</td>
<td>Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate</td>
<td>Aug/2008</td>
</tr>
<tr>
<td></td>
<td>Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi</td>
<td></td>
</tr>
<tr>
<td>175</td>
<td>Evaluating Asset Pricing Models in a Fama-French Framework</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone</td>
<td></td>
</tr>
<tr>
<td>176</td>
<td>Fiat Money and the Value of Binding Portfolio Constraints</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez</td>
<td></td>
</tr>
<tr>
<td>177</td>
<td>Preference for Flexibility and Bayesian Updating</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Gil Riella</td>
<td></td>
</tr>
<tr>
<td>178</td>
<td>An Econometric Contribution to the Intertemporal Approach of the Current Account</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Wagner Piazza Gaglianone and João Victor Issler</td>
<td></td>
</tr>
<tr>
<td>179</td>
<td>Are Interest Rate Options Important for the Assessment of Interest Rate Risk?</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Caio Almeida and José Vicente</td>
<td></td>
</tr>
<tr>
<td>180</td>
<td>A Class of Incomplete and Ambiguity Averse Preferences</td>
<td>Dec/2008</td>
</tr>
<tr>
<td></td>
<td>Leandro Nascimento and Gil Riella</td>
<td></td>
</tr>
<tr>
<td>181</td>
<td>Monetary Channels in Brazil through the Lens of a Semi-Structural Model</td>
<td>Apr/2009</td>
</tr>
<tr>
<td></td>
<td>André Minella and Nelson F. Souza-Sobrinho</td>
<td></td>
</tr>
</tbody>
</table>
182 Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta
Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez
Abr/2009

183 Ganhos da Globalização do Capital Acionário em Crises Cambiais
Marcio Janot e Walter Novaes
Abr/2009

184 Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization
José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak
Apr/2009

185 Market Forecasts in Brazil: performance and determinants
Fabia A. de Carvalho and André Minella
Apr/2009

186 Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas
André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente
Maio/2009

187 The Influence of Collateral on Capital Requirements in the Brazilian Financial System: an approach through historical average and logistic regression on probability of default
Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito
Jun/2009

188 Pricing Asian Interest Rate Options with a Three-Factor HJM Model
Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion
Jun/2009

189 Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks
Marcos Souto, Benjamin M. Tabak and Francisco Vazquez
Jul/2009

190 Concentração Bancária, Lucratividade e Risco Sistêmico: uma abordagem de contágio indireto
Bruno Silva Martins e Leonardo S. Alencar
Set/2009

191 Concentração e Inadimplência nas Carteiras de Empréstimos dos Bancos Brasileiros
Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub
Set/2009

192 Inadimplência do Setor Bancário Brasileiro: uma avaliação de suas medidas
Clodoaldo Aparecido Annibal
Set/2009

193 Loss Given Default: um estudo sobre perdas em operações prefixadas no mercado brasileiro
Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves
Set/2009

194 Testes de Contágio entre Sistemas Bancários – A crise do subprime
Benjamin M. Tabak and Manuela M. de Souza
Set/2009

195 From Default Rates to Default Matrices: a complete measurement of Brazilian banks’ consumer credit delinquency
Ricardo Schechtman
Oct/2009
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>The role of macroeconomic variables in sovereign risk</td>
<td>Marco S. Matsumura and José Valentim Vicente</td>
<td>Oct/2009</td>
</tr>
<tr>
<td>197</td>
<td>Forecasting the Yield Curve for Brazil</td>
<td>Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak</td>
<td>Nov/2009</td>
</tr>
<tr>
<td>198</td>
<td>Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise</td>
<td>Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio</td>
<td>Nov/2009</td>
</tr>
<tr>
<td></td>
<td>segundo a regressão de componentes principais</td>
<td>Bessada Lion e Cláudio Henrique Barbedo</td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>Delegated Portfolio Management and Risk Taking Behavior</td>
<td>José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda</td>
<td>Dec/2009</td>
</tr>
<tr>
<td></td>
<td>Tabak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Efeitos da Globalização na Inflação Brasileira</td>
<td>Rafael Santos e Márcia S. Leon</td>
<td>Jan/2010</td>
</tr>
<tr>
<td>202</td>
<td>Considerações sobre a Atuação do Banco Central na Crise de 2008</td>
<td>Mário Mesquita and Mario Torós</td>
<td>Mar/2010</td>
</tr>
<tr>
<td>203</td>
<td>Hiato do Produto e PIB no Brasil: uma Análise de Dados em</td>
<td>Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior</td>
<td>Abrt/2010</td>
</tr>
<tr>
<td></td>
<td>Tempo Real</td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Fiscal and monetary policy interaction: a simulation based analysis</td>
<td>Marcos Valli and Fabia A. de Carvalho</td>
<td>Apr/2010</td>
</tr>
<tr>
<td></td>
<td>of a two-country New Keynesian DSGE model with heterogeneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>households</td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Model selection, estimation and forecasting in VAR models with short</td>
<td>George Athanasopoulos, Osmani Teixeira de Carvalho Guilleté, João</td>
<td>Apr/2010</td>
</tr>
<tr>
<td></td>
<td>run and long-run restrictions</td>
<td>Victor Issler and Farshid Vahid</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Fluctuation Dynamics in US interest rates and the role of monetary</td>
<td>Daniel Oliveira Cajueiro and Benjamin M. Tabak</td>
<td>Apr/2010</td>
</tr>
<tr>
<td></td>
<td>policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td>Brazilian Strategy for Managing the Risk of Foreign Exchange Rate</td>
<td>Antonio Francisco A. Silva Jr.</td>
<td>Apr/2010</td>
</tr>
<tr>
<td></td>
<td>Exposure During a Crisis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>208</td>
<td>Correlação de default: uma investigação empírica de créditos de</td>
<td>Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline</td>
<td>Maio/2010</td>
</tr>
<tr>
<td></td>
<td>varejo no Brasil</td>
<td>Terra Moura Marins and Myrian Beatriz Eiras das Neves</td>
<td></td>
</tr>
<tr>
<td>209</td>
<td>Produção Industrial no Brasil: uma análise de dados em tempo real</td>
<td>Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior</td>
<td>Maio/2010</td>
</tr>
<tr>
<td>210</td>
<td>Determinants of Bank Efficiency: the case of Brazil</td>
<td>Patricia Tecles and Benjamin M. Tabak</td>
<td>May/2010</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>211</td>
<td>Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002</td>
<td>Sandro C. Andrade and Emanuel Kohlscheen</td>
<td>Aug/2010</td>
</tr>
<tr>
<td>212</td>
<td>The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges</td>
<td>Tito Nicias Teixeira da Silva</td>
<td>Sep/2010</td>
</tr>
<tr>
<td>213</td>
<td>Estimation of Economic Capital Concerning Operational Risk in a Brazilian banking industry case</td>
<td>Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>214</td>
<td>Do Inflation-linked Bonds Contain Information about Future Inflation?</td>
<td>José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>215</td>
<td>The Effects of Loan Portfolio Concentration on Brazilian Banks’ Return and Risk</td>
<td>Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>218</td>
<td>The Role of Interest Rates in the Brazilian Business Cycles</td>
<td>Nelson F. Souza-Sobrinho</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>219</td>
<td>The Brazilian Interbank Network Structure and Systemic Risk</td>
<td>Edson Bastos e Santos and Rama Cont</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>221</td>
<td>Financial Instability and Credit Constraint: evidence from the cost of bank financing</td>
<td>Bruno S. Martins</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>223</td>
<td>Forecasting the Yield Curve with Linear Factor Models</td>
<td>Marco Shinobu Matsumura, Ajax Reynaldo Bello Moreira and José Valentim Machado Vicente</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>224</td>
<td>Emerging Floaters: pass-throughs and (some) new commodity currencies</td>
<td>Emanuel Kohlscheen</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>225</td>
<td>Expectativas Inflacionárias e Inflação Implicita no Mercado Brasileiro</td>
<td>Flávio de Freitas Val, Claudio Henrique da Silveira Barbedo e Marcelo Verdini Maia</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>226</td>
<td>A Macro Stress Test Model of Credit Risk for the Brazilian Banking Sector</td>
<td>Francisco Vazquez, Benjamin M. Tabak and Marcos Souto</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors/Editors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>227</td>
<td>Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo</td>
<td>Emanuel Kohlscheen</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>228</td>
<td>Forecasting Brazilian Inflation Using a Large Data Set</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Dec/2010</td>
</tr>
<tr>
<td>231</td>
<td>Capital Requirements and Business Cycles with Credit Market Imperfections</td>
<td>P. R. Agénor, K. Alper and L. Pereira da Silva</td>
<td>Jan/2011</td>
</tr>
<tr>
<td>233</td>
<td>Emerging Floaters: pass-throughs and (some) new commodity currencies</td>
<td>Emanuel Kohlscheen</td>
<td>Jan/2011</td>
</tr>
</tbody>
</table>