Capital Requirements and Business Cycles with Credit Market Imperfections
P. R. Agénor, K. Alper and L. Pereira da Silva
January, 2011
Capital Requirements and Business Cycles with Credit Market Imperfections*

P.-R. Agénor† K. Alper‡ L. Pereira da Silva§

Abstract

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and not necessarily reflect those of the Banco Central do Brasil.

The business cycle effects of bank capital regulatory regimes are examined in a New Keynesian model with credit market imperfections and a cost channel of monetary policy. Key features of the model are that bank capital increases incentives for banks to monitor borrowers, thereby reducing the probability of default, and excess capital generates benefits in terms of reduced regulatory scrutiny. Basel I- and Basel II-type regulatory regimes are defined, and the model is calibrated for a middle-income country. Simulations of a supply shock show that, depending on the elasticity that relates the repayment probability to the capital-loan ratio, a Basel II-type regime may be less procyclical than a Basel I-type regime.

Keywords: Financial regulation; Basel II; New Keynesian Model; Credit Market.

JEL Classification Numbers: E44, E51.

*We are grateful to seminar participants at the University of Manchester, the OECD, the Banque de France, and the European Central Bank for helpful comments. A more detailed version of this paper, containing Appendices A to C, is available upon request. Financial support from the World Bank is gratefully acknowledged.

†University of Manchester, United Kingdom, and Centre for Growth and Business Cycle Research.

‡Central Bank of Turkey.

§Deputy Governor of Banco Central do Brasil.
1 Introduction

The role of bank regulatory capital regimes in the propagation of business cycles has been the subject of much scrutiny since the introduction of the Basel I Accord in 1988. The adoption of the Basel II accord in 2004—which involves using mark-to-market pricing rules and setting capital requirements on the basis of asset quality rather than only on asset type—and more recently the global financial crisis triggered by the collapse of the U.S. subprime mortgage market have led to renewed focus by economists and policymakers alike on the procyclical effects of capital adequacy requirements. Indeed, it has been argued that because of the backward-looking nature of its risk estimates (based on past loss experience) Basel II induces banks to hold too little capital in economic upswings and too much during downturns. Thus, it does not restrain lending sufficiently in boom times, while it restrains it too much during recessions.

In a recent contribution, Agénor and Pereira da Silva (2009) argued that much of the analytical and empirical work devoted to the analysis of cyclicality of regulatory capital regimes focuses on industrialized countries and therefore does not account for the type of financial market imperfections that middle-income developing countries typically face. These include the predominance of banks in the financial structure, severe asymmetric information problems and a weak judiciary (which combine to encourage highly collateralized lending), the absence of financial safety nets, and a high degree of exposure and vulnerability to domestic and external shocks. In such an environment, capital buffers may play an important role by helping banks convey a signal to depositors regarding their commitment to screening and monitoring their borrowers; they may therefore raise deposits at a lower cost. This analysis shares some similarities with Chen (2001) and Meh and Moran (2010), where banks lack the incentive to monitor borrowers adequately, because monitoring is privately costly and any resulting increase in the risk of loan portfolios is mostly borne by investors (households). This moral hazard problem is mitigated when banks are well-capitalized and have a lot to lose from loan default. As a result, higher bank
capital increases the ability to raise loanable funds and facilitates bank lending. As shown by Agénor and Pereira da Silva (2009), if capital requirements are binding, the introduction of this channel implies that in general, it cannot be concluded \emph{a priori} whether Basel II is more procyclical than Basel I—in contrast to what a partial equilibrium analysis would imply.

Despite its intuitive appeal, the model presented in Agénor and Pereira da Silva (2009) is a static, nonoptimizing model. In this paper, we further examine the cyclical effects of capital adequacy requirements in the New Keynesian model with credit market imperfections developed by Agénor and Alper (2009). An appealing feature of that framework is its explicit focus on the type of distortions (as described earlier) that characterize the financial structure in middle-income countries. It combines the cost and balance sheet channels of monetary policy with an explicit analysis of the link between collateralizable wealth and bank pricing behavior.\footnote{In turn, the models in Agénor and Alper (2009) and Agénor and Pereira da Silva (2009) build on the static framework with monopolistic banking and full price flexibility developed by Agénor and Montiel (2008).}

Because borrowers' ability to repay is uncertain, banks issue only collateralized loans to reduce incentives to default and mitigate moral hazard problems; they therefore incorporate a risk premium in lending rates. At the prevailing lending rate, the supply of funds by financial intermediaries is perfectly elastic. Moreover, the central bank fixes a policy interest rate (the refinance rate, which therefore represents the marginal cost of funds), using a Taylor-type rule and its supply of liquidity to banks is perfectly elastic at the target interest rate. As a result, banks are unconstrained in their lending operations. Because changes in central bank liquidity affect the bond rate, changes in money supply play a significant role in determining the dynamics of real variables.

In an important departure, however, banks in the present setting are also subject to risk-based capital requirements; in order to compare Basel I-type and Basel II-type regimes, we assume that the risk weight on loans to firms (the only risky asset for banks) is either constant or a function of the repayment probability. This...
specification is based on the assumption that this probability is positively related
to the (perceived) quality of a loan. We determine the banks’ demand for capital,
based on the assumption that issuing liabilities is costly. This, together with the
capital regulation, causes deviations from the Modigliani-Miller framework.\(^2\) We
also assume that holding capital in excess of regulatory capital generates some
benefits—it represents a signal that the bank’s financial position is strong, and
reduces the intensity of regulatory scrutiny.

We incorporate a bank capital channel, but we do so in a different manner than
in Agénor and Pereira da Silva (2009). We assume here that holding capital induces
banks to screen and monitor borrowers more carefully.\(^3\) As a result, the repayment
probability tends to increase, which in turn leads to a lower cost of borrowing.
Thus, bank capital may also play a significant cyclical role—the higher it is, the
lower the lending rate, and the greater the expansionary effect on activity. This
effect is consistent with the evidence for the United States reported in Hubbard
et al. (2002), which suggests that—controlling for information costs, loan contract
terms, and borrower risk—the capital position of individual banks affects negatively
the interest rate at which their clients borrow, and in Coleman et al. (2002), who
found that capital-constrained banks charge higher spreads on their loans. It is also
consistent with the evidence reported in Fonseca et al. (2010) for both developed and
developing countries. Thus, although we calibrate our model for a middle-income
country, the “monitoring incentive” effect identified here is potentially of equal
relevance for industrial countries.

The main result of our simulations is that, contrary to intuition, a Basel II-type
regime may be less procyclical than a Basel I-type regime, once credit market
imperfections and general equilibrium effects are accounted for. In our model,
the repayment probability depends not only on the regulatory regime (through the

\(^2\)Without these assumptions, whether bank loans are financed with deposits or debt would be
irrelevant. See Miller (1988) for instance.

\(^3\)Standard results suggest that a bank’s incentive to monitor does not depend on its capital if
it can completely diversify the risk in its loan portfolio. However, the inability to fully diversify
risk away is one of the key features of banking in developing countries.
bank capital-loan ratio), but also on the cyclical position of the economy (which affects cash flows and profitability) and the collateral-loan ratio (which mitigates moral hazard). Following, say, a negative shock to output, a fall in the demand for production-related loans raises initially the collateral-loan ratio, which tends to increase the repayment probability. By contrast, the fall in cyclical output tends to lower the repayment probability. Both of these (conflicting) effects operate in the same manner under either regulatory regime. If the cyclical output effect dominates the collateral-loan effect on the repayment probability, and if the fall in that probability is sufficiently large, the Basel I-type regime mitigates the procyclicality inherent to the behavior of the repayment probability—because the cost of issuing equity falls as required capital falls; this in turn lowers the lending rate. In addition, while the bank capital-loan ratio does not change under a Basel I-type regime (given that risk weights are fixed), it may either increase or fall under a Basel II-type regime, because the risk weight is now directly related to the repayment probability. If again the cyclical output effect dominates the collateral-loan effect, so that the repayment probability falls, this will also lead to a higher risk weight and larger capital requirements—which will in turn tend to mitigate the initial drop in the repayment probability. If this “bank capital channel” is sufficiently strong, the Basel II-type regime may be less procyclical than the Basel I-type regime. Our numerical results suggest that this counterintuitive response can be obtained with relatively small and plausible changes in the sensitivity of the repayment probability to the bank capital-loan ratio.

The paper continues as follows. Section II presents the model. We keep the presentation as brief as possible, given that many of its ingredients are described at length in Agénor and Alper (2009); instead, we focus on how the model presented here departs from that paper, especially with respect to bank behavior and the regulatory capital regime. The equilibrium is characterized in Section III and some key features of the log-linearized version of the model are highlighted in Section IV. After a brief discussion of the calibrated parameters, we present the results of our
experiment—a temporary, negative supply shock, to highlight the implications of the
two regulatory regimes for the economy’s response to a recession. The last section
provides a summary of the main results and considers some possible extensions of
the analysis.

2 The Model

We consider a closed economy populated by five types of agents: a representative,
ininitely-lived household, a continuum of intermediate goods-producing (IGP) firms
of mass one and indexed by \(j \in (0, 1) \), a final-good-producing (FGP) firm—or,
equivalently, a retailer—a commercial bank, the government, and the central bank,
which also regulates the bank. The bank supplies credit to IGP firms to finance
their short-term working capital needs. Loans are partly secured by physical capital,
which is owned by the household but made available to IGP firms for use as collateral.
The supply of loans is perfectly elastic at the prevailing lending rate. To satisfy
capital regulations, it issues shares at the beginning of time \(t \). It pays interest on
household deposits and the liquidity that it borrows from the central bank, and
dividends on the shares that it issues. We assume that, at the end of each period,
the bank is liquidated and a new bank opens at the beginning of the next. Thus,
bank shares are redeemed at the end of each period, all its profits (including income
from the redemption of one-period government bonds) are distributed, and new
equity is issued at the beginning of the next period.

The maturity period of bank loans to IGP firms and the maturity period of
bank deposits by households is the same. In each period, loans are extended prior
to production and paid off at the end of the period, after the sale of output. The

\footnote{The working paper version of this article (available upon request) considers also a negative
government spending shock. Our results regarding the procyclicality of alternative regulatory
capital regimes also obtain with this shock.}

\footnote{Goodhart, Sunirand, and Tsomocos (2005) also adopt the assumption of bank liquidation in
a two-period framework. Thus, there is no intrinsic distinction between issuing equity or debt
from the perspective of the bank; capital consists therefore, in the Basel terminology, solely of
“Tier 2” capital. See Yilmaz (2009) for instance for a partial equilibrium model in which equity is
accumulated over time.}
household deposits funds in the bank prior to production and collects them at the end of the period, after the goods market closes. The central bank supplies liquidity elastically to the bank and sets its refinance rate in response to deviations of inflation from its target value and the output gap.

2.1 Household

The household consumes, holds financial assets (including securities issued by the bank), and supplies labor to IGP firms. It also owns the economy’s stock of physical capital and rents it to IGP firms. The objective of the household is to maximize

\[U_t = E_t \sum_{s=0}^{\infty} \beta^s \left\{ \left[C_{t+s} \right]^{1-\zeta-1} + \eta_N \ln(1 - N_{t+s}) + \eta_x \ln x_{t+s} \right\}, \]

where \(C_t \) is the consumption bundle, \(N_t = \int_0^1 N_j^t d_j \), the share of total time endowment (normalized to unity) spent working, with \(N_j^t \) denoting the proportion of labor hours provided to the intermediate-good producing firm \(j \), \(x_t \) a composite index of real monetary assets, and \(\beta \in (0, 1) \) the discount factor. \(E_t \) is the expectation operator conditional on the information available in period \(t \), \(\zeta > 0 \) is the intertemporal elasticity of substitution in consumption and \(\eta_N, \eta_x > 0 \).

The composite monetary asset is generated by combining real cash balances, \(m_t^H \), and real bank deposits, \(d_t \), through a Cobb-Douglas function:

\[x_t = (m_t^H)^\nu \cdot d_t^{1-\nu}, \]

where \(\nu \in (0, 1) \).

Nominal wealth of the household at the end of period \(t \), \(A_t \), is given by

\[A_t = M_t^H + D_t + B_t^H + P_t K_t + P_t^V V_t, \]

where \(P_t \) is the price of the final good, \(M_t^H = P_t m_t^H \) nominal cash holdings, \(D_t = P_t d_t \) nominal bank deposits, \(B_t^H \) holdings of one-period nominal government bonds, \(K_t \) the real stock of physical capital held by the household at the beginning of period \(t \), \(V_t \) the number of ownership shares issued by the bank, and \(P_t^V \) the nominal share
price. As noted earlier, equity shares are redeemed at the end of each period; this is quite convenient analytically, because it allows us to avoid distinguishing between equity stocks and flows.

The household enters period t with K_t real units of physical capital and M_{t-1}^H holdings of cash. It also collects principal plus interest on bank deposits at the rate contracted in $t-1$, $(1+i_{D_t}^t)D_{t-1}$, where $i_{D_t}^t$ is the interest rate on deposits, principal and interest payments on maturing government bonds, $(1+i_{B_t}^t)B_{t-1}^H$, where $i_{B_t}^t$ is the bond rate at $t-1$, as well as the value of redeemed shares and distributed dividends $(1+i_{V_t}^t)P_{t-1}^V V_{t-1}$, where $i_{V_t}^t$ is the nominal yield on equity shares.

At the beginning of the period, the household chooses the real levels of cash, deposits, equity capital, and bonds, and supplies labor and physical capital to intermediate goods-producing firms, for which it receives total real factor payment $r^K_t K_t + \omega_t N_t$, where r^K_t is the rental price of capital and $\omega_t = W_t/P_t$ the economy-wide real wage (with W_t denoting the nominal wage).

The household receives all the profits made by the IGP firms, $J_I^t = \int_0^1 \Pi_j^t dj$. In addition, it receives all the profits of the bank, J_B^t, which is liquidated at the end of the period. It also pays a lump-sum tax, whose real value is T_t, and purchases the final good for consumption and investment, in quantities C_t and I_t, respectively. Investment turns into capital available at the beginning of the next period, K_{t+1}.

The household’s end-of-period budget constraint is thus

$$M_{t}^H + D_{t} + B_{t}^H + P_{t}^V V_{t}$$

$$= P_t(r^K_t K_t + \omega_t N_t - T_t) + (1+i_{D_{t-1}}^t)D_{t-1} + (1+i_{B_{t-1}}^t)B_{t-1}^H + (1+i_{V_{t-1}}^t)P_{t-1}^V V_{t-1} + J_I^t + J_B^t - P_t(C_t + I_t) + M_{t-1}^H - \Theta_V P_t \frac{(z_t V_t^2)}{2},$$

where $z_t = P_t^V / P_t$ is the real equity price and the last term represents transactions costs (measured in terms of the price of the final good) associated with changes in the stock of equity, with $\Theta_V > 0$ denoting an adjustment cost parameter.

As noted below, the FGP firm makes zero profits.
The stock of capital at the beginning of period \(t + 1 \) is given by

\[
K_{t+1} = (1 - \delta)K_t + I_t - \frac{\Theta_K}{2} \left(\frac{K_{t+1}}{K_t} - 1 \right)^2 K_t,
\]

(5)

where \(\delta \in (0, 1) \) is a constant rate of depreciation and the last term is a capital adjustment cost function specified in standard fashion, with \(\Theta_K > 0 \) denoting an adjustment cost parameter.

Each household maximizes lifetime utility with respect to \(C_t, N_t, m_t^H, d_t, b_t^H = B_t^H/P_t, V_t, \) and \(K_{t+1} \), taking as given period-\(t \) variables as well as \(P_t, P_t^V, K_t, \) and \(T_t \). Let \(\pi_{t+1} = (P_{t+1} - P_t)/P_t \) denote the inflation rate; maximizing (1) subject to (2)-(5) yields the following solution:

\[
C_t^{-1/\kappa} = \beta E_t \left[(C_{t+1})^{-1/\kappa} \left(\frac{1 + i_t^B}{1 + \pi_{t+1}} \right) \right],
\]

(6)

\[
N_t = 1 - \frac{\eta_N(C_t)^{1/\kappa}}{\omega_t},
\]

(7)

\[
m_t^H = \frac{\eta_x \mu(C_t)^{1/\kappa}(1 + i_t^B)}{i_t^B},
\]

(8)

\[
d_t = \frac{\eta_x (1 - \nu)(C_t)^{1/\kappa}(1 + i_t^B)}{i_t^B - i_t^D},
\]

(9)

\[
-\lambda_t [1 + \Theta_K \left(\frac{K_{t+1}}{K_t} - 1 \right)] - \beta E_t \left\{ \lambda_{t+1} \left[\left(\frac{1 + i_t^B}{1 + \pi_{t+1}} \right) \right] - \Theta_K \lambda_t \frac{1 + i_t^D}{1 + \pi_{t+1}} \right\} = 0,
\]

(10)

\[
-\lambda_t + \beta E_t \left\{ \lambda_{t+1} \left(\frac{1 + i_t^V}{1 + \pi_{t+1}} \right) \right\} - \Theta_V \lambda_t z_t V_t = 0,
\]

(11)

where \(\lambda_t \) is the Lagrange multiplier associated with the budget constraint, together with the transversality condition

\[
\lim_{s \to \infty} E_{t+s} \lambda_{t+s}^{\beta^4} \left(\frac{x_{t+s}}{P_{t+s}} \right) = 0, \quad \text{for } x = m^H, K.
\]

(12)

Equation (6) is the standard Euler equation. Equation (7) relates labor supply positively to the real wage and negatively to consumption. Equation (8) relates the real demand for cash positively with consumption and negatively with the opportunity cost of holding money, measured by the interest rate on government bonds. Similarly, equation (9) relates the real demand for deposits positively with
consumption and the deposit rate, and negatively with the bond rate. Equation (10) can be rewritten as

$$E_t \left(\frac{1 + i^B_t}{1 + \pi_{t+1}} \right) = E_t \left\{ \left[\Theta_K \left(\frac{K_{ht+1}}{K_{ht}} - 1 \right) + 1 \right]^{-1} \left[1 - \delta + i^K_{t+1} - \frac{\Theta_K}{2} \left(\frac{\Delta K_{ht+2}^2}{K_{ht+1}^2} \right) \right] \right\},$$

(13)

where the left-hand side is the expected real return on bonds (that is, the opportunity cost of one unit of capital), and the right-hand side is the expected return on the last unit of physical capital invested (corrected for adjustment costs, incurred both in \(t \) and \(t + 1 \)).

Because \(\beta E_t(\lambda_{t+1}/\lambda_t) = E_t[(1 + \pi_{t+1})/(1 + i^B_t)] \), equation (11) yields

$$z_i V^d_t = \Theta_V^{-1} \left(i^V_t - i^B_t \right),$$

(14)

which shows that the demand for equity depends positively on its rate of return and negatively on the bond rate. In the particular case where \(\Theta_V \to 0 \), the household becomes indifferent between holding bank equity or government bonds, and \(i^V_t = i^B_t \).

2.2 Final Good Producer

The final good, \(Y_t \), is divided between private consumption, government consumption, and investment. It is produced by assembling a continuum of imperfectly substitutable intermediate goods \(Y_{jt} \), with \(j \in (0, 1) \):

$$Y_t = \left\{ \int_0^1 [Y_{jt}]^{(\theta-1)/\theta} dj \right\}^{\theta/(\theta-1)},$$

(15)

where \(\theta > 1 \) is the elasticity of demand for each intermediate good.

The FGP firm sells its output at a perfectly competitive price. Given the intermediate-goods prices \(P_{jt} \) and the final-good price \(P_t \), it chooses the quantities of intermediate goods, \(Y_{jt} \), that maximize its profits. The maximization problem of the FGP firm is thus

$$Y_{jt} = \arg \max P_t \left\{ \int_0^1 [Y_{jt}]^{(\theta-1)/\theta} dj \right\}^{\theta/(\theta-1)} - \int_0^1 P_{jt} Y_{jt} dj.$$
The first-order conditions yield
\[Y_{jt} = \left(\frac{P_{jt}}{P_t} \right)^{-\theta} Y_t, \quad \forall j \in (0, 1). \]
(16)

Imposing a zero-profit condition leads to the following final good price:
\[P_t = \left\{ \int_0^1 (P_{jt})^{1-\theta} \, dj \right\}^{1/(1-\theta)}. \]
(17)

2.3 Intermediate Good-Producing Firms

Each IGP firm \(j \) produces (using both labor and capital) a distinct, perishable good that is sold on a monopolistically competitive market. Each firm must also borrow to pay wages in advance, that is, before production and sales have taken place. Price adjustment is subject to quadratic costs, as in Rotemberg (1982).

Production technology involves constant returns in labor and capital:
\[Y_{jt} = A_t N_{jt}^{1-\alpha} K_{jt}^\alpha, \]
(18)

where \(N_{jt} \) is labor hours, \(\alpha \in (0, 1) \), and \(A_t \) a common technology shock, which follows the process
\[\ln A_t = \rho_A \ln A_{t-1} + \xi_t^A, \]
(19)

where \(\rho_A \in (0, 1) \) and \(\xi_t^A \sim N(0, \sigma_{\xi^A}) \).

Each firm \(j \) borrows the amount \(L_{jt}^F \) from the bank at the beginning of the period to pay wages in advance. The amount borrowed is therefore such that
\[L_{jt}^F = P_t \omega_t N_{jt}, \]
(20)

for all \(t \geq 0 \). Repayment of loans occurs at the end of the period, at the gross nominal rate \((1 + i_{jt}^L) \), where \(i_{jt}^L \) is the lending rate charged to firm \(j \).

As in Rotemberg (1982), IGP firms incur a cost in adjusting prices, of the form
\[PAC_i^j = \frac{\phi_F}{2} \left(\frac{P_{jt}}{\bar{\pi}^G P_{jt-1}} - 1 \right)^2 Y_t, \]
(21)

where \(\phi_F \geq 0 \) is the adjustment cost parameter (or, equivalently, the degree of price stickiness), \(\bar{\pi}^G = 1 + \bar{\pi} \) is the gross steady-state inflation rate, and \(Y_t \) aggregate output, defined in (15).
IGP firms are competitive in factor markets. Unit cost minimization yields the optimal capital-labor ratio as

\[
\frac{K_{jt}}{N_{jt}} = \left(\frac{\alpha}{1 - \alpha} \right) \left(\frac{1 + i_L^j}{\omega_t} \right),
\]

whereas the unit real marginal cost is

\[
mc_{jt} = \frac{\left(1 + i_L^j \right) \omega_t}{\alpha (1 - \alpha)^{1 - \alpha} A_t}.
\]

Each firm chooses a sequence of prices \(P_{jt} \) so as to maximize the discounted real value of all its current and future real profits, where nominal profits at \(t \), \(\Pi_L^{jt} \), are defined as \(\Pi_L^{jt} = P_{jt} Y_{jt} - P_{jt} mc_{jt} Y_{jt} - PAC_{jt} \).\(^7\) Taking \(\{mc_{t+s}, P_{t+s}, Y_{t+s}\}_{s=0}^{\infty} \) as given, the first-order condition for this maximization problem is:

\[
\left\{ 1 - \theta + \theta \left(\frac{P_t}{P_{jt}} \right) mc_{jt} \right\} \lambda_t \left(\frac{P_{jt}}{P_t} \right)^{-\theta} Y_t - \lambda_t \phi_F \left\{ \left(\frac{P_{jt}}{\pi^G P_{jt-1}} - 1 \right) \frac{Y_t}{\pi^G P_{jt-1}} \right\} + \beta \phi_F E_t \left\{ \lambda_t+1 \left(\frac{P_{jt+1}}{\pi^G P_{jt}} - 1 \right) Y_{t+1} \left(\frac{P_{jt+1}}{\pi^G P_{jt}} \right) \right\} = 0,
\]

which gives the adjustment process of the nominal price \(P_{jt} \).

2.4 Commercial Bank

At the beginning of each period \(t \), the bank collects deposits \(D_t \) from the household. Funds are used for loans to IGP firms, which use them to pay labor in advance. Thus, lending, \(L_t^F \), is equal to

\[
L_t^F = \int_0^1 L_{jt}^F dj = P_t \omega_t N_t,
\]

where again \(N_t = \int_0^1 N_{jt} dj \).

Upon receiving household deposits, and given its equity \(P_t V_t \) and loans \(L_t^F \), the bank borrows from the central bank, \(L_t^B \), to fund any shortfall in deposits. At the end of the period, it repays the central bank, at the interest rate \(i_t^R \), which we refer

\(^7\)For tractability, and in line with most of the DSGE literature, we do not explicitly account for the possibility that the risk of default may affect optimal price behavior.
to as the refinance rate. It also holds required reserves at the central bank, \(R R_t \), and government bonds, \(B^B_t \).

The bank’s balance sheet is thus

\[
L^F_t + B^B_t + R R_t = D_t + P^V_t V_t + L^B_t,
\]

where

\[
V_t = V^R_t + V^E_t,
\]

with \(V^R_t \) denoting required capital and \(V^E_t \) excess capital. We assume in what follows that, due to prohibitive penalty or reputational costs, \(V_t \geq V^R_t \) at all times. In fact, we will focus on the case where capital requirements are not strictly binding, that is, \(V^E_t > 0.\)

Reserves held at the central bank do not pay interest. They are determined by:

\[
R R_t = \mu D_t,
\]

where \(\mu \in (0,1) \) is the reserve requirement ratio.

Using (28), and given that \(L^F_t \) and \(D_t \) are determined by private agents’ behavior, the balance sheet constraint (26) can be used to determine borrowing from the central bank:

\[
L^B_t = L^F_t + B^B_t - (1 - \mu) D_t - P^V_t V_t.
\]

The bank is also subject to risk-based capital requirements; by law, it must hold an amount of equity that covers at least a given percentage of its loans, exogenously set by the central bank (which also acts as the financial regulator, as noted earlier). Government bonds bear no risk and are subject to a zero weight in calculating capital requirements. The risk weight on loans to firms is \(\sigma^F_t \):

\[
P^V_t V^R_t = \rho \sigma^F_t L^F_t,
\]

where \(\rho \in (0,1) \) is the capital adequacy ratio. Under Basel I, \(\sigma^F_t \) is fixed at \(\sigma^F_0 \leq 1 \); under Basel II, in a manner similar to Agénor and Pereira da Silva (2009), we relate

\[\text{As documented in Pereira da Silva (2009), this is the more relevant case in practice.}\]
the risk weight to the repayment probability estimated by the bank, because it reflects its perception of default risk:\footnote{Appendix C provides a justification for this reduced-form, constant elasticity specification, based on actual Basel II formulas. See also Covas and Fujita (2010) and Darraqu Pariès et al. (2010).}

\[\sigma_t^F = \left(\frac{q_t^F}{\bar{q}^F} \right)^{-\phi_q}, \]

(31)

where \(\phi_q > 0 \) and \(\bar{q}^F \) is the steady-state value of \(q_t^F \). In the steady state, the risk weight is therefore equal to unity.\footnote{The Standardized Approach in Basel II can be modeled by making the risk weight a function of the output gap, under the assumption that ratings are procyclical.}

The bank sets both the deposit and lending rates to firms and the household, equity capital, and real holdings of government bonds, \(b_t^B = B_t^B / P_t \), so as to maximize the present discounted value of its real profits,

\[
\{i_{t+s}^D, i_{t+s}^L, b_{t+s}^B, V_{t+s}^E\}_{s=0}^\infty = \arg \max E_t - \sum_{s=0}^\infty \beta^s \lambda_{t+s}(\frac{\Pi_t^{B+s}}{P_{t+s}}),
\]

(32)

where \(\Pi_t^B \) denotes current profits at the end of period \(t \) and \(E_t \) is the expectations operator conditional on information available at the beginning of period \(t \).\footnote{In equilibrium, the lending rate is also the same across borrowers; we therefore economize on notation by using a lending that is independent of \(j \).} In the present setting (and given in particular the assumption that the bank is liquidated and equity is redeemed at the end of each period), this maximization problem boils down to a period-by-period problem.

Real expected gross profits can be defined as

\[
E_t - \left(\frac{\Pi_t^B}{P_t} \right) = (1 + i_t^B)b_t^B + q_t^F (1 + i_t^L)\left(\frac{L_t^F}{P_t} \right) + (1 - q_t^F)\kappa K_t
\]

\[+ \mu d_t - (1 + i_t^D)d_t - (1 + i_t^R)\left(\frac{L_t^B}{P_t} \right) - (1 + i_t^V)z_t V_t - \gamma_B \left(\frac{(b_t^B)^2}{2} \right) \]

\[- \gamma_V z_t V_t + 2\gamma_{VV} z_t (V_t^E)^{1/2}, \]

where \(\kappa \in (0, 1) \), \(\gamma_B, \gamma_V, \gamma_{VV} > 0 \), and \(q_t^F \in (0, 1) \) is the repayment probability of IGP firms, assumed identical across them. The second term in this expression

Appendix C provides a justification for this reduced-form, constant elasticity specification, based on actual Basel II formulas. See also Covas and Fujita (2010) and Darraqu Pariès et al. (2010).

The Standardized Approach in Basel II can be modeled by making the risk weight a function of the output gap, under the assumption that ratings are procyclical.

In equilibrium, the lending rate is also the same across borrowers; we therefore economize on notation by using a lending that is independent of \(j \).
on the right-hand side, \(q_t^F (1 + i_t^F) P_t^{-1} L_t^F \), represents expected repayment if there is no default. The third term represents what the bank expects to earn in case of default. Under limited liability, earnings if the loan is not paid back are given by the “effective” value of collateral pledged by the borrower, \(\kappa K_t \). “Raw” collateral consists therefore of the physical assets of the firm and \(\kappa \) measures the degree of credit market imperfections.\(^{12}\)

The fourth term, \(\mu d_t \), represents the reserve requirements held at the central bank and returned to the bank at the end of the period (prior to its closure). The term \((1 + i_t^D) d_t \) represents repayment of deposits (principal and interest) by the bank. The term \((1 + i_t^V) z_t V_t \) represents the value of shares redeemed to the household and dividend payments. The term \(\gamma_B (b_t^E)^2 / 2 \) captures the cost associated with transacting in government bonds (dealer commissions, etc.); for tractability, this cost is assumed to be quadratic.

The linear term \(\gamma_V z_t V_t \) captures the cost associated with issuing shares (cost of underwriting, issuing brochures, etc.). By contrast, the last term, \(2 \gamma_V z_t (V_t^E)^{1/2} \), captures the view that maintaining a positive capital buffer generates some benefits—it represents a signal that the bank’s financial position is strong, and reduces the intensity of regulatory scrutiny, which in turn reduces the pecuniary cost associated with the preparation of data and documents required by the supervision authority.\(^{13}\) We assume that this effect on expected profits is concave, which implies that the benefits of capital buffers diminish fairly rapidly over time.\(^{14}\)

The maximization problem is subject, from (20) and (22), to the loan demand

\(^{12}\)Note that although revenues depend on whether the borrower repays or not, payments of principal and interest to households and the central bank are not contingent on shocks occurring during period \(t \) and beyond and on firms defaulting or not. Note also that in case of default the bank can seize only collateral, \(P_t K_t \) (valued at the economy-wide price of the final good, \(P_t \)) not realized output (valued at the firm-specific intermediate price, \(P_{jt} \)). This is important because it implies that firm \(j \), which takes \(P_t \) as given when setting its price, does not internalize the possibility of default.

\(^{13}\)A related argument—in a stochastic environment—is provided in Ayuso, Perez, and Saurina (2004), in which capital buffers reduce the probability of not complying with capital requirements.

\(^{14}\)Because costs associated with issuing capital are modeled linearly, assuming that the benefit associated with capital buffers is quadratic would imply a profit-maximizing value of \(V_t^E \) equal to infinity. A more general specification would be to assume that the benefits associated with capital buffers have a convex-concave shape, but this is much less tractable numerically.
function for IGP firms

$$\frac{L^F_t}{P_t} = \int_0^1 \left(\frac{L^F_{jt}}{P_t} \right) dj = \Phi \left[\frac{(1 + i^L_t)\omega_j}{r_t} ; A_t \right], \quad (34)$$

together with the balance sheet constraint (26), used to substitute out L^B_t in (33), the equation defining V_t (27), and the capital requirement constraint (30).

The bank internalizes the fact that the demand for loans (supply of deposits) depends negatively (positively) on the lending (deposit) rate, as implied by (9) and (34), and that changes in the level of loans affects capital requirements, as implied by (30). It also takes the repayment probability of firms, the value of collateral, the contract enforcement cost, prices and the refinance rate as given.

The first-order conditions for maximization yield:

$$-d_t - [(1 + i^D_t) - \mu - (1 - \mu)(1 + i^R_t)] \left(\frac{\partial d_t}{\partial i^D_t} \right) = 0,$$

$$\left(1 + i^D_t\right) - \gamma_B h^B_t = 0,$$

$$\gamma_V \frac{\gamma_V \sqrt{V_t}}{\sqrt{V}_E} = 0. \quad (38)$$

Let $\eta_D = (\partial d_t / \partial i^D_t) i^D_t / d_t$ denote the constant interest elasticity of the supply of deposits by the household. Condition (35) yields

$$i^D_t = (1 + \frac{1}{\eta_D})^{-1}(1 - \mu)i^R_t, \quad (39)$$

which shows that the equilibrium deposit rate is set as a markup over the refinance rate, adjusted (downward) for the implicit cost of holding reserve requirements.

Similarly, let $\eta_F = [\partial \Phi / \partial i^L_t](i^L_t / L^F_t)$ denote the interest elasticity of the demand for loans. Using this definition, condition (36) yields

$$1 + i^L_t = \frac{1}{(1 + \eta_F^{-1})q^F_t} \left\{ (1 - \rho \sigma^F_t)(1 + i^R_t) + \rho \sigma^F_t \left[(1 + i^V) + \gamma_V \right] \right\}, \quad (40)$$

which implies that the gross lending rate depends negatively on the repayment probability, and positively on a weighted average of the marginal cost of borrowing.
from the central bank (at the gross rate \(1 + i_t^R\)) and the total cost of issuing equity, which accounts for both the gross rate of return to be paid to investors and issuing costs. Weights on each component of funding costs are measured in terms of the share of equity in proportion of loans.

Now, we formulate the repayment probability \(q_t^F\) as depending positively on three sets of factors. First, it depends on borrowers’ net worth; it increases with the effective collateral provided by firms, \(\kappa P_t K_t\), and falls with the amount borrowed, \(L_t^F\).\(^{15}\) As argued by Boot, Thakor, and Udell (1991), Bester (1994), and Hainz (2003), and others, by increasing borrowers’ effort and reducing their incentives to take on excessive risk, collateral reduces moral hazard and raises the repayment probability. Second, \(q_t^F\) depends on the cyclical position of the economy, as measured by \(Y_t / \tilde{Y}\), with \(\tilde{Y}\) denoting the steady-state value of final output. This term captures the view that in periods of high (low) levels of activity, profits and cash flows tend to improve (deteriorate) and incentives to default diminish (increase).\(^{16}\) If net worth values are also procyclical, both of these effects are consistent with the large body of evidence suggesting that price-cost margins in banking are consistently countercyclical (see for instance Aliaga-Díaz and Olivero (2010)).

Third, \(q_t^F\) increases with the bank’s capital relative to the outstanding amount of loans, \(P_t^V V_t / L_t^F\), because bank capital (irrespective of whether it is required by regulation or chosen discretionarily) increases incentives for the bank to screen and monitor borrowers. In turn, greater monitoring mitigates the risk of default and induces lenders (if marginal monitoring costs are not prohibitive) to reduce the cost of borrowing.\(^{17}\) As noted earlier, this is consistent with the evidence

\(^{15}\)In standard Stiglitz-Weiss fashion, the repayment probability could be made a decreasing function of the lending rate itself, as a result of adverse selection and moral hazard effects on the riskiness of the pool of borrowers.

\(^{16}\)Note that the ability to recover real assets pledged as collateral may also fall (improve) in a cyclical downturn (upturn); this would make \(\kappa\) endogenous as well. We abstract from this channel here, given that it is somewhat tangential to our main argument.

\(^{17}\)A rigorous microeconomic analysis of the link between bank capital and monitoring is provided by Allen, Carletti and Marquez (2009), who develop a one-period model in which a monopoly bank holds capital because it strengthens its monitoring incentive and increases the borrower’s success probability. In the same vein, Mehran and Thakor (2009) construct a dynamic model in which bank capital increases the future survival probability of the bank, which in turn enhances the
in Hubbard et al. (2002), according to which well-capitalized banks tend to charge lower loan rates than banks with low capital, and the results in Coleman et al. (2002), in which capital-constrained banks charge higher spreads on their loans. This effect is also consistent with the evidence in Barth, Caprio, and Levine (2004), based on cross-country regressions for 107 industrial and developing countries, which suggests that all else equal capital requirements are associated with a lower share of non-performing loans in total assets (which could reflect better screening and monitoring of loan applicants). Finally, the dependence of the repayment probability on the capital-loan ratio implies, through equation (40), that it is also negatively related with bank lending spreads; direct support for this link—while accounting for the possibility of reverse causality—is provided by Fonseca et al. (2010), in a study of pricing behavior by more than 2,300 banks in 92 countries over the period 1990 to 2007. They also found a stronger relationship for developing countries; this is consistent with the view that, in these countries, a weak institutional environment (or the absence of a credible safety net) increases incentives for banks to screen and monitor borrowers when more of their capital is engaged.

The repayment probability is thus specified as

$$q_t^F = \varphi_0 \left(\frac{\kappa P_t L_t}{K_t} \right)^{\varphi_1} \left(\frac{P_t V_t}{L_t} \right)^{\varphi_2} \left(\frac{Y_t}{Y_t} \right)^{\varphi_3},$$

with $\varphi_i > 0 \ \forall i.$

The relationship between bank capital, the repayment probability, and the bank lending rate is summarized in Figure 1. Combining (40) and (41) yields the following partial equilibrium result:

bank’s monitoring incentives. The “quasi reduced form” approach used here can be viewed as a tractable shortcut in a macro framework.

18Another rationale for a negative link between the capital-loan ratio and the repayment probability could result from the fact that investors, while increasing their holdings of bank debt, may exert pressure on the bank to increase profits. Given that the bank has a perfectly elastic supply of credit, the only way to do so is to stimulate the demand for loans by reducing the lending rate—and this can happen only if the repayment probability increases. However, in this interpretation, the negative link between these two variables would reflect greater risk taking and reckless lending, rather than improved monitoring.

19We assume that φ_0 is such that the condition $q_t^F \in (0, 1)$ holds continuously.
Result 1. An increase in bank capital (in proportion of outstanding loans), by improving incentives to monitor borrowers and reducing borrowers’ default probability, lowers the lending rate.

From (37), the demand for bonds is

\[
\frac{B_t^B}{P_t} = \gamma_B^{-1}(i_t^B - i_t^R),
\]

which is increasing in the bond rate and decreasing in the marginal cost of funds.

Using equation (27), (38) yields

\[
V_t^E = \left(\frac{\gamma_{VV}}{i_t^V + \gamma_V - i_t^R}\right)^2
\]

which shows that an increase in the cost of issuing equity (either through i_t^V or γ_V) reduces excess capital, whereas an increase in benefit (as measured by γ_{VV}) raises excess capital. Note that required capital, by affecting the cost of issuing equity, has an indirect effect on the capital buffer: an increase in V_t^R, by raising i_t^V, will lower excess capital. In that sense, there is some degree of substitutability between required and excess capital.

From (43), (30), and (31), it can be seen that, a drop in aggregate output, due to a common negative productivity shock, affects the repayment probability and the lending rate through several channels. First, because the demand for labor (and thus bank loans) falls, the collateral-loan ratio rises initially; this tends to increase the repayment probability and to lower the lending rate. Second, the fall in cyclical output tends to lower the repayment probability and to raise the lending rate. These two (conflicting) effects operate in either regulatory regime. Third, although the bank capital-loan ratio does not change under a Basel I-type regime (given that the risk weight is fixed), it may either increase or fall under a Basel II-regime, because the risk weight is now directly related to the repayment probability—the initial response of which is ambiguous, due to the conflicting effects mentioned earlier. The net, general equilibrium effect on the repayment probability is thus also ambiguous in general—and so is the relationship between the degree of procyclicality of both regimes.

Suppose then that the cyclical output effect dominates the collateral-loan effect;
the repayment probability falls and the lending rate tends to increase.20 At the same time, the lower level of loans (which implies lower capital requirements) tends to lower the rate of return on equity to induce households to reduce their demand for these assets. In turn, the lower equity rate reduces the loan rate. As long as the risk effect (the drop in the repayment probability) is large enough compared to this cost effect, the Basel I-type regime mitigates the procyclicality inherent to the behavior of the repayment probability but does not reverse it.

However, under the Basel II-type regime, the initial fall in the repayment probability leads also to a higher risk weight and larger capital requirements—if actual capital can increase to reflect higher regulatory requirements (as implied by (43))—than under Basel I. As a result of the larger increase (or smaller reduction) in the supply of equity, the cost of issuing equity falls by less (or may even increase, if the effect of the higher risk weight dominates the drop in the amount of loans) as well; this tends to increase the lending rate by more, thereby making the Basel II-type regime more procyclical. This is consistent with the view held by many observers. Thus, if we define procyclicality in terms of the behavior of the repayment probability (in a manner akin to Agénor and Pereira da Silva (2009), who focus on the risk premium), we can summarize this result as follows:21

Result 2. If the cyclical output effect dominates the collateral-loan effect on the repayment probability, and if the fall in that probability is sufficiently large, the Basel II-type regime magnifies the procyclicality inherent to the behavior of the credit market.

However, in the model the higher capital-loan ratio also tends to increase the repayment probability; this will tend to mitigate the initial fall in that variable. If the sensitivity of the repayment probability to the capital-loan ratio (as measured by φ_2) is sufficiently high, this will tend to make the Basel II-type regime less procyclical than the Basel I-type regime. This fundamental ambiguity in the procyclical effects of the Basel II-type regime, relative to the Basel I-type regime, can be summarized as follows:

\footnote{The financial system is thus procyclical. This is consistent with what is typically observed in a recession.}

\footnote{In the numerical simulations that we report next, procyclicality could be defined equivalently in terms of the behavior of the lending rate or aggregate output; relative rankings of the two regimes are the same in response to the shocks that we consider.}
Result 3. If there is no bank capital channel \((\varphi_2 = 0)\), the Basel II-type regime is always more procyclical than the Basel I-type regime. If \(\varphi_2 > 0\) and sufficiently large, the Basel II-type regime may be less procyclical than the Basel I-type regime.

Finally, at the end of the period, as noted earlier, the bank pays interest on deposits, redeems equity shares, and repays with interest loans received from the central bank. There are no retained earnings; the profits that are distributed to shareholders are therefore given by

\[
\frac{J_t^B}{P_t} = \max(0, \frac{\Pi_t^B}{P_t}),
\]

where

\[
\frac{\Pi_t^B}{P_t} = (1 + i_t^B)b_t^B + \min \left\{ (1 + i_t^L)(L_t^F/P_t), \kappa K_t \right\}
\]

\[
+ \mu d_t - (1 + i_t^D)d_t - (1 + i_t^R)(L_t^B/P_t) - (1 + i_t^V)z_tV_t - \gamma_B \frac{(b_t^B)^2}{2}
\]

\[
- \gamma_V z_tV_t - \gamma V \gamma V \frac{(V_t - V_t^R)^2}{2}.
\]

2.5 Central Bank

The central bank’s assets consists of holdings of government bonds, \(B_t^C\), loans to the commercial bank, \(L_t^B\), whereas its liabilities consists of currency supplied to households and firms, \(M_t^s\), and required reserves \(RR_t\); the latter two make up the monetary base. The balance sheet of the central bank is thus given by

\[
B_t^C + L_t^B = M_t^s + RR_t.
\]

Using (28), (45) yields

\[
M_t^s = B_t^C + L_t^B - \mu D_t.
\]

Any income made by the central bank from loans to the commercial bank is transferred to the government at the end of each period.
Monetary policy is operated by fixing the refinance rate, i_t^R, and providing liquidity (at the discretion of the bank) through a standing facility. The refinance rate itself is determined by a Taylor-type policy rule:

$$i_t^R = \chi i_{t-1}^R + (1 - \chi) [\bar{r} + \pi_t + \varepsilon_1 (\pi_t - \pi^T) + \varepsilon_2 \ln(Y_t/Y_\ell)] + \epsilon_t,$$

where \bar{r} is the steady-state value of the real interest rate on bonds, $\pi^T \geq 0$ the central bank’s inflation target, and Y_t/Y_ℓ is the output gap, with Y_t denoting the frictionless level of aggregate output (that is, corresponding to $\theta = 0$). Coefficient $\chi \in (0, 1)$ measures the degree of interest rate smoothing, and $\varepsilon_1, \varepsilon_2 > 0$ the relative weights on inflation deviations from target and output growth, respectively, and $\ln \epsilon_t$ is a serially correlated random shock with zero mean.

2.6 Government

The government purchases the final good and issues nominal riskless one-period bonds, which are held by the central bank and households. Its budget constraint is given by

$$B_t = (1 + i_t^B)B_{t-1} + P_t(G_t - T_t) - i_{t-1}^R L_{t-1}^B - i_{t-1}^B B_{t-1}^C,$$

where $B_t = B_t^B + B_t^C + B_t^H$ is the outstanding stock of government bonds, B_{t+1} bonds issued at the end of period $t+1$, G_t real government spending, and T_t real lump-sum tax revenues. The final terms, $i_t^R L_t^B$ and $i_{t-1}^B B_{t-1}^C$, come from our assumption that all interest income that the central bank makes (from its lending to the commercial bank and its holdings of government bonds) is transferred to the government at the end of each period.

Government purchases are assumed to be a constant fraction of output of final goods:

$$G_t = \psi Y_t,$$

22 In several middle-income countries, as in many industrial countries, the standard mechanism through which the central bank injects liquidity is through open-market operations of various kinds, aimed at providing sufficient cash on average to maintain the short-term policy interest rate at its target level. Above and beyond that, banks still short of cash can obtain additional funds at the upper band of a corridor, the discount window, or a standing facility (typically slightly above the policy rate). Conversely, banks with excess cash can deposit it at the central bank (at a rate typically below the policy rate). Our specification abstracts from open-market operations and corresponds to a “channel system” in which deposits held at the central bank earn a zero interest rate (see Berentsen and Monnet (2007)).
where \(\psi_t \in (0,1) \).

3 Symmetric Equilibrium

In what follows we will assume that the government equilibrates its budget by adjusting lump-sum taxes, while keeping the overall stock of bonds constant at \(B \), and that the central bank also keeps its stock of bonds constant at \(B_C \). Private holdings of government bonds are thus equal to \(B_H = B - B_C - B_L \).

In a symmetric equilibrium, all firms producing intermediate goods are identical. Thus, \(K_{jt} = K_t, N_{jt} = N_t, Y_{jt} = Y_t, P_{jt} = P_t \), for all \(j \in (0,1) \). All firms also produce the same output, and prices are the same across firms. In the steady state, inflation is constant at \(\bar{\pi} \).

Equilibrium conditions must also be satisfied for the credit, deposit, goods, and cash markets.\(^{23}\) Because the supply of loans by the bank, and the supply of deposits by households, are perfectly elastic at the prevailing interest rates, the markets for loans and deposits always clear. For equilibrium in the goods markets we require production to be equal to aggregate demand, that is, using (21),\(^{24}\)

\[
Y_t = C_t + G_t + I_t + \frac{\phi_F}{2} \left(\frac{1 + \pi_t}{1 + \bar{\pi}} - 1 \right)^2 Y_t. \tag{50}
\]

Equation (5) can be rewritten as

\[
I_t = K_{t+1} - (1 - \delta)K_t + \Gamma(K_{t+1}, K_t). \tag{51}
\]

Combining (49), (50), and (51), the aggregate resource constraint then takes the form

\[
\left\{ 1 - \psi - \frac{\phi_F}{2} \left(\frac{1 + \pi_t}{1 + \bar{\pi}} - 1 \right)^2 \right\} Y_t = C_t + K_{t+1} - (1 - \delta)K_t + \Gamma(K_{t+1}, K_t). \tag{52}
\]

The equilibrium condition of the market for cash is given by

\[
M_t^s = M_t^H + M_t^F,
\]

\(^{23}\)By Walras’ Law, the equilibrium condition of the market for government bonds can be eliminated.
\(^{24}\)The transactions costs appearing in (4) and (33) are assumed to be purely financial in nature; and in equilibrium, there is no actual default. There are therefore no real costs associated with household portfolio decisions or banking activity.
where \(M_t^s \) is defined in (46) and \(M_t^F = \int_0^t M_{jt}^F \, dj \) denotes firms’ total holdings of cash. Suppose that bank loans to firms are made only in the form of cash; we therefore have \(L_t^F = M_t^F \).\(^{25}\) The equilibrium condition of the market for currency is thus given by \(M_t^s = M_t^H + L_t^F \), that is, using (46),

\[
L_t^B + B_t^C - \mu D_t = M_t^H + L_t^F.
\]

Using (26) to eliminate \(L_t^B \) in the above expression yields

\[
M_t^H + D_t = \bar{B}^C + B_t^B - P_t^V V_t. \tag{53}
\]

Using (8) and (9) and aggregating, condition (53) becomes

\[
\frac{\bar{B}^C + B_t^B}{P_t} - z_t V_t = \eta_x (C_t)^{1/\lambda} (1 + i_t^B) \left\{ \frac{\nu}{i_t^B} + \left(1 - \nu \right) \right\}, \tag{54}
\]

which can be solved for \(i_t^B \).

As noted earlier, the household’s portfolio allocation decisions for period \(t + 1 \) are taken at the end of period \(t \). Bank equity is thus priced so that its net return at \(t + 1 \) equals its expected return at \(t \) for \(t + 1 \), which consists—given that there are no capital gains, the bank lasting only one period—of expected bank profits (which are distributed as cash dividends at the end of the period) per share:

\[
i_t^V = \frac{E_t \Pi_t^{B+1}}{P_t^V V_t}. \tag{55}
\]

Finally, the equilibrium condition of the bank equity market is obtained by equating (14) and (43):

\[
V_t^d = V_t^R + V_t^E. \tag{56}
\]

4 Steady State and Log-Linearization

The steady-state of the model is derived in Appendix A. With a zero inflation target \(\pi^T = 0 \), the steady-state inflation rate is also \(\dot{\pi} = 0 \). In addition to standard results

\(^{25}\)As discussed by Agénor and Alper (2009), condition (53) below does not change if instead the counterpart to loans consists of deposits. Note also that firms hold this cash only briefly, given that it is used to pay wages at the beginning of the production process.
(the steady-state value of the marginal cost, for instance, is given by \((\theta - 1)/\theta\), the steady-state value of the repayment probability is

\[\tilde{q}^F = \varphi_0\left(\frac{\kappa \tilde{P} \tilde{K}}{L^F}\right)^{\varphi_1} \left(\frac{\tilde{P} \tilde{V}}{L^F}\right)^{\varphi_2}, \]

whereas steady-state interest rates are given by

\[\tilde{i}^B = \tilde{i}^R = \frac{1}{\beta} - 1 = \tilde{r}, \quad \tilde{i}^D = \left(1 + \frac{1}{\eta_D}\right)^{-1}(1 - \mu)\tilde{i}^R < \tilde{i}^R, \]

\[\tilde{i}^V = \frac{\Theta_V \tilde{V}}{\beta} + \beta^{-1} - 1 > \tilde{i}^B, \quad \tilde{i}^K = \frac{1}{\beta} - 1 + \delta, \]

and

\[\tilde{i}^L = \frac{1}{(1 + \eta_F^{-1})\tilde{q}^F} \left\{ \left(1 - \rho\right)\beta^{-1} + \rho \left[(1 + \tilde{i}^V) + \gamma_V \right] \right\} - 1. \]

From these equations it can be shown that \(\tilde{i}^B > \tilde{i}^D\). The reason why \(\tilde{i}^V > \tilde{i}^B\) is because holding equity is subject to a cost; from the perspective of the household, the rate of return on equity must therefore compensate for that and exceed the rate of return on government bonds or physical capital. Of course, when \(\Theta_V = 0\), then \(\tilde{i}^V = \tilde{i}^B\). In addition, from (42), the steady-state stock of bonds held by the bank is zero, given that \(\tilde{i}^B = \tilde{i}^R\). Equation (43) determines \(\tilde{V}^E\). Because \(\tilde{i}^V > \tilde{i}^R\), \(\tilde{V}^E > 0\), given that \(\gamma_{VV} > 0\). By implication of (31), \(\tilde{\sigma}^F = 1\) under both Basel I (by assumption) and Basel II. This is a convenient normalization to compare dynamic paths across regulatory regimes.

To analyze how the economy responds to shocks we proceed in standard fashion by log-linearizing it around a nonstochastic, zero-inflation steady state. The log-linearized equations are summarized in Appendix B. In particular, log-linearizing condition (24) yields the familiar form of the New Keynesian Phillips curve (see, for instance, Galí (2008)):

\[\pi_t = \left(\frac{\theta - 1}{\phi_F}\right)\tilde{m}c_t + \beta E_t\pi_{t+1}, \]

where \(\tilde{m}c_t\) is the log-deviation of \(mc_t\) from its steady-state level, given by

\[\tilde{m}c_t = (1 - \alpha)(\tilde{i}_t^L + \tilde{\omega}_t) + (\alpha + \alpha\beta\tilde{\delta})\frac{\tilde{\eta}^K}{1 + \beta\delta - \beta}\tilde{i}_t^K, \]

\[^{26} \text{Thus, the arbitrage condition in Aguiar and Drumond (2007) between the rates of return on equity and physical capital holds only when } \Theta_V = 0. \]
where \(\hat{i}_t^L \) and \(\hat{i}_t^K \) denote percentage point deviations of the lending rate and the rental rate of capital from their steady-state levels, and \(\hat{\omega}_t \) the log-deviation of the real wage from its steady-state value. Because changes in bank capital affect the repayment probability and the lending rate, they will also affect the behavior of real marginal costs.

5 Calibration

To calibrate the model we dwell as much as possible on Agénor and Alper (2009). We therefore refer to that study for a detailed discussion of some of our choices and focus here on the parameters that are new to this study or critical for the issue at stake, such as the elasticity of the repayment probability with respect to bank capital.

Parameter values are summarized in Table 1. The discount factor \(\beta \) is set at 0.95, which corresponds to an annual real interest rate of 5 percent. The intertemporal elasticity of substitution, \(\zeta \), is 0.6, in line with estimates for middle-income countries (see Agénor and Montiel (2008)). The preference parameters for leisure, \(\eta_N \), and for composite monetary assets, \(\eta_x \), are both set at 1.5. The share parameter in the index of money holdings, \(\nu \), which corresponds to the relative share of cash in narrow money, is set at 0.2. The adjustment cost parameter for equity holdings, \(\Theta_V \), is set at 0.3, whereas the adjustment cost for investment, \(\Theta_K \), is set at 8.6. The share of capital in output of intermediate goods, \(1 - \alpha \), is set at 0.35, whereas the elasticity of demand for intermediate goods, \(\theta \), is set at 10—implying a steady-state value of the markup rate, \(\theta/(\theta - 1) \), equal to 11.1 percent. The adjustment cost parameter for prices, \(\phi_F \), is set at 74.5. The rate of depreciation of capital is set at 6.0 percent, whereas the reserve requirement rate \(\mu \) is set at 0.1. The coefficient of the lagged value is set at \(\chi = 0 \), which therefore implies that we abstract from persistence stemming directly from the central bank’s policy response. We also set \(\varepsilon_1 = 1.5 \) and \(\varepsilon_2 = 0.2 \), which are conventional values for Taylor-type rules for middle-income countries; the relatively low value of \(\varepsilon_2 \) (compared to estimates for industrial countries, which are closer to 0.5) is consistent with the evidence reported for Latin America by Moura and Carvalho (2010). For the degree of persistence of
the supply shock, we assume that $\rho_A = 0.6$, with standard deviation $\sigma_{\xi A} = 0.02$.

For the parameters characterizing bank behavior, we assume that the effective collateral-loan ratio, κ, is 0.2. The elasticity of the repayment probability with respect to collateral is set at $\varphi_1 = 0.05$, with respect to the bank capital-loan ratio at $\varphi_2 = 0.0$, and with respect to cyclical output at $\varphi_3 = 0.2$. In the case of φ_2, we also consider an alternative value of 0.2, which is within the two-standard error confidence interval for the elasticity of the bank loan spread with respect to the capital-risky assets ratio estimated by Fonseca et al. (2009) for developing countries. These two different values allow us to explore the extent to which procyclical effects differ across regulatory regimes. The elasticity of the risk weight under Basel II with respect to the repayment probability is set at a relatively low value, $\varphi_q = 0.05$.27

The cost parameters γ_B and γ_V are also set at relatively low values, 0.05 and 0.1, respectively. The capital adequacy ratio, ρ, is set at 0.08, which corresponds to the target value for Basel I and the floor value for Basel II. The steady-state value of the risk weight q^F_t is calibrated so that it is equal to unity under both regimes. For Basel I, given that the risk weight is constant, this choice also implies that it remains continuously equal to unity. By implication, the steady-state required capital-loan ratio is thus 8 percent under both regimes. Finally, the “benefit” parameter γ_{VV} is set at 0.001, to ensure that the steady-state excess capital-loan ratio is 4 percent, in line with the evidence reported by Pereira da Silva (2009).

6 Procyclical Effects of Regulatory Regimes

We now consider the procyclical effects—as measured by the behavior of the repayment probability—of a negative productivity (or supply) shock. We report results for two different values of the elasticity of the repayment probability with respect to the capital-loan ratio, $\varphi_2 = 0.0$ and $\varphi_2 = 0.2$. As is made clear below, this parameter change allows us to illustrate the ambiguity in the procyclical effects of the two regulatory regimes.

Figures 2 and 3 shows the impulse response functions of some of the main variables of the model following a temporary, one percentage point negative shock.

27 A high value of φ_q would actually strengthen the counterintuitive results that we report later.
to productivity. The results show indeed that two different outcomes may occur, depending on the elasticity of the repayment probability with respect to the capital-loan ratio, \(\varphi_2 \). In both figures, the behavior of most of the variables (except for marginal costs) does not differ much across regimes. This is because of the negative relation between the capital buffer and required capital, as implied by (43); as a result, total capital under the two regimes is more closely related.\(^{28}\)

The direct effect of the shock is to lower temporarily the rental rate of capital, which reduces investment and tends to reduce marginal production costs. However, because the increase in borrowing costs (as discussed below) dominates, real marginal costs go up, thereby raising inflation.\(^{29}\) The policy rate, which is determined by a Taylor rule, rises in response to the increase in prices. By and large, other interest rates in the economy tend to follow the rise in the policy rate.\(^{30}\) The rise in the expected real bond rate induces intertemporal substitution in consumption toward the future, which translates into a drop in current household expenditure. Because government spending is a fixed proportion of output, it falls immediately in response to the adverse shock to aggregate supply. The net effect on aggregate demand is thus negative as well.

The initial drop in output also lowers the repayment probability directly, whereas the collateral-loan ratio tends to increase at first—thereby raising the repayment probability. The net effect of these two channels is therefore ambiguous in general; given our calibration, the first effect dominates and the repayment probability falls (as one would expect in a recession), thereby raising the lending rate and marginal costs.

However, there is also a third effect, which operates through the bank capital-loan ratio and depends on the regulatory regime. Under Basel I, the bank capital-loan ratio does not change by much, because excess capital changes very little (given our

\(^{28}\) However, by changing the parameters by more, we could magnify these differences.

\(^{29}\) Note that, with our cost-of-price-adjustment assumption, IG producers are actually free to reset nominal prices every period, in contrast to Calvo-style specification of price stickiness.

\(^{30}\) By itself, the reduction in the demand for loans and capital requirements puts downward pressure on the rate of return on equity; however, given that the bond rate increases quite significantly, the rate of return on equity ends up increasing to mitigate the drop in the demand for equity. Note also that if the cost of issuing equity \(\gamma_V \) is procyclical rather than constant (as is often the case in practice), the increase in the equity rate would be magnified.
calibration) and, by definition, the risk weight σ^F is constant. There is therefore a negligible indirect effect on the repayment probability under this regime. By contrast, under Basel II, the initial drop in the repayment probability raises the risk weight and therefore actual and required capital. Because credit falls, the bank capital-loan ratio rises unambiguously, which implies an upward effect on the repayment probability, thereby mitigating the initial downward effect under that regime. The net effect is thus ambiguous in general and depends on the value of φ_2. In Figure 2, which corresponds to $\varphi_2 = 0.0$, the shock leads to the conventional case where Basel II is more procyclical than Basel I, whereas in Figure 3, which corresponds to $\varphi_2 = 0.2$, the opposite occurs. Thus, Basel II can be less procyclical than Basel I—in the sense that the drop in the repayment probability, the increase in the lending rate, and the fall in output, are all of a smaller magnitude.

7 Summary and Extensions

In this paper the business cycle effects of bank capital requirements were examined in a New Keynesian model with credit market imperfections, a cost channel of monetary policy, and a perfectly elastic supply of liquidity by the central bank at the prevailing policy rate. In the model, which combines elements developed in Agénor and Alper (2009) and Agénor and Pereira da Silva (2009), Basel I- and Basel II-type regulatory regimes are defined. In the latter case, the risk weight is related directly to the repayment probability that is embedded in the loan rate that the bank imposes on borrowers. A bank capital channel is introduced by assuming that higher levels of capital (relative to the amount of loans) induce banks to screen and monitor borrowers more carefully, thereby reducing the risk of default and increasing the repayment probability. The model is calibrated for a middle-income country. Numerical simulations show that, in the absence of the bank capital channel, a Basel II-type regime is always more procyclical than a Basel I-type regime, as in the conventional, partial equilibrium view. By contrast, if the elasticity of the repayment probability to the bank capital-loan ratio is sufficiently high, a Basel II-type regime may be less procyclical than a Basel I-type regime, in response to contractionary shocks. The key reason is that, following a negative supply shock for instance, the
bank capital channel mitigates the drop in the repayment probability, due to the monitoring incentive effect.

The analysis in this paper can be extended in a variety of directions. First, the assumption that the bank lasts only one period allowed us to avoid any distinction between stocks and flows in the dynamics of bank capital. A useful extension would be to consider an explicit link between (flow) dividends and banks’ net worth, as for instance in Meh and Moran (2010) and Valencia (2008). This would enrich the dynamics of the model, because changes in banks’ net worth would affect price-setting behavior and the real economy. Second, it could be assumed that the central bank chooses a monetary policy that mitigates economic fluctuations arising from capital requirements. The reason is that the objective of prudential supervision might be in conflict with the goal of maintaining high and stable growth. For instance, Cecchetti and Li (2008) have shown (in their specific framework) that it is possible to derive an optimal monetary policy that reinforces prudential capital requirements and at the same time stabilizes aggregate economic activity. Further research, however, is needed to determine the optimal monetary policy in the Basel II framework.

Third, by adding an objective of financial stability in the central bank’s loss function (or by adding explicitly a regulator with the same objective), the model could be used to examine several recent policy proposals aimed at strengthening the financial system and at encouraging more prudent lending behavior in upturns. Indeed, several observers have argued that by raising capital requirements in a countercyclical way, regulators could help to choke off asset price bubbles—such as the one that developed in the US housing market—before the party really gets out of hand. Counter-cyclical bank provisions have already been used for some time in countries such as Spain and Portugal. The Spanish system, for instance, requires higher provisions when credit grows more than the historical average, thus linking provisioning to the credit and business cycle. This discourages (although it does not eliminate) excessive lending in booms while strengthening banks for bad times. A more recent proposal has been put forward by Goodhart and Persaud (2008) and involves essentially adjusting the Basel II capital requirements to take into account the relevant point in the economic cycle. In particular, in
the Goodhart-Persaud proposal, the capital adequacy requirement on mortgage lending would be linked to the rise in both mortgage lending and house prices.31 However, there are several potential problems with this type of rules. For instance, the introduction of counter-cyclical provisions in Spain was facilitated by the fact that the design of accounting rules falls under the authority of the Central Bank of Spain. But accounting rules in many other countries do not readily accept the concept of expected losses, on which the Spanish system is based, preferring instead to focus on actual losses—information that is more relevant for short-term investors. This raises therefore the question of redesigning accounting principles in ways that balance the short-term needs of investors with those of individual-bank and systemic banking-sector stability.

From the perspective of the appropriate design of countercyclical bank capital requirements rules, however, a pressing task in our view is to evaluate carefully their welfare implications. Zhu (2008) is one of the few contributions that focuses on this issue, but he does so in a setting that is more appropriate for industrial economies. In the context of middle-income countries, where credit (as is the case here) plays a critical role in financing short-term economic activity, an across-the-board rule could entail significant welfare costs. At the same time, of course, to the extent that they succeed in reducing financial volatility, and the risk of full-blown crises, they may also enhance welfare. A key issue therefore is to determine the net benefits of countercyclical bank capital rules. Our belief is that this issue can be fruitfully addressed by extending the existing model to account explicitly for systemic financial stability.

31 Goodhart and Persaud argue that their proposal could be introduced under the so-called Pillar 2 of Basel II. Unlike Pillar 1, which consists of rules for requiring minimum capital against credit, operational and market risks, Pillar 2 is supposed to take into account all the additional risks to which a bank is exposed to arrive at its actual capital needs.
References

Darraçq Pariès, Matthieu, Christoffer Kok Sorensen, and Diego Rodriguez Palenzuela, “Macroeconomic Propagation under Different Regulatory Regimes: Evidence from 34
an Estimated DSGE for the Euro Area,” unpublished, European Central Bank (June 2010).

Freixas, Xavier, and Jean-Charles Rochet, Microeconomics of Banking, MIT Press (Cambridge, Mass.: 1997).

Table 1
Calibrated Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Household</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.95</td>
<td>Discount factor</td>
</tr>
<tr>
<td>ς</td>
<td>0.6</td>
<td>Elasticity of intertemporal substitution</td>
</tr>
<tr>
<td>η_N</td>
<td>1.5</td>
<td>Relative preference for leisure</td>
</tr>
<tr>
<td>η_x</td>
<td>1.5</td>
<td>Relative preference for money holdings</td>
</tr>
<tr>
<td>ν</td>
<td>0.2</td>
<td>Share parameter in index of money holdings</td>
</tr>
<tr>
<td>Θ_V</td>
<td>0.3</td>
<td>Adjustment cost parameter, equity holdings</td>
</tr>
<tr>
<td>Θ_K</td>
<td>8.6</td>
<td>Adjustment cost parameter, investment</td>
</tr>
<tr>
<td>Production</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ</td>
<td>10.0</td>
<td>Elasticity of demand, intermediate goods</td>
</tr>
<tr>
<td>α</td>
<td>0.65</td>
<td>Share of labor in output, intermediate good</td>
</tr>
<tr>
<td>ϕ_F</td>
<td>74.5</td>
<td>Adjustment cost parameter, prices</td>
</tr>
<tr>
<td>δ</td>
<td>0.06</td>
<td>Depreciation rate of capital</td>
</tr>
<tr>
<td>Bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>κ</td>
<td>0.5</td>
<td>Effective collateral-loan ratio</td>
</tr>
<tr>
<td>φ_1</td>
<td>0.05</td>
<td>Elasticity of repayment prob wrt collateral</td>
</tr>
<tr>
<td>φ_2</td>
<td>0.0, 0.2</td>
<td>Elasticity of repayment prob wrt capital-loan ratio</td>
</tr>
<tr>
<td>φ_3</td>
<td>0.2</td>
<td>Elasticity of repayment prob wrt cyclical output</td>
</tr>
<tr>
<td>φ_q</td>
<td>0.05</td>
<td>Elasticity of the risk weight wrt repayment prob</td>
</tr>
<tr>
<td>γ_B</td>
<td>0.05</td>
<td>Cost of adjustment, bond holdings</td>
</tr>
<tr>
<td>γ_V</td>
<td>0.1</td>
<td>Cost of issuing bank capital</td>
</tr>
<tr>
<td>γ_{VV}</td>
<td>0.001</td>
<td>Benefit of holding excess bank capital</td>
</tr>
<tr>
<td>ρ</td>
<td>0.08</td>
<td>Capital adequacy ratio</td>
</tr>
<tr>
<td>Central bank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>μ</td>
<td>0.1</td>
<td>Reserve requirement rate</td>
</tr>
<tr>
<td>χ</td>
<td>0.0</td>
<td>Degree of persistence in interest rate rule</td>
</tr>
<tr>
<td>ε_1</td>
<td>1.5</td>
<td>Response of refinancing rate to inflation deviations</td>
</tr>
<tr>
<td>ε_2</td>
<td>0.5</td>
<td>Response of refinancing rate to output growth</td>
</tr>
<tr>
<td>Shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ^{A}, σ_A</td>
<td>0.6, 0.02</td>
<td>Persistence/standard dev, productivity shock</td>
</tr>
</tbody>
</table>
Figure 1
Bank Capital and Lending Rate Determination

Capital adequacy ratio

Risk-weighted assets

Exogenous risk weight (Basel I)

Equity rate

Refinance rate

Excess capital

Required capital

Total capital

Repayment probability

Cyclical output

Collateral-loan ratio

Loans for working capital

Endogenous risk weight (Basel II)

Lending rate
Figure 2
Negative Productivity Shock
Basel II more Procyclical than Basel I
(Deviations from Steady State)

Note: Interest rates, inflation rate and the repayment probability are measured in absolute deviations, that is, in the relevant graphs, a value of 0.05 for these variables corresponds to a 5 percentage point deviation in absolute terms.
Figure 2 (Continued)
Negative Productivity Shock
Basel II more Procyclical than Basel I
(Deviations from Steady State)
Figure 3
Negative Productivity Shock
Basel II less Procyclical than Basel I
(Deviations from Steady State)

Note: See note to Figure 1.
Figure 3 (Continued)
Negative Productivity Shock
Basel II less Procyclical than Basel I
(Deviations from Steady State)
Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

<table>
<thead>
<tr>
<th>Nº</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>10</td>
<td>Análise do Financiamento Externo a uma Pequena Economia</td>
<td>Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flóres Júnior</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Author(s)</td>
<td>Month/Year</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Abt/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muninhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muninhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muninhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>33</td>
<td>Monetary Policy and Inflation in Brazil (1975-2000); a VAR Estimation</td>
<td>André Minella</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícius Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloísio Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
Orlando Carneiro de Matos

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanilí Rodolpho Teixeira

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guíllén

56 Causality and Cointegration in Stock Markets: the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima

57 As Leis de Falência: uma Abordagem Econômica
Aloisio Araújo

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
Benjamin Miranda Tabak

59 Os Preços Administrados e a Inflação no Brasil
Francisco Marcos R. Figueiredo e Thaís Porto Ferreira

60 Delegated Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Callman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osman Tiexeira de C. Guillen
Maio/2003

Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
76 Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Jul/2003

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
Out/2003

81 Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
Mar/2004

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbosa
May/2004

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
Maio/2004

87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
 Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sérgio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
 Apr/2006
104 Extração de Informação de Opções Cambiais no Brasil
Eui Jung Chang e Benjamin Miranda Tabak
Abr/2006

105 Representing Roommate’s Preferences with Symmetric Utilities
José Alvaro Rodrigues Neto
Apr/2006

106 Testing Nonlinearities BetweenBrazilian Exchange Rates and Inflation Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
May/2006

107 Demand for Bank Services and Market Power in Brazilian Banking
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
Jun/2006

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar and Tony Takeda
Jun/2006

109 The Recent Brazilian Disinflation Process and Costs
Alexandre A. Tombini and Sergio A. Lago Alves
Jun/2006

110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
Jul/2006

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira and Myrian Beatriz Eiras das Neves
Jul/2006

112 Interdependence and Contagion: an Analysis of Information Transmission in Latin America’s Stock Markets
Angelo Marsiglia Fasolo
Jul/2006

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil
Sergio Rubens Stancatto de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro
Ago/2006

114 The Inequality Channel of Monetary Transmission
Marta Areosa and Waldyr Areosa
Aug/2006

115 Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
Sep/2006

116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Josète Florencio dos Santos
Sep/2006

117 An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak
Sep/2006

118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint
Aloísio P. Araújo and José Valentim M. Vicente
Oct/2006
119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação
Ricardo Schechtman
Out/2006

120 Forecasting Interest Rates: an Application for Brazil
Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak
Oct/2006

121 The Role of Consumer’s Risk Aversion on Price Rigidity
Sergio A. Lago Alves and Mirta N. S. Bugarin
Nov/2006

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil
Arnildo da Silva Correa and André Minella
Nov/2006

123 A Neoclassical Analysis of the Brazilian “Lost-Decades”
Flávia Mourão Graminho
Nov/2006

124 The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil
Benjamin M. Tabak
Nov/2006

125 Herding Behavior by Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas
Dec/2006

126 Risk Premium: Insights over the Threshold
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
Dec/2006

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil
Ricardo Schechtman
Dec/2006

128 Term Structure Movements Implicit in Option Prices
Caio Ibsen R. Almeida and José Valentim M. Vicente
Dec/2006

129 Brazil: Taming Inflation Expectations
Afonso S. Bevilaqua, Mário Mesquita and André Minella
Jan/2007

130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter?
Daniel O. Cajueiro and Benjamin M. Tabak
Jan/2007

131 Long-Range Dependence in Exchange Rates: the Case of the European Monetary System
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
Mar/2007

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the Joint Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins and Eduardo Saliby
Mar/2007

133 A New Proposal for Collection and Generation of Information on Financial Institutions’ Risk: the Case of Derivatives
Gilneu F. A. Vivian and Benjamin M. Tabak
Mar/2007

134 Amostragem Descritiva no Apreçoamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão
Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins
Apr/2007
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>Identifying Volatility Risk Premium from Fixed Income Asian Options</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>May/2007</td>
</tr>
<tr>
<td>137</td>
<td>Monetary Policy Design under Competing Models of Inflation Persistence</td>
<td>Solange Gouvea e Abhijit Sen Gupta</td>
<td>May/2007</td>
</tr>
<tr>
<td>140</td>
<td>Inflation Targeting, Credibility and Confidence Crises</td>
<td>Rafael Santos and Aloísio Araújo</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>141</td>
<td>Forecasting Bonds Yields in the Brazilian Fixed income Market</td>
<td>Jose Vicente and Benjamin M. Tabak</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>142</td>
<td>Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall</td>
<td>Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho</td>
<td>Ago/2007</td>
</tr>
<tr>
<td>143</td>
<td>Price Rigidity in Brazil: Evidence from CPI Micro Data</td>
<td>Solange Gouvea</td>
<td>Sep/2007</td>
</tr>
<tr>
<td>144</td>
<td>The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options</td>
<td>Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>145</td>
<td>The Stability-Concentration Relationship in the Brazilian Banking System</td>
<td>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>146</td>
<td>Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial</td>
<td>Caio Almeida, Romeu Gomes, André Leite e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>148</td>
<td>Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial</td>
<td>Felipe Pinheiro, Caio Almeida e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>149</td>
<td>Joint Validation of Credit Rating PDs under Default Correlation</td>
<td>Ricardo Schechtman</td>
<td>Oct/2007</td>
</tr>
</tbody>
</table>
A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks
Roberta Blass Staub and Geraldo da Silva e Souza
Oct/2007

Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability
Eduardo José Araújo Lima and Benjamin Miranda Tabak
Nov/2007

Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?
Fernando N. de Oliveira and Walter Novaes
Dec/2007

Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro
Jaqueline Terra Moura Marins
Dez/2007

Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves
Adriana Souares Sales and Maria Tannuri-Pianto
Dec/2007

Does Curvature Enhance Forecasting?
Caio Almeida, Romeu Gomes, André Leite and José Vicente
Dec/2007

Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil
Sérgio Mikio Koyama e Márcio I. Nakane
Dez/2007

Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil
Tito Nícias Teixeira da Silva Filho
Jan/2008

Characterizing the Brazilian Term Structure of Interest Rates
Osmani T. Guillen and Benjamin M. Tabak
Feb/2008

Behavior and Effects of Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas
Feb/2008

The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?
Fábia A. de Carvalho and Cyntia F. Azevedo
Feb/2008

Evaluating Value-at-Risk Models via Quantile Regressions
Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton
Feb/2008

Balance Sheet Effects in Currency Crises: Evidence from Brazil
Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes
Apr/2008

Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case
Tito Nícias Teixeira da Silva Filho
May/2008

Foreign Banks’ Entry and Departure: the recent Brazilian experience (1996-2006)
Pedro Fachada
Jun/2008

Avaliação de Opções de Troca e Opções de Spread Européias e Americanas
Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo
Jul/2008
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study</td>
<td>Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho</td>
<td>Jul/08</td>
</tr>
<tr>
<td>167</td>
<td>O Poder Discriminante das Operações de Crédito das InstituiçõesFinanceiras Brasileiras</td>
<td>Clodoaldo Aparecido Annibal</td>
<td>Jul/08</td>
</tr>
<tr>
<td>168</td>
<td>An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks</td>
<td>Wenersamy Ramos de Alcântara</td>
<td>Jul/08</td>
</tr>
<tr>
<td>169</td>
<td>Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas</td>
<td>Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrêa</td>
<td>Jul/08</td>
</tr>
<tr>
<td>170</td>
<td>Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação</td>
<td>Adriana Soares Sales</td>
<td>Jul/08</td>
</tr>
<tr>
<td>171</td>
<td>Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil</td>
<td>Sérgio Mikio Koyama e Márcio Issao Nakane</td>
<td>Ago/08</td>
</tr>
<tr>
<td>172</td>
<td>Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap</td>
<td>Marta Areosa</td>
<td>Aug/08</td>
</tr>
<tr>
<td>173</td>
<td>Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions</td>
<td>Eduardo José Araújo Lima and Benjamin Miranda Tabak</td>
<td>Aug/08</td>
</tr>
<tr>
<td>174</td>
<td>Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate</td>
<td>Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton</td>
<td>Aug/08</td>
</tr>
<tr>
<td>175</td>
<td>Evaluating Asset Pricing Models in a Fama-French Framework</td>
<td>Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone</td>
<td>Dec/08</td>
</tr>
<tr>
<td>176</td>
<td>Fiat Money and the Value of Binding Portfolio Constraints</td>
<td>Mário R. Pásscoa, Myrían Petrassi and Juan Pablo Torres-Martínez</td>
<td>Dec/08</td>
</tr>
<tr>
<td>177</td>
<td>Preference for Flexibility and Bayesian Updating</td>
<td>Gil Riella</td>
<td>Dec/08</td>
</tr>
<tr>
<td>178</td>
<td>An Econometric Contribution to the Intertemporal Approach of the Current Account</td>
<td>Wagner Piazza Gaglianone and João Victor Issler</td>
<td>Dec/08</td>
</tr>
<tr>
<td>179</td>
<td>Are Interest Rate Options Important for the Assessment of Interest Rate Risk?</td>
<td>Caio Almeida and José Vicente</td>
<td>Dec/08</td>
</tr>
<tr>
<td>180</td>
<td>A Class of Incomplete and Ambiguity Averse Preferences</td>
<td>Leandro Nascimento and Gil Riella</td>
<td>Dec/08</td>
</tr>
<tr>
<td>181</td>
<td>Monetary Channels in Brazil through the Lens of a Semi-Structural Model</td>
<td>André Minella and Nelson F. Souza-Sobrinho</td>
<td>Apr/09</td>
</tr>
</tbody>
</table>
182 Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta
Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez
Abr/2009

183 Ganhos da Globalização do Capital Acionário em Crises Cambiais
Marcio Janot e Walter Novaes
Abr/2009

184 Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization
José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak
Apr/2009

185 Market Forecasts in Brazil: performance and determinants
Fabia A. de Carvalho and André Minella
Apr/2009

186 Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas
André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente
Maio/2009

187 The Influence of Collateral on Capital Requirements in the Brazilian Financial System: an approach through historical average and logistic regression on probability of default
Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito
Jun/2009

188 Pricing Asian Interest Rate Options with a Three-Factor HJM Model
Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion
Jun/2009

189 Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks
Marcos Souto, Benjamin M. Tabak and Francisco Vazquez
Jul/2009

190 Concentração Bancária, Lucratividade e Risco Sistêmico: uma abordagem de contágio indireto
Bruno Silva Martins e Leonardo S. Alencar
Set/2009

191 Concentração e Inadimplência nas Carteiras de Empréstimos dos Bancos Brasileiros
Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub
Set/2009

192 Inadimplência do Setor Bancário Brasileiro: uma avaliação de suas medidas
Clodoaldo Aparecido Annibal
Set/2009

193 Loss Given Default: um estudo sobre perdas em operações prefixadas no mercado brasileiro
Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves
Set/2009

194 Testes de Contágio entre Sistemas Bancários – A crise do subprime
Benjamin M. Tabak e Manuela M. de Souza
Set/2009

195 From Default Rates to Default Matrices: a complete measurement of Brazilian banks’ consumer credit delinquency
Ricardo Schechtman
Oct/2009
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>196</td>
<td>The role of macroeconomic variables in sovereign risk</td>
<td>Marco S. Matsumura and José Valentim Vicente</td>
<td>Oct/2009</td>
</tr>
<tr>
<td>197</td>
<td>Forecasting the Yield Curve for Brazil</td>
<td>Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak</td>
<td>Nov/2009</td>
</tr>
<tr>
<td>198</td>
<td>Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise segundo a regressão de componentes principais</td>
<td>Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio Bessada Lion e Cláudio Henrique Barbedo</td>
<td>Nov/2009</td>
</tr>
<tr>
<td>199</td>
<td>Delegated Portfolio Management and Risk Taking Behavior</td>
<td>José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak</td>
<td>Dec/2009</td>
</tr>
<tr>
<td>201</td>
<td>Efeitos da Globalização na Inflação Brasileira</td>
<td>Rafael Santos e Márcia S. Leon</td>
<td>Jan/2010</td>
</tr>
<tr>
<td>202</td>
<td>Considerações sobre a Atuação do Banco Central na Crise de 2008</td>
<td>Mário Mesquita e Mario Toró</td>
<td>Mar/2010</td>
</tr>
<tr>
<td>203</td>
<td>Hiato do Produto e PIB no Brasil: uma Análise de Dados em Tempo Real</td>
<td>Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior</td>
<td>Abr/2010</td>
</tr>
<tr>
<td>204</td>
<td>Fiscal and monetary policy interaction: a simulation based analysis of a two-country New Keynesian DSGE model with heterogeneous households</td>
<td>Marcos Valli and Fabia A. de Carvalho</td>
<td>Apr/2010</td>
</tr>
<tr>
<td>205</td>
<td>Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions</td>
<td>George Athanasopoulos, Osmani Teixeira de Carvalho Guillon, João Victor Issler and Farshid Vahid</td>
<td>Apr/2010</td>
</tr>
<tr>
<td>206</td>
<td>Fluctuation Dynamics in US interest rates and the role of monetary policy</td>
<td>Daniel Oliveira Cajueiro and Benjamin M. Tabak</td>
<td>Apr/2010</td>
</tr>
<tr>
<td>207</td>
<td>Brazilian Strategy for Managing the Risk of Foreign Exchange Rate Exposure During a Crisis</td>
<td>Antonio Francisco A. Silva Jr.</td>
<td>Apr/2010</td>
</tr>
<tr>
<td>208</td>
<td>Correlação de default: uma investigação empírica de créditos de varejo no Brasil</td>
<td>Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves</td>
<td>Maio/2010</td>
</tr>
<tr>
<td>209</td>
<td>Produção Industrial no Brasil: uma análise de dados em tempo real</td>
<td>Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior</td>
<td>Maio/2010</td>
</tr>
<tr>
<td>210</td>
<td>Determinants of Bank Efficiency: the case of Brazil</td>
<td>Patricia Tecles and Benjamin M. Tabak</td>
<td>May/2010</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Publication Date</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>211</td>
<td>Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002</td>
<td>Sandro C. Andrade and Emanuel Kohlscheen</td>
<td>Aug/2010</td>
</tr>
<tr>
<td>212</td>
<td>The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges</td>
<td>Tito Nicias Teixeira da Silva</td>
<td>Sep/2010</td>
</tr>
<tr>
<td>213</td>
<td>Estimation of Economic Capital Concerning Operational Risk in a Brazilian banking industry case</td>
<td>Helder Ferreira de Mendonça, Délia José Cordeiro Galvão and Renato Falci Villela Loures</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>214</td>
<td>Do Inflation-linked Bonds Contain Information about Future Inflation?</td>
<td>José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>215</td>
<td>The Effects of Loan Portfolio Concentration on Brazilian Banks’ Return and Risk</td>
<td>Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>218</td>
<td>The Role of Interest Rates in the Brazilian Business Cycles</td>
<td>Nelson F. Souza-Sobrinho</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>219</td>
<td>The Brazilian Interbank Network Structure and Systemic Risk</td>
<td>Edson Bastos e Santos and Rama Cont</td>
<td>Oct/2010</td>
</tr>
<tr>
<td>221</td>
<td>Financial Instability and Credit Constraint: evidence from the cost of bank financing</td>
<td>Bruno S. Martins</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>223</td>
<td>Forecasting the Yield Curve with Linear Factor Models</td>
<td>Marco Shinobu Matsumura, Ajax Reynaldo Bello Moreira and José Valentim Machado Vicente</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>224</td>
<td>Emerging Floaters: pass-throughs and (some) new commodity currencies</td>
<td>Emanuel Kohlscheen</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>225</td>
<td>Expectativas Inflacionárias e Inflação Implicita no Mercado Brasileiro</td>
<td>Flávio de Freitas Val, Claudio Henrique da Silveira Barbedo and Marcelo Verdini Maia</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>226</td>
<td>A Macro Stress Test Model of Credit Risk for the Brazilian Banking Sector</td>
<td>Francisco Vazquez, Benjamin M. Tabak and Marcos Souto</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>227</td>
<td>Uma Nota sobre Erros de Previsão da Inflação de Curto Prazo</td>
<td>Emanuel Kohlscheen</td>
<td>Nov/2010</td>
</tr>
<tr>
<td>228</td>
<td>Forecasting Brazilian Inflation Using a Large Data Set</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Dec/2010</td>
</tr>
</tbody>
</table>