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monetary authorities for forecasting inflation. Some empirical issues such as 
the optimal number of variables to extract the factors are also addressed. I 
find that the best performance of the data rich models is usually for 6-step-
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"Prediction is very difficult, especially if it's about the future." 

Nils Bohr, Nobel laureate in Physics 

 

1 - Introduction 

Forecasting inflation is a critical issue for conducting monetary policy regardless 

of whether or not the central bank has adopted a formal inflation targeting system. Since 

there are transmission lags in the impact of monetary policy in the economy, changes in 

the monetary policy should be based on projections of the future inflation. Therefore, 

the prime objective of inflation forecasting in a Central Bank is to serve as a policy tool 

for the monetary policy decision-making body. 

Saving, spending and investment decisions of individual households, firms and 

levels of government, both domestic and foreign, affect the aggregate price level of a 

specific country. Therefore, the determinants of inflation are numerous and include 

variables such as monetary aggregates, exchange rates, capacity utilization, interest 

rates, etc. Central banks in general and the Brazilian central bank (BCB) in particular 

keep an eye on a very huge set of variables, including those that are likely to affect 

inflation. The BCB, for example, provides electronic access1 to economic databases 

included in the Economic Indicators (Indicadores Econômicos). The data are broken up 

into six categories: economic outlook that includes price, economic activity, sales, etc.; 

currency and credit; financial and capital markets; public finance; balance of payments; 

and international economy. It constitutes a very comprehensive description of the 

Brazilian economy and is currently available to the monetary authorities. Additionally, 

the Brazilian central bank assesses the state of the economy each quarter and has 

published forecasts for inflation and GDP in its Inflation Report since 1999.  

Despite central bank monitoring of a very large number, even thousands, of 

those economic variables that possibly affect inflation, the most common methods 

employed for forecasting inflation, such as Phillips curve models and vector 

autoregressions, customarily include only few predictors. Nonetheless, recent 

methodologies have been developed and employed in order to take advantage of large 

datasets and computation capabilities available nowadays. Stock and Watson (2006) 

describe different approaches for forecasting in a data-rich context.  

                                                 
1 http://www.bcb.gov.br/?INDICATORS 
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It is common to identify two broad approaches for forecasting in a data-rich 

environment: (a) one can try to reduce the dimensionality of the problem by extracting 

the relevant information from the initial datasets and, then use the resulting factors for 

forecasting the variable of interest. Factor models with their different techniques and 

partial least squares (PLS) are examples of this first approach; and (b) one can just try to 

pick the relevant information from the individual forecasts provided by numerous 

models that usually do not contain more than few variables for each model. Classical 

forecast combination, Bayesian model averaging (BMA) and bootstrapping aggregation 

(Bagging) represent this approach for forecasting in a data rich environment. 

The objective of this paper is to verify if exploiting the large data set available to 

the Central Bank of Brazil makes it possible to obtain forecast models that are serious 

competitor to models typically used by the monetary authorities for forecasting 

inflation. Incidentally, some empirical issues such as the optimal number of variables to 

extract the factors are also addressed. 

I focus on two data-rich techniques for macroeconomic forecasting. First, I 

discuss the factor modeling by principal components (PC) developed by Stock and 

Watson (1998) and then I estimate a few underlying factors from a large dataset for the 

Brazilian economy and then employ the factors to forecast monthly inflation. I also 

provide a model using PC factors obtained from a reduction dataset in the spirit of the 

targeted predictors by Bai and Ng (2008). The second method is partial least squares 

(PLS), in which the extracted factors depend on the variable to be forecasted. The 

predictive performances of the proposed models and models similar to those used by the 

central banks are assessed through “quasi” pseudo out-of-sample simulation exercises.  

I find that the best performance of the data rich models is usually for 6-step-

ahead forecasts and forecasting models using rolling regressions outperform models 

based on recursive estimations. Furthermore, the factor model with targeted predictors 

presents the best results among the other data-rich approaches whereas PLS forecasts 

show a relative poor performance.  

This paper is organized as follows. Next section presents a brief discussion about 

the models usually used for forecasting inflation putting emphasis on those customarily 

used by monetary authorities. The following two sections (sections 3 and 4) describe 

two suitable forecasting methods to be used with a large number of predictors: the factor 

models by principal components and partial least squares. I also discuss some empirical 

issues concerning the extraction of the factors such as the number of factor and the 
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“optimal” size of the dataset. In section 5, the forecasting framework is set up and I 

briefly describe some models used by the Central Bank of Brazil for forecasting 

inflation. Empirical results are presented in section 6. Finally, I offer some concluding 

remarks and suggest some extensions for future research.  

 

2 - Models for forecasting inflation 

Macroeconomic forecast has been improved through time in the last fifty years. 

From macro models following the tradition of Cowles Commission to the Box-Jenkins 

approach represented by ARIMA models and their offspring, the econometric modeling 

has been given more attention to the data generating process underlying the economic 

time series.  

One of the most traditional ways to predict inflation is by using models based on 

short-run Phillips curve, which says that short-term movements in inflation and 

unemployment tend to go in opposite directions. When unemployment is below its 

equilibrium rate, indicating a tight labor market, inflation is expected to rise. On the 

other hand, when unemployment is above its equilibrium rate, indicating a loose labor 

market, inflation is expected to fall. The equilibrium unemployment rate is often 

referred to as the Non-Accelerating Inflation Rate of Unemployment (NAIRU). The 

modern version of the Phillips curve used to forecast inflation is known as NAIRU 

Phillips curve. Atkeson and Ohanian (2001) observe that NAIRU Phillips curves have 

been widely used to produce inflation forecasts, both in the academic literature on 

inflation forecasting and in policy-making institutions. 

However, several authors have largely challenged this practice. Atkeson and 

Ohanian (2001) challenge the usefulness of the short-run Phillips curve as a tool for 

forecasting inflation. According to them and Stock and Watson (1999), Phillips curve 

based forecasts present larger forecast errors than simple random walk forecasts of 

inflation. On the other hand, Fisher, Liu, Zhou (2002) show that the Phillips curve 

model seems to perform poorly typically when a regime shift has recently occurred, but 

even in this case, there may be some direction information in these forecasts that can be 

used to improve naive forecasts. Likewise, Lansing (2002) claims the evidence suggests 

that the short-run Phillips curve is more likely to be useful for forecasting the direction 

of change of future inflation rather than predicting actual magnitude of future inflation. 

Some other methods for forecasting inflation are more related to a data-driven 

framework. Some authors, for example, have been searching for an individual indicator 
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or variable that would be able to provide consistent forecasts of inflation. But the results 

have been fruitless as it can be seen in Cecchetti, Chu and Steindel (2000), Chan, Stock 

and Watson (1999), Stock and Watson (2002a) and Kozicki (2001). The basic message 

of the studies is that there is no single indicator that clearly and consistently predicts 

inflation. Nonetheless, Cecchetti, Chu and Steindel (2000) assert that a combination of 

several indicators might be useful for forecasting inflation.  

Among the data-driven models, the vector autoregression (VAR) approach, due 

to Sims (1980), became an effective alternative to the large macroeconomic models of 

the 1970s and it has also gained a great appeal in terms of forecast inflation. The VAR 

model, in its unrestricted version, is a dynamic system of equations that examines the 

linear relationships between each variable and its own lagged values and the lags of all 

other variables without theoretical restrictions. The only restrictions imposed are the 

choice of the set of variables and the maximum number of lags. The number of lags is 

usually obtained from information criteria such as Akaike or Schwarz. The VAR 

approach supposes that all variables included in the model are stationary. An alternative 

process to handle non-stationary variables is the vector error correction (VEC) model. 

The popularity of VAR methodology is in great part due to the lack of need of a 

hypothesis for the behavior of the “exogenous” variables to forecast. The model not 

only has a dynamic forecast of the variables, but also presents a great capacity to short-

term forecasting. The relative forecast performance of the VAR model has made it a 

part of the toolkit of central banks.  

Even so, the VAR methodology presents some shortcomings. One limitation of 

these models is the over-parameterization, which reduces degrees of freedom, 

increasing the confidence intervals. Another problem is the large prediction errors 

generated by the dynamic processes of the model.  

In order to solve, or at least reduce the problems mentioned above, 

incorporating previous researcher knowledge about the model originates the Bayesian 

VAR (BVAR), methodology.  

Basically, Bayesian VAR approach uses prior statistical and economic 

knowledge for guessing initial values for each one of the coefficients. The prior 

distribution is then combined with the sample information to generate estimates. The 

prior distribution should be chosen so as to provide a large range of uncertainty, and to 

be modified by the sample distribution if both distributions differ significantly.  
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Currently, different versions of vector autoregression models are largely 

employed for forecasting inflation in central banks such as the Federal Reserve Bank 

and Bank of England. A brief description of some VAR models used in the Brazilian 

central bank is presented in Section 3.  

Nevertheless, one common characteristic of all models discussed above is that 

they only include few variables as explanatory variables and consequently they do not 

exploit the whole information available to central banks, which comprises hundreds to 

thousands of economic variables.  

Some authors claim that including more information in the models lead to better 

forecasting results. Stock and Watson (1999), for example, show that the best model for 

forecasting inflation in their analysis is a Phillips curve that uses, rather than a specific 

variable, a composite index of aggregate activity comprising 61 individual activity 

measures. 

In order to take advantage of very large time series datasets currently available, 

some recent and other not so recent methodologies have been suggested. Stock and 

Watson (2006) survey the theoretical and empirical research on methods for forecasting 

economic time series variables using many predictors, where "many" means hundreds 

or even thousands. One important aspect that has made possible the advancements in 

this area is the improvements in computing and electronic data availability in the last 

twenty years. 

Combination of forecasts of different models represents one possible way to use 

the rich data environment. This approach has been used in economic models for forty 

years since the seminal paper of Bates and Granger (1969). Newbold and Harvey (2002) 

and Timmermann (2006) are examples of more recent survey articles on this subject. 

Stock and Watson (2006) provide a discussion on forecast combination methods using a 

very large number of models.  

Among the more recent methodologies discussed by Stock and Watson (2006), 

some of them deserve special attention since they have been applied extensively in 

economics lately, such as the factor model analysis; they either represent generalization or 

refinement of other methods such as the partial least square methodology (PLS) and the 

Bayesian model averaging (BMA). In the next two sections, the methodologies of factor 

model and PLS are discussed. BMA will hopefully be future subject of my research.  
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 3 - Model for dealing with large dataset: dynamic factor model 

As discussed by Stock and Watson (2006), there are several techniques for 

forecasting using a large number of predictors. Dynamic factor models, ridge 

regression, Bayesian techniques, partial least squares and combinations of forecasts are 

examples of possible approaches that have been used in macroeconomic forecasts. In 

this section, I describe the dynamic factor model, one of the most popular 

methodologies in this context nowadays that has been largely used in central banks and 

research institutions as forecasting tools.2  

 

3.1 - Factor analysis and principal component models 

The objective of this section is to present the methodology for estimating a few 

underlying factors using the methodology based on factor models proposed by Stock 

and Watson (1998). The factor model3 is a dimension reduction technique introduced in 

economics by Sargent and Sims (1977). The basic idea is to combine the information of 

a large number of variables into a few representative factors, representing an efficient 

way of extracting information from a large dataset. The number of variables employed 

in most applied papers usually varies from one hundred to four hundred, but in some 

cases the datasets can be larger such as Camacho and Sancho (2003). They use a dataset 

with more than one thousand series. 

Bernanke and Boivin (2003) claim that the factor model offers a framework for 

analyzing data that is clearly specified, but that remains agnostic about the structure of 

the economy while employing as much information as possible in the construction of 

the forecasting exercise. Moreover, since some estimation methods of this type of model 

are non-parametric such as those based on principal components, they do not face the 

problem that a growing number of variables lead to an increased number of parameters 

and higher uncertainty of coefficient estimates as in state-space and regression models. 

As emphasized by Artis et al. (2005), this methodology also allows the inclusion of data 

of different vintages, at difference frequencies and different time spans. 

Following Sargent and Sims (1977), several papers have employed this method 

in different areas of economics. For example, Conner and Korajczyk (1988) used this 

method in arbitrage pricing theory models of financial decision-making. Additionally, 

                                                 
2 A good glimpse of theoretical and applied works on this subject is given by the papers presented at the 
research forum: New developments in Dynamic Factor Modelling organized by the Centre for Central 
Banking Studies (CCBS) at Bank of England in October 2007. 
3 The factor model used by Stock and Watson (1998) is also called diffusion index model. 
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this methodology has also been employed for obtaining measures of core inflation, 

indexes for monetary aggregates and for human development. 

In terms of macroeconomic analysis, most studies are concerned with monetary 

policy assessment and evaluation of business cycles (Forni et al. (2000)). Bernanke and 

Boivin (2003), for instance, introduced the factor-augmented vector autoregressions 

(FAVAR) to estimate policy reaction functions for the Federal Reserve Board in a data-

rich environment.  

Gavin and Kliesen (2008) argue that another reason for the popularity of the 

dynamic factor model is because it provides a framework for doing empirical work that 

is consistent with the stochastic nature of the dynamic stochastic general equilibrium 

(DSGE) models. Boivin and Giannoni (2006) and Evans and Marshall (2009) are 

examples of using dynamic factor framework with the theory from DSGE models to 

identify structural shocks. 

For Brazil, we have very few examples of studies using dynamic factor 

methodology. Ortega (2005) used factors extracted from 178 time series as instruments 

in forward-looking Taylor rules and as additional regressors in VARs to analyze 

monetary policy in Brazil. Ferreira et al. (2005) employed linear and nonlinear diffusion 

index models to forecast quarterly Brazilian GDP growth rate. 

Regarding forecasting of macroeconomic variables, mainly output and inflation, 

it has been noticed an increasing number of papers in the recent years for different 

countries. Eickmeier and Ziegler (2008) is one example of recent survey of the literature 

of dynamic factor models for predicting real economic activity and inflation.  

Since the pioneer work of Stock and Watson (1998), Eickmeier and Ziegler 

(2008) list 47 papers for more than 20 different countries using dynamic factor models. 

The vast majority of the papers (37) have been written since 2003. Most studies found 

that the forecasts provided by this methodology have smaller mean-squared errors than 

forecasts based upon simple auto regressions and more elaborate structural models.  

Currently, it seems that the main use of factor models is as forecasting tools in 

central banks and research institutions. The potential of factor forecasts has been 

investigated by various institutions including the Federal Reserve of Chicago, the U.S. 

Treasury, the European Central Bank, the European Commission, and the Center for 

Economic Policy Research. Some institutions went a step further and have been 

integrating factor models into the regular forecasting process. The Federal Reserve 

Bank of Chicago produces a monthly index of economic activity (Chicago Fed National 
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Activity Index – CFNAI) that is basically the first static principal component from a set 

of 85 monthly indicators of economic activity in the United States. Another example is 

the EuroCOIN that is a common component of the euro-area GDP, based on dynamic 

principal component analysis developed by Altissimo et al. (2001).  

Table 3.1 shows a summary of several studies where factor is employed for 

forecasting inflation. The table displays the root mean square forecast error (RMSFE) of 

factor models relative to the best univariate autoregressive models. Figures lower than 

one mean that the factor model presents a lower RMSFE than the benchmark model.  

The results show that factor models usually outperform the autoregressive 

model. The average gain for a 12-step ahead forecast for monthly inflation, for example, 

is close to 40 percent. Furthermore, the relative performance of the factor model in the 

monthly examples seems to be improved for longer forecasting horizons.  

Despite the very promising results of early works, Eickmeier and Ziegler (2008) 

argue that some studies such as Schumacher (2007), Schumacher and Dreger (2004) 

find no or only negligible improvements in forecasting accuracy using factor models. 

This leads to what I consider the second wave of papers in the literature, where the main 

focus change from comparing the performance of factor models against benchmark 

forecasts to explore in which context the factor model perform better. Boivin and Ng 

(2006) and Jacobs et al. (2006) are examples of this literature. They want to verify if the 

larger the dataset, the better is the forecasting performance of the model as well as how 

the results depend on the characteristics of the datasets and the factor. 

 

 

 

Table 3.1 Summary of factor model results for forecasting inflation: RMSFE relative to autoregressive models

Papers Country Variable Number

of series

Monthly data 1 3 6 9 12 24

Moser, Rumler & Scharler (2007) Austria HICP 179 - - - - 0.44 -

Aguirre & Céspedes (2004) Chile CPI 306 - 0.95 1.05 0.61 0.56 -

Marcellino et al. (2003) Euro Area CPI 401* - 1.04 0.94 - 0.57 -

Camacho & Sancho (2003) Spain CPI 1133 - 0.66 0.41 - 0.33 -

Artis, Banerjee and Marcellino (2005) UK CPI 81 - - 0.6 - 0.43 0.41

Zaher (2007) UK CPI 167 - - - - 0.65 -

Stock and Watson (2002b) US CPI 215 - - 0.71 - 0.64 0.61

Gavin and Kliesen (2008) US CPI 157 - 0.92 - - 0.94 0.98

Quarterly data 1 2 3 4 5 6 7 8

Gosselin & Tkacz (2001) Canada CPI 444 - - - - 0.61 - - -

Angelini, Henry and Mestre (2001) Euro Area HICP 278 0.82 0.53 0.66 0.69 - - - 0.74

Matheson (2006) New Zealand CPI 384** 0.86 0.97 0.85 1.04 1.06 1.08 1.09 0.92

Source: Papers referred above and Eickmeier & Ziegler (2008).
* Balanced panel.
** The authors use data reduction rules.

Forecast horizon
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In addition to the size of the dataset and the characteristics of the variables, 

estimation techniques might play an important role in the factor forecast model. The 

chosen method might also affect the precision of the factor estimates. Boivin and Ng 

(2005) asserts that the two leading methods in the literature are the “dynamic” method 

of Forni et al. (2000, 2005) and the “static” method of Stock and Watson (2002a, b). 

Boivin and Ng (2005) also show that besides the static method being easier to construct 

than the dynamic factor, it also presents better results in empirical analysis. In the next 

subsection I will describe the methodology developed by Stock and Watson (2002a, b).  

 

3.2 - Model specification and estimation 

The basic idea of the factor model is that it is possible to reduce the dimension 

of a large dataset into a group of few factors and retain most of the information 

contained in the original dataset. In the approximate factor model, each variable is 

represented as the sum of two mutually orthogonal components: the common 

component (the factors) and the idiosyncratic component. 

Let us denote the number of variables in the sample by N and the sample size by T. 

In this methodology, the number of observations does not restrict the number of explanatory 

variables, so N can be larger than T. Assuming that the variables can be represented by an 

approximate linear dynamic factor structure with q common factors I have: 

 

(3.1) ��� � ������� 	 
�� with i = 1, …, N and t = 1, …, N . 

 

Xit represents the observed value of explanatory variable i at time t and ft is the q 

x 1 vector of non-observable factors and eit is the idiosyncratic component. The 1 x q 

����� shows how the factors and their lags determine Xit.  

There are different estimation techniques for the model defined by (3.1). Besides 

the approaches proposed by Stock and Watson (SW) (2002a) and Forni, Hallin, Lippi 

and Reichlin (FHLR) (2005) that rely on static and dynamic principal component 

analysis4 respectively, Kapetanios and Marcellino (2004) suggest a method based on 

subspace algorithm. As mentioned before, Boivin and Ng (2005) claim that the SW 

approach presents better results in empirical analysis. 

                                                 
4 Whereas SW methodology is based on the second moment matrix of X, the FHLR method components 
are extracted using the spectral densities matrices of X at various frequencies. 
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In order to solve the model by principal components as in Stock and Watson 

(2002a) I need to make the model static in the parameters. The model in its static 

representation is the following: 

 

(3.2)  �� � ��� 	 
� 

 

where Xt is the vector of time series at time t and '
tF  dimension column vector of 

stacked factors and Λ is the factor loading matrix relating the common factors to the 

observed series that is obtained by rearranging the coefficients of )(Liλ for i = 1,…, n. 

Note that tF , Λ and tε  are not observable. 

The goal of principal component analysis is to reduce the dimension of the 

dataset, whereas keeping as much as possible the variation present in the data. In this 

context, I have to choose the parameters and factor of the model in (3.2) in order to 

maximize the explained variance of the original variables for a given number of factors 

q ≤ N. The resulting factors are the principal components. 

In this context, the principal component analysis is represented by an eigenvalue 

problem of the variance-covariance matrix of the time series vector Xt and  

the corresponding eigenvectors form the parameter matrix Λ and the weights of the 

factors Ft.  

 

(3.3) �� � �Λ�

�
  

 

Λ�  is obtained by setting it equal to N1/2 times the eigenvectors of the N x N 

matrix corresponding to its largest q eigenvalues. When N > T, Stock and Watson 

(1998) recommend a computationally simpler approach where F̂ is setting equal to T1/2 

times the eigenvectors of the T x T matrix XX’ corresponding to its q largest 

eigenvalues. 

As the principal component method is a non-parametric method, it does not 

suffer the problems that a growing cross-section dimension leads to: an increased 

number of parameters and higher uncertainty of coefficient estimates, as in state-space 

models and regression approaches. 
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An estimated factor can be thought as a weighted average of the series in the 

dataset, where the weights can be either positive or negative and reflect how correlated 

each variable is with each factor. Factors are obtained in a sequential way, with the first 

factor explaining most of the variation in the dataset, the second factor explaining most 

of the variation not explained by the first factor, and so on. 

 

3.3 - Choosing the number of factors 

One key point of this approach is the number of factors to extract from the 

dataset. The decision of when to stop extracting factors basically depends on when there 

is only very little “random” variability left. There have been examples in the literature 

of formal and informal methods of choosing the number of factors. 

Some methods are based on the idea that eigenvalues of the sample correlation 

matrix may indicate the number of common factors. Since the fraction of the total 

variance explained by q common factors is denoted by: 

 

(3.4)  ���� � ∑ ��
�
���

�
 

 

where �� is the ith eigenvalue in descending order, it would be possible to choose the 

number of factor by a specific amount of the total variance explained by the factors. 

However, there is no limit for the explained variance that indicates a good fit. Breitung 

and Eickmeier (2006) notice that in macroeconomics panels, a variance ratio of 40 

percent is regularly considered as a reasonable fit.  

Matheson (2006), Stock and Watson (1999, 2004), Banerjee et al. (2005, 2006), 

Artis et al. (2005) set a maximum number of factors and lags simultaneously to be 

included in the forecasting equation using information criteria. On the other hand, 

Bruneau et al. (2003) seek to assess the marginal contribution of each of the factors to 

the forecast. Schumacher (2007), Forni et al. (2000, 2003) use performance-based 

measures, mean squared error, for example.  

In most of the applied papers in economics, such as Angelini et al. (2001) and 

Camacho and Sancho (2003), the decision is based on the forecast performance. 

Nonetheless, Bai and Ng (2002) have proposed ways to determine the number of factors 
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based on information criteria using the residual sum of squares given by Equation 3.55 

plus a penalty term that is an increasing function of N and T. 

 

(3.5) ���, �� � 	

�

∑ ∑ ���� � ��

′ ���

��	

�
��	  

 

The two criteria which performed better in the authors’ simulations are  

the following: 

 

(3.6)����	 � ln����, ��� 	 � ���


�

 !" � �


��

   

(3.7) ����
 � ln����, ��� 	 � ���


�

 !"�min &�, '(�
 

 

The first term on the right hand side in 3.6 and 3.7 shows the goodness-of-fit that 

is given by the residual sum of squares, which depends on the estimates of the factors 

and the numbers of factors. The information criteria above can be thought of as 

extensions to Bayes and Akaike information criteria. 

They display the same asymptotic properties for large N and T, but they can be 

different for a small sample. In empirical applications, a maximum number of factors 

are fixed (rmax) and then estimation is performed for all number of factors (r = 1,2 

…rmax). The optimal number of factors minimizes the Bai-Ng information criterion 

(BNIC). 

Matheson (2006) criticizes Bai and Ng criterion claiming that this approach 

retains a large number of factors leading to possible problems of degrees of freedom.  

 

3.4 - Data with different frequencies and missing values 

The principal component approach and the corresponding matrix decomposition 

described above are valid in the presence of balanced panel, i.e. datasets in which no 

data are missing. However, Stock and Watson (1998) demonstrated that it is still 

possible to perform the estimation in the presence of missing values using the 

expectation maximization (EM) algorithm. The EM algorithm is a method used to 

estimate probability densities under missing observation through maximum-likelihood 

estimates for parametric models. In the first step, the estimated factor from balanced 

                                                 
5 Equation (3.2) is equivalent o Equation (3.5). 
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panel can be used to provide estimates for the missing observations. Then factors are 

obtained from the completed data set and the missing observations are re-estimated 

using the new set of estimated factors, and the process is iterated until the estimates of 

the missing observations and of the factors do not change substantially. 

This feature allows combining data with different frequencies, for example 

monthly and quarterly. It also allows incorporating series that are only available for sub 

periods. The downside of this procedure is the existence of the risk of substantial 

deterioration of the final factor obtained from the entire dataset. Angelini (2001) 

observed that the deterioration increases when the number of factors in each EM 

iteration is large. 

In their survey of forecasting applications of dynamic factor models, Eickmeier 

and Ziegler (2006) find that balanced or unbalanced panels and the specification of 

forecasting equation seem to be irrelevant for the forecast performance. 

 

3.5 - Choosing the “optimal” data size  

How the number of series affects the forecasting performance of factor models is 

still an open question in the empirical literature. In this part, I discuss some possible 

problems of using “too many” series as well as the routines suggested by some authors 

to choose the optimal numbers of series to be included in the forecasting factor model.  

In this forecasting framework, forecasts can be considered linear projections of 

the dependent variable on some information set )�: 

 

(3.8)  *���
� � +,-.�*���|)�� 

 

Assuming that f(.) represents the operator for the principal component analysis, 

then Stock and Watson (2002) forecasts that use the whole available information set is 

given by: 

 

(3.9)  *���
� � +,-.�*���|��)��� 

 

One aspect that is object of current studies in the empirical literature of dynamic 

factor is the selection of an optimal subset of )�. The authors of early studies, as argued 
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in Matheson (2006), at least tacitly, advocate the use of as many time series as possible 

to extract the principal components.  

The idea behind this statement is that the larger the dataset tends the greater the 

precision of the factor estimates is. However, intuitively, one can conceive that 

including not relevant and/or not informative variables might spoil the estimate factors. 

In effect, Boivin and Ng (2006) demonstrate that increasing N beyond a given number 

can be harmful and may result in efficiency losses, and extracting factor from larger 

datasets does not always yield better forecasting performance. However, it is not only 

the size of the dataset that matters for forecasting, the characteristics of the dataset is 

also important for the factor estimation and for the forecast performance. 

Boivin and Ng (2006) show that the inclusion of variables with errors, which 

have large variances and/or are cross-correlated, should worsen the precision of factor 

estimates. One possible problem is oversampling, the situation where the dataset include 

many variables, which are driven by factors irrelevant to the variable of interest. In this 

context, a better estimation of the factors does not turn into a better-forecast 

performance. Other features of the data can also undermine the precision of the factor 

estimates and the forecasting performance. One is the dispersion of the importance of 

the common component and other is the amount of cross and serial correlations in the 

idiosyncratic components.  

The authors proposed some kind of pre selection of the variables before the 

estimation and forecasting stages in order to remove correlated, large errors or irrelevant 

variables. They suggest excluding those series that are very idiosyncratic and those 

series with highly cross-correlated error in the factor model. Another possible approach 

is categorizing the data into subgroups with an economic interpretation.  

As the objective is forecasting a specific variable, another approach for reducing 

the initial dataset should be based on the predictive power of the candidate variables. 

Bai and Ng (2008) denote as targeted predictors those candidate variables in the initial 

large dataset which are tested to have predictive power for the variable to be forecasted. 

Thus I call the PC factor forecasting model obtained from the reduction of the initial 

dataset based on the prediction ability of the variables as targeted principal component 

(TPC) model 

Some authors have been proposing different ways to ‘target” the variables from 

which the factor would be extracted. Den Reijer (2005), for example, verifies whether 

the series lead or lag the time series of forecasting interest, and he shows that for the 
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whole set of leading components there exists an “optimal”, not necessarily a maximum 

size of the subset of data, at which the forecasting performance is maximized. Thus, he 

reduces the information set to )�
���� that comprises all variables that are leading to the 

dependent variable. 

However, Silverstovs and Kholodin (2006) criticize den Reijer (2005) observing 

that leading time series need not necessarily imply a better forecasting performance and 

they propose to search for variables, which are individually better at forecasting the 

variable of interest. As a result, the information selected by Silverstovs and Kholodin 

(2006), )�
����, includes only series that have the out-of-sample root mean square 

forecast error (RMSFE) lower than that of a benchmark model. They conclude that their 

procedure yields large improvement in the forecasting ability over the model based on 

the entire dataset and outperforms the approach suggested by der Reijer (2005).6  

Similarly, Matheson (2006) exploits the past predictive performance of the 

indicators in terms of the relevant dependent variable to vary the size of the data. 

Formally, he estimated OLS regressions of the forecast on each potential indicator and 

sorted them out from most to least informative in terms of R2. Then he chose a specific 

top proportion �0� of the ranked indicators to be part of the relevant dataset ()�
�). An 

alternative way used by the author is using the common component of each indicator 

(the projection of each indicator on the factor) resulting from the factor model estimated 

over the entire data set to be as the regressors of the OLS regressions mentioned above. 

In this approach, the dataset employed and, consequently, the estimated factors are 

conditional to the variable of interest and forecast horizons. 

However, the results obtained by Matheson are unclear both in terms of finding 

a relationship between the size of the data set and forecast performance and of which 

data-reduction rule produces the best factor model forecasts.  

Bai and Ng (2008) use two classes of procedures to isolate the subset of targeted 

variables. In the first procedure which they call as hard thresholding, they estimate 

regressions of *� against each 1�� controlling for lags *� and then rank the variables by 

their marginal predictive power through the t statistic associated with 1��. The second 

approach called as soft thresholding performs subset selection and shrinkage 

                                                 
6 One feature of the method employed by Silverstovs and Kholodin (2006) is that the information set is 
dependent on the forecast horizon since the forecasting accuracy and the leading capacity might change 
for different values of h. 
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methodology simultaneously using some extensions of ridge regression. They authors 

found that TPC models perform better than no targeting at all.  

The basic message of this section is that noisy data can do harm in the extraction 

of factors and affect our forecasting results. Therefore, reducing the initial dataset by 

excluding noisy variables or keeping those more related with the variable to be 

forecasted would improve the forecasts results. 

In the next section, I will briefly discuss the Partial Least Square method which 

extracts the factors taking into account the variable to be forecasted without reducing 

the initial dataset. 

 

4 - Model for dealing with large dataset: partial least squares 

Lin and Tsay (2005) claim that a drawback of the dynamic factor model in 

forecasting applications is that the decomposition used to obtain the factors does not use 

any information of the variable to be forecasted. Thus, the retained factors might not 

have any prediction power whereas the discarded factors might be useful. A possible 

solution for this problem is the partial least squares (PLS) method. 

PLS is an approach that generalizes and combines features from principal 

component analysis and multiple regressions. This approach is suitable for applications 

where the number of predictors is often much greater than the sample size and they are 

collinear. This method emphasizes the question of predicting the responses and not 

necessarily on trying to understand the underlying relationship between the variables. 

Despite being proposed as econometric technique by Wold (1966), it has 

become popular among chemical engineers and chemometricians Most of its 

applications concern spectrometric calibration, monitoring and controlling industrial 

process. It has since spread to research in education, marketing, and the social sciences. 

Few examples of the utilization of PLS in forecasting macroeconomic variables are 

available up to the present time but they have been showing promising preliminary 

results Lin and Tsay (2006) compares PLS with other techniques for forecasting 

monthly industrial production index in U.S. using monthly dataset with 142 economic 

variables. Groen and Kapetanios (2008) apply PLS and principal components along 

with other methodologies on 104 monthly macroeconomic and financial variables to 

forecast several macroeconomic series for US. They found that PLS regression was 

generally the best performing forecasting method, and even in the few cases when it is 

outperformed by other methods, PLS regression still is a close competitor. Additionally, 



20 

Eickmeier and Ng (2009) forecast GDP growth for New Zealand using different data-

rich methods and conclude that PLS method performs very well compared to other 

methods.  

 The major difference between principal component and partial least square is 

that principal components are obtained taking into account only the values of the 

variables to be used as the predictors, whereas in the partial least squares, the 

relationship between the predictors and the variable to be forecasted is considered for 

constructing the factors. Groen and Kapetanios (2008) provide theoretical arguments for 

asymptotic similarity between principal components and PLS method when the 

underlying data has a factor structure. They also argue that forecast combinations can be 

considered as a specific form of PLS regression.  

PLS method finds components from the predictors that are also relevant for the 

dependent variable. Specifically, PLS regression searches for a set of components 

(latent vectors) that performs a simultaneous decomposition of �� and *� with the 

constraint that these components explain as much as possible of the covariance between 

�� and *�. Then the components is used to predict *�. 

 

4.1 - Estimation  

As mentioned by Groen and Kapetanios (2008), there are several definitions for 

partial least squares as well as the corresponding algorithms to compute them. But the 

concept that underlies the different ways to define PLS is that the PLS factors are those 

linear combinations of the predictor variables that give maximum covariance between 

the variable to be forecasted and those linear combinations while being orthogonal to 

each other. Groen and Kapetanios (2008) presented the following algorithm to construct 

PLS factors: 

 

1) Set 2� � *� and 3�,� � 1�,�, i = 1, … N. Set j = 1; 

2) Determine N x 1 vector of loading 4� � �4	� 5 4��� by 

computing individual covariances: 4�� � 6-3�2�, 3���, i = 1, … N. Construct the 

j-th PLS factor by taking the linear combination given by 4�
′3� and denote this 

factor by ��,�; 

3) Regress 2� and 3�,� , i = 1, … N on ��,�. Denote the residuals of 

these regressions by 27� and 37�,� respectively and  
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4) If j = k stop, else set  2� �  27�, 3�,� �  37�,� i = 1, … N and j = j+1 

and go to step 2. 

The precise number of extracted factors is usually chosen by some heuristic 

technique based on the amount of residual variation. Alternatively, some authors 

construct the PLS model for a given number of factors on one set of data and then to test 

it on another, choosing the factors of extracted factors for which the total prediction 

error is minimized. 

After computing the PLS factors by the algorithm above I use them to forecast 

inflation using the model to be described in next section.  

 

5 - Forecasting framework 

In this part, I outline the forecast models to be compared in the analysis as well 

as the metrics to be used for assessing the forecast accuracy and performance of the 

models. I begin with a general description of the forecast model. 

 

5.1 - The dynamic forecast model 

Forecast models are specified and estimated as a linear projection of an h-step-

ahead variable (8���
� ) onto predictors at time t.  

 

(5.1) 8���
� � 9 	 :�;�8� 	 <�;�=� 	 >���

�  

 

where ?��� is a scalar lag polynomial, @��� is a vector log polynomial, μ is a constant 

and Zt is a vector of predictor variables at time t and 
���
�  is an error term. 

This approach is known as dynamic estimation (e.g. Clements and Hendry, 

1998) and differs from the standard approach of estimating a one-step-ahead model and 

then iterating the model forward to obtain h-step-ahead predictions. The advantages of 

the dynamic estimation is that there is no need for additional equations for 

simultaneously forecasting Zt, and the potential impact of specification error in the one-

step-ahead model can be reduced by using the same horizon for estimation and for 

forecasting. A particular feature of this approach is that for each h we have a different 

equation since the dependent variable differs for each forecast horizon. 

The characterization of *���
�  depends on whether the variables of interest, the 

headline inflation rate and the market price in this case, are modeled as being stationary 
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or not. For the results to be presented in section 5, I consider inflation as an I(0) process 

and the relevant variable for most models is  

 

(5.2) *���
� � ln �����

��
   

 

where A is either the broad consumer price index (IPCA) or the market price IPCA.7 

 

5.2 - Forecast models 

Principal component (PC) forecasts are based on setting Zt in (5.1) to be the 

principal components (��
��) from a large number of the candidate predictor time series. 

��
�� is a k x 1 vector estimated using the method discussed in section 3.2. If I use any 

method for reducing the initial set of predictor variables, the resulting factors are 

denoted as ��
��� and they are used in (5.1) to obtain targeted principal components 

(TPC) forecasts. Zt can also be formed by factors estimated by the algorithm given in 

section 4.1 and the resulting forecasts are denoted as partial least squares (PLS) 

forecasts. The benchmark forecasts are provided by univariate autoregressive models 

based on (5.1) excluding Zt. 

Additionally, I have vector autoregression models similar to those used in the 

Brazilian Central Bank (BCB) as auxiliary models for forecasting inflation. These 

models are presented in the Inflation Report of June 2004 and they are comprised by 

two unrestricted vector autoregressive models and two Bayesian vector autoregressive 

models for generating monthly forecasts for market price inflation. 

The summary of the models’ specifications is displayed in the Table 5.18. A 

common feature of all four models is the presence of three trend dummies included for 

capturing the period of disinflation process started with Plano Real in 1994.  

The strategy for obtaining the forecasts of the Brazilian Central Bank models in 

my exercises differs from the data-rich models and autoregressive models described 

above. The h-month ahead forecasts from the VAR models are obtained by iterating 

monthly forecasts for h periods.  

 

                                                 
7 The market price index is obtained through the exclusion of the regulated and monitored prices from the 
IPCA. 
8 The optimal lag length was chosen on the basis of the Akaike and Schwarz criteria. 
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I will use a strategy for the out-of-sample forecasting exercise similar to that 

used by Zaher (2005). First the models will be estimated initially on data from January 

1995 to December 2000 and h-step ahead forecasts are computed. Then the estimation 

sample is augmented by 1-month, the model is reestimated and the corresponding h-

step-ahead forecast is computed. I obtained inflation forecasts from January 2001 

through July 2009. I also estimate the models using rolling regressions setting a fixed 

estimation window of 72 months. 

This is not a strict real time analysis since I use current vintage data and assume 

the data are available in the time to run the forecast. Some variables, such as industrial 

production, are only available more than a month later and are subject to revisions.  

In order to replicate the real-time problems associated with estimating seasonal 

factors, the variables are treated for seasonality for each period. Next, the data is 

standardized, and then the models are re-estimated and the factors are computed. Thus 

estimation procedure is entirely recursive in terms of parameters and factors, given the 

number of factors defined at a first stage. 

 

6 - Empirical results 

In this section we present the empirical results of our analysis. First we briefly 

describe the data we use and how the data are treated before used to obtain the factors 

using the principal components as well as the partial least squares. 

 

Table 5.1 Specifications of VAR models used by Central Bank of Brazil

1 2 3 4

Real interest rate x
Nominal interest rate x x x
Money stock x x x
Industrial output x x x
Nominal exchange rate x x x x
Regulated price x x x x
Market price x x x x

Deterministic components

Constant x x x x
Three trend dummies x x x x
Seasonal dummies x x x

Lags 2 6 6 6
Source: Inflation Report, Central Bank of Brazil, June 2004

Endogenous variables
VAR models

Unrestricted Bayesian
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6.1 - The Brazilian data 

The collected data set for Brazil contains 368 monthly series over the sample 

period of January 1995 to July 2009. The sample was chosen to include only 

information after the Real Plan, a successful stabilization plan launched in June 1994. In 

order to obtain a balanced and as exhaustive as possible picture of the Brazilian 

economy, we included variety of economic variables related to prices (consumer, 

producer and retail prices and disaggregated by group of goods), labor market 

(employment, unemployment, wages and unit labor costs), output (industrial production 

and sales disaggregated by sectors) and income, monetary (aggregates: M2, M1, 

monetary base) and financial indicators (interest rates, stock prices), fiscal and external 

sector (effective and nominal exchange rates, imports exports and net trade), and other 

miscellaneous series. Table 6.1 provides a summary of the 368 variables employed in 

the factor estimation for the whole dataset.9  

Following the standard procedures similar to those largely used in the empirical 

dynamic factor literature as in Marcellino, Stock and Watson (2003) and Artis, Banerjee 

and Marcellino (2005), the data are transformed in a multi-stage process.  

 

1) Logarithms are taken of all nonnegative series and series characterized by 

percentage changes, shares or rates such as unemployment and interest rates are 

transformed in the following way: ln(1+x/100); 

2) The series are transformed to account for stochastic or deterministic trends 

using Augmented Dickey-Fuller unit root test; 

3) All series are tested for seasonality10 that consists of regressing each variable 

against eleven monthly indicator variables and if the F-Test on those eleven 

coefficients is significant at the 10% level of significance, the series is 

seasonally adjusted using X-12 program; and 

4) Finally, in order to avoid scaling effects, the variables are transformed into 

series with zero means and unit variance. 

 

In order to verify whether the number of variables used to obtain the factor 

affects the estimation of the factors and the forecasting performance of the factor model, 

                                                 
9 The description of all series as well as the test results for stationary and seasonality is available upon 
request.  
10 All series in my database are not seasonally adjusted previously.  
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we used a method to keep only the series more related to the variable of interest. Our 

approach to reduce the initial dataset slightly differs from those discussed in Section 

3.5. We performed Granger causality tests for all 368 series with respect to our variables 

of interest. Then we obtained the p-values for the F statistic of testing the null 

hypothesis whether the specific variable does not Granger-cause inflation. We discarded 

all variables for which the p-value is greater than 0.1. The number of variables for each 

forecast horizon is shown in Table 6.2. 

 

 

 

In this paper all factor estimations are done for balanced dataset, therefore we 

do not include in our data either variables, which are not available for the entire sample 

or data with different frequency from monthly.11 

 

 

                                                 
11 In previous exercises we found that that balanced panel outperformed unbalanced panels in terms of the 
precision of the factor estimates.  

Table 6.1 Summary of  the variables employed in factors estimation

Sectors Number of 
variables

Monetary Aggregates 13

Credit 12

Interest rates 9

Fiscal variables 25

Exchange rates 22

Price indices 81

Industrial production 47

Production and inventories 14

Capacity utilization 3

Consumption and sales 24

Employment and working hours 32

Wages and payroll 11

Default 6

External sector 49

International 15

Miscellaneous 5

Overall 368
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As the variable of interest of Central Bank forecast models is the market price 

inflation, we perform our analysis using both the IPCA headline inflation and market 

price inflation. It allows us to compare the forecasting results from the factor models 

with the models used by the Brazilian Central Bank. As mentioned previously, in our 

forecasting setting the variable to be forecasted differs for each forecast horizon, 

therefore as I have five different forecasting horizons (1, 3, 6, 9 and 12 months), we 

have ten series to be forecasted.  

 

6.2 Out-of-sample forecasting results  

Aside from the Central Bank forecasts, all the forecasts we study are based on h-

step-ahead linear projections as given by 5.1. I obtain the Central Bank’s VAR and 

BVAR forecasts by iterating monthly forecasts forwardly. 

The forecasts are compared using a recursive simulated (pseudo) out-of-sample 

exercise. The forecast exercise is a two-step procedure; first we estimated the factors by 

principal components or partial least squares and then we use the estimate factors to 

obtain the forecasts.  

I used the balanced model for some forecasting exercises. From equation (5.1), 

the factor or diffusion index forecasting function is given by: 

 

(6.1) 8B�
� � 9B 	 ∑ :B��8� � ��!

"

��! 	 ∑ ∑ <��#�C�#,� � ��! 
%
��!

&
#�!  for h = 1, 3, 6, 9 e 12 

 

where C�#,�  is the qth estimated factor with q =1, … r.  

In order to check the optimal number of factor to be used in my analysis I 

extracted the factor using entire estimation sample (1995.1 to 2000.12) for the initial set 

of variables and for the targeted predictors for headline and market price inflation for 

the different forecast horizons. The numbers of estimated factor using the Bai and Ng 

information criteria given by equations 3.6 and 3.7 are given in Table 6.3. As one can 

notice, the number of factors varies from 3 to 10, and the second criterion (BNIC2) 

never assigns a higher number of factors than BNIC1 does. Take into account these 

results and also considering the question of parsimony, I decided to set a maximum 

number of factors equal to six and test the forecast accuracy for using different numbers 

of factors. 
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Thus, the PC, PTC and PLS models are estimated for the balanced panel with 1 

≤ r ≤ 6 (number of factors) for, 0 ≤ m ≤ 4 (number of the lags for the factors) and 0 ≤ p 

≤ 6 (number of the lags for inflation). The auto regressive model given by (6.3) is 

similar to the factor model except for the exclusion of the factors terms. 

 

(6.2) 8B���
� � 9B 	 ∑ :B��8� ��!

"

��!  

 

 

 

Our forecasting exercises comprise two parts. In the first part, we compare the 

forecast performance of the factor models to autoregressive models for different 

forecasting horizons. Then we pick models with the best performances and compare 

their forecasts with the results from the vector autoregression models similar to those 

used in the Brazilian Central Bank. 

 

6.2.1 Factor model forecasting performance  

In this section we discuss the out-of-sample results comparing the forecasting 

provided by the three different methods (factor by principal component for the whole 

set of variables (PC) and for the targeted variables (TPC), and partial least squares 

(PLS)) against the benchmark (the best autoregressive model). 

For each type of data-rich model (PC, PTC and PLS), our exercises are 

performed for the two relevant variables (headline and market price inflation) and using 
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performance is obtained for the 3-step ahead forecasts with the relative RMSE reaching 

slightly above 0.90. 

Regarding the best number of factors to consider in forecasting, the answer 

should be four considering only PC models. For PTC models, the answer is not clear 

with advantage for model 1 or 6 factors. Finally, for PLS models, the best forecasting 

performance is obtained using 3 factors.  

We notice that the median model of each method typically outperform the 

benchmark model. Additionally, for mostly models, the best results are found for 6-step 

ahead forecasts and the worst performance is verified for the one-step and 12-step 

forecasts. This behavior leads to a u-curve relating the average RMSE for median 

models and the forecasting horizons for the PC and TPC models s shown in Figure 6.3.  

Figure 6.3 also shows that TPC provides better forecasts either in terms of 

median models and the worst performance is provided by the PLS models. 

 

 

The results for the rolling models are displayed in Figures 6.4 and 6.5. For this 

set of models, the best performance is still for the 6-step-ahead forecasts even for the 

PLS models.  

From Figure 6.5 it is seen that TPC models show the best performance for 

shorter forecasting horizons (1 and 3-step ahead) whereas larger horizons are 

dominated by PC models.  

Comparing the results in Figures 6.1 through 6.4, the rolling models seem to 

relatively outperform the recursive models in terms of RMSFE relative to the 

benchmark models. However, the comparison of the results is not straightforward since 

each group of models (recursive and rolling models) is compared to a benchmark model 



30 

estimated using the same approach as the group of models, that is, the benchmark for 

the rolling models is the best autoregressive model estimated by a rolling window.12  

 

 

 

In my opinion, there are two remarkable features of the headline rolling models. 

First, PC and TPC models perform better for 12-step ahead forecasts than the same 

models in a recursive context. Additionally, the PLS model performance is largely 

improved in the rolling estimation making its forecasts competitive against those from 

PC and TPC models for 6-step ahead forecasts. 

The general findings for the headline inflation cited above also apply for the 

market price inflation models as it can see in Figures A.1 through A.4 in the Appendix.  

                                                 
12 Actually, the RMSFE for the recursive benchmark models are usually lower than that for the rolling 
ones, and the recursive models tend to present a lower RMSFE when the benchmark is unified for the 
groups of models.  
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6.2.2 Comparing Central Bank’s and factor models for forecasting 

In this section, I compare the factor models to vector autoregressive models that 

are similar to those the used in the Brazilian central bank. The comparison is performed 

for forecasts concerning the market price inflation since this is the variable of interest in 

the BCB auxiliary models. 

Concerning the factor models, instead of using the median model, we chose the 

best model for each forecast horizon, that is, the one that that performs the best 

(minimum RMSFE) in the exercise we discussed in the previous subsection for each 

forecast horizon.  

Therefore, in this subsection we analyze the results for the following models: the 

three set of factor models (PC, TPC and PLS), four models similar to those used by the 

Brazilian Central Bank (two VAR models: VAR1 and VAR2 and two Bayesian VAR 

models: BVAR1 and BVAR2) l. The analysis is carry out for five forecast horizons. It is 

important to notice that the factor models differ whereas the VAR and BVAR models 

are the same for all forecasts horizons.  

The t-statistics of the Diebold-Mariano test for forecast accuracy for all 7 models 

are shown in Table 6.6. Positive (negative) values mean that the model in the row 

(column) presents a higher predictive accuracy than that of the model given by the 

column (row). Bold figures (italic figures) indicate that the statistic is significant at 5% 

(10%) significance level. 
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7. Concluding remarks  

 In this paper I sought to verify if using methods that use a large number of 

variables we can improve the forecasts of inflation. I used three different approaches: 

factor model with principal component with and without targeted variables and partial 

least squares.  

All the results presented above indicated that in a rich data environment, the use 

of models that use the information of a large number of variables for forecasting 

inflation is very promising. Nevertheless, using a large dataset available does not imply 

that the forecasting performance will be better, since I found that reducing the number 

of series based on granger causality tests can lead to improvements in the forecast 

ability of the models. 
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Concerning different forecasting horizons, the best results in terms of relative 

forecasting performance for the principal component forecast models are usually for 6-

step ahead forecasts.  

I find that the factor model outperforms the alternative models and can function 

as a useful complement to the Brazilian central bank’s current forecasting tools, 

especially at longer horizons. Furthermore, the proposed data-reduction rule provides 

superior forecasts at some horizons. 

As a preliminary study, this work could be extended in several ways. As the use 

of large data set seems to be worthwhile, I intend to combine data with different 

frequencies as well as to include series with missing values. This can approximate my 

forecasting exercises to what forecasters do in real-time. Furthermore, it would be 

interesting to include other methods to estimate factor models and to use other rich-data 

approaches such as Bayesian model averaging (BMA). I want to use different 

algorithms to obtain the PLS factors such as those provided by the statistical package 

SAS. Additionally, as “targeting” the variables seemed to work well in terms of 

forecasting improvement, it will be also interesting to verify how other methods of pre-

selecting the variables would work. Finally, in order to verify how robust the results 

obtained so far are, I intend to test the performance of the model using different samples 

for the forecasting horizon.  
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