

Working Paper Series

The Effects of Loan Portfolio Concentration on Brazilian Banks' Return and Risk

Benjamin M. Tabak, Dimas M. Fazio and Daniel O. Cajueiro October, 2010

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series	Brasília	n. 215	Oct.	2010	p. 1-46

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br

Head of Research Department: Adriana Soares Sales - E-mail: adriana.sales@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 215.

Authorized by Carlos Hamilton Vasconcelos Araújo, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil

Secre/Surel/Cogiv

SBS - Quadra 3 - Bloco B - Edifício-Sede - 1º andar

Caixa Postal 8.670

70074-900 Brasília - DF - Brazil

Phones: +55 (61) 3414-3710 and 3414-3565

Fax: +55 (61) 3414-3626 E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Banco Central do Brasil

Secre/Surel/Diate

SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo

70074-900 Brasília – DF – Brazil

Fax: +55 (61) 3414-2553

Internet: http://www.bcb.gov.br/?english

The Effects of Loan Portfolio Concentration on Brazilian Banks' Return and Risk

Benjamin M. Tabak* Dimas M. Fazio[†] Daniel O. Cajueiro[‡]

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and not necessarily reflect those of the Banco Central do Brasil.

Abstract

This paper tests whether diversification of the credit portfolio at the bank level is associated to better performance and lower risk. We employ a new high frequency (monthly) panel data constructed for the Brazilian banking system with information at the bank level for loans by economic sector. We find that loan portfolio concentration increases returns and also reduces default risk; there are significant size effects; foreign and public banks seem to be less affected by the degree of diversification. An important additional finding is that there is an increasing concentration trend after the breakout of the recent international financial crisis, specially after the failure of Lehman Brothers.

Key Words: Loan Portfolio composition, Focus, Diversification, Bank Return, Bank Risk

JEL Classification: G11; G21; C23.

^{*}DEPEP, Banco Central do Brasil

[†]Departament of Economics, UNB

[‡]Departament of Economics, UNB and INCT

1 Introduction

This paper assesses empirically whether banks operating within the Brazilian banking system concentrate or diversify their credit portfolio and how this choice impacts their performance and risk. Both portfolio strategies can be observed in the real world. Several countries possess a set of rules limiting a bank's exposure to one single borrower, which is considered an argument in favor of the necessity of diversification [BIS, 1991, Morris, 2001]. In contrast, there are many banks that decide to specialize their loans activities to sectors in which they enjoy comparative advantage.

Traditional banking theory argues that banks should diversify their credit portfolio, given that through the expansion of their credit lines to new sectors, the bank's probability of default will be reduced [Diamond, 1984]. The idea is that due to asymmetric information, diversification reduces financial intermediation costs. Moreover, less diversified banks would be more vulnerable to economic downturns, since they are exposed to few sectors. Many banking crises in the last 25 years were caused by, among other reasons, concentration in bank's loan portfolios, which supports the view that risk is highly associated with this strategy [BIS, 1991]. This view is also empirically supported by Argentinean banks on the Argentinean financial crisis of 2001 and 2002 [Bebczuk and Galindo, 2008] and by Austrian banks over the years 1997-2003 [Rossi et al., 2009].

On the other hand, the theory of corporate finance supports the idea that firms should concentrate their activities on a specific sector or group of sectors to take benefits of expertise in how business are done in these sectors Jensen, 1986, Denis et al., 1997, Meyer and Yeager, 2001, Stomper, 2004, Acharya et al., 2006. Another argument against portfolio diversification is that it can also result in increasing competition with other banks, making this strategy less attractive. In particular, Winton [1999] defends that diversification only reduces the chances of bank failure in the case of moderated risks of default. When the risks are low, banks may benefit more from specialization than from diversifying, since there is a low probability of failure. Conversely, when the probabilities of insolvency are high, diversification may even worsen the situation, since the bank will be exposed to many sectors, and the downturn of one may be enough to lead this bank to bankruptcy. Therefore, the overall conclusion is that the relationship between bank's focus and return is expected to be U-shaped in risk. Furthermore, there is also empirical evidence that diversification increases the risk in the Italian banking sector [Acharya et al., 2006] and reduces the performances of the banks in the Chinese banking sector [Berger et al., 2010] and in the German banking sector [Norden and Szerencses, 2005, Hayden et al., 2007].

Independently from these two main views, Kamp et al. [2007] show that neither of the theories mentioned above are completely right for the entire German banking sector in the period from 1993 to 2003. They find that the main benefit of diversifying credit portfolios is the achievement of relative lower levels of risk compared to concentrated portfolios. The returns of concentrated portfolios, however, seem to be higher than those of diversified banks. The authors conclude that the typical risk-return tradeoff appears to be the solution of this analysis, leaving banks to choose their own strategy in order to maximize their performance.

We employ four different measures as proxies of loan portfolio concentration. Our primary goal is to identify the influence of loan concentration on Brazilian banks return. After that, we observe how risks, interacted with concentration measures, can affect the performance. We also estimate the impact of loan concentration on bank's risk, which indicate whether the banks' monitoring decisions are effective. Another interesting contribution is to explicitly show that the concentration of portfolios affect differently banks with different ownership type. Finally, this work is singular in the sense that our regressions are based on monthly data. This is specially appealing since with it we are able to take some effects not considered in yearly data into account. In particular, the update of portfolios in a shorter period of time is very useful. This allows the follow up of changes in portfolio decisions after the breakthrough of the crisis in September 2008.

It is worth mentioning that most of the studies published about this matter so far focus their attention in the banking sectors of developed countries, such as the U.S. and Germany. With the exception of Bebczuk and Galindo [2008] and Berger et al. [2010], there is a lack of evidence and discussion regarding the effects of the loan portfolio composition on banks of emerging economies. Given the uniqueness of their economic conditions, the results may be different from those observed in developed countries. This article contributes to the literature by proposing to examine the effects of loan portfolio strategies on the performance of Brazilian banks. Furthermore, we show that in the aftermath of financial crisis banks tend to concentrate their credit portfolio.

The Brazilian banking system is considered one the most developed in Latin America, both in size and performance. The solid position of the banking system was a consequence of structural changes in the economy promoted by the government in the decade of 1990, in order to stabilize the currency and improve banking regulation. In the last few years, Brazilian banks have shown a substantial increase in productivity, and they also passed through a rise in mergers and acquisitions. The maximization of bank loan portfolios performance, for this reason, have become a question of uttermost impor-

tance. Consequently, it is necessary to evaluate whether loans diversification (or concentration) is beneficial to the Brazilian financial stability.

The remainder of the paper is structured as follows. In Section 2, we describe our methodology, defining the variables of interest and the regression approaches taken. In Section 3, we present the data sources. We present the empirical results in Section 4. Final remarks are presented in Section 5.

2 Methodology

2.1 Concentration Measures

As proxies of concentration, we consider, in this paper, two traditional concentration measures and two distance measures: the Hirshmann-Herfindahl Index (HHI), the Shannon Entropy (SE), an absolute distance measure (D_a) and a relative distance measure (D_r) . Each type of measure has different assumptions. For example, while the HHI considers diversification as equal exposure to every sector, the distance measures use a benchmark as an indicator of diversification.

It is important to highlight that the object of our analysis is the composition of the industrial sector in the bank's loan portfolio, i.e. the bank's relative exposures to the industries. The reason is that this sector holds greater participation than any other sector in this type of portfolio. Thus, the concentration measures will be used to estimate and verify the effect of loan concentration in one or more economic sector on banks' returns.

Before illustrating how the concentration measures are calculated, we define relative exposure (r_i) of the bank b at time t to each economic sector i as:

$$r_{bti} = \frac{Nominal\ Exposure_{bti}}{Total\ Exposure_{bt}} \tag{1}$$

The HHI, i.e. the sum of the squares of the relative exposures, has been one the most known concentration measure in Industrial Organization and in the studies about this matter, due to its relatively simplicity. The HHI of bank b at time t can be defined as:

$$HHI_{bt} = \sum_{i=1}^{n} r_{bti}^2. \tag{2}$$

Note that the inferior limit of the HHI is $\frac{1}{n}$ and represents a perfect diversified portfolio, meaning an equal share of exposure to each sector n. On the other hand, if the HHI is equal to 1, all loans are handed out to

only one industry, i.e. a perfect specialization scenario. An advantage of this index is that the higher its value, the higher the concentration.

The Shannon Entropy is an effective instrument to indicate variety of distributions at a given point of time, being also used as a measure of industrial concentration. This entropy is calculated as:

$$SE_{bt} = -\sum_{i=1}^{n} r_{bti} \cdot ln\left(\frac{1}{r_{bti}}\right). \tag{3}$$

If the SE is equal to 0, the loan portfolio is extremely concentrated (the loans are handed out to only one borrower). Perfect diversification is expressed by SE equal to -ln(n).

In addition, we also employ distance measures to quantify the divergence between a bank (r) and the benchmark (x) loan portfolios. In this case, the industry composition of the economy's loan market portfolio is used as a benchmark for diversification. Thus, the more the value of r_i is close to x_i for every sector i, the more the bank is diversified. We calculate D_a and D_r , as follows:

$$D_a(r,x)_{bt} = \frac{1}{2} \sum_{i=1}^n |r_{bti} - x_{bti}|$$
 (4)

and

$$D_r(r,x)_{bt} = \frac{1}{n} \sum_{i=1}^n \frac{|r_{bti} - x_{bti}|}{r_{bti} + x_{bti}}.$$
 (5)

High values mean concentration while low values stand for diversification. Pfingsten and Rudolph [2002] have been one of the first to use these distance measures as proxies of concentration. They state that, among their advantages over the traditional measures, the differences in sizes of each sector are taken into consideration. They are also easily calculated and no additional data has to be collected. Kamp et al. [2005] estimate loan portfolio concentration of German Banks' and show that traditional and distance measures may differ significantly, which is another motivator to compare these measures in our model. On the other hand, McElligott and Stuart [2007] finds that both measures yield similar results concerning the evolution of Irish banks' loan portfolio composition.

2.2 Panel Specification

In this section, we present the model utilized to test for the influence of loan portfolio concentration on Brazilian banks' performance. First of all, we estimate the average effect of concentration on returns. Second, it is checked whether this relationship depends on the type of bank's ownership. Then, variables of risk are introduced in order to see how this relation changes as function of bank's risk. Finally, we test for the relationship between risk and concentration, that may depend on the effectiveness of bank monitoring, and also check if this effect depends on the type of bank's ownership.

In the regressions where bank's return is the dependent variable, we employ the Feasible Generalized Least Squares (FGLS) estimation. The advantages of this model are that it allows for groupwise heteroskedasticity and first order autocorrelation (AR(1)). The first consists in heteroskedasticity across groups and constant variance within groups, which is exactly the one of the assumptions of the FGLS model. We test this assumption by employing a modified Wald test with a null hypothesis of no heteroskedasticity. If the null hypothesis is rejected, we can conclude that the FGLS model is well specified¹.

On the other hand, it is worth noting that the regressions where bank's risk is the dependent variable are based on dynamic panel data model specifications. In this case we employ the procedure based on difference and system generalized method of moments (some variation of the Arellano and Bond [1991]/Blundell and Bond [1998] estimator) in order to deal with this dynamic specification. As concluded by Bond [2002], the GMM estimators consistent estimators for dynamic panels. The system GMM estimator combines the standard set of equations in first-differences with lagged levels as instruments, and an additional set of equation in levels with lagged first-differences as instruments. Then, we test if these instruments are valid, i.e. lack of serial correlation with the estimators, by using the Hansen overidentifying test. We also circumvent the problem of too many instruments [Roodman, 2009] that could arise in our study due to the large sample period by restricting the number of lagged instruments to be less than the number of cross-sectional units². In addition, we use the Windmeijer [2005] finite-sample correction to the standard errors in the two-step estimations.

Next, we will describe and discuss the several different approaches, where the regressions we are going to run are specified.

¹Regressions were also estimated using OLS fixed effects. However groupwise heteroskedasticity was verified, and thus FGLS is a more efficient estimator than fixed effects.

²Roodman [2006] and Roodman [2009] suggests that the number of instruments should be lower than the number of cross-sections.

2.2.1 The Relationship Between Bank Returns and Loan Portfolio Concentration

The most basic question regarding to this topic is whether loan portfolio concentration results in higher returns. It can be answered by regressing returns on a concentration measure, as in the following regression:

$$Return_{bt} = \beta_{b0} + \beta_1 \cdot CM_{bt-1} + \gamma \cdot V_{bt-1} + \tau_t + \epsilon_{bt}, \tag{6}$$

where $Return_{bt}$ is the return of bank b at time t measured by the Return on Assets (ROA_{bt}) or also by the Return on Equity (ROE_{bt}) ; V_{bt-1} consists in a vector of control variables, such as the bank's size $(SIZE_{bt})$ proxied by natural logarithm, the equity ratio (EQ_{bt}) , and bank-ownership dummies; CM_{bt-1} represents, separately, one of the concentration measures explained before of bank b at time t; τ_t stands for time dummies and, finally, ϵ_{bt} is the residual value.

Time dummies are introduced to capture for Brazilian macroeconomic conditions in each period of our analysis. If concentration is more advantageous than diversification, it is expected that $\beta_1 > 0$. Otherwise, $\beta_1 < 0$ means that bank returns are higher if their loan portfolio is diversified across industries. Note, however, that we do not control for risk in this regression.

In addition, we are also interested to test whether ownership control affects the results on the relationship between loan portfolio concentration and returns. Thus, we estimate equation the effect of concentration and returns from a model that includes interactions of concentration measures with two ownership dummies, as in the following equation:

$$Return_{bt} = \beta_{b0} + \beta_1 \cdot CM_{bt-1} + \sum_{j=1,2} \alpha_j \cdot CM_{bt-1} \cdot Owner. Dummy_j$$

$$+ \gamma \cdot V_{bt-1} + \tau_t + \epsilon_{bt}.$$

$$(7)$$

where j refer to public, private or foreign-owned banks.

2.2.2 Concentration-return as function of bank's risk

The relation between concentration and return as function of bank risk is estimated by another equation. For this purpose, we employ the variable NPL_{bt} , which represents, in this case, the ratio of non performing loans to total loans. Its square value (NPL_{bt}^2) is utilized with the purpose of

checking the veracity of Winton [1999] U-shaped relation in bank's return and loan portfolio concentration as function of risk. We consider the following quadratic equation regression:

$$Return_{bt} = \beta_{b0} + \beta_1 \cdot CM_{bt-1} + \alpha_0 \cdot NPL_{bt-1} + \alpha_{11} \cdot CM_{bt-1} \cdot NPL_{bt-1} + \alpha_{12} \cdot CM_{bt-1} \cdot NPL_{bt-1}^2 + \gamma \cdot V_{bt-1} + \tau_t + \epsilon_{bt}.$$
(8)

Therefore, the U-shaped behavior is distinguished in the following marginal effect of CM_{bt-1} on the dependent variable $Return_{bt}$:

$$\frac{d(return)}{d(CM_{bt-1})} = \beta_1 + \alpha_{11} \cdot NPL + \alpha_{12} \cdot NPL^2, \tag{9}$$

only if $\alpha_{11} < 0$ and $\alpha_{12} > 0$. If this effect proves to be true, it implies that returns and loan portfolio concentration may be dependent in a non-linear manner on bank's risk. Thus, better performance would be achieved by concentrating portfolio in both low and high risk scenarios.

2.2.3 The impact of Concentration on Risk

Another slope of our analysis takes into account the relationship between concentration and risk. In this specification, among other things, the bank's monitoring effectiveness is evaluated. For this purpose, we employ the natural logarithm of the Non-Performing Loans - in absolute values. Then, the main idea is to regress this variable on CM_{bt-1} . The specification of the literature is based on a static regression. However, we propose the estimation of the following equation, which consists in using GMM estimators in order to correct for autocorrelation³. and to better evaluate whether there is a statistically significant influence of loan portfolio concentration on bank's risk:

$$NPL_{bt} = \omega_0 + \omega_1 NPL_{bt-1} + \omega_2 \cdot CM_{bt-1} + \xi \cdot V_{bt-1} + \tau_t + \epsilon_{bt},$$

$$(10)$$

 $^{^3}$ We have also estimated a FGLS static panel for this case. However results showed that the common first order autocorrelation coefficient was high for both regressions, which implies that a great deal of NPL at time t is explained by NPL in previous periods. Therefore, we specified a dynamic panel in order to control for this autocorrelation. Dynamic specifications for Eqs. (6)-(7), where Return is the dependent variable, were not necessary, since persistence was not verified.

in which V_{bt-1} is a vector of the already defined control variables, including also past returns (ROA_{bt-1}) . An increase in focus reduces the risk only if $\omega_1 < 0$.

Acharya et al. [2006] list three reasons in order to explain why an increase in diversification might also raise the risk of banks loan portfolios. First, banks may suffer from lower monitoring efficiency, due to the lack of expertise, if they expand their loans to new sectors. Second, these sectors may be already supplied by credit of other banks. Therefore, the entrant bank might suffer from the winner's curse and face adverse selection, derived from competition. Third, diversification can increase a bank's size, subjecting it to scale inefficiencies.

As in equation (7), we also employ interaction variables of concentration measures and ownership dummies to observe whether concentration affects risks differently depending on the type of bank's ownership. The regression, therefore, becomes:

$$NPL_{bt} = \omega_0 + \omega_1 NPL_{bt-1} + \omega_2 \cdot CM_{bt-1}$$

$$+ \sum_{j=1,2} \alpha_j \cdot CM_{bt-1} \cdot Owner. Dummy_j + \xi \cdot V_{bt-1} + \tau_t + \epsilon_{bt},$$

$$(11)$$

where j refer to public, private or foreign-owned banks.

3 Data

Our sample consists of an unbalanced high frequency panel data of 96 commercial banks in 74 month periods from January 2003 to February 2009, totalizing 5175 observations. This high frequency panel data is an innovation over previous studies, since we are able to better study differences in the loan portfolio composition in shorter periods of time. The individual banklevel data was provided by the Central Bank of Brazil. Table 1 presents the summary statistics of the variables that are used in our specifications. The mean of bank's size is approximately R\$ 20 billion, or about US\$ 12 billion. In percentage, the non-performing loans are considered low (1.9%), meaning that Brazilian banks enjoy a reduced probability of default. Finally, and most important to our study, by analyzing the mean and the standard deviation of all the concentration measures, we conclude that Brazilian banks' loan portfolios seem to be moderately concentrated.

Place Tables 1 and 2 About Here

If we compare the Brazilian banks' loan portfolio composition with the findings of the literature, we can see that in general it is more concentrated than Italians', in which average HHI is 0.237 (Acharya et al. [2006]), Irish's (see McElligott and Stuart [2007]), and German's with an average HHI equals to 0.291 (Hayden et al. [2007]). The loan portfolios of Brazilian banks are only found to be more diversified than the ones from Argentina, in which the average HHI is 0.55 (Bebczuk and Galindo [2008]).

Table 2 shows the cross correlations of the explanatory variables. The results from this table evidence a high correlation within the traditional measures, and within the distance measures. However, correlation between these two categories of measures is less pronounced, suggesting that the effects of both on bank risk-return performance may be at least slightly different.

Place Table 3 About Here

The Brazilian economic sectors to which banks can lend are equal to 21, and they are illustrated in Table 3. Our data includes the relative exposures of Brazilian banks to all these sectors, which will make the results more accurate in comparison to other studies about this topic. As we have already stated, it is widely accepted that loan concentration means high exposure to one or few of these sectors, while diversification means a more equal loan portfolio distribution across them. However, according to Pfingsten and Rudolph [2002], concentration means a high divergence from the economy's mean exposure to these sectors, while diversification stands for being close to this benchmark.

Place Table 4 About Here

In Table 4, we show the summary statistics of the loan portfolio concentration measures by the type of bank ownership. There are clear signs that foreign banks' loan portfolio are more concentrated in relation to the private domestic banks. Foreign banks may be less familiar with the Brazilian economic and financial conditions, which makes them more caution in expanding their lending activities. On the other hand, Brazilian national banks may be inclined to diversify their credit portfolios, and thus reaching a wider range of sectors with its services.

Place figures 1, 2, 3 and 4 About Here

We have also calculated the monthly average concentration measures with the purpose of observing its tendency and sudden changes in its behavior. As can be seen in Figures 1, 2, 3 and 4, we find a very interesting result related to the recent financial crisis. It is easy to verify there is a decreasing tendency of the loan portfolio concentration in the second semester of 2007 and the first of 2008. However, after the Lehman Brothers bankruptcy, in September 2008, Brazilian banks started to increase their loan portfolio concentration, reversing that diversification tendency. The Lehman Brothers breakdown was followed by a drastic fall in the credit worldwide, increasing the risk of default of several financial institutions. Thus, banks became more selective, lending only to those economic sectors that were not as affected by this crisis. In other words, banks were willing to substitute their simultaneous exposure to several sectors with the exposure to only few sectors, reflecting their risk aversion behavior in this uncertain period. In this same line of thought, their monitoring effectiveness should have increased, as well. In the next section, we will see if our empirical model supports this analysis.

4 Results

The results of our models are presented in this section. In the first subsection, we analyze the effect of loan portfolio concentration on bank return. Then, we evaluate whether this effect is non-linear in risk. In section 4.3, the effects of concentration on risk are presented. In the last subsection, robustness tests using two other models to estimate our dynamic specification are shown. A problem that could arise with our estimation is the presence of unit root. We test if this is the case for $SIZE_b$ and $Eq. Ratio_b$. Unit root is rejected in both cases.

4.1 The Relationship Between Bank Returns and Loan Portfolio Concentration

The results of the FGLS estimation of Equation (6) are presented in Table 5. Here, we try to evaluate the effect of loan portfolio concentration on ROA and on ROE, while controlling by the bank's size, the equity ratio and two bank ownership dummies (in this case, Private and Public). Four different concentration measures are used in order to achieve this goal. In each column of Table 5, we show the results of the estimations of ROA and ROE by using one of these measures. All the regressions reject the null hypothesis for the test of groupwise heteroskedasticity, which implies the FGLS model well specified.

Place Table 5 About Here

Regarding the estimated coefficients of the four concentration measures we can see that all of them are positive and the majority are strongly significant as well. The coefficients of the SE and the D_r are significant at 10%, 5% and 1% levels, respectively, in both ROA and ROE equations. The coefficients of D_a and HHI are only significant (10%) when ROE and ROA are the dependent variable, respectively. These results give us strong evidence that concentration influences positively banks' return, suggesting that focusing loan portfolios to few sectors is more profitable than diversifying.

There is evidence of a positive relationship between bank's size and return, which is, however, only significant when ROE is the dependent variable for all concentration measures and also in the ROA estimation for D_r . This suggests that bigger banks tend to have higher returns than smaller banks, which is in accordance to the literature. The coefficients of equity ratio are significantly positive in ROA estimations and significantly negative in ROE equations. This means that an increase in the proportion of equity used to finance banks assets has a positive effect in the bank management of its assets, but a negative effect in the management of its equity. Private and public dummies are positively significant, meaning that national banks have higher performance compared to foreign banks.

Place Table 6 About Here

Additionally, we are interested to observe whether the return-concentration relationship depends on the bank's ownership category. In order to achieve this conclusion, we estimate equation (7), in which interaction variables between private/foreign dummies and concentration measures are introduced. The results are demonstrated in Table 6.

These findings suggest that the effects of concentration on returns are more significant for private banks. All their coefficients are positive, indicating that private banks are the ones that have greater profitability from portfolio concentration than foreign and public banks. This finding can explain why private banks in Brazil are often trying to expand their business. Foreign and public banks, on the other hand, appear to be less affected by a variation in the loan portfolio composition. In fact, public banks' profitability may even be negatively affected by loan portfolio concentration when HHI and D_a are employed. The estimated coefficients of the control variables are similar to those demonstrated in the table 5.

4.2 Concentration-return correlation as function of risk

The results of the FGLS estimation of Equation (8) are presented in Table 7. In this specification, we check if the relationship between concentration of loan portfolio and returns has a non-linear relation on risk, as Winton [1999] and Acharya et al. [2006] defend. For this purpose, we employ interactions of NPL and NPL² with concentration measures. In addition, all the regressions strongly reject the null hypothesis for the test of groupwise heteroskedasticity, which suggests that the model is well specified.

Place Table 7 About Here

The result suggest that the concentration-return relationship is U-shaped on risk when the Shannon entropy is used as the portfolio concentration measure and ROA is the dependent variable. Alternatively, we find an \(\capsilon\)-shaped relationship when HHI is employed and ROE is the dependent variable. Again, the results of the other explanatory variables are similar with those found in section 4.1.

4.3 The effects of Concentration on Risk

The results of the Arellano and Bond [1991] estimation of Equation (10) and Equation (11) are presented in Tables 8 and 9 respectively. Our objective with these regressions is to evaluate the effects of loan portfolio concentration on bank's risk, proxied by NPL. The independent variables employed are the lagged values of NPL, so as to control for autocorrelation, of the natural logarithm of total assets, which represents a bank's size, of the equity ratio, and of ROA. In each pair of columns of Table 8 show the results for one concentration measure. All the regressions have significant first order autocorrelation, and the null hypothesis of overidentified restrictions are not rejected by the Hansen J test. In addition, we use lagged values of the NPL at time t-1 as instruments in order to assess for endogeneity of this variable.

Place Table 8 About Here

First, we present the results of the estimation of the equation (10) in Table 8, in which we add a lagged value of NPL as an explanatory variable. As expected the coefficient of NPL at time t-1 is highly significant and positive, meaning that current risks are directly proportional to risks from

a previous period of time. The coefficients of Equity Ratio are positive and significant, meaning that higher equity in relation to assets results to higher risks faced by banks. Another interesting finding is that larger banks also face more risks. Finally, ROA has the expected negative sign, meaning that higher performance leads to lower risks.

Regarding the portfolio concentration indices, the HHI and the SE are both significantly negatively related to bank's risk. The coefficients of the distance measures are all insignificant in this case. The results show strong evidence that loan portfolio concentration implies in lower risks, which contradicts the ideas of Diamond [1984]. There are a lot of reasons why concentrated loan portfolios might make banks less susceptible to risks. One is that diversification seems to have a downward effect on monitoring efficiency, increasing the non performing loans. On the other hand, loan portfolio concentration seems to raise monitoring efficiency, since it is easier for the bank to catch up problem loans before problems deteriorate too far. This may be due to the fact that they develop an expertise on the few sectors they cover.

Chang et al. [2006] found that, in Brazil, concentrated banking sectors, in terms of industrial organization, have lower risks. An hypothesis raised by the authors was that concentrated banks could better diversify their loan portfolio across the economic sectors, due to its high market power. However, our results show that the diversification of the loan portfolio diversification increases the cost of monitoring, due to a problem of information asymmetry. Thus, the exposure to several sectors seems to in fact increase the risk of insolvency, which can cause problems for the financial stability of the banking sector as a whole.

Place Table 9 About Here

Table 9 presents the results from the estimation of the equation (11), in which we evaluate whether this relationship varies for each type of bank ownership. Again, as expected the coefficient of NPL at time t-1 is very significant, meaning that the bank's risk at time t is positively influenced by the bank's risk at time t-1, meaning the presence of a strong autocorrelation.

In all cases, loan portfolio concentration seems to reduce risk from public banks. Note that, in column (3), we interact the concentration measure with public and foreign dummies in instead of private and foreign dummies. When D_a is employed, the coefficient between this measure and the foreign dummy is significant and negative, which indicates that for foreign banks, the reduce in risks due to an increase in concentration is also valid. The control variables have similar results than those presented in table 8.

5 Concluding Remarks

The question of whether it is preferable for banks to concentrate or diversify their loan portfolio across economic sectors has become of uttermost importance for the study of financial stability. The relationship between loan portfolio sectoral distribution and bank performance, however, has not been widely analyzed for banking sectors of emerging economies. In this paper, we proposed to evaluate in which way the concentration (or diversification) of the loan portfolio affects the return and the risk of 96 Brazilian banks using monthly periods from 2003 to 2009. Several regressions were estimated using both statical (with the FGLS estimator) and dynamical specifications (with the system GMM estimator) of panel data models and employing both traditional concentration measures (HHI and SE) and distance measures (D_a and D_r), as proxies for loan portfolio concentration.

Brazilian banks' loan portfolios are found to be, on average, moderately concentrated. The measures of concentration show that these portfolios are more concentrated than those of developed countries like Germany, Italy and the US. Moreover, there is also evidence that foreign owned banks are more specialized than national banks, both private and public. We raise an hypothesis that foreign owned banks have lower familiarity of Brazilian's economic and financial conditions, and therefore they prefer to restrict their lending activities to few sectors, in order to benefit from reduced monitoring costs.

Our overall conclusion is that loan portfolio concentration seems to improve the performance of Brazilian banks in both return and risk of default. The concentration indices were found to be positively related to returns and negatively related to risks. The reason may be that loan portfolio concentration increases monitoring efficiency, since banks may have expertise in the sectors they lend, as affirmed by Winton [1999]. Diversification on the other hand, reduces this efficiency, since it is more difficult for banks to monitor their credit clients and they may also face adverse selection, derived from competition with other banks.

When the different types of bank ownership are taken into account, we conclude that, for private banks, the higher the credit portfolio specialization the higher the returns. Foreign banks may face lower risks due to loan portfolio concentration, meaning that they should be cautions in high exposure to some sectors. On the other hand, the allocation of loans to only few economic sectors seems to reduce public banks' risk. For these two last types os ownership the impact of concentration on return is inconclusive. In other words, the profitability of these banks appear to be, on average, less affected by loan concentration.

The behavior of Brazilian banks after the Lehman Brothers bankruptcy, which deepened the effects of the financial crisis throughout the world, is a confirmation of our empirical results. These banks increased the concentration of their loan portfolios in order to reduce the risk of default, at the same time that maintaining their profitability during this uncertain period. We suggest further analysis and research about the characteristics of the the sectoral distribution of loans during this crisis for both developing and developed countries.

6 Acknowledgements

The authors are grateful to financial support from CNPQ foundation. The opinions expressed in this paper are those of the authors and do not necessarily reflect those of the Banco Central do Brasil or its members.

References

- V. Acharya, I. Hasan, and A. Saunders. Should Banks Be Diversified? Evidence from Individual Bank Loan Portfolios. *Journal of Business*, 32: 1355–1412, 2006.
- M. Arellano and S. Bond. Some Tests of Specification for Panel Data: Monte Carlo Evidence and an Application to Employment Equations. Review of Economic Studies, 58:277–297, 1991.
- R. Bebczuk and A. Galindo. Financial Crisis and Sectoral Diversification of Argentine Banks, 1999-2004. *Applied Financial Economics*, 18:199–211, 2008.
- A. N. Berger, I. Hasan, and M. Zhou. The Effects of Focus versus Diversification on Bank Performance: Evidence from Chinese Banks. *Journal of Banking and Finance*, 34:1417–1435, 2010.
- BIS. Measuring and Controlling Large Credit Exposures. *Basel Committee on Banking Supervision*, *Basel*, 1991.
- R. Blundell and S. R. Bond. Initial Conditions and Moment Restrictions in Dynamic Panel Data Models. *Journal of Econometrics*, 87:115–143, 1998.
- S. Bond. Dynamic Panel Data Models: A Guide to Microdata Methods and Practice. *Portuguese Economic Journal*, 1:141–162, 2002.

- E. Chang, S. Guerra, E.J.A. Lima, and B.M. Tabak. The Stability-Concentration Relationship in the Brazilian Banking System. *Journal of International Financial Markets, Institutions and Money*, 18:388–397, 2006.
- D. Denis, D. Denis, and A. Sarin. Agency Problems, Equity Ownership, and Corporate Diversification. *Journal of Finance*, 52:135–160, 1997.
- D. Diamond. Financial Intermediation and Delegated Monitoring. *The Review of Economic Studies*, 51:393–414, 1984.
- E. Hayden, D. Porath, and N. v. Westernhagen. Does Diversification Improve the Performance of German Banks? Evidence from Individual Bank Loan Portfolios. *Journal of Financial Services Research*, 32:123–140, 2007.
- M. Jensen. Agency Costs of Free Cash Flow, Corporate Finance, and Takeovers. *American Economic Review*, 76:323–329, 1986.
- A. Kamp, A. Pfingsten, and D. Porath. Do Banks Diversify Loan Portfolios? A Tentative to Answer Based on Individual Bank Loan Porfolios. Discussion Paper 3, Deutsche Bundersbank, 2005.
- A. Kamp, A. Pfingsten, A. Behr, and C. Memmel. Diversification and the Banks' Risk-Return-Characteristics Evidence from Loan Portfolios of German Banks. Discussion Paper, Deutsche Bunderbank, 2007.
- R. McElligott and Rebecca Stuart. Measuring the Sectoral Distribution of Lending to Irish Non-Financial Corporates. Financial stability report, Central Bank and Financial Services Authority of Ireland, 2007.
- A. Meyer and T. Yeager. Are Small Rural Banks Vulnerable to Local Economic Downturns? Technical report, Federal Reserve Bank of St. Louis, Mar 2001.
- J. Morris. Risk Diversification in the Credit Portfolio: An Overview of Country Practices. IMF Working Paper WP/01/200, International Monetary Fund, 2001.
- L. Norden and M. Szerencses. Migration and Concentration Risks in Bank Lending: New Evidence from Credit Portfolio Data. Working paper, University of Mannheim, 2005.
- A. Pfingsten and K. Rudolph. German Banks' Loan Portfolio Composition: Market Orientation vs Specialization. Discussion Paper Series DB 02-02, Institut fur Kreditwesen, Munster, 2002.

- D. M. Roodman. A Note on the Theme of too Many Instruments. Oxford Bulletin of Economics and Statistics, 71:135–158, 2009.
- David Roodman. How to do Xtabond2: An Introduction to Difference and System GMM in Stata. Working Papers 103, Center for Global Development, 2006.
- S. Rossi, M. Schwaiger, and G. Winkler. How Loan Portfolio Diversification Affects Risk, Efficiency and Capitalization: A Managerial Behavior Model for Austrian Aanks. *Jornal of Banking and Finance*, 32:2218–2226, 2009.
- A. Stomper. A Theory of Banks' Industry Expertise, Market Power and Credit Risk. *Management Science*, 52:1618–1633, 2004.
- F. Windmeijer. A Finite Sample Correction for the Variance of Linear Two-Step GMM Estimators. *Journal of Econometrics*, 126(1):25–51, 2005.
- A. Winton. Don't Put All Your Eggs in One Basket? Diversification and Specialization in Lending. Center for Financial Institutions Working Papers 00-16, Wharton School Center for Financial Institutions, University of Pennsylvania, 1999.

7 Tables and Figures

Table 1: Summary Statistics

Variables	Mean	SD	Min	Max
ROA	0.002	0.013	-0.527	0.204
ROE	0.011	0.101	-4.528	1.276
Assets*	$19,\!581.207$	$52,\!274.33$	15.418	500,000
Equity*	2,000.4	$5,\!131.9$	-1.996	50,722.85
Eq. Ratio	0.188	0.128	-0.127	0.884
HHI	0.316	0.168	0.109	1.0000
SE	-1.6044	0.477	-2.445	0.0000
D_r	0.595	0.203	0.142	0.9996
D_a	0.376	0.22	0.0376	0.996
NPL	0.019	0.026	0.0000	0.348
NPL*	123.690	359.854	0	$4,\!836.725$

^{*}In millions of Brazilian Reais (R\$)

Table 2: Cross-correlation table

Variables	HHI	SE	D_r	D_a	NPL	Assets	EQ
HHI	1.000						
SE	0.962	1.000					
D_r	0.641	0.753	1.000				
D_a	0.615	0.646	0.824	1.000			
NPL	0.062	0.106	0.196	0.219	1.000		
Assets	-0.319	-0.397	-0.708	-0.543	-0.133	1.000	
EQ	0.157	0.234	0.398	0.354	0.151	-0.6	1.000

Table 3: Brazilian Economic Activities

	Section	Denomination
1.	Agriculture, livestock, forestry,	Agriculture
	fishing and aquaculture	
2.	Extractive Industries	Extractive Ind.
3.	Transformation Industries	Transformation Ind.
4.	Electricity and Gas	Energy
5.	Water, sewage, waste management activities	Utilities
	and decontamination	
6.	Construction	Construction
7.	Trade; repair of motor vehicles and motorcycles	Trade
8.	Transport, storage and mail	Transport
9.	Housing and Food	Food
10.	Information and communication	Communication
11.	Financial, insurance, and related services activities	Finances
12.	Real estate activities	Real Estate
13.	Professional, scientific and technical activities	Professional
14.	Administrative and complementary services activities	Administrative
15.	Public administration, defense and social security	Public Sector
16.	Education	Education
17.	Human health and social services	Health
18.	Arts, culture, sports and recreation	Culture
19.	Others service activities	Other Services
20.	Domestic Services	Services
21.	International organisms and other	International
	extraterritorial institutions	

Source: CNAE research.

Table 4: Concentration Measures by Bank Ownership

	Foreign Banks			Private Banks				Public Banks				
Variable	Mean	\mathbf{SD}	Min.	Max.	Mean	\mathbf{SD}	Min.	Max.	Mean	SD	Min.	Max.
нні	0.342	0.154	0.157	1	0.308	0.154	0.13	1	0.31	0.223	0.11	1
SE	-1.484	0.477	-2.204	0	-1.63	0.435	-2.317	0	-1.66	0.586	-2.445	0
D_r	0.61	0.235	0.191	0.997	0.602	0.192	0.142	0.995	0.551	0.197	0.225	1
D_a	0.32	0.2	0.051	0.96	0.3836	0.022	0.037	0.95	0.41	0.24	0.11	0.996
Obs.		10	78			320	02			89	95	

Table 5: Relationship between Return and Concentration - FGLS estimation

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	roa	roa	roa	roa	roe	roe	roe	roe
Eq. Ratio $_{t-1}$	0.00660***	0.00650***	0.00688***	0.00675***	-0.0194***	-0.0201***	-0.0202***	-0.0197***
	(0.000846)	(0.000853)	(0.000887)	(0.000873)	(0.00399)	(0.00400)	(0.00412)	(0.00413)
$SIZE_{t-1}$	3.18e-05	3.93e-05	2.84e-05	0.000101**	0.000681***	0.000768***	0.000720***	0.00130***
	(2.91e-05)	(3.00e-05)	(3.28e-05)	(3.94e-05)	(0.000226)	(0.000233)	(0.000250)	(0.000303)
HHI_{t-1}	0.000717*				0.00366			
	(0.000398)				(0.00248)			
SE_{t-1}		0.000344**				0.00202**		
		(0.000136)				(0.000884)		
$D_{a,t-1}$			0.00381				0.0418*	
,.			(0.00361)				(0.0227)	
$D_{r,t-1}$				0.00139***				0.0104***
7,0 1				(0.000380)				(0.00271)
Public	0.000798***	0.000814***	0.000717***	0.000805***	0.00984***	0.00982***	0.00871***	0.00919***
	(0.000139)	(0.000141)	(0.000149)	(0.000148)	(0.00115)	(0.00115)	(0.00120)	(0.00116)
Foreign	0.000905***	0.000933***	0.000823***	0.000954***	0.00704***	0.00721***	0.00675***	0.00768***
o .	(0.000125)	(0.000128)	(0.000127)	(0.000136)	(0.000918)	(0.000925)	(0.000932)	(0.000963)
Constant	-0.000430	0.000302	-0.000263	-0.00155***	0.00274	0.00653***	0.00290	-0.00691
	(0.000383)	(0.000365)	(0.000410)	(0.000560)	(0.00293)	(0.00247)	(0.00307)	(0.00428)
Time Dummies	Yes							
Observations	5079	5079	5079	5079	5079	5079	5079	5079
N. of Banks	96	96	96	96	96	96	96	96
Wald test	429.2***	431.0***	398.0***	412.2***	393.6***	393.7***	366.9***	380.6***
Modified Wald	$6.4 \cdot 10^{6***}$	$6.5 \cdot 10^{6***}$	$6.4 \cdot 10^{6***}$	$6.2 \cdot 10^{6***}$	$7.2 \cdot 10^{6***}$	$7.6 \cdot 10^{6***}$	$7.0 \cdot 10^{6***}$	$7.6 \cdot 10^{6***}$
Common AR(1)	0.2537	0.2555	0.2699	0.2670	0.2186	0.2182	0.2272	0.2240

NOTE - This table presents the results for the FGLS estimation of the relation between return, measured by ROA or ROE, and focus, proxied by HHI, SE, D_a and D_r . We test for groupwise heteroscedasticity by employing a modified Wald test (H₀ = no heteroscedasticity). First order autocorrelation (AR1) coefficients are also shown in the table. We do not present the coefficients of time dummies for the sake of brevity. Standard errors in parentheses.

*** p<0.01, **p<0.05, * p<0.1

Table 6: Relationship between Return and Concentration - Ownership control effects - FGLS estimation

WADIADI EC	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
VARIABLES	roa	roa	roa	roa	roe	roe	roe	roe
Eq. Ratio $_{t-1}$	0.00605*** (0.000861)	0.00573*** (0.000870)	0.00675*** (0.000880)	0.00597*** (0.000856)	-0.0201*** (0.00406)	-0.0213*** (0.00409)	-0.0209*** (0.00414)	-0.0211*** (0.00417)
$SIZE_{t-1}$	3.69e-05 (2.90e-05)	5.12e-05* (2.93e-05)	5.02e-05 (3.22e-05)	0.000146*** (3.80e-05)	0.000728*** (0.000221)	0.000814*** (0.000226)	0.000745*** (0.000247)	0.00145*** (0.000304)
HHI_{t-1}	0.00191*** (0.000571)				0.00635** (0.00315)			
$\mathbf{HHI}_{t-1}\!\cdot\!\mathbf{Foreign}$	-0.000947 (0.00104)				0.00818 (0.00724)			
$\mathbf{HHI}_{t-1}\!\cdot\!\mathbf{Public}$	-0.00223*** (0.000842)				-0.0104* (0.00597)			
SE_{t-1}		0.000890*** (0.000186)				0.00335*** (0.00110)		
$\mathtt{SE}_{t-1}\!\cdot\!\mathtt{Foreign}$		-0.000743** (0.000303)				-0.00100 (0.00220)		
$\mathbf{SE}_{t-1}\!\cdot\!\mathbf{Public}$		-0.000880*** (0.000291)				-0.00416** (0.00205)		
$D_{a,t-1}$			0.0143*** (0.00496)				0.0765*** (0.0284)	
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Foreign}$			-0.0149* (0.00811)				-0.0743 (0.0531)	
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Public}$			-0.0212*** (0.00696)				-0.132*** (0.0485)	
$\mathbf{D}_{r,t-1}\cdot$				0.00289*** (0.000480)				0.0157*** (0.00335)
$\mathbf{D}_{r,t-1}\!\cdot\!\mathbf{Foreign}$				-0.00253*** (0.000556)				-0.0125*** (0.00416)
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Public}$				-0.000999 (0.000710)				-0.00945** (0.00475)
Foreign	-0.000623** (0.000311)	-0.00221*** (0.000542)	-0.000461** (0.000209)	$0.000261 \\ (0.000278)$	-0.00918*** (0.00232)	-0.00863** (0.00380)	-0.00466*** (0.00167)	-0.00107 (0.00235)
Public	0.000452* (0.000251)	-0.00173*** (0.000541)	0.000519** (0.000237)	0.000258 (0.000363)	0.00566*** (0.00202)	-0.00446 (0.00355)	0.00677*** (0.00204)	0.00657** (0.00288)
Constant	-0.000308 (0.000773)	0.00151** (0.000741)	-0.000579 (0.000839)	-0.00360*** (0.00104)	-0.00153 (0.00566)	$0.00432 \\ (0.00504)$	-0.00206 (0.00621)	-0.0233*** (0.00824)
Time Dummies Observations Number of Banks Wald test Modified Wald Common AR(1)	Yes 5079 96 $444.4***$ $6.2 \cdot 10^{6}***$ 0.2412	Yes 5079 96 $471.1***$ $6.2 \cdot 10^{6}***$ 0.2397	Yes 5079 96 $414.5***$ $6.5 \cdot 10^{6}***$ 0.2535	Yes 5079 96 $476.9***$ $5.9 \cdot 10^{6}***$ 0.2430	Yes 5079 96 406.9*** 7.4 ·10 ⁶ *** 0.2154	Yes 5079 96 $409.5***$ $8.0 \cdot 10^{6}***$ 0.2143	Yes 5079 96 386.6*** 6.9 ·10 ⁶ *** 0.2281	Yes 5079 96 403.2*** 9.9 ·10 ⁶ *** 0.2180

NOTE - This table presents the results for the FGLS estimation of the relation between return, measured by ROA or ROE, and focus, proxied by HHI, SE, D_a and D_{r} . We also employ interactions of each concentration measure with private and foreign dummies, in order to observe how the concentration-return relationship depends on the bank's ownership category. We test for groupwise heteroscedasticity by employing a modified Wald test ($H_0 = \text{no}$ heteroscedasticity). First order autocorrelation (AR1) coefficients are also shown in the table. We do not present the coefficients of time dummies for the sake of brevity. Standard errors in parentheses.

*** p<0.01, **p<0.05,* p<0.1

Table 7: Nonlinearity of the relationship between Return and Concentration on Bank Risk - FGLS estimation

VARIABLES	(1) roa	(2) roa	(3) roa	(4) roa	(5) roe	(6) roe	(7) roe	(8) roe
Eq. Ratio $_{t-1}$	0.00707*** (0.000852)	0.00678*** (0.000857)	0.00709*** (0.000890)	0.00731*** (0.000892)	-0.0181*** (0.00402)	-0.0193*** (0.00408)	-0.0191*** (0.00418)	-0.0185*** (0.00421)
$SIZE_{t-1}$	3.58e-05 (2.93e-05)	4.21e-05 (3.00e-05)	4.31e-05 (3.29e-05)	0.000131*** (4.01e-05)	0.000645*** (0.000228)	0.000736*** (0.000236)	0.000752*** (0.000254)	0.00139*** (0.000309)
NPL_{t-1}	0.00346 (0.00717)	-0.00782 (0.00984)	0.0155** (0.00780)	0.0224* (0.0125)	-0.0425 (0.0433)	0.0276 (0.0582)	0.0550 (0.0513)	0.123 (0.0925)
HHI_{t-1}	$0.000386 \ (0.000456)$				-0.000545 (0.00279)			
$\mathbf{HHI}_{t-1} \!\cdot\! \mathbf{NPL}_{t-1}$	0.0121 (0.0226)				0.209* (0.115)			
$\mathbf{HHI}_{t-1} \!\cdot\! \mathbf{NPL}_{t-1}^2$	-0.161** (0.0808)				-0.856** (0.410)			
SE_{t-1}		0.000461*** (0.000157)				0.00157 (0.00104)		
$\mathtt{SE}_{t-1}\!\cdot\!\mathtt{NPL}_{t-1}$		-0.0103* (0.00579)				0.00110 (0.0389)		
$\mathbf{SE}_{t-1}\!\cdot\!\mathbf{NPL}^2_{t-1}$		0.0509* (0.0271)				0.297 (0.188)		
$\mathbf{D}_{a,t-1}$			0.0111** (0.00476)				0.0667** (0.0284)	
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{NPL}_{t-1}$			-0.440** (0.217)				-1.503 (1.163)	
$D_{a,t-1} \cdot NPL_{t-1}^2$			0.204 (0.643)				-0.0199 (3.213)	
$\mathbf{D}_{r,t-1}$				0.00203*** (0.000481)				0.0137*** (0.00338)
$\mathbf{D}_{r,t-1} \cdot \mathbf{NPL}_{t-1}$				-0.0357* (0.0211)				-0.190 (0.138)
$\mathbf{D}_{r,t-1}\!\cdot\!\mathbf{NPL}_{t-1}^2$				-0.00872 (0.0467)				-0.0371 (0.251)
Public	0.000741*** (0.000144)	0.000730*** (0.000144)	0.000673*** (0.000155)	0.000750*** (0.000156)	0.00986*** (0.00118)	0.00975*** (0.00119)	0.00829*** (0.00123)	0.00863*** (0.00122)
Private	0.000838*** (0.000125)	0.000886*** (0.000127)	0.000845*** (0.000127)	0.000979*** (0.000136)	0.00680*** (0.000931)	0.00711*** (0.000943)	0.00658*** (0.000945)	0.00753*** (0.000973)
Constant	-0.000464 (0.000403)	0.000383 (0.000372)	-0.000662 (0.000430)	-0.00229*** (0.000607)	$0.00412 \\ (0.00302)$	0.00593** (0.00257)	$0.00196 \\ (0.00320)$	-0.00958** (0.00455)
Time Dummies Observations Number of Banks Wald test Modified Wald Common AR(1)	Yes 5079 96 423.7*** 6.6 · 10 ⁶ *** 0.2622	Yes 5079 96 437.0*** 6.3 · 10 ⁶ *** 0.2577	Yes 5079 96 $407.1***$ $6.0 \cdot 10^{6}***$ 0.2755	Yes 5079 96 $424.5***$ $5.8 \cdot 10^6 ***$ 0.2759	Yes 5079 96 387.6*** 6.7 ·10 ⁶ *** 0.2231	Yes 5079 96 $384.7***$ $7.2 \cdot 10^{6}***$ 0.2246	Yes 5079 96 360.1*** 6.8 ·10 ⁶ *** 0.2305	Yes 5079 96 380.6*** 8.2 ·10 ⁶ *** 0.2278

NOTE - This table presents the results for the FGLS estimation to test whether the relation between return, measured by ROA or ROE, and focus, proxied by HHI, SE, D_a and D_r , is U-shaped on risk. We test for groupwise heteroscedasticity by employing a modified Wald test ($H_0 =$ no heteroscedasticity). First order autocorrelation (AR1) coefficients are also shown in the table. We do not present the coefficients of time dummies for the sake of brevity. Standard errors in parentheses.

*** p < 0.01, **p < 0.05,* p < 0.1

Table 8: The effects of Concentration on Risk - Arellano-Bond dynamic panel estimation

	(1)	(2)	(3)	(4)
VARIABLES	lnNPL	lnNPL	lnNPL	lnNPL
$lnNPL_{t-1}$	0.556***	0.557***	0.560***	0.560***
	(0.0574)	(0.0572)	(0.0565)	(0.0564)
Eq. Ratio $_{t-1}$	0.905**	0.945**	0.927**	0.899**
• -	(0.399)	(0.400)	(0.412)	(0.397)
$SIZE_{t-1}$	0.499***	0.491***	0.517***	0.479***
~	(0.0680)	(0.0678)	(0.0682)	(0.0741)
HHI_{t-1}	-0.641*			
111117-1	(0.385)			
SE_{t-1}	(* * * * *)	-0.260*		
\mathfrak{SL}_{t-1}		(0.146)		
D		(0.110)	0.467	
$D_{a,t-1}$			(3.059)	
D			(3.033)	-0.468
$D_{r,t-1}$				
DO 4	-	= = 0.0444	= = 0.0444	(0.464)
ROA_{t-1}	-7.553***	-7.536***	-7.732***	-7.582***
	(1.817)	(1.838)	(1.811)	(1.838)
Public	-0.105	-0.0992	-0.144	-0.101
	(0.120)	(0.118)	(0.133)	(0.127)
Foreign	-0.183	-0.155	-0.231	-0.181
	(0.190)	(0.189)	(0.189)	(0.184)
Constant	-3.503***	-3.993***	-4.175***	-3.071**
	(0.833)	(0.848)	(0.958)	(1.275)
Time Dummies	Yes	Yes	Yes	Yes
Observations	5079	5079	5079	5079
Number of Banks	96	96	96	96
Hansen J Statistic	5.248	5.350	5.042	5.407
Hansen p-value	0.386	0.375	0.411	0.368
AR1	-3.512***	-3.514***	-3.523***	-3.525***
AR2	-1.352	-1.352	-1.350	-1.347

NOTE - This table presents the results for the Arelano-Bond GMM estimation to test the impact of bank's risk, measured by the natural logarithm of NPL, and the four measures of focus we employ in this study. We have used the Windmeijer [2005] correction, which reduces the bias from our two-step estimation. First and second order autocorrelation (AR1 and AR2) coefficients are also shown in the table. The Hansen J statistic tests whether the model is overidenfied. Time dummies coefficients are not presented for the sake of brevity. Standard errors in parentheses. *** p < 0.01, **p < 0.05,* p < 0.1

Table 9: The effects of Concentration on Risk - Ownership control effects - Arellano-Bond dynamic panel estimation

VARIABLES	(1) lnNPL	(2) lnNPL	(3) lnNPL	(4) lnNPL
VARIABLES	IIINI L	IIINI L	IIINI L	IIINF L
${\rm lnNPL}_{t-1}$	0.558*** (0.0575)	0.558*** (0.0574)	0.559*** (0.0580)	0.563*** (0.0567)
Eq. $Ratio_{t-1}$	0.930** (0.412)	0.971** (0.416)	0.872** (0.429)	0.855** (0.407)
$SIZE_{t-1}$	0.497*** (0.0683)	0.490*** (0.0680)	0.516*** (0.0685)	0.477*** (0.0759)
$_{\mathrm{HHI}_{t-1}}$	-0.389** (0.185)			
$\mathbf{HHI}_{t-1}\!\cdot\!\mathbf{Private}$	-0.418 (0.536)			
$\mathbf{HHI}_{t-1}\!\cdot\!\mathbf{Foreign}$	-0.167 (1.170)			
SE_{t-1}		-0.203** (0.0899)		
$\mathtt{SE}_{t-1}\!\cdot\!\mathtt{Private}$		-0.0917 (0.205)		
$\mathtt{SE}_{t-1}\!\cdot\!\mathtt{Foreign}$		-0.0462 (0.403)		
$\mathbf{D}_{a,t-1}$			4.508 (3.583)	
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Public}$			-8.094** (3.897)	
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Foreign}$			-14.96** (6.809)	
$\mathbf{D}_{r,t-1}$				-0.777** (0.393)
$\mathbf{D}_{a,t-1}\!\cdot\!\mathbf{Private}$				0.534 (0.478)
$\mathbf{D}_{r,t-1}\!\cdot\!\mathbf{Foreign}$				0.114 (0.660)
ROA_{t-1}	-7.561*** (1.813)	-7.545*** (1.831)	-7.838*** (1.825)	-7.587*** (1.837)
Private	0.230 (0.182)	-0.0565 (0.392)		-0.199 (0.247)
Foreign	-0.0346 (0.373)	-0.138 (0.686)	0.248 (0.195)	-0.131 (0.324)
Public			0.167 (0.173)	
Constant	-3.677*** (0.840)	-3.993*** (0.825)	-4.267*** (0.941)	-3.020** (1.282)
Time Dummies Observations Number of Banks Hansen J Statistic Hansen p-value AR1 AR2	Yes 5079 96 5.212 0.391 -3.512*** -1.357	Yes 5079 96 5.328 0.377 -3.511*** -1.355	Yes 5079 96 5.143 0.399 -3.510*** -1.359	Yes 5079 96 5.336 0.376 -3.510*** -1.364

NOTE - This table presents the results for the Arelano-Bond GMM estimation to test the impact of bank's risk, measured by the natural logarithm of NPL, and the four measures of focus we employ in this study. Interactions of each concentration measure with ownership dummies are also employed in order to observe how the concentration-risk relationship depends on the bank's ownership category. We have used the Windmeijer [2005] correction, which reduces the bias from our two-step estimation. First and second order autocorrelation (AR1 and AR2) coefficients are also shown in the table. The Hansen J statistic tests whether the model is overidenfied. Time dummies coefficients are not presented for the sake of brevity. Standard errors in parentheses. *** p < 0.01, **p < 0.05,* p < 0.1

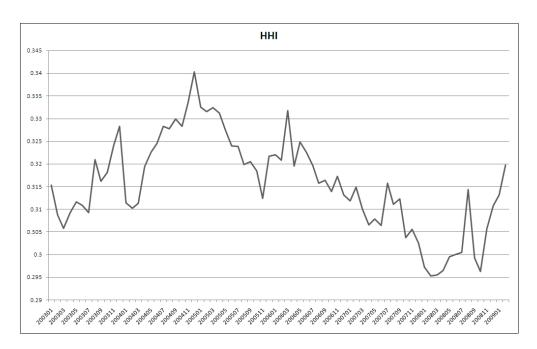


Figure 1: This figure presents the evolution of the monthly-averaged value of the Herfindahl-Hirschman Index (HHI) for the banks in our sample from January 2003 to February 2009.

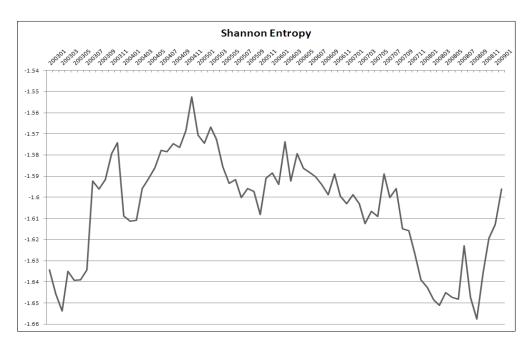


Figure 2: This figure presents the evolution of the monthly-averaged value of the Shannon Entropy (SE) for the banks in our sample from January 2003 to February 2009.

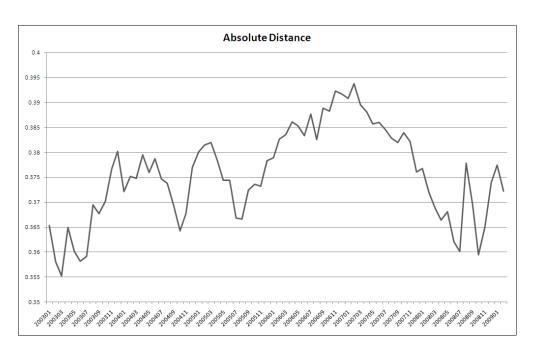


Figure 3: This figure presents the evolution of the monthly-averaged value of the Absolute Distance measure for the banks in our sample from January 2003 to February 2009.

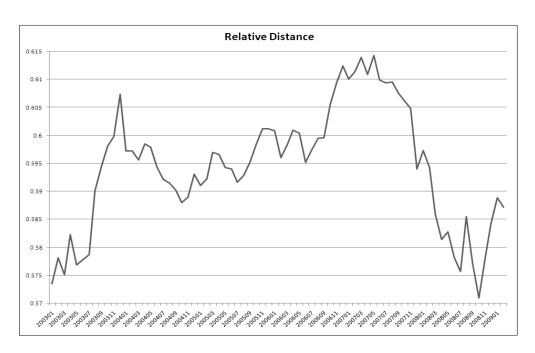


Figure 4: This figure presents the evolution of the monthly-averaged value of the Relative Distance measure for the banks in our sample from January 2003 to February 2009.

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank Eduardo Lundberg	Jul/2000
3	Private Sector Participation: a Theoretical Justification of the Brazilian Position Sérgio Ribeiro da Costa Werlang	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models Pedro H. Albuquerque	Jul/2000
5	The Pass-Through from Depreciation to Inflation: a Panel Study Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil <i>Marcelle Chauvet</i>	Sep/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk José Alvaro Rodrigues Neto	Sep/2000
9	Estimating Exchange Market Pressure and Intervention Activity <i>Emanuel-Werner Kohlscheen</i>	Nov/2000
10	Análise do Financiamento Externo a uma Pequena Economia Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil Michael F. Bryan and Stephen G. Cecchetti	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade and Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework Sergio Afonso Lago Alves	Jul/2001
17	Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção Tito Nícias Teixeira da Silva Filho	Abr/2001
	Estimating Brazilian Potential Output: a Production Function Approach Tito Nícias Teixeira da Silva Filho	Aug/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas and Marcelo Kfoury Muinhos	Apr/2001
19	Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo	May/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu and Márcio I. Nakane	May/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência Pedro H. Albuquerque	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini	Aug/2001
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Aug/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil Marcelo Kfoury Muinhos	Aug/2001
27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Set/2001

28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais Marco Antonio Bonomo e Ricardo D. Brito	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque and Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak and Sandro Canesso de Andrade	Nov/2001
31	Algumas Considerações sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil Mauro Costa Miranda	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises Arminio Fraga and Daniel Luiz Gleizer	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços Tito Nícias Teixeira da Silva Filho	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? <i>Barry Eichengreen</i>	Feb/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro Frederico Pechir Gomes	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio Paulo Castor de Castro	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas Aloisio Araujo and Márcia Leon	Apr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002
43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak and Eduardo José Araújo Lima	Jun/2002

44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence André Minella	Aug/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane	Aug/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn and Marcos Antonio Silveira	Sep/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two-Country Model	Sep/2002
	Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira	
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Sep/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo and Aquiles Farias	Sep/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak and Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: the Case of Latin America Benjamin Miranda Tabak and Eduardo José Araújo Lima	Dec/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case Benjamin Miranda Tabak	Dec/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002
60	Delegated Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Dec/2002

61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: the Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak	Feb/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves	Feb/2003
65	On the Information Content of Oil Future Prices Benjamin Miranda Tabak	Feb/2003
66	A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar and Márcio I. Nakane	Feb/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto	Feb/2003
70	Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak	Feb/2003
71	On Shadow-Prices of Banks in Real-Time Gross Settlement Systems Rodrigo Penaloza	Apr/2003
72	O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani Teixeira de C. Guillen	Maio/2003
73	Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros Getúlio Borges da Silveira e Octavio Bessada	Maio/2003
74	Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves	Maio/2003
75	Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth Ilan Goldfajn, Katherine Hennings and Helio Mori	Jun/2003

76	Inflation Targeting in Emerging Market Economies Arminio Fraga, Ilan Goldfajn and André Minella	Jun/2003
77	Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Jul/2003
78	Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber	Out/2003
79	Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber	Out/2003
80	Diferenças e Semelhanças entre Países da América Latina: uma Análise de <i>Markov Switching</i> para os Ciclos Econômicos de Brasil e Argentina <i>Arnildo da Silva Correa</i>	Out/2003
81	Bank Competition, Agency Costs and the Performance of the Monetary Policy Leonardo Soriano de Alencar and Márcio I. Nakane	Jan/2004
82	Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo	Mar/2004
83	Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries Thomas Y. Wu	May/2004
84	Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis Aloisio Araujo and Marcia Leon	May/2004
85	Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002 André Soares Loureiro and Fernando de Holanda Barbosa	May/2004
86	Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo Fabio Araujo e João Victor Issler	Maio/2004
87	Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil Ana Carla Abrão Costa	Dez/2004
88	Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht	Dez/2004
89	O Mercado de <i>Hedge</i> Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central Fernando N. de Oliveira	Dez/2004

90	Bank Privatization and Productivity: Evidence for Brazil Márcio I. Nakane and Daniela B. Weintraub	Dec/2004
91	Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente	Dec/2004
92	Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos	Apr/2005
93	Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Abr/2005
94	Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber	Abr/2005
95	Comment on Market Discipline and Monetary Policy by Carl Walsh Maurício S. Bugarin and Fábia A. de Carvalho	Apr/2005
96	O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina Anthero de Moraes Meirelles	Ago/2005
97	Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching Ryan A. Compton and Jose Ricardo da Costa e Silva	Aug/2005
98	Capital Flows Cycle: Stylized Facts and Empirical Evidences for Emerging Market Economies Helio Mori e Marcelo Kfoury Muinhos	Aug/2005
99	Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber	Set/2005
100	Targets and Inflation Dynamics Sergio A. L. Alves and Waldyr D. Areosa	Oct/2005
101	Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates Marcelo Kfoury Muinhos and Márcio I. Nakane	Mar/2006
102	Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans Ana Carla A. Costa and João M. P. de Mello	Apr/2006
103	The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva	Apr/2006

104	Extração de Informação de Opções Cambiais no Brasil Eui Jung Chang e Benjamin Miranda Tabak	Abr/2006
105	Representing Roommate's Preferences with Symmetric Utilities José Alvaro Rodrigues Neto	Apr/2006
106	Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities Cristiane R. Albuquerque and Marcelo Portugal	May/2006
107	Demand for Bank Services and Market Power in Brazilian Banking Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk	Jun/2006
108	O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda	Jun/2006
109	The Recent Brazilian Disinflation Process and Costs Alexandre A. Tombini and Sergio A. Lago Alves	Jun/2006
110	Fatores de Risco e o Spread Bancário no Brasil Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues	Jul/2006
111	Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves	Jul/2006
112	Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets Angelo Marsiglia Fasolo	Jul/2006
113	Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro	Ago/2006
114	The Inequality Channel of Monetary Transmission Marta Areosa and Waldyr Areosa	Aug/2006
115	Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak	Sep/2006
116	Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos	Sep/2006
117	An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak	Sep/2006
118	Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint Aloísio P. Araújo and José Valentim M. Vicente	Oct/2006

119	A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação Ricardo Schechtman	Out/2006
120	Forecasting Interest Rates: an Application for Brazil Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak	Oct/2006
121	The Role of Consumer's Risk Aversion on Price Rigidity Sergio A. Lago Alves and Mirta N. S. Bugarin	Nov/2006
122	Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil Arnildo da Silva Correa and André Minella	Nov/2006
123	A Neoclassical Analysis of the Brazilian "Lost-Decades" Flávia Mourão Graminho	Nov/2006
124	The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil Benjamin M. Tabak	Nov/2006
125	Herding Behavior by Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Dec/2006
126	Risk Premium: Insights over the Threshold José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña	Dec/2006
127	Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil Ricardo Schechtman	Dec/2006
128	Term Structure Movements Implicit in Option Prices Caio Ibsen R. Almeida and José Valentim M. Vicente	Dec/2006
129	Brazil: Taming Inflation Expectations Afonso S. Bevilaqua, Mário Mesquita and André Minella	Jan/2007
130	The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter? Daniel O. Cajueiro and Benjamin M. Tabak	Jan/2007
131	Long-Range Dependence in Exchange Rates: the Case of the European Monetary System Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro	Mar/2007
132	Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics' Model: the Joint Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins and Eduardo Saliby	Mar/2007
133	A New Proposal for Collection and Generation of Information on Financial Institutions' Risk: the Case of Derivatives Gilneu F. A. Vivan and Benjamin M. Tabak	Mar/2007
134	Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins	Abr/2007

135	Evaluation of Default Risk for the Brazilian Banking Sector Marcelo Y. Takami and Benjamin M. Tabak	May/2007
136	Identifying Volatility Risk Premium from Fixed Income Asian Options Caio Ibsen R. Almeida and José Valentim M. Vicente	May/2007
137	Monetary Policy Design under Competing Models of Inflation Persistence Solange Gouvea e Abhijit Sen Gupta	May/2007
138	Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak	May/2007
139	Selection of Optimal Lag Length inCointegrated VAR Models with Weak Form of Common Cyclical Features Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén	Jun/2007
140	Inflation Targeting, Credibility and Confidence Crises Rafael Santos and Aloísio Araújo	Aug/2007
141	Forecasting Bonds Yields in the Brazilian Fixed income Market Jose Vicente and Benjamin M. Tabak	Aug/2007
142	Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho	Ago/2007
143	Price Rigidity in Brazil: Evidence from CPI Micro Data Solange Gouvea	Sep/2007
144	The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber	Oct/2007
145	The Stability-Concentration Relationship in the Brazilian Banking System Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang	Oct/2007
146	Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente	Out/2007
147	Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects (1994-1998) Adriana Soares Sales and Maria Eduarda Tannuri-Pianto	Oct/2007
148	Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial Felipe Pinheiro, Caio Almeida e José Vicente	Out/2007
149	Joint Validation of Credit Rating PDs under Default Correlation Ricardo Schechtman	Oct/2007

150	A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks Roberta Blass Staub and Geraldo da Silva e Souza	Oct/2007
151	Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability Eduardo José Araújo Lima and Benjamin Miranda Tabak	Nov/2007
152	Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation? Fernando N. de Oliveira and Walter Novaes	Dec/2007
153	Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins	Dez/2007
154	Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves Adriana Soares Sales and Maria Tannuri-Pianto	Dec/2007
155	Does Curvature Enhance Forecasting? Caio Almeida, Romeu Gomes, André Leite and José Vicente	Dec/2007
156	Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane	Dez/2007
157	Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil Tito Nícias Teixeira da Silva Filho	Jan/2008
158	Characterizing the Brazilian Term Structure of Interest Rates Osmani T. Guillen and Benjamin M. Tabak	Feb/2008
159	Behavior and Effects of Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Feb/2008
160	The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden? Fábia A. de Carvalho and Cyntia F. Azevedo	Feb/2008
161	Evaluating Value-at-Risk Models via Quantile Regressions Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton	Feb/2008
162	Balance Sheet Effects in Currency Crises: Evidence from Brazil Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes	Apr/2008
163	Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks' Economy: the Brazilian Case Tito Nícias Teixeira da Silva Filho	May/2008
164	Foreign Banks' Entry and Departure: the recent Brazilian experience (1996-2006) Pedro Fachada	Jun/2008
165	Avaliação de Opções de Troca e Opções de Spread Européias e Americanas Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo	Jul/2008

166	Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study	Jul/2008
	Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho	
167	O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras Clodoaldo Aparecido Annibal	Jul/2008
168	An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks Wenersamy Ramos de Alcântara	Jul/2008
169	Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar	Jul/2008
170	Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação Adriana Soares Sales	Jul/2008
171	Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil Sérgio Mikio Koyama e Márcio Issao Nakane	Ago/2008
172	Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap Marta Areosa	Aug/2008
173	Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions Eduardo José Araújo Lima and Benjamin Miranda Tabak	Aug/2008
174	Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi	Aug/2008
175	Evaluating Asset Pricing Models in a Fama-French Framework Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone	Dec/2008
176	Fiat Money and the Value of Binding Portfolio Constraints Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez	Dec/2008
177	Preference for Flexibility and Bayesian Updating <i>Gil Riella</i>	Dec/2008
178	An Econometric Contribution to the Intertemporal Approach of the Current Account Wagner Piazza Gaglianone and João Victor Issler	Dec/2008
179	Are Interest Rate Options Important for the Assessment of Interest Rate Risk? Caio Almeida and José Vicente	Dec/2008
180	A Class of Incomplete and Ambiguity Averse Preferences Leandro Nascimento and Gil Riella	Dec/2008
181	Monetary Channels in Brazil through the Lens of a Semi-Structural Model André Minella and Nelson F. Souza-Sobrinho	Apr/2009

182	Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez	Abr/2009
183	Ganhos da Globalização do Capital Acionário em Crises Cambiais Marcio Janot e Walter Novaes	Abr/2009
184	Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Apr/2009
185	Market Forecasts in Brazil: performance and determinants Fabia A. de Carvalho and André Minella	Apr/2009
186	Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente	Maio/2009
187	The Influence of Collateral on Capital Requirements in the Brazilian Financial System: an approach through historical average and logistic regression on probability of default Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito	Jun/2009
188	Pricing Asian Interest Rate Options with a Three-Factor HJM Model Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion	Jun/2009
189	Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks Marcos Souto, Benjamin M. Tabak and Francisco Vazquez	Jul/2009
190	Concentração Bancária, Lucratividade e Risco Sistêmico: uma abordagem de contágio indireto Bruno Silva Martins e Leonardo S. Alencar	Set/2009
191	Concentração e Inadimplência nas Carteiras de Empréstimos dos Bancos Brasileiros Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub	Set/2009
192	Inadimplência do Setor Bancário Brasileiro: uma avaliação de suas medidas Clodoaldo Aparecido Annibal	Set/2009
193	Loss Given Default: um estudo sobre perdas em operações prefixadas no mercado brasileiro Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Set/2009
194	Testes de Contágio entre Sistemas Bancários – A crise do subprime Benjamin M. Tabak e Manuela M. de Souza	Set/2009
195	From Default Rates to Default Matrices: a complete measurement of Brazilian banks' consumer credit delinquency Ricardo Schechtman	Oct/2009

196	The role of macroeconomic variables in sovereign risk Marco S. Matsumura and José Valentim Vicente	Oct/2009
197	Forecasting the Yield Curve for Brazil Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak	Nov/2009
198	Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise segundo a regressão de componentes principais Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio Bessada Lion e Cláudio Henrique Barbedo	Nov/2009
199	Delegated Portfolio Management and Risk Taking Behavior José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Dec/2009
200	Evolution of Bank Efficiency in Brazil: A DEA Approach Roberta B. Staub, Geraldo Souza and Benjamin M. Tabak	Dec/2009
201	Efeitos da Globalização na Inflação Brasileira Rafael Santos e Márcia S. Leon	Jan/2010
202	Considerações sobre a Atuação do Banco Central na Crise de 2008 Mário Mesquita e Mario Torós	Mar/2010
203	Hiato do Produto e PIB no Brasil: uma Análise de Dados em Tempo Real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Abr/2010
204	Fiscal and monetary policy interaction: a simulation based analysis of a two-country New Keynesian DSGE model with heterogeneous households Marcos Valli and Fabia A. de Carvalho	Apr/2010
205	Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions George Athanasopoulos, Osmani Teixeira de Carvalho Guillén, João Victor Issler and Farshid Vahid	Apr/2010
206	Fluctuation Dynamics in US interest rates and the role of monetary policy Daniel Oliveira Cajueiro and Benjamin M. Tabak	Apr/2010
207	Brazilian Strategy for Managing the Risk of Foreign Exchange Rate Exposure During a Crisis Antonio Francisco A. Silva Jr.	Apr/2010
208	Correlação de default: uma investigação empírica de créditos de varejo no Brasil Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Maio/2010
209	Produção Industrial no Brasil: uma análise de dados em tempo real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Maio/2010
210	Determinants of Bank Efficiency: the case of Brazil Patricia Tecles and Benjamin M. Tabak	May/2010

211	Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002 Sandro C. Andrade and Emanuel Kohlscheen	Aug/2010
212	The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges Tito Nícias Teixeira da Silva	Sep/2010
213	Estimation of Economic Capital Concerning Operational Risk in a Brazilian Banking Industry Case Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures	Oct/2010
214	Do Inflation-linked Bonds Contain Information about Future Inflation? <i>José Valentim Machado Vicente and Osmani Teixeira de Carvalho Guillen</i>	Oct/2010