

Working Paper Series

Estimation of Economic Capital Concerning Operational Risk in a Brazilian Banking Industry Case

Helder Ferreira de Mendonça, Délio José Cordeiro Galvão and Renato Falci Villela Loures October, 2010

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series	Brasília	n. 213	Oct.	2010	p. 1-40

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br

Head of Research Department: Adriana Soares Sales - E-mail: adriana.sales@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 213.

Authorized by Carlos Hamilton Vasconcelos Araújo, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil

Secre/Surel/Cogiv

SBS - Quadra 3 - Bloco B - Edifício-Sede - 1º andar

Caixa Postal 8.670

70074-900 Brasília - DF - Brazil

Phones: +55 (61) 3414-3710 and 3414-3565

Fax: +55 (61) 3414-3626 E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Banco Central do Brasil

Secre/Surel/Diate

SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo

70074-900 Brasília – DF – Brazil

Fax: +55 (61) 3414-2553

Internet: http://www.bcb.gov.br/?english

Estimation of Economic Capital Concerning Operational Risk in a Brazilian Banking Industry Case*

Helder Ferreira de Mendonça**
Délio José Cordeiro Galvão
Renato Falci Villela Loures

Abstract

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil.

The advance of globalization of the international financial market has implied a more complex portfolio risk for the banks. Furthermore, several points such as the growth of e-banking and the increase in accounting irregularities call attention to operational risk. This article presents an analysis for the estimation of economic capital concerning operational risk in a Brazilian banking industry case making use of Markov chains, extreme value theory, and peaks over threshold modelling. The findings denote that some existent methods present consistent results among institutions with similar characteristics of loss data. Moreover, even when methods considered as goodness of fit are applied, such as *EVT-POT*, the capital estimations can generate large variations and become unreal.

Keywords: operational risk, Markov chains, Cramer-von Mises, loss severity, economic capital.

JEL classification: G32, G28, G14.

^{*} We thank, Jaqueline Terra Moura Marins, for helpful suggestions regarding the preparation of the manuscript. Any remaining errors are the sole responsibility of the authors.

^{**} Fluminense Federal University (UFF), Department of Economics and National Council for Scientific and Technological Development (CNPq). E-mail address: helderfm@hotmail.com.

^{***} Central Bank of Brazil and Fluminense Federal University (UFF), Department of Economics. E-mail address: delio.galvao@bcb.gov.br.

Fluminense Federal University (UFF), Department of Economics and Coordination for the Improvement of Higher Education Personnel (CAPES). E-mail address: rfvloures@gmail.com.

1. Introduction

The advance of globalization of international financial market has implied a more complex portfolio risk for the banks. Furthermore, several points such as the growth of e-banking and the increase in accounting irregularities, as those of Enron and WorldCom, call attention to operational risk. According to the New Basel Capital Accord (New Accord) banks must define an explicit minimum capital charge for operational risk as part of Pillar 1. Three measurement methodologies are permitted to calculate the operational risk capital charge: (i) the Basic Indicator Approach; (ii) the Standardised Approach, and (iii) Advanced Measurement Approach.

The Basic Indicator Approach considers fixed parameters for calculating operational risk. Although fixed parameters are also used in the case of Standardised Approach, bank activities are divided into 8 business lines. In each business line, there is a different percentage applied for the measurement of risk. Such as in the previous case, the Advanced Measurement Approach (AMA) classifies the business lines internally. However, it permits the use of the model of each institution regarding its particularities.

The natural procedure for finding the economic capital is based on a detailed model which represents accurately the loss distribution for a bank's operational risk over one year. Hence, the models based on AMA converge to the Loss Distribution Approach (LDA). The main difference is how the loss distribution is modeled. The minimum requirement for the use of the several approaches is proportional to the level of complexity. Therefore, there exist some advantages for the banks in adopting more sophisticated internal models of managing risk since this implies lower capital requirement. In other words, there is an incentive for financial institutions to search for an operational risk management approach that is more sophisticated and more sensitive to the risks of each particular institution.

Dutta and Perry (2007), making use of the Loss Data Collection Exercise (LDCE - 2004), analyzed financial institutions internal loss data and concluded that the use of different models for the adjustment of severity in the same institution can create different estimations for the economic capital. Furthermore, the application of the

_

¹ The LDCE (2004) was a common effort of regulation agencies in the USA (Federal Reserve System, Office of the Controller of Currency, Federal Deposit Insurance Corporation, and the Office of Thrift Supervision) for gathering operational risk data.

same model on different institutions may imply unreal and inconsistent estimations. Therefore, according to these authors, a reduced number of techniques are potentially adequate for modelling operational loss severity.

Due to the scarcity of data, it is not an easy task to model the loss severity distribution. In this sense, Aue and Kalkbrener's (2006) study on the internal loss data for the last 5 to 7 years in the Deutsche Bank was not sufficient for finding a good definition in the severity distribution tail. Consequently, in order to increase the robustness of the model, other categories of data (external or created by artificial environments) were included. The findings denote that in several of the 23 cells in the *BL/ET* matrix, the body and tail of the severity distribution present different characteristics.

The above result confirms other studies which indicate that the operational risk loss data is distributed in two different manners: (i) constituted by loss data with high frequency and low magnitude that composes the body of the distribution; and (ii) constituted by loss data with low frequency and high magnitude that composes the tail distribution. Therefore, it is hard to identify a unique loss distribution function which can describe correctly the behaviour of all cells of the *BL/ET* matrix in the implementation of LDA in the Deutsche Bank. This difficulty implied the use of different parametric functions. The adopted methodology is based on the Extreme Value Theory taking into account the *Peaks over Threshold* method which allows the fit of Generalized Pareto Distribution models.

The same problem has been faced in Chapelle et al. (2004), in which, like other authors, they had opted for the strategy of identifying the limit value in order to separate "normal" and "extreme" values in the loss value. An alternative procedure is the adoption of an arbitrary measurement (90° percentile) or to use a tool with graphic resources as the Mean Excess Plot (see Davison and Smith, 1990; and Embrechts et al., 1997).

In brief, recent researches reveal the necessity of the banking industry to develop the methodology of LDA for regulatory capital calculation necessary for avoiding losses due to operational risk. For almost half of the financial institutions in Latin America the calculation method of economic capital for operational risk is not defined. Although some institutions intend to use the Basic Indicator Approach, there is no evidence that improvements in the processes and controls are being developed. Only 36% of financial institutions state that they use a more advanced approach than the basic one. Therefore,

almost 2/3 of institutions in the region need to adopt improvements in the processes and controls (EVERIS, 2005).

This paper presents an analysis for the estimation of economic capital concerning operational risk in a Brazilian banking industry case making use of Markov chains, extreme value theory, and peaks over threshold modeling. As a consequence, this article relates to several pieces of literature regarding quantitative models of operational risk events. It is important to stress that this paper presents the first analysis, taking into account real data instead of artificial data, for the economic capital calculation in the Brazilian financial institutions. This analysis is relevant because Brazil is one of the most important emerging economies and has a sophisticated banking industry. Therefore, the results can be used to improve the analysis for mitigating operational risk in similar economies.

The article is organized as follows: next section presents the data and method used in this study, section 3 presents the expected loss calculation using the Markov chain model, section 4 makes an economic capital estimation taking into account the loss distribution approach, and section 5 concludes the paper.

2. Data and method

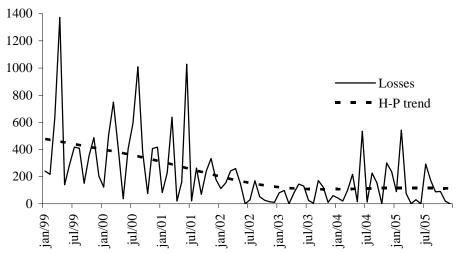

With the objective of the economic capital calculation in Brazilian financial institutions, a sample of data concerning losses due to bank robberies in the third economically most important state in Brazil (Minas Gerais) was considered. The register of 354 loss events classified as "external fraud" catalogued by the trade union bank of Minas Gerais (http://extranet.bancariosbh.org.br) based on top 50 banks in Brazil by total assets (CBB, 2006). This data was disclosed by local media in the period of January 1999 to December 2005 with a monthly frequency.

Figure 1 shows a falling trend of the values of loss caused by bank robberies. This trend can be related to the publication of "Sound practices for the management and supervision of operational risk" (BIS, 2003) which indicated the necessity of appropriation and registration of loss data for future economic capital calculation when AMA is adopted. Another possibility is the growing investment from the banking industry in prevention and insurance against this category of loss. In Brazil there are more than 17,500 bank agencies and the total investment in the banking system for physical safety doubled between 2003 and 2006, reaching US\$3 billions. With the

objective of testing the application of LDA, the loss data regarding bank robberies was aggregated representing the loss of a fictitious big bank called DHR.

The economic capital is a measurement which is supposed to reflect with high precision, the necessary amount of capital for unexpected losses of a bank. The degree of precision is directly related to the risk tolerance inherent to each financial institution and its particularities. The rule of thumb in the banking market is to choose the tolerance level based on institutional rating. In a general way the economic capital is based on Value-at-Risk (VaR), understood as a specific quantile in the distribution of loss data. A good example is the economic capital calculation in the Deutsche Bank's case, where a confidence level of 99.98% in VaR would be associated with the rating granted to the bank (AA+).

Figure 1
Operational Losses due to bank robberies (in R\$ thousands)

The financial institutions which will adopt the AMA for economic capital calculation must calculate the operational VaR for the period regarding one year and they will consider a confidence level equal or higher than the 99.9° percentile of the aggregate loss distribution function. The operational VaR calculation will be made taking into account all business lines of the institution and the sum of such amounts will correspond to the share of the economic capital related to the operational risk.

The operational VaR calculation is based on discrete stochastic process and it is developed through two processes: the loss frequency distribution and the loss severity distribution. The aggregation of the functions of loss frequency and severity distribution is made through Monte Carlo simulation. The distribution of aggregated losses due to

this operation allows the estimation of future losses related to operational risk events. However, it is common to take into consideration the expected shortfall in the calculation (Aue and Kalkbrener, 2006).

Therefore, although the operational VaR (VaR_{op}) is a "coherent" risk measurement, from such a value shall be deducted the expected loss (EL) calculation in order to obtain the operational economic capital amount (EC_{OR}). Thus the model for estimation of economic capital for the DHR bank is given by:

(1)
$$EC_{OR} = VaR_{op} - EL$$
.

A different manner of using mean and median arise from the aggregate loss distribution function, or to consider the severity value as a result of expected frequency for expected losses calculation (see Moscadelli, 2004). Under this perspective, the next section presents an alternative model making use of Markov chains model.

3. Expected loss calculation with Markov chains

The standard method for the calculation of credit risk and operational risk is the specification for the economic capital based on the operational VaR (maximum probable loss for a single event deducted from the expected loss). For the estimation of the expected loss using Markov chains, the monthly data loss for the period between January 1999 and December 2005 was consolidated (see table 1). It is important to note that there is a concentration of events between 1999 and 2001. As a consequence, these values could cause a bias in the analysis, increasing the average loss. Hence, the data for the above-mentioned period was expurgated and the analysis is focused on the period between 2002 and 2005 (monthly data).

Furthermore, for achieving the Markov transition matrix, the values (in Reais, R\$) were classified into four distinct categories:

- (i) loss with a value lower or equal to R\$ 100,000.00 (state $1 = E_I$);
- (ii) loss with a value higher than R\$ 100,000.00 and lower or equal to R\$ 200,000.00 (state $2 = E_2$);
- (ii) loss with a value higher than R\$ 200,000.00 and lower or equal to R\$ 300,000.00 (state $3 = E_3$); and
- (iii) loss with a value higher than R\$ 300,000.00 (state $4 = E_4$).

The matrix will reproduce the loss value regarding robberies in the DHR bank. With this objective, $P_{i,j}$ is the probability of the occurrence of the state i (period n) after the occurrence of the state j (period n-l). Thus:

$$(2) P_{i,j} = \frac{E_i}{E_j},$$

where E_i is the number of occurrences of the state i, after the occurrence of the state j; and E_i is the number of occurrences of the state j in the period.

Table 1Operational loss - bank robberies (in R\$)

Month/Year	1999	2000	2001	2002	2003	2004	2005
January	240,000	122,399	82,688	111,710	80,738	42,800	89,851
February	216,628	506,860	227,000	154,400	98,000	20,000	542,522
March	638,190	749,000	637,647	241,500	-	100,000	75,000
April	1,371,181	396,800	20,370	258,500	80,500	217,000	1,000
May	139,553	36,061	162,837	149,000	144,500	15,481	30,000
June	288,138	405,223	1,028,445	-	131,000	534,700	-
July	417,300	593,400	21,000	29,000	25,000	12,500	292,000
August	408,410	1,009,290	262,862	169,500	5,000	226,000	173,000
September	150,253	376,121	69,584	51,602	171,000	154,700	88,500
October	354,201	75,724	239,684	26,100	123,000	-	91,000
November	486,000	406,471	332,660	15,514	11,000	300,000	20,000
December	205,000	417,363	178,050	11,000	60,200	237,000	-
TOTAL	4,914,855	5,094,711	3,262,827	1,217,826	929,938	1,860,181	1,402,873

Source: CRMS - Centro de Referência e Memória Sindical.

Taking into account the four states above, the transition matrix is

$$(3) \qquad P_{4x4} = \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix}.$$

After the calculation of the transition matrix, the state matrix regarding the year immediately before the one to be forecasted (E_{il}) was defined. In the current model the state matrix represents the probability of the occurrence of the state i in the twelve months prior to the current month. Therefore the state matrix function is

(4)
$$E_{i,1} = \frac{E_i}{12}$$
,

where E_i is the number of occurrences of the state i in the year previous to the current. Therefore, considering the four states, then:

(5)
$$E_{4x1} = \begin{bmatrix} E_{1,1} \\ E_{2,1} \\ E_{3,1} \\ E_{4,1} \end{bmatrix}.$$

The state matrix for the forecasting year $(E_{i,1}^1)$ is a result of the multiplication of the transition matrix $(P_{i,j})$ by the state matrix of the previous year $(E_{i,1})$ and 12 (number of months in one year). This new matrix represents the probabilities of each state i to occur in the year under consideration. Hence, the state matrix of the year to be estimated corresponds to:

(6)
$$P_{4x4} \times E_{4x1} \times 12 = \begin{bmatrix} E^{1}_{1,1} \\ E^{1}_{2,1} \\ E^{1}_{3,1} \\ E^{1}_{4,1} \end{bmatrix}.$$

With the objective of giving more reality to the model, the arithmetic mean of loss due to bank robberies (MLBR) for each state i was made, that is,

(7)
$$MLBR_i = \frac{\sum L_i}{NL_i},$$

where ΣL_i is the sum of loss in state *i*; and NL_i is the number of losses in state *i*.

In the search for the expected loss for each state i (EL*), the multiplication of the mean of loss due to bank robberies by the correspondent factor of each state i regarding the state matrix for the forecasting year ($E_{i,1}^1$) is made,

(8)
$$EL^* = MLBR_i \times E_{i,1}^1.$$

The sum of these losses implies the whole loss forecast for the year (WL^*) ,

(9)
$$\sum EL^* = WL^*.$$

A similar procedure for expected frequency (*EF*) calculation was adopted. The result allows the estimation of expected loss for 2006 which will be used in the economic capital calculation (see appendix). Therefore, the value of the mean expected loss is

$$(10) EL = \frac{WL}{EF},$$

that is, the whole expected loss for 2006 divided by the number of expected event loss in the same year.

For the purpose of testing the robustness of the model, the result of the estimation for 2005 is confronted with the real data in that year.² The data in this analysis includes the period between January 2002 and December 2004. The comparison of the estimated result (R\$ 1,344,287.18) with the observed loss (R\$ 1,402,873.00) reveals a low gap of 4.36% between the values. Therefore the result demonstrates the good performance of the model in forecasting (see table 2). The same procedure was repeated for the estimation of loss in 2006 (the data period is January 2002 to December 2005) and the results are in table 1. Therefore, such as observed in figure 1, a falling trend in bank robberies is observed.

The data concerning frequency of occurrence of loss is divided into four categories of states for achieving the transition matrix. This matrix reproduces the frequency of loss events taking into account the bank robberies based on the following premises:

- (i) frequency of occurrence of loss events in the month, lower than 1 (state $1 = e_1$);
- (ii) frequency of occurrence of loss events in the month, lower than 2 (state $2 = e_2$);
- (iii) frequency of occurrence of loss events in the month, lower than 3 (state $3 = e_3$); and
- (ii) frequency of occurrence of loss events in the month, greater than 3 (state $4 = e_4$).

Table 2 *Expected loss (in R\$)*

	20	05	2006		
State	Mean of loss	Expected loss	Mean of loss	Expected loss	
\mathbf{E}_1	34,221.75	232,327.66	37,234.00	301,320.27	
E_2	145,423.33	373,253.22	148,181.00	245,922.06	
E_3	246,666.67	578,296.30	253,142.86	411,887.12	
E_4	534,700.00	160,410.00	538,611.00	334,310.28	
	Total sum	1,344,287.18	Total sum	1,293,439.73	

The expected frequency calculation is similar to the one made for the expected loss. The data in this analysis corresponds to the period from January 2002 to December 2005. Table 3 shows the outcome. Based on the expected frequency, the expected loss

_

² The transition matrix and state matrices necessary to the forecast of loss concerning 2005 and 2006 are available from the authors on request.

in 2006 corresponds to R\$ 52,265.76 (1,293,439.73/24.75). The value found reveals a robustness of the model because it is close to the mean of loss between 2002 and 2005 (R\$ 44,717.50). On the other hand, the median of losses in the same period (R\$ 20,000.00) is not adequate due to its low value in comparison with the mean of loss.

Table 3Expected frequency for 2006

T					
State	Mean of frequency	Expected frequency			
\mathbf{e}_1	0.50	2.15			
\mathbf{e}_2	1.50	4.80			
e_3	2.50	4.01			
e_4	4.77	13.79			
	Total sum	24.75			

4. Estimation economic capital based on LDA

Before the estimation of economic capital through LDA it is important to note that due to the flexibility of the AMA method proposed by the Basel Committee, each institution, based on its own individual characteristics and demands, has an option on building a loss matrix – Business Line/Event Type (*BL/ET*). Therefore, if the institution has activities that consider 8 business lines with loss registration, classified in each one of the 7 types of risk proposed by the New Accord, the *BL/ET* matrix will be composed of 56 cells which consolidate the data of operational loss.

An example is given in table 4 which represents the *BL/ET* matrix (composed of 23 cells) used by the Deutsche Bank in the loss distribution approach. The specification of this matrix is based on the business lines indicated by the Deutsche Bank executive committee and on the classification of types of event risk regarding level 1 proposed by the New Accord.³ It is important to highlight that the Deutsche Bank makes the option on consolidating the data concerning loss event taking into account labor demand, damages in infrastructure, and labor accidents without considering the loss distribution by business lines.

³ Information available from www.bis.org/publ/bcbs128d.pdf.

 Table 4

 BL/ET matrix - model LDA - Deutsche Bank

Decellored 1	1 Internal Event Types		Business Lines Business Lines					
Basel level 1	Internal Event Types	BL1	BL2	BL3	BL4	BL5	BL6	Group
Internal Fraud	Fraud	1	2	3	4	5	6	7
External Fraud	riaud	1	2	3	4	3	O	/
Damage to physical assets	Infrastructure				8			
Business disruption	Illitastructure	8						
Clients, Products, Business	Clients, Products,	9	10	11	12	13	14	15
Practices	Business Practices	9	10	11	12	13	14	13
Execution, delivery,	Execution, delivery,	16	17	18	19	20	21	22
process management	process management	10	17	10	19	20	21	22
Employment practices,	Employment practices,	23						
workplace safety	workplace safety				23			

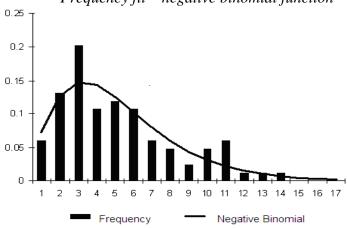
Source: Aue and Kalkbrener (2006).

After the analysis of the loss distribution for a risk event type in a business line, the process must take into consideration other operational risk categories with all business lines of the financial institution. Different frequency and severity distributions are derived from loss event data and, after that, they are combined through a Monte Carlo simulation for determining the annual aggregate loss. From the simulation of aggregate loss, the necessary statistics for the operational VaR calculation are obtained for the economic capital estimation.

Regarding the numerical application proposed in this study and with the objective of finding the best adjustment of data loss severity, the totality of data regarding operational losses due to bank robberies in table 1 is used. This information represents a cell in the matrix *BL/ET* of the DHR bank. It is important to note that the operational VaR calculation considers the occurrence of an unexpected loss event which probably has never been registered in the database of the financial institution. Hence, there is no justification for the expurgation of the data in the period 1999 to 2001, in contrast to the one adopted in the previous section.

Table 5 shows a survey of loss data used in this numerical exercise. The results permit comparison of skewness and kurtosis of some distributions that will be tested and represent an initial approximation for the function with the best fit. Therefore, the fact that the data frequency distribution reveals a variance higher than the mean value suggests that the Poisson and binomial distribution are not good candidates for the best fit. Moreover, the value of skewness not being zero eliminates the possibility of the adjustment being made through a normal distribution. Another relevant point is that a high value in the 4th moment (kurtosis) denotes distribution with thick tails. Hence, the

results of kurtosis for severity data (24) reveal the existence of a thick tail to the right as the best function in the adjustment.


 Table 5

 Descriptive statistics - frequency and severity

	Frequency	Severity
Minimum	0.00	370.00
Maximum	14.00	800,000.00
Mean	4.21	53,103
Median	3.50	20,000
Standard deviation	3.19	91,843
Variance	10.03	8,411,227,680
Skewness	0.91	4
Kurtosis	3.14	24
Observations	84	354
Sum	84	18,798,348.40

The selection of the function with the best fit for the loss frequency distribution was made taking into consideration the following distributions: Poisson, negative binomial, and geometric. The distribution with the best degree of fit was the negative binomial (with discrete parameter s=3 and continuous parameter p=0.4158, see figure 2).

Figure 2Frequency fit – negative binomial function

The test for analyzing quality fit for the frequency distribution is the Chi-square test (χ^2) . This test compares the result found with the result estimated by the difference between the values. The null hypothesis is rejected if the calculated χ^2 is greater than χ^2 tabled with d=k-1(k is the number of categories for each series). The results confirm

⁴ The selection of the function was made through the software Best Fit 4.5.

that the negative binomial function denotes the best fit for the loss frequency (see table 6).

Table 6Chi-square test for frequency distribution

	Negative	-	
	binomial	Poisson	Geometric
χ^2	4.4	19.89	26.8
P-value	0.7327	0.0058	6.2341E-05
Critical value 50%	6.3458	6.3458	4.3515
Critical value 25%	9.0371	9.0371	6.6257
Critical value 15%	10.7479	10.7479	8.1152

The LDA approach applied to operational risk loss data revealed that the choice of a model for the analysis of loss severity distribution is more important for the economic capital calculation than the choice of a model for the analysis of loss frequency. Hence, the economic capital for covering fortuitous losses due to operational risk is significantly influenced by individual losses of a high magnitude with an easy identification in the loss severity distribution.⁵

It is important to note that the literature considers different procedures to analyze the data loss severity. In this research, the best fit is made taking into account the whole available data without separating the function tail data. The outcomes are presented in table 7 and the graph with the best fit is in figure 3.

Table 7Statistics – Total loss severity

	Stettistics	1 oten tobb be retti	
Distribution	Inverted Gaussian	Log-Normal	Pearson 5
Parameter 1	54,896.748	57,855.731	1.083
Parameter 2	16,457.685	153,439.788	17,338.799
$\chi^{^2}$	23.960	34.800	42.210
KS	0.035	0.044	0.043
AD	0.351	0.416	0.831

The fit in figure 3 needs to be validated by goodness of fit tests. The most used tests in the literature concerning the subject are: (i) Kolmogorov-Smirnov (KS) test; (ii) Anderson-Darling (AD) test; (iii) Chi-square test (χ^2), and (iv) Quantile-Quantile Plot

_

⁵ These results are in accordance with those found by Böcker and Klüppelberg (2005), De Koker (2006), and Aue and Kalkbrener (2006).

(QQ-Plot). The first three tests are formal tests and verify the difference between the fit of the real distribution and the fitted distribution. The statistics with the lowest value in each test identifies the function with the best fit. According to Dutta and Perry (2007) there is a consensus in the literature that the AD test has more power and it is more sensitive to the data in the tail of the distribution. The QQ-Plot is a graphical test where the observations are classified in a decreasing order. A good model presents points close to a straight line.

In a first step, the selection of the function with the best fit for the data loss severity takes into account the distributions: inverted Gaussian, Log-normal, and Pearson 5 (see table 6). The result denotes that inverted Gaussian is the function that presents the best fit and, it is in accordance with figure 3.

The next step of the analysis is the classification of loss data in "normal" or "extreme". For the purpose of the present analysis, it has been assumed that the data of extreme loss regarding the tail of the function is distributed in accordance with a generalized Pareto distribution (GPD). The proposed methodology consists in the determination of the threshold value (*u*). Every loss event with a value greater than "*u*" is used in the estimation of parameters of the GPD distribution regarding extreme values.⁶

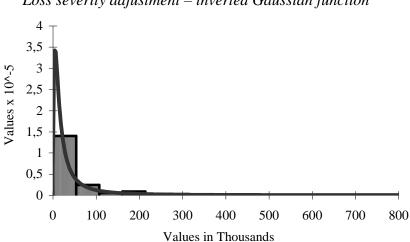


Figure 3

Loss severity adjustment – inverted Gaussian function

.

⁶ For an analysis of this procedure, see Pickands (1975), and Balkema and De Haan (1974).

According to Chapelle et al. (2004) and Dutta and Perry (2007) the choice of the threshold value has a direct influence on economic capital calculation. Hence, with the objective of evaluating the impact of this choice on economic capital calculation, the selection of the best fit for data loss severity will also be made through extreme value theory – peaks over threshold (EVT-POT) method. Hence, three candidates for u have been tested: (i) the 90° percentile; (ii) the 95° percentile; and (iii) the value calculated through *Mean Excess Plot* (MEP).⁷ This model considers the threshold as the value with the lowest Cramer Von Mises (CVM) statistics.⁸ Figure 4 allows observing the MEP applied to the cell "retail bank/external fraud" (see figure 4) of DHR bank. This figure represents the function $\{(X_{k,n}, e_n(X_{k,n})): k = 1,...,n\}$ where e_n is the empirical average function of the excesses which is given by:

(11)
$$e_n(u) = \frac{1}{n_u} \sum_{i=1}^{n_u} (X_i - u), \quad u \ge 0,$$

where X_i 's are the n_u observations with $X_i > u$.

The MEP can be represented by an almost straight line with sloping equal to $\xi/(1-\xi)$. Therefore, figure 4 allows the identification of a significant change in slope of the straight line where the losses have high values among the values in the sample (values between R\$ 130,000 and R\$ 200,000).

Figure 4

Mean Excess Plot

100000

200000

300000

⁷ The first two options were used in recent researches, see Fountnouvelle *et al.* (2006), and Dutta and Perry (2007).

⁸ $W^2 = \sum |F(x) - F_n(x)|^2 + \frac{1}{12n}$, where *n* is the number of observations and F(x) is the theoretical distribution.

The criterion of selection for u regarding the loss data in this analysis is contained in table 8. In this table, there are several candidates for the threshold value and the parameters of scale β and shape ξ for the distribution of loss data in the tail function (GPD). The Cramer Von Mises test was calculated for each candidate. The last column indicates the percentage of data regarding extreme loss values which are related to the losses greater than the selected threshold values of each candidate. Column n presents the number of loss events which exceeds the threshold value.

Table 8Threshold "u"

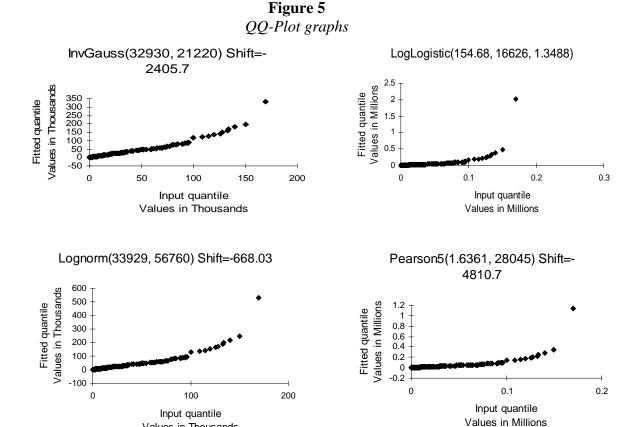
	A 7	Parame	ters	CVM	0/
u	N	В	ξ	CVM	%
130,000.00	36	31,893.8	1.592	1.565	10.17
135,000.00	35	34,817.6	1.663	1.314	9.89
140,000.00	34	41,493.4	1.823	0.971	9.60
145,000.00	34	41,493.4	1.823	0.803	9.60
150,000.00	33	60,335.4	2.291	0.812	9.32
155,000.00	33	60,335.4	2.291	0.723	9.32
160,000.00	33	60,335.4	2.291	0.697	9.32
165,000.00	33	60,335.4	2.291	0.705	9.32
170,000.00	30	52,862.0	2.102	0.477	8.47
175,000.00	29	59,935.4	2.275	0.599	8.19
180,000.00	28	65,044.7	2.402	0.709	7.91
185,000.00	28	65,044.7	2.402	0.772	7.91
190,000.00	26	67,247.1	2.456	0.753	7.34
195,000.00	25	70,019.0	2.525	0.835	7.06
200,000.00	18	37,824.2	1.789	0.566	5.08
200,000.00	17	40,491.4	1.845	0.660	4.80

Based on the lowest CVM statistics, the selection of threshold value indicates the 91.53° percentile which corresponds to the parameters 2.102 and 52,862 as shape parameter (ξ) and scale parameter (β), respectively. In this case, 30 data are related to loss events considered as extremes (greater than u) in the distribution tail, while 324 data are applied in the calculation of fit of loss classified as "normal".

The selection of the best fit for the loss severity distribution classified as "normal" is made for the distributions: Log-normal, inverted Gaussian, Log-logistic, and Person 5 as presented in table 9. ¹⁰ Independent from the threshold value, the result denotes that the Log-normal function is the best fit for data (the null hypotheses for the

The goodness of fit test was performed by the software Best Fit 4.5.

-

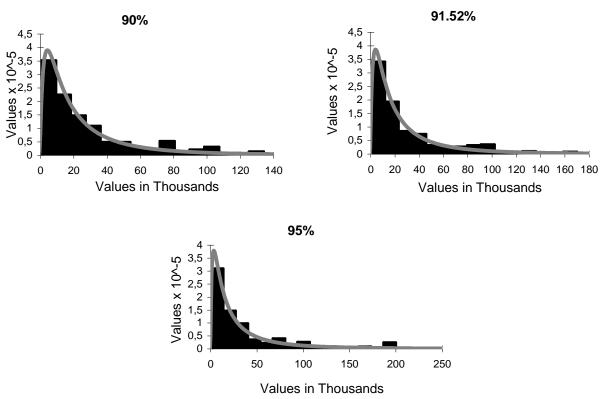

⁹ The goodness of fit test was performed by the software Xtreme 3.0.

other distributions were rejected). Furthermore, the QQ-plot analysis confirms the previous result (see figure 5).

Table 9Statistics for threshold values

	Distribution	Log-Normal	Inverted Gaussian	Log-Logistic	Pearson 5
u=R\$130,000.00	Parameter 1	31,706.8031	31,023.3326	91.9906	1.7609
(90° percentile),	Parameter 2	49,612.2007	22,253.7334	16,217.1526	30,543.42
N=318	Parameter 3	-	-	1.3885	-
	$\chi^{^2}$	32.48	45.34	60.47	58.10
	KS	0.0458	0.0490	0.0506	0.05997
	\mathbf{AD}	0.9505	1.02	1.307	1.517
u=R\$170,000.00	Parameter 1	33,928.5806	32,930.2253	154.6818	1.6361
(91.53° percentile),	Parameter 2	56,759.9504	21,220.3832	16,626.1498	28,045.0241
N=324	Parameter 3	-	-	1.3488	-
	$\chi^{^2}$	47.78	47.67	47.33	44.33
	KS	0.0418	0.0453	0.0417	0.0577
	AD	0.8117	0.866	1.168	1.404
u=R\$200,000.00	Parameter 1	41,105.334	38,999.395	=	1.375
(95° percentile),	Parameter 2	81,595.366	19,257.472	-	23,030.942
N=336	Parameter 3	-	-	-	-
	$\chi^{^2}$	29.98	31.67	-	39.67
	KS	0.03605	0.03905	-	0.05189
	AD	0.6222	0.6898	-	1.230

The graphs in figure 6 exhibit the log-normal distribution which has been identified as the best fit independent of the selected u. Hence, the operational VaR calculation will determine which one of the three criteria for choosing the threshold value is more adequate for the economic capital estimation. In other words, it will be evaluated if the best fit is given by EVT-POT (90%, 91.52%, or 95%) method or through the parameters of the inverted Gaussian which ignores the separation between normal and extreme losses. Table 10 presents a summary of the parameters that will be tested for identifying the best candidate for u and the respective economic capital.



u=R\$ 170,000.00, N=324, 91.52° percentile

Values in Thousands

Table 11 summarizes the several outcomes achieved in this section for the economic capital calculation for the operational risk. The aggregate loss function is a result of the combination of the function with the best fit for data frequency (a negative binomial, 3; 0.4158) and the best fit of data loss severity (an inverted Gaussian, 54,896; 16,457). The calculation of operational VaR for finding the aggregate function was made with the Matlab program considering the parameters found in EVT-POT model. The program executed 40,000 repetitions and created the probable loss for the 99.9° percentile. However, in the case of parameters found for the inverted Gaussian, the program @Risk has been used for the specific simulation (10,000 repetitions and has created the probable loss for the 99.9° percentile).

Figure 6Severity – Log-normal distribution

The results were not feasible for the EC_{OR} taking into account the EVT-POT model. Notwithstanding, the results, once again, were sufficient to prove the high volatility due to the choice of threshold value. Contrary to Chapelle et al. (2004), the value chosen through Cramer Von Mises statistics has not provided the best fit. However, such as in Fontnouvelle et al. (2006), the analysis revealed no trend in the results when the threshold value is increasing.

Table 10Summary of parameters for Monte Carlo simulation

Severity	Norm	al loss	Extreme loss		
	Log Norm	al function	GPD function		
	μ σ		β	ξ	
MEP / 90%	31,706.80	49,612.20	31,893.80	1.59	
MEP / 91.52	33,928.58	33,928.58 56,759.95		2.10	
MEP / 95%	41,105.33	81,595.37	37,894.20	1.79	

Table 11 Operational VaR

		EVT-POT		
	Cut-off 90%	Cut-off 91.52%	Cut-off 95%	Without cut-off
Normal loss	Log-Normal	Log-Normal	Log-Normal	Inverted Gaussian
Mean (μ)	31,706.80	33,928.58	41,105.33	54,896.74
Standard deviation (σ)	49,612.20	56,759.95	81,595.37	-
Parameter (λ)	-	-	-	16,457.68
Threshold (u) *	130.00	170.00	200.00	-
Exceed percentage ^(a)	10.00%	8.47%	5.00%	-
GPD 1 (ξ)	1.592	2.102	1.789	-
GPD 2 (σ)	31,893.80	52,862.00	37,824.20	-
Total loss*	18,798.35	18,798.35	18,798.35	18,798.35
Expected loss (EL) *	52.27	52.27	52.27	52.27
Median*	20.00	20.00	20.00	20.00
OpVaR 99%*	2,155	5,016	3,170	1,139
OpVaR 99.5%*	7,022	29,050	12,012	1,502
OpVaR 99.9% *	14,910,000	45,366,000	2,168,900	2,325
Economic Capital OR*	14,909,947	45,365,947	2,168,847	2,273

Note: (*) Value in thousands of Reais; (a) Percentage of events which exceed the threshold value.

Among several EC_{OR} values in the table, the selection was made based on the value considered more credible. The justification is that the values calculated by EVT-POT model look unreal when compared with the expected loss value. This discrepancy in the EC_{OR} value was also found by Dutta and Perry (2007). It is important to note that the discrepancy in the values must not be attributed to a contradiction in EVT-POT model. This result may be associated with a failure, or scarcity of the data loss set, or specific characteristics of this risk category, or even due to the specific conditions for its use as pointed out by Embrechts (1997).

The choice of the EC_{OR} value was defined based on the inverted Gaussian function for the loss severity data (see table 12). Although the value around R\$ 2,000,000.00 is not sufficient to cause the failure of a financial institution, it is important to note that the analysis was made considering it as an item inside the external fraud for a single business line. Notwithstanding, the result regarding the estimation of expected loss presents a proportional relation with the operational VaR (ratio of 2.3%) which is compatible with the ratio of 2.9% found by Moscadelli (2004) - see table 12.

¹¹ Neslehová et al. (2006) call attention to the specific conditions for the employment of EVT-POT model.

Table 12 *Relation EC/TA*

11010111011 20/1111				
	Economic *		EC/TA	EL/VaR Op
	Capital (EC)	VaR Op*	(%)	(%)
Gauss inv	2,274	2,326	2	2.25
95%	2,168,847	2,168,900	1,781	0.00
CVM	45,365,947	45,366,000	37,260	0.00
90%	14,909,947	14,910,000	12,246	0.00

Note: (*) Value in Thousand Reais.

The present analysis allows observing that even when the goodness of fit techniques are used, such as *EVT-POT*, the capital estimate may generate high volatile results and may seem unreal. Although this method has had a good fitness considering the criteria adopted by Dutta and Perry (2007), it has not been sufficient to define the best fitness function of the losses severity.

5. Concluding remarks

The main difficulty in modelling economic capital concerning operational risk is the choice of the function with the best fit for loss severity. It is important to note that the use of different methodologies for loss severity is likely to present different results. Moreover, the same method does not imply similar results when it is applied to financial institutions with different characteristics. Notwithstanding, there exist some methods which present consistent results among institutions with characteristics of loss data.

It was observed that the numerical exercise developed for the Brazilian case regarding the expected loss calculation revealed that the use of Markov chains is a robust tool. Furthermore, with the objective of modelling the severity distribution, EVT-POT method was applied. The parametric fit of the loss data, neglecting the separation of body and tail, indicated the inverted Gaussian function as the most efficient function due to its realistic estimation. On the other hand, although several authors indicate the GDP function as the function that is used to provide the best fit, this result was not confirmed in the present analysis. This result denotes that even when methods with goodness of fit statistics are applied, such as *EVT-POT*, the capital estimations can generate huge variations and become unreal.

References

AUE, F. and KALKBRENER, M. (2006) "LDA at work: Deutsche Bank's Approach to quantifying operational risk", *Journal of Operational Risk*, V. 1, N. 4, 48-98.

BALKEMA, A. A. and De HAAN, L. (1974): "Residual life time at great age", *Annals of Probability*, 2, 792-804.

BANK FOR INTERNATIONAL SETTLEMENTS - BIS (2003) "Sound practices for the management and supervision of operational risk." www.bis.org/publ/bcbs96.htm

BÖCKER, K. and KLÜPPELBERG, C. (2005). "Operational VAR: a closed-form approximation" *RISK*, December, 90-93.

CENTRAL BANK OF BRAZIL – CBB (2006). 50 Maiores Bancos por Ativos Totais. http://www.bcb.gov.br/top50/port/top50.asp

CHAPELLE, A; CRAMA, Y; HUBNER, G; and PETERS, J.P. (2004), "Basel II and Operational Risk: Implications for Risk Measurement and management in the Financial Sector", National Bank of Belgium Working Paper, N. 51, May.

DAVISON, A.C. and SMITH, R.L., (1990), "Models for exceedances over high thresholds (with discussion)", *Journal of the Royal Statistical Society*, B 52, pg. 393-442.

De KOKER, R. (2006) "Operational risk modelling: where do we go from here. In E. Davis (ed.): The Advanced Measurement Approach to Operational Risk", Risk Books, London, 37-57.

DUTTA, K. and PERRY, J. (2007), "A Tale of tails: an empirical analysis of loss distribution models for estimating operational risk capital". Working Paper 06-13, Federal Reserve of Boston.

EMBRECHTS, P., KLÜPPELBERG, C., and MIKOSCH, T. (1997), "Modelling Extremal Events for Insurance and Finance", Ed. Springer Verlag, Berlin.

EVERIS (2005) "Risco Operacional nas Instituições Financeiras da América Latina. Situação atual e tendências." Relatório anual.

FOUNTNOUVELLE, P., RUEFF, D.V., JORDAN, J.S., and ROSENGREN, E.S. (2006), "Capital and Risk: New Evidence on implications of Large Operational Losses." *Journal of Money, Credit, and Banking*, V. 38, N. 7, 1819-1846.

LDCE (2004) "Results of the 2004 Loss Data Collection Exercise for Operational Risk", www.bos.frb.org/bankinfo/qau/papers/pd051205.pdf.

MOSCADELLI, M. (2004). "The modelling of operational risk: experience with the analysis of the data collected by the Basel Committee." Working paper, Banca d'Italia. http://www.bancaditalia.it/ricerca/consultazioni/temidi/td04/td517/td 517/tema 517.pdf.

NESLEHOVÁ, J., EMBRECHTS P., and CHAVES-DEMOULIN, V. (2006). "Infinitemean models and the LDA for operational risk." *Journal of Operational Risk* V. 1, N. 1, 3-25

PICKANDS, J. (1975) "Statistical inference using extreme order statistics", *The Annals of Statistics*, 3, 119-131.

Appendix

A. Expected loss frequency (2006)

Table A.1Loss events frequency (2002 to 2005)

Month/year	2002	2003	2004	2005
January	5	4	2	5
February	4	3	1	5
March	3	-	1	2
April	4	2	3	1
May	2	5	2	1
June	-	6	6	-
July	2	2	1	2
August	9	1	2	2
September	3	5	4	3
October	3	2	-	2
November	2	2	1	1
December	1	5	3	-
Total sum	38	37	26	24

Table A.2 *Transition matrix*

			2002	-2005	
	Number of events	E 1	E2	E3	E4
E1	X ≤ 1	0.429	0.429	0.143	0.154
E2	$1 < X \le 2$	0.286	0.143	0.429	0.385
E3	$2 < X \le 3$	0.143	0.071	0.143	0.231
E4	X > 4	0.143	0.357	0.286	0.231

Table A.3

State matrix

	2005	
E 1	0.417	
E2	0.333	
E3	0.083	
E4	0.167	

Table A.4

Expected frequency for 2006

	Mean of	Expected
State	occurrences	frequency
E1	0.50	2.15
E2	1.50	4.80
E3	2.50	4.01
E4	4.77	13.79
	Total Sum	24.75

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank Eduardo Lundberg	Jul/2000
3	Private Sector Participation: a Theoretical Justification of the Brazilian Position Sérgio Ribeiro da Costa Werlang	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models Pedro H. Albuquerque	Jul/2000
5	The Pass-Through from Depreciation to Inflation: a Panel Study Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil Marcelle Chauvet	Sep/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk José Alvaro Rodrigues Neto	Sep/2000
9	Estimating Exchange Market Pressure and Intervention Activity Emanuel-Werner Kohlscheen	Nov/2000
10	Análise do Financiamento Externo a uma Pequena Economia Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil Michael F. Bryan and Stephen G. Cecchetti	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade and Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework Sergio Afonso Lago Alves	Jul/2001
17	Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção Tito Nícias Teixeira da Silva Filho	Abr/2001
	Estimating Brazilian Potential Output: a Production Function Approach Tito Nícias Teixeira da Silva Filho	Aug/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas and Marcelo Kfoury Muinhos	Apr/2001
19	Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo	May/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu and Márcio I. Nakane	May/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência Pedro H. Albuquerque	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini	Aug/2001
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Aug/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil Marcelo Kfoury Muinhos	Aug/2001
27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Set/2001

28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais Marco Antonio Bonomo e Ricardo D. Brito	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque and Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak and Sandro Canesso de Andrade	Nov/2001
31	Algumas Considerações sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil Mauro Costa Miranda	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises Arminio Fraga and Daniel Luiz Gleizer	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços Tito Nícias Teixeira da Silva Filho	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? Barry Eichengreen	Feb/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro Frederico Pechir Gomes	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio Paulo Castor de Castro	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas Aloisio Araujo and Márcia Leon	Apr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002
43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak and Eduardo José Araújo Lima	Jun/2002

44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence André Minella	Aug/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane	Aug/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn and Marcos Antonio Silveira	Sep/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two-Country Model Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira	Sep/2002
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Sep/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo and Aquiles Farias	Sep/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak and Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: the Case of Latin America Benjamin Miranda Tabak and Eduardo José Araújo Lima	Dec/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case Benjamin Miranda Tabak	Dec/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002
60	Delegated Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Dec/2002

61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: the Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak	Feb/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves	Feb/2003
65	On the Information Content of Oil Future Prices Benjamin Miranda Tabak	Feb/2003
66	A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar and Márcio I. Nakane	Feb/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto	Feb/2003
70	Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates Benjamin Miranda Tabak	Feb/2003
71	On Shadow-Prices of Banks in Real-Time Gross Settlement Systems Rodrigo Penaloza	Apr/2003
72	O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani Teixeira de C. Guillen	Maio/2003
73	Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros Getúlio Borges da Silveira e Octavio Bessada	Maio/2003
74	Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves	Maio/2003
75	Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth Ilan Goldfajn, Katherine Hennings and Helio Mori	Jun/2003

76	Inflation Targeting in Emerging Market Economies Arminio Fraga, Ilan Goldfajn and André Minella	Jun/2003
77	Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Jul/2003
78	Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber	Out/2003
79	Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber	Out/2003
80	Diferenças e Semelhanças entre Países da América Latina: uma Análise de <i>Markov Switching</i> para os Ciclos Econômicos de Brasil e Argentina <i>Arnildo da Silva Correa</i>	Out/2003
81	Bank Competition, Agency Costs and the Performance of the Monetary Policy Leonardo Soriano de Alencar and Márcio I. Nakane	Jan/2004
82	Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo	Mar/2004
83	Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries Thomas Y. Wu	May/2004
84	Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis Aloisio Araujo and Marcia Leon	May/2004
85	Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002 André Soares Loureiro and Fernando de Holanda Barbosa	May/2004
86	Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo Fabio Araujo e João Victor Issler	Maio/2004
87	Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil Ana Carla Abrão Costa	Dez/2004
88	Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht	Dez/2004
89	O Mercado de <i>Hedge</i> Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central Fernando N. de Oliveira	Dez/2004

90	Bank Privatization and Productivity: Evidence for Brazil Márcio I. Nakane and Daniela B. Weintraub	Dec/2004
91	Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente	Dec/2004
92	Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos	Apr/2005
93	Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Abr/2005
94	Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber	Abr/2005
95	Comment on Market Discipline and Monetary Policy by Carl Walsh Maurício S. Bugarin and Fábia A. de Carvalho	Apr/2005
96	O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina Anthero de Moraes Meirelles	Ago/2005
97	Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching Ryan A. Compton and Jose Ricardo da Costa e Silva	Aug/2005
98	Capital Flows Cycle: Stylized Facts and Empirical Evidences for Emerging Market Economies Helio Mori e Marcelo Kfoury Muinhos	Aug/2005
99	Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo Facó Lemgruber	Set/2005
100	Targets and Inflation Dynamics Sergio A. L. Alves and Waldyr D. Areosa	Oct/2005
101	Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates Marcelo Kfoury Muinhos and Márcio I. Nakane	Mar/2006
102	Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans Ana Carla A. Costa and João M. P. de Mello	Apr/2006
103	The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva	Apr/2006

104	Extração de Informação de Opções Cambiais no Brasil Eui Jung Chang e Benjamin Miranda Tabak	Abr/2006
105	Representing Roommate's Preferences with Symmetric Utilities José Alvaro Rodrigues Neto	Apr/2006
106	Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities Cristiane R. Albuquerque and Marcelo Portugal	May/2006
107	Demand for Bank Services and Market Power in Brazilian Banking Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk	Jun/2006
108	O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda	Jun/2006
109	The Recent Brazilian Disinflation Process and Costs Alexandre A. Tombini and Sergio A. Lago Alves	Jun/2006
110	Fatores de Risco e o Spread Bancário no Brasil Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues	Jul/2006
111	Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves	Jul/2006
112	Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets Angelo Marsiglia Fasolo	Jul/2006
113	Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro	Ago/2006
114	The Inequality Channel of Monetary Transmission Marta Areosa and Waldyr Areosa	Aug/2006
115	Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak	Sep/2006
116	Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos	Sep/2006
117	An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak	Sep/2006
118	Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint Aloísio P. Araújo and José Valentim M. Vicente	Oct/2006

119	A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação Ricardo Schechtman	Out/2006
120	Forecasting Interest Rates: an Application for Brazil Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak	Oct/2006
121	The Role of Consumer's Risk Aversion on Price Rigidity Sergio A. Lago Alves and Mirta N. S. Bugarin	Nov/2006
122	Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil Arnildo da Silva Correa and André Minella	Nov/2006
123	A Neoclassical Analysis of the Brazilian "Lost-Decades" Flávia Mourão Graminho	Nov/2006
124	The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil Benjamin M. Tabak	Nov/2006
125	Herding Behavior by Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Dec/2006
126	Risk Premium: Insights over the Threshold José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña	Dec/2006
127	Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil Ricardo Schechtman	Dec/2006
128	Term Structure Movements Implicit in Option Prices Caio Ibsen R. Almeida and José Valentim M. Vicente	Dec/2006
129	Brazil: Taming Inflation Expectations Afonso S. Bevilaqua, Mário Mesquita and André Minella	Jan/2007
130	The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter? Daniel O. Cajueiro and Benjamin M. Tabak	Jan/2007
131	Long-Range Dependence in Exchange Rates: the Case of the European Monetary System Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro	Mar/2007
132	Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics' Model: the Joint Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins and Eduardo Saliby	Mar/2007
133	A New Proposal for Collection and Generation of Information on Financial Institutions' Risk: the Case of Derivatives Gilneu F. A. Vivan and Benjamin M. Tabak	Mar/2007
134	Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins	Abr/2007

135	Evaluation of Default Risk for the Brazilian Banking Sector Marcelo Y. Takami and Benjamin M. Tabak	May/2007
136	Identifying Volatility Risk Premium from Fixed Income Asian Options Caio Ibsen R. Almeida and José Valentim M. Vicente	May/2007
137	Monetary Policy Design under Competing Models of Inflation Persistence Solange Gouvea e Abhijit Sen Gupta	May/2007
138	Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak	May/2007
139	Selection of Optimal Lag Length inCointegrated VAR Models with Weak Form of Common Cyclical Features Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén	Jun/2007
140	Inflation Targeting, Credibility and Confidence Crises Rafael Santos and Aloísio Araújo	Aug/2007
141	Forecasting Bonds Yields in the Brazilian Fixed income Market Jose Vicente and Benjamin M. Tabak	Aug/2007
142	Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho	Ago/2007
143	Price Rigidity in Brazil: Evidence from CPI Micro Data Solange Gouvea	Sep/2007
144	The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber	Oct/2007
145	The Stability-Concentration Relationship in the Brazilian Banking System Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang	Oct/2007
146	Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente	Out/2007
147	Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects (1994-1998) Adriana Soares Sales and Maria Eduarda Tannuri-Pianto	Oct/2007
148	Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial Felipe Pinheiro, Caio Almeida e José Vicente	Out/2007
149	Joint Validation of Credit Rating PDs under Default Correlation Ricardo Schechtman	Oct/2007

150	A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks	Oct/2007
151	Roberta Blass Staub and Geraldo da Silva e Souza Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability Eduardo José Araújo Lima and Benjamin Miranda Tabak	Nov/2007
152	Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation? Fernando N. de Oliveira and Walter Novaes	Dec/2007
153	Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins	Dez/2007
154	Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves Adriana Soares Sales and Maria Tannuri-Pianto	Dec/2007
155	Does Curvature Enhance Forecasting? Caio Almeida, Romeu Gomes, André Leite and José Vicente	Dec/2007
156	Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane	Dez/2007
157	Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil Tito Nícias Teixeira da Silva Filho	Jan/2008
158	Characterizing the Brazilian Term Structure of Interest Rates Osmani T. Guillen and Benjamin M. Tabak	Feb/2008
159	Behavior and Effects of Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Feb/2008
160	The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden? Fábia A. de Carvalho and Cyntia F. Azevedo	Feb/2008
161	Evaluating Value-at-Risk Models via Quantile Regressions Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton	Feb/2008
162	Balance Sheet Effects in Currency Crises: Evidence from Brazil Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes	Apr/2008
163	Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks' Economy: the Brazilian Case Tito Nícias Teixeira da Silva Filho	May/2008
164	Foreign Banks' Entry and Departure: the recent Brazilian experience (1996-2006) Pedro Fachada	Jun/2008
165	Avaliação de Opções de Troca e Opções de Spread Européias e Americanas Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo	Jul/2008

166	Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study	Jul/2008
	Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho	
167	O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras Clodoaldo Aparecido Annibal	Jul/2008
168	An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks Wenersamy Ramos de Alcântara	Jul/2008
169	Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar	Jul/2008
170	Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação Adriana Soares Sales	Jul/2008
171	Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil Sérgio Mikio Koyama e Márcio Issao Nakane	Ago/2008
172	Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap Marta Areosa	Aug/2008
173	Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions Eduardo José Araújo Lima and Benjamin Miranda Tabak	Aug/2008
174	Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi	Aug/2008
175	Evaluating Asset Pricing Models in a Fama-French Framework Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone	Dec/2008
176	Fiat Money and the Value of Binding Portfolio Constraints Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez	Dec/2008
177	Preference for Flexibility and Bayesian Updating <i>Gil Riella</i>	Dec/2008
178	An Econometric Contribution to the Intertemporal Approach of the Current Account Wagner Piazza Gaglianone and João Victor Issler	Dec/2008
179	Are Interest Rate Options Important for the Assessment of Interest Rate Risk? Caio Almeida and José Vicente	Dec/2008
180	A Class of Incomplete and Ambiguity Averse Preferences Leandro Nascimento and Gil Riella	Dec/2008
181	Monetary Channels in Brazil through the Lens of a Semi-Structural Model André Minella and Nelson F. Souza-Sobrinho	Apr/2009

182	Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez	Abr/2009
183	Ganhos da Globalização do Capital Acionário em Crises Cambiais Marcio Janot e Walter Novaes	Abr/2009
184	Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak	Apr/2009
185	Market Forecasts in Brazil: performance and determinants Fabia A. de Carvalho and André Minella	Apr/2009
186	Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente	Maio/2009
187	The Influence of Collateral on Capital Requirements in the Brazilian Financial System: an approach through historical average and logistic regression on probability of default Alan Cosme Rodrigues da Silva, Antônio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito	Jun/2009
188	Pricing Asian Interest Rate Options with a Three-Factor HJM Model Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion	Jun/2009
189	Linking Financial and Macroeconomic Factors to Credit Risk Indicators of Brazilian Banks Marcos Souto, Benjamin M. Tabak and Francisco Vazquez	Jul/2009
190	Concentração Bancária, Lucratividade e Risco Sistêmico: uma abordagem de contágio indireto Bruno Silva Martins e Leonardo S. Alencar	Set/2009
191	Concentração e Inadimplência nas Carteiras de Empréstimos dos Bancos Brasileiros Patricia L. Tecles, Benjamin M. Tabak e Roberta B. Staub	Set/2009
192	Inadimplência do Setor Bancário Brasileiro: uma avaliação de suas medidas Clodoaldo Aparecido Annibal	Set/2009
193	Loss Given Default: um estudo sobre perdas em operações prefixadas no mercado brasileiro Antonio Carlos Magalhães da Silva, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Set/2009
194	Testes de Contágio entre Sistemas Bancários – A crise do subprime Benjamin M. Tabak e Manuela M. de Souza	Set/2009
195	From Default Rates to Default Matrices: a complete measurement of Brazilian banks' consumer credit delinquency Ricardo Schechtman	Oct/2009

196	The role of macroeconomic variables in sovereign risk Marco S. Matsumura and José Valentim Vicente	Oct/2009
197	Forecasting the Yield Curve for Brazil Daniel O. Cajueiro, Jose A. Divino and Benjamin M. Tabak	Nov/2009
198	Impacto dos Swaps Cambiais na Curva de Cupom Cambial: uma análise segundo a regressão de componentes principais Alessandra Pasqualina Viola, Margarida Sarmiento Gutierrez, Octávio Bessada Lion e Cláudio Henrique Barbedo	Nov/2009
199	Delegated Portfolio Management and Risk Taking Behavior <i>José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak</i>	Dec/2009
200	Evolution of Bank Efficiency in Brazil: A DEA Approach Roberta B. Staub, Geraldo Souza and Benjamin M. Tabak	Dec/2009
201	Efeitos da Globalização na Inflação Brasileira Rafael Santos e Márcia S. Leon	Jan/2010
202	Considerações sobre a Atuação do Banco Central na Crise de 2008 Mário Mesquita e Mario Torós	Mar/2010
203	Hiato do Produto e PIB no Brasil: uma Análise de Dados em Tempo Real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Abr/2010
204	Fiscal and monetary policy interaction: a simulation based analysis of a two-country New Keynesian DSGE model with heterogeneous households Marcos Valli and Fabia A. de Carvalho	Apr/2010
205	Model selection, estimation and forecasting in VAR models with short-run and long-run restrictions George Athanasopoulos, Osmani Teixeira de Carvalho Guillén, João Victor Issler and Farshid Vahid	Apr/2010
206	Fluctuation Dynamics in US interest rates and the role of monetary policy Daniel Oliveira Cajueiro and Benjamin M. Tabak	Apr/2010
207	Brazilian Strategy for Managing the Risk of Foreign Exchange Rate Exposure During a Crisis Antonio Francisco A. Silva Jr.	Apr/2010
208	Correlação de default: uma investigação empírica de créditos de varejo no Brasil Antonio Carlos Magalhães da Silva, Arnildo da Silva Correa, Jaqueline Terra Moura Marins e Myrian Beatriz Eiras das Neves	Maio/2010
209	Produção Industrial no Brasil: uma análise de dados em tempo real Rafael Tiecher Cusinato, André Minella e Sabino da Silva Pôrto Júnior	Maio/2010
210	Determinants of Bank Efficiency: the case of Brazil Patricia Tecles and Benjamin M. Tabak	May/2010

211 Pessimistic Foreign Investors and Turmoil in Emerging Markets: the case of Brazil in 2002 Sandro C. Andrade and Emanuel Kohlscheen 212 The Natural Rate of Unemployment in Brazil, Chile, Colombia and Venezuela: some results and challenges Tito Nícias Teixeira da Silva Filho