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From Default Rates to Default Matrices: 
a complete measurement of Brazilian banks’ 

consumer credit delinquency* 
 
 

Ricardo Schechtman** 
 
 

Abstract 
 

The Working Papers should not be reported as representing the views of the Banco 
Central do Brasil. The views expressed in the papers are those of the author(s) and do not 

necessarily reflect those of the Banco Central do Brasil. 
 

 
Despite the manifold utilities of monitoring credit default rates, little attention is 
usually devoted to the underlying default definition. This paper proposes working 
simultaneously with different default severities, related to several past-due ranges, 
by means of transition matrices (to be named default matrices). In this way, 
default, as well as recovery, is depicted in a multidimensional way with the 
purpose of avoiding missing relevant information. The challenge lies on 
performing comparisons between default matrices, which requires specific metrics. 
In this paper, the default matrices are built to measure consumer credit delinquency 
at four large Brazilian banks. The study is able to draw relevant information from 
comparisons between estimations techniques, between default criteria, between 
banks and over time, as well as with recent applied literature on matrices of rating 
agencies. 
JEL classification: C13; C41; G21; G32 
Keywords: default rates; credit delinquency; transition matrices; banks. 
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1. Introduction 

 

Default rate is a term frequently used in financial and economic circles to designate the 

percentage of borrowers of a given universe (e.g. a specific bank portfolio) that have not 

or will not comply to their credit obligations. Measuring and monitoring historic loan 

default rates is important for several reasons. Based on past default data, expectations of 

future delinquency is one of the components that usually explains the level of bank 

spreads (see BCB, 1999). Also, the monitoring of default rate time series makes it 

possible to draw relationships with business cycles (e.g., Bangia et al, 2002) and may 

assist in constructing anti-cyclical regulations dealing with bank provision or capital 

(e.g., Jiménez and Saurina, 2006). Further, measuring default rates is a problem closely 

related to that of estimating PDs (probabilities of default) in credit rating models, which 

is required by Basel II (e.g. BCBS, 2004). Finally, monitoring default rates is generally 

part of the financial stability task of supervisory authorities and Central Banks. In Brazil 

in particular, the last years of economic expansion (up to the financial turmoil) have 

observed a sharp increase in credit volumes and in the number of borrowers, with little 

research devoted to the consequences of that to the behavior of default rates. 

Generally, default rates can be measured either following a stock approach or a flow 

approach. In the stock approach, both the numerator and the denominator of the default 

rate refer to quantities of borrowers at the same point in time (e.g. a selected month). An 

example of such measurement could be the percentage of outstanding borrowers that is 

90 days past-due in a specific month. However, default stock rates are affected by non-

default events such as variations on the number of borrowers being granted loans or on 

the maturity of new loans. For example, an increase in the number of borrowers in the 

early stages of a credit boom could reduce default stock rates simply due to an increase 

in the denominator base, a phenomenon not related necessarily to any improvement in 

individual credit risk. Therefore, though computationally more demanding, this study 

favors the measurement of default rates using a flow approach. 

In the flow approach, the numerator and the denominator of the default rate refer to 

different points in time but to the same group of borrowers. An example could be the 

percentage of borrowers that become 90-days past-due during the course of a specific 

year. This is an example of a univariate flow that considers only one criterion of default 
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(90 days). If, instead, several default severities are simultaneously considered to avoid 

missing relevant information (e.g. several past-due ranges), one arrives at a multivariate 

flow description of default. That is precisely the notion of transition matrices where the 

underlying states being transited are the different default severities (besides the non-

default states). This paper proposes such matrices (to be named default matrices) as a 

more complete measurement of default, as well as of recovery, than solely default rates, 

and investigates their use. Results based on default matrices reveal indeed that 

measurement of credit delinquency may vary considerably depending on the 

measurement tool used. 

The applied literature on credit risk transition matrices basically concentrates on 

matrices of rating agencies (where the states are the external credit ratings). Initial 

works have been Bangia et al. (2002) and Nickell et al. (2000), both discussing the 

sensitivities on these matrices to phases of the business cycle. Point estimation and 

confidence interval estimation of rating matrices have been discussed by Lando and 

Skodeberg (2002), Christensen et al. (2004), Hanson and Schuermann (2004) and 

Gagliardini and Gouriéroux (2005). Comparisons between transitions matrices (e.g. 

over time) is much more complicated than the trivial comparison between default rates 

and requires specific metrics. Gewecke et al.(1986) and Jafry and Schuermann (2004) 

discuss such metrics. On the other hand, the applied literature is scarce on matrices 

whose underlying states are not external agencies’ ratings. Mahlmann (2006) represents 

an exception that deals with matrices derived from banks’ internal ratings but, to best of 

the author’s knowledge, this is the first paper to work with matrices built based on 

different default severities, the so-called default matrices. 

 

This study employs the proposed default matrices to measure default risk in consumer 

credit at large Brazilian banks1. Consumer credit is well suited to the purposes of this 

study since it is a typical form of retail credit, where the number of borrowers is large 

and the management practices are more uniform across banks. As with other types of 

credit, consumer credit has experienced a large increase over the last years. Figure 1 

shows that the number of loans at four large Brazilian banks has almost tripled over a 

period of five years.  

                                                 
1 At this paper, consumer credit refers to non-revolving, non-payroll guaranteed credit and excludes auto, house and other types of 
financing.  Consumer credit represents the largest percentage stock of Brazilian bank retail credit, ranging from 16% to 25% since 
2004. 
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Figure 1: Time series of the number of consumer credit loans 
at four large Brazilian banks

0,0

100,0

200,0

300,0

400,0

500,0

600,0

700,0

jan
/0

3

ab
r/0

3
jul

/0
3

ou
t/0

3

jan
/0

4

ab
r/0

4
jul

/0
4

ou
t/0

4

jan
/0

5

ab
r/0

5
jul

/0
5

ou
t/0

5

jan
/0

6

ab
r/0

6
jul

/0
6

ou
t/0

6

jan
/0

7

ab
r/0

7
jul

/0
7

ou
t/0

7

N
u

m
b

er
 o

f 
lo

an
s 

(1
,0

00
)

 

 

In measuring the default risk of Brazilian consumer credit through the use of default 

matrices, this paper has both methodological and practical (or policy-oriented) goals. 

Included in the former, there are the questions of how default matrices compare to 

rating agencies’ matrices and how the different methods of estimation compare to each 

other specifically in the case of default matrices. From a practical point of view, this 

study aims at extracting relevant information from comparisons between the different 

default criteria underlying the default matrices, from the time evolution of default in 

Brazilian consumer credit over the last years and from how it behaved differently 

between banks along this period. 

 

Section 2 presents the data used in the estimation. Section 3 discusses several 

approaches to estimating default matrices and comparing them. Section 4 contains a 

varied selection of the results produced while section 5 concludes. 
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2. Data 

 

The database used in this study is based on data drawn from the Brazilian Public Credit 

Register. It consists of time series of regulatory credit risk classifications of consumer 

loans at four large Brazilian banks from January 2003 until January 20082. The database 

includes loans started before January 2003, but still in effect during the time span of the 

study, or started within that period.3 Almost all of the loans do not stay in the database 

until January 2008, for a series of reasons presented below. For estimation purposes, the 

database is consolidated by borrower within each bank, taking the worst loan 

classification as the borrower classification when distinct contemporaneous 

classifications are found.4 

 

In order to increase comparability between classifications and, therefore, between 

default matrices of different banks, this study is restricted to borrowers with small loans 

(e.g. smaller than R$50,000 in the initial month), that, according to Brazilian regulation, 

can be subject to review solely as a result of arrears. Besides, those reviews must 

happen on a monthly basis, so that the problem raised by Mahlmann (2006), relative to 

the non-observation of the precise months in which classification transitions indeed 

occur, is not relevant to the present study. Finally, I carry out reclassifications of the 

original regulatory classifications in order to increase the interpretation of the former as 

occurrences of brackets of arrears, according to table 1. At the end of the process, the 

resulting classifications are expected to portray information on arrears according to 

table 1 plus, although to a lesser extent, any additional bank private information on loan 

delinquency.  

                                                 
2 Regulatory classifications are regulated by Resolution 2682/99 of the Central Bank of Brazil. Only consumer loans without 
payroll-deduction and without earmarked funds are considered. The four large banks refer to four large financial conglomerates with 
their constitutions restricted to their most representative financial institutions in consumer credit (typically two institutions per 
conglomerate). 
3 The creation of a database on a time-series format, suitable to this study, is a very lengthy and demanding computational task.  
4 That multiplicity is, however, very rare (≈2%). 
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Table 1 – Interpretation of classifications as arrears5 

Classification A AR B C D E F G H 
Arrears 
(days) 

- renegotiated 15-
30 

31-
60 

61-
90 

91-
120 

121-
150 

151-
180 

>180 or 
written-off 

 

 

In the database, the continuous observation of consumer loans and of their borrowers 

can be censored prior to January 2008 for a variety of reasons: 1) loan paid and not 

renovated, 2) loan sold or transferred without guarantee to outside the bank, 3) loan that 

was written-off removed from balance-sheet, 4) outstanding loan balance falls below 

threshold required for the loan to be reported on an individual basis,6 5) consumer loan 

is replaced by another form of credit (e.g. overdraft). 

 

As it is practically impossible to infer what was the case that really happened, this study 

regards the right censorship as non-informative for modeling purposes. In doing so, the 

empirical results of this paper should be understood as conditional on the manifestation 

of default risk while derived from within the banks analyzed and restricted to the form 

of consumer credit7. Accordingly, in order to avoid unrealistic representations of the 

default risk experienced by the banks, I adopt the time horizon of one semester for the 

default matrices, notably less than the typical 1-year horizon of rating agencies’ 

matrices. The one-year horizon was found to be longer than the typical consumer 

borrower lifetime in some of the banks, and particularly greater than the remaining 

lifetime of borrowers with loans already past due at the starting point of the horizon. 

 

Default matrices are estimated on section 4 for each bank, so that it is interesting to 

have an idea of the database size on a bank level. For the sake of brevity, size numbers 

are reported only for bank 1. During the time span of the study, it encompasses 343,616 

borrowers, a number significantly higher than the corresponding number underlying 

matrices of rating agencies, of around 10,000. Borrower-month observations are at the 

figure of 3,228,401. Transitions to a different classification, including the appearance 

                                                 
5 It’s imperative to recall that those classifications are distinct from those present in Resolution 2682/99. AR refers to consumer 
loans in no arrears but that have been the result of renegotiation of past loans, possibly in arrears. 
6 Only loans above R$ 5,000 are reported on an individual basis in the Brazilian Credit Register, so that the database in this study is 
restricted to them. 
7 Therefore, difference of delinquency behavior between banks, besides being the result of distinct credit market niches, could also 
be related to distinct credit management policies adopted by the banks (e.g. risk transfer policy). 
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and disappearance of borrowers, amount to 1,129,385 transitions, while excluding them, 

add up to 273,248. The last observation points out to the sparcity of the database and 

adds to the argument in favor of working with shorter time horizons.  

 

 

3. Methodology 

 

3.1 Estimating matrices 

 

This section discusses the estimation of banks’ consumer credit default matrices.  To 

accomplish that, the time series of classifications of each bank is seen as a realization of 

a Markov chain of nine states (“A” through “H”, according to table 1) in discrete or 

continuous time, depending on the estimation technique employed. 

The simplest and most used estimation technique is the cohort method, based on 

discrete time. The technique is widely employed by rating agencies and the academic 

literature (e.g. Cantor and Hamilton, 2007).  Given Ni borrowers with a given 

classification i at the start of the time horizon considered, suppose that Nij of these end 

up in classification j at the horizon end T. Then, the transition probability is estimated 

by: 

i

ji
ji N

N
p =ˆ   (1) 

If the transition process is also assumed time-homogeneous, one can use the 

multinomial estimator, in which Ni and Nij are collected over the course of various 

sample periods of duration T. In this case: 

∑
∑=

i

ji
ji N

N
p̂  (2) 

Estimators of discrete type permit the construction of analytical confidence intervals for 

the elements of the default matrices.  Due to the significant number of borrowers upon 

which this study is based, it is safe to adopt the normal approximation to the binomial 

distribution (below) for the construction of such intervals. Also the independence 
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assumption underlying the binomial distribution is easier to be imposed at the short 

horizon of 1-semester  (see Hanson and Schuermann, 2006).8 

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛ −
N

pp
pp

jiji
jiji

)1(
,N~ˆ  (3) 

On the other hand, the continuous time estimation based on survival analysis (also 

called duration) makes use of the transitions observed at shorter frequencies than 

horizon T, assuming a Markov process homogeneous or not.  In the homogeneous case, 

estimation by survival analysis turns into estimation of the generator matrix G of the 

chain, which allows the production of transition matrices for any forecasting horizon 

t=αT, α>0, according to the equation below. 

P(t)=exp(Gα), (4) 

 in which P(t)≡(Pij(t)) is the transition probability matrix for horizon t.  

The elements of G satisfy gij ≥ 0 for i≠j, gii = -∑gij and are estimated through maximum 

likelihood by: 

∫
=

T

i

ji
ji

dttY

MN
g

0
)(

, (5) 

where M is the number of months in horizon T, Nij is the total number of transitions 

from i to j observed in the base and Yi(t) is the number of borrowers of classification i 

in month t. 

Finally, the non-homogeneous continuous time case is equivalent to applying the cohort 

method for the shortest observation frequency, monthly in the case at hand, in order to 

estimate monthly transition matrices. Then, a horizon-T matrix is formed by 

appropriately multiplying T previously estimated monthly matrices.  This is, in fact, an 

application of the Aalen-Johansen estimator and the resulting matrix so obtained is 

specific to the time period used in the estimation. 

                                                 
8 Here N can mean Ni or ΣNi, depending on the point estimator used. 
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By using all the information available in the database, the continuous time estimations 

have three major advantages in relation to the discrete methods, as discussed by Lando 

and Skodeberg (2002). First, non-null probabilities are generated for transitions that 

have not occurred for any fixed set of borrowers, but that are plausible through 

intermediate transitions that have occurred for different sets of borrowers. Second, 

transitions of borrowers that do not remain in the base during all the months of horizon 

T, either due to withdrawal prior to the final month or entry subsequent to the initial 

month, are used in the method, producing more efficient estimations.  Third, transition 

matrices are generated for arbitrary time horizons with greater ease, particularly in the 

homogeneous case. 

Yet, Gagliardini and Gouriéroux (2005) propose a procedure that is somewhat different 

from the estimators described above.  In a context in which the horizon-T matrices are 

assumed themselves stochastic, albeit i.i.d., the authors demonstrate that it is the 

average of the various sample matrices of different consecutive periods of duration T 

that produces the appropriate estimator9. In particular, when each of those is estimated 

by cohort, the simple average, instead of the weighted average given by the multinomial 

estimator, is the appropriate estimator. That observation may be particular importance to 

the Brazilian case, where the number of borrowers has displayed a sharp increase 

pattern lately. 

 

 

3.2 Comparing matrices 

 
In order to compare how different are delinquencies and their dynamics among various 

banks, metrics for transition matrices must be considered. Jafry and Schuermann (2004) 

examine alternative proposals of metrics, with the goal of measuring the average 

quantity of “mobility” embedded into the matrices. Mobility is understood as the 

probability of migration to a classification different from the original one and the 

aurthors suggest a metric (denoted hereafter as Mob) based on the singular value 

decomposition of the matrix to be measured.  

 

                                                 
9 Gagliardini and Gouriéroux (2005) make use of those assumptions to discuss estimation of migration correlation, so that their 
proposed matrix estimator is consistent with a cross-section correlation modeling.  
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D
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T
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⎠

⎞
⎜
⎝

⎛
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IPIP

P
λ

 (6) 

where D is the dimension of P, λis are the autovalues of the matrix in parentheses, P is 

the transition matrix to be measured and I is the identity matrix. 

 

The authors’ preference towards Mob is based on the properties of mononicity (M(P1) > 

M(P2) if p1ij ≥ p2ij ∀i≠j and p1ij > p2ij for some i≠j) and distribution discrimination (M(P1) 

≠ M(P2) if p1ii = p2ii ∀i and p1ij ≠  p2ij ∀i ≠j). Two matrices P1 and P2 can then be 

compared through10: 

 

ΔMob ≡ |Mob(P1)- Mob(P2)|   (7) 

 

However, even for the proposed metric, it is difficult to capture all the dimensions 

underlying the concept of mobility in a single scalar. Indeed, Mob is not able to 

distinguish between migrations to better classifications and migrations to worse 

classifications. Note, for example, that Mob generates the same value for P and Pt. To 

cope with this issue, this study proposes additionally the concepts of improvement and 

worsening mobilities. First, two new transition matrices are generated from the original 

default matrix P, an upper triangular Pu and a lower triangular matrix Pl, where: 
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   (8) 

 

Worsening migrations have the same probabilities in P and Pu, but borrowers are not 

allowed to strictly improve in Pu. Analogous note is valid for Pl and improvement 

migrations. Now a worsening mobility metric and an improvement mobility metric are 

defined based on Pu and Pl, respectively. 

 

Mob_worsening (P) ≡  Mob(F4(P
u))/ worsening_constant, (9) 

                                                 
10 To be precise, it is ΔM, not M, that represents a metric (or better yet, a pseudo-metric because it can be null for a pair of distinct 
matrices) in the space of the transition probability matrices. 
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Mob_improvement (P) ≡ Mob(L5(P
l))/ improvement_constant , (10) 

where Fm and Lm are matrix operators that replace respectively the first or last m lines of 

a matrix by the corresponding lines of a identity matrix. 

 

Mob_worsening is defined based only on the (worsening) behavior of classifications A, 

AR, B and C, since the behavior of other states, representative of more severe past-due 

ranges, is typically thought of as containing information on recovery. Analogously, 

Mob_improvement is defined based only on the (improvement) behavior of 

classifications D until H. The cut-off between C and D is somewhat arbitrary but based 

on the fact that the discussion about proper default definitions in Brazil lie generally 

between 60 and 90 days. The denominator constants have a normalizing function so that 

the new metrics measure the “average” mobility to a state better (in the case of the 

improvement metric) or worse (in the case of the worsening metric) than the original 

one11. The new metrics help disentangle the good and bad parts of the concept of 

mobility. 

 

Jafry and Schuermann (2004) further note that Mob is not able to distinguish between 

extreme and short migrations. They show that Mob may fail to generate larger values 

for matrices with migration probability distributed further away from the diagonal and 

suggest that incorporating such desired property may indeed require some ad-hoc 

weighting of the elements of the matrix to be measured. Using that observation as a 

starting point, this study proposes an additional metric based on the concept of expected 

opportunity cost of the operations in arrears. First, an opportunity cost matrix Cost, 9x9, 

is defined as below, where i is the average monthly rate of return of Brazilian consumer 

credit and dj is the number of days in past-due relative to default classification j (see 

table 1).12 

 

                                                 
11 More specifically, worsening_constant is defined so that: 
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For N=9, worseing_constant=1.0763. Analogous definition is valid for the improvement_constant. Its value is 1.0847 for N=9. 
12 The lower bounds of the intervals are used. d1=d2=0, relative to classifications A and AR, respectively. 
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The opportunity cost of every transition from A or AR to a classification in arrears is 

approximated by the missed return i compounded the number of months in arrears given 

in table 1.13 Transitions between classifications in arrears produce all the same cost, 

assuming nothing is paid throughout the semester or that the part paid is insignificant, 

while recovery migrations from classifications in arrears back to A or AR do not 

generate opportunity cost, as if they are paid immediately. These are arbitrary but 

necessary assumptions to come up with a measure of opportunity cost that only assesses 

transition probabilities. The cost metric is then defined as the expected opportunity cost 

of the average portfolio of default classifications. 

 

Cost_metric (P) ≡ weight  • expected cost , (12) 

where expected cost  ≡  (cost × P) • [1, 1, …1]T , (13) 

with the symbol × denoting element wise matrix multiplication and weight the vector 

containing the composition of default classifications found in the data. 
 

Although Cost_metric makes arbitrary assumptions about the exact moments when 

migrations occur and, therefore, is not a precise measure of missed opportunity cost, it 

serves the purposes of penalizing more both default transitions to brackets of higher 

arrears and recovery transitions to brackets of lesser arrears. To reflect average 

Brazilian financial conditions during period 2003-2007, rate i is fixed at 4.5% a.m. and 

                                                 
13 The metric abstracts from exposure considerations. 
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the vector of weights in percentage format estimated from the data is [75.47 4.95 1.02 

2.05 1.35 1.12 1.02 0.96 12.06]. 

 

 

4. Results 

 

Time-homogeneous estimates of 1-semester matrices using the whole 5-year period 

database (to be denoted time-unrestricted estimates) as well as semester-restricted 

estimates are produced for every bank, using the estimation techniques discussed in 

section 3. Representative results are shown and discussed in this section. They include 

comparisons between default criteria, between estimations techniques, between banks 

and over time. 

 

4.1 Default matrices and default classifications 

 

Table 2 shows the time-unrestricted multinomial estimate of bank 1 one-semester 

default matrix. It illustrates the general pattern of default matrices found in this study. 

Compared to matrices of rating agencies (see for example estimates in Lando and 

Skodeberg, 2002), default matrices display much less probability on the diagonal and 

strong probability concentration on the extreme columns A and H. That strong mobility 

of default matrices derives from the fact that most states represent past due ranges, in 

which borrowers are not likely to stay for long (generally not more than one month). In 

table 2 particularly, it is interesting to note that the probability of migration to H 

increases continuously with the departing classification, with a violation of 

monotonicity ocurring only between AR and B. Similarly migration probability to A 

also decreases continuously, with monotonicity violation among departing states AR, B 

and C. Both observations mean that, for bank 1, renegotiated consumer loans are riskier 

than loans less than 30-days past-due. 
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Table 2: Time-unrestricted multinomial estimate of bank 1 one-semester default 

matrix 

 

 

Default matrices are also useful to compare different default definitions. However, the 

classifications of table 1 are not proper default criteria because their specifications 

contain upper bounds for the number of days in arrears. Instead, default criteria can be 

formed by considering the union of worse classifications starting from a given 

classification. For example, the 90-days past-due criterion is recovered from the union 

of states E, F, G and H and will be denoted “>=E” throughout the paper.14 Similar 

notations are adopted for other default or recovery definitions. Default probabilities 

estimates according to different default criteria are obtained from table 2 by adding up 

the appropriate columns of the matrix. The results in table 3 illustrate the sensitivity of 

PD (derived from departing state A) to different default definitions and may be useful to 

the task of choosing a particular definition to work with in the context of internal credit 

risk models.  

 

Table 3 – Bank 1 default probabilities derived from table 2 

Migration A→A A→>=D A→>=E A→>=F A→>=G A→H 

Probability estimate (%) 87.6 5.8 3.9 2.4 1.1 0.2 

 

 

Based on confidence intervals for migration probabilities, it is possible to check whether 

default classifications are statistically distinguishable. Even in the optimistic case, 

without assumption of time heterogeneity and making use of the 5-year data period, 

                                                 
14 The term default definition or default criterion refer, throughout the paper, to this concept, while the term default classification or 
default severity refer to the classes of table 1.  

A AR B C D E F G H
A 87,6 1,2 2,3 3,2 1,9 1,5 1,3 0,9 0,2

AR 22,4 46,6 0,5 1,4 3,7 3,0 3,2 2,4 16,8
B 34,6 1,3 18,7 11,4 5,7 4,7 4,5 16,0 3,2
C 23,2 3,0 2,8 12,2 6,0 4,5 4,1 6,0 38,3
D 5,6 3,1 1,0 2,6 4,0 2,9 3,4 3,5 74,0
E 1,7 1,5 0,6 1,1 0,6 1,7 1,5 1,3 90,1
F 1,0 1,3 0,2 0,5 0,5 0,4 0,7 0,5 94,9
G 0,4 0,7 0,2 0,2 0,2 0,3 0,0 0,4 97,6
H 0,3 1,1 0,1 0,1 0,1 0,0 0,0 0,0 98,4
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figure 2 shows that this is not the case for states G and H at bank 1. Probability 

confidence intervals for both improvement and worsening migrations that depart from G 

and H overlap. For other banks, this phenomenon occurs at pairs (E,F), (G,H) or (F,G), 

implying, in general, the presence of a discrimination problem between classifications 

related to large number of days in arrears. From a statistical standpoint, that means that 

the number of default classifications considered in this study may be excessive. As a 

policy implication, it results that the goal of risk discrimination for loans with 

significant past due (e.g. implicit in requirements of different regulatory provisions) 

may be unfeasible. 

 

Figure 2: Probability confidence intervals for selected default and recovery 
migrations departing from classifications E, F, G, and H at bank 1. Transition 
probabilities estimated by the multinomial method. Confidence intervals are 
analytical based on the normal approximation to the binomial distribution. Y-axes 
are on the log scale. 
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definitions (e.g. moving from H to >=D or from <=A to <=AR), it is possible to recover 

probability monotonicity (with no interval overlap) across classifications. The non-

monotone behaviour at the extreme migrations (shown already in table 2) disappears 

once new classifications are added to the target definition, in great part due to a sample 

size increase effect. 

 

Figure 3: Probability confidence intervals for selected default and recovery 
migrations departing from classifications AR, B and C at bank 1. Transition 
probabilities estimated by the multinomial method. Confidence intervals are 
analytical based on the normal approximation to the binomial distribution. Y-axes 
are on the log scale. 
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4.2 Comparison between estimation techniques 

 

I now focus on the comparison between estimation techniques. The bank 1 one-semester 

default matrix is also estimated by the homogeneous survival method (again using the 

whole 5-year period) and table 4 shows the probability ratios between the duration and 

the multinomial estimates for some selected migrations of interest. Compared to the 

multinomial estimation, the survival estimation implies higher probabilities of transition 

from non-arrears classifications (A and AR) to typical default definitions such as >=D, 

>=E and H, but also higher probabilities for typical recovery migrations, such as from D 

until H back to A or <=AR (typical migrations in blue). Those findings are qualitatively 

consistent with what is found for default transitions of top quality ratings of external 

agencies (e.g. Hanson and Schuermann, 2006) and with the discussion of section 3 

regarding the efficiency gains of survival estimation for rare transitions. Nevertheless, it 

is impressive the sizable difference in estimates for the extreme migrations: for 

A→>=H, the duration estimate is 10 times the multinomial estimate, going from 0.2% 

to 2.2%. 

 

Table 4: Probability ratios between the homogeneous duration and the 
multinomial estimates for selected migrations at bank 1. 

 

 

It is also interesting to note that the survival estimator gives lower probabilities for 

transitions between classifications in arrears (the right low corner of table 4). A possible 

explanation could be the presence of downward momentum, a violation of the Markov 

property in which borrowers who have been downgraded have a higher chance of a 

further downgrade. Since the survival estimator makes more use of the Markov property 

than its multinomial counterpart, it is generally less affected by the presence of 

A <=AR >=D >=E H
A 0,96 0,97 1,40 1,53 10,31

AR 1,30 0,74 1,59 1,72 1,93
B 1,69 1,70 0,88 0,90 3,85
C 1,53 1,50 0,95 0,99 0,86
D 2,30 1,95 0,93 0,95 0,85
E 3,43 2,78 0,95 0,95 0,91
F 3,24 2,47 0,97 0,97 0,95
G 5,16 3,89 0,97 0,97 0,96
H 5,76 2,67 0,98 0,98 0,97
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downward momentum. See similar discussion in Hanson and Schuermann (2006) for 

the case of rating agencies. If downward momentum is the cause (and it could be clearly 

intuitive when classifications are based on past-due ranges), its effect is relatively small: 

the survival estimates are as close as 95% of the multinomial ones for the transitions 

considered. Therefore, the issue is no further investigated in this paper. All observations 

related to table 4 are qualitatively similar to all the banks analyzed. 

 

Similarly to table 4, table 5 displays a comparison between the non-homogeneous and 

homogeneous estimators of the 1-semester default matrix of bank 1, the former relative 

to the first semester of 2007.  The ratios here are generally closer to 1 than in table 4, 

particularly for the typical default and recovery transitions, in blue. For those migrations 

it is valid, as in Jafry and Schuerman (2004), that the efficient gains of survival 

estimation are more important than a hypothesis of homonegeneity (and this holds for 

other banks and semesters as well). On the other hand, for all migrations in general, the 

differences between the two survival estimators are far greater than in the case of rating 

agencies (see, Lando and Skodeberg, 2002, for the latter). That suggests that time 

specific shocks, for example related to discrete movements in the credit policy of the 

bank, have a material impact on the results and demonstrate that the Aalen-Johansen 

estimator may be a useful tool for closely monitoring the behavior of delinquencies on a 

bank level. Indeed, specific ratios contained in table 5 may vary significantly 

dependending on the bank and the semester considered, the larger time variations 

between semesters generally found for extreme migrations (e.g. A→H and H→A) and 

for migrations involving the AR renegotiated state. 

 

Table 5: Probability ratios between the non-homogeneous and the homogeneous 
estimates for selected migrations at bank 1. 

A <=AR >=D >=E H
A 1,00 1,00 1,01 1,03 0,65

AR 1,17 1,03 0,95 0,94 0,94
B 1,04 1,05 1,02 1,11 0,98
C 0,98 0,99 1,04 1,09 1,38
D 0,92 0,95 1,02 1,03 1,25
E 0,83 0,95 1,01 1,01 1,10
F 0,97 1,07 1,00 0,99 1,02
G 0,75 0,94 1,01 1,01 1,01
H 0,84 1,00 1,00 1,00 1,00
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The variations over time between the different estimation techniques for bank 1 are 

analyzed in figure 4. For that, the metrics discussed in section 3 are helpful in avoiding 

the ungrateful task of understanding the behaviour of 81 matrix elements over time. For 

all metrics but the worsening mobility, figure 4 reafirms the previously mentioned result 

that the difference between the survival and the discrete estimation (in this case cohort) 

are larger than those found between the two types of survival estimation, regardless of 

the bank analyzed (the latter not shown). For some metrics, the homogeneity 

assumption is almost irrelevant (e.g. metrics cost and improvement mobility for bank 1). 

On the other hand, the decision to adopt or not an homogeneity assumption is important 

to the worsening mobility for most banks (clearly important for bank 1 at figure 4). 

Results not shown indicate that this is in large part due to the inclusion of non-typical 

default migrations departing from B and C in the worsening metric (and therefore do not 

stay in contrast with the previous observations about typical transitions). Hereafter, for 

the sake of brevity, only the homogeneous case of the survival estimation is reported. 

 

Figure 4: Comparison between default matrix estimation techniques over time via 
metrics. Results for bank 1. 
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Besides the estimation techniques, figure 4 allows an analysis of the metrics themselves. 

Note that the mobility metric for 1-semester default matrices vary at ranges much higher 

than the typical mobility values achieved by 1-year rating agencies’ matrices (e.g. 

≈[0.12 0.24] as found by Jafry and Schuerman, 2004)15. That is just another result 

pointing to the greater mobility of default matrices, already observed in table 1. 

However, a great part of that mobility of default matrices is on the worsening direction, 

given the values assumed by the worsening and improvement mobility metrics. Only the 

improvement mobility of 1-semester default matrices is already of comparable order to 

the whole mobility of 1-year rating agencies’ matrices.16 

 

4.3 Time-paths of transition probilities  

 

The most immediate evidence of figure 4 was left uncommented so far: that default 

matrices are far from constant over time.  In this subsection time heterogeneity along 

semesters is properly investigated at the transition level, which permits the 

incorporation of  analytical confidence intervals to the analysis. Figure 5 shows for bank 

1 the time paths of selected migration probabilities, estimated by cohort, together with 

their confidence intervals. The blue horizontal line is the multinomial estimator 

(equivalent to the weighted average of cohort estimators by the number of borrowers at 

each semester start) while the green line represents the simple average of cohorts, 

motivated by Gagliardini and Gouriéroux (2005). 

Results indicate pronounced time variation of transition probabilities. The confidence 

intervals do not include the horizontal lines for most of the 5-year period for transitions 

A→ >=D and A→>=E and the paths of these transtions are clearly not derived from just 

white noise (the assumption underlying the simple average estimator). It means that 

default matrices for bank 1 are neither constant nor i.i.d.. On the other hand, not much 

can be concluded about time variation for migration A→H and the recovery migrations 

from the use of analytical intervals17. At the same time, note that, for all transitions, the 

range of time variation is much greater than the difference between the simple and 

weithed average estimators, implying that the choice of the particular  homogeneous 

                                                 
151-year default matrices will have even higher mobility. 
16 Given the simplifications underlying the cost metric, this paper refrains from interpreting its absolute values and will prefer to 
investigage cost distances instead, on section 4.4. 
17 Here bootstrap intervals (e.g. Hanson and Schuermann, 2006) could be of some utility. They are, however, too computational 
intensive for the large dataset of this study and, therefore, out of the scope of this paper. 
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estimator becomes less relevant in the Brazilian data.  Finally, note that probability 

intervals degenerate at some semesters for improvement migrations E→A and H→A. 

That represents a deficiency of analytical intervals when the probability estimate is zero 

and harms the analysis of those semesters18. 

 

Figure 5: Time paths of selected migration probabilities (in red), estimated by 
cohort, together with their confidence intervals (in pink and light blue). Results for 
bank 1. The blue horizontal line is the multinomial estimator (equivalent to the 
weighted average of cohort estimators by the number of borrowers at each 
semester start) while the green line represents the simple average of cohort 
estimators. 

 

                                                 
18That is another disadvantage of analytical intervals when compared to bootstrap intervals. 
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Figure 6 shows analogous results for bank 2.  The important distinction lies on the fact 

that bank 2 shows a sharp decrease in default rates over time (according to the 

transitions A→>=D and A→>=E) whereas bank 1 shows an increase pattern until the 

end of 2005. The comparison between banks including the time dimension is further 

addressed at subsection 4.5.  

 

Figure 6: Time paths of selected migration probabilities (in red), estimated by 
cohort, together with their confidence intervals (in pink and light blue). Results for 
bank 2. The blue horizontal line is the multinomial estimator (equivalent to the 
weighted average of cohort estimators by the number of borrowers at each 
semester start) while the green line represents the simple average of cohort 
estimators. 

 

03-1 05-1 07-2
4

6

8

10
A  to  >=D

03-1 05-1 07-2
3

4

5

6

7
A  to  >=E

03-1 05-1 07-2
0

0.2

0.4

0.6

0.8
A  to  >=H

 

 

Weighted average Simple average Semester probability

03-1 05-1 07-2
-2

0

2

4

6
D  to  <=A

03-1 05-1 07-2
-1

0

1

2

3
E  to  <=A

03-1 05-1 07-2
-0.1

0

0.1

0.2

0.3
H  to  <=A

 

 

Weighted average Simple average Semester probability



25 
 

4.4 Static comparison between banks 

 

Supervisory authorities are often interested in making comparisons between banks in 

terms of credit risk ranges in which they operate. For analytical purposes, sometimes 

banks are grouped together based on similar credit risk characteristics or other attributes 

and monitored jointly over time, in search for the outbreak of any within-group bank 

discrepancy at some point in time. In the context of this paper, grouping of banks based 

on similar (or distinct) credit risk profiles can be obtained from the analysis of either 

selected migrations or matrix metrics. 

 

I start the analysis on the transition level.19 Regarding default transitions, figure 7 shows 

that, among the four banks analyzed, bank 4 presents the highest default probabilities 

from state A and among the two highest from AR, whereas bank 3 displays always the 

lowest default rates. These banks are likely to operate in different ranges of credit risk 

and price accordingly. On the other hand, banks 1 and 2 generally lie in-between and 

seem more similar in default behavior when renegotiated loans are not considered. As 

far as recovery transitions are concerned, the general picture is more entangled, possibly 

reflecting smaller differences in recovery efficacies or policies. Banks 1, 2 and 3 

experience close rates, at least starting from classifications D and E, while bank 4 

generally presents the lowest improvement probability.  As a net result from both 

default and recovery aspects, it may be appropriate to identify banks 1 and 2 as 

constituting a pair of banks with more similar risk behaviors and banks 3 and 4 as a pair 

with notably distinct risk profiles. Indeed, tests on equality of means find 54 different 

transition probabilities for the first pair of banks and 68 differences for the second.  

 

                                                 
19All the results of this subsection are based on time-unrestricted homogeneous duration estimates. 
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Figure 7:  Comparison between banks’ selected migration probabilities. On the 
right, default migrations and on the left recovery migrations. Probabilities 
estimated by time-unrestricted homogeneous duration. 
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that could be derived from bank differences in default opportunity costs20. All in all, 

table 6 is a powerful tool for immediate cross-bank comparison. 

 

                                                 
20 It is possible that bank differences in opportunity costs are subestimated, since the same return rate i is applied to every bank in 
the cost metric. It is reasonable to expect that banks that normally operate with riskier default matrices will also charge higher and 
will, therefore, incur in higher opportunity costs from defaults.  
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Table 6: Metric distances between banks’ default matrices. Matrices are estimated 
by homogeneous duration. 

 

 

4.5 Dynamic comparison between banks 

 

I now investigate what new information can be derived from the inclusion of the time 

dimension in the cross-bank comparison. I start the analysis on the transition level, 

focusing on the representative default transition A→>=E (estimated by the 

homogeneous survival method), and then turn to metrics for a more complete 

delinquency description.  Figure 8 shows, for the selected migration and for all banks, a 

large time heterogeneity along the semesters, reaffirming therefore the general evidence 

of figures 5 and 6 and generalizing them to banks 3 and 4. More striking, however, are 

the sharp differences in the probability trajectories among the four banks. In particular, 

note that banks 1 and 2, when observed along time, no longer seem so similar as before. 

The high dissimilarity between banks’ trajectories can be attributed to differences in 

market niches, growth strategies, renegotiation policies, among others. Bank analysts in 

possession of specific bank information can use the results of figure 8 to link their 

knowledge of banks’ policies and decisions to the resulting time variations of credit 

delinquencies. The explanation of such variations is not within the scope of this paper. 

Bank 1 Bank 2 Bank 3 Bank 4
Bank 1 -          -          -          -          

Mobility Bank 2 0,01        -          -          -          
Bank 3 0,04        0,05        -          -          
Bank 4 0,02        0,01        0,06        -          

Bank 1 -          -          -          -          
Improvement Bank 2 0,03        -          -          -          

mobility Bank 3 0,03        0,06        -          -          
Bank 4 0,06        0,02        0,08        -          

Bank 1 -          -          -          -          
Worsening Bank 2 0,01        -          -          -          

mobility Bank 3 0,07        0,08        -          -          
Bank 4 0,12        0,11        0,18        -          

Bank 1 -          -          -          -          
Cost Bank 2 0,03        -          -          -          

metric Bank 3 0,11        0,14        -          -          
Bank 4 0,15        0,12        0,26        -          
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Figure 8: Trajectories of banks’ probabilities of default transition A→>=E. 
Probabilities estimated by semester-restricted homogeneous duration. The blue 
horizontal line is the time-unrestricted homogeneous survival estimator (kind of a 
weighted average) while the green line is the simple average of the semester-
restricted survival estimators. 
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Figure 9: Trajectory of average spread charged on non-payroll-deducted Brazilian 
consumer credit with non-earmarked funds and preset rates. 
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used to allow the analysis to better focus on the relative movements of banks’ metric 
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confirm the high dissimilarity among banks’ credit risk dynamics. During the passage 

from the first to the second half of the time period analyzed, bank 1 is experiencing a 

decrease in worsening mobility and an increase in improvement mobility, moving then 

to a less risky net position, while bank 2 displays an opposite behavior.  At the same 

time, bank 3 shows a large decrease in improvement mobility and a moderate 

stabilization after a sharp reduction in worsening mobility. Bank 4 displays relatively 

stable metric trajectories, apart from sharp movements in the worsening and 

improvement mobilities in the first half of the period.21 Finally, note that the variation of 

the whole mobility is shorter than of other mobilities, since it averages out the effects of 

many mobility directions that possibly behave in different ways.  

 

                                                 
21 Perhaps these sharp movements are caused by a data problem. The study was not able to determine the specific cause. 
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Figure 10: Trajectories of banks’ distances between semester-restricted default 
matrices and time-unrestricted matrices. All matrices are estimated by 
homogeneous survival. 
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lie between the extremes represented by banks 3 and 4. (The general picture is again a 

little more entangled on the improvement dimension) There is notably, however, an 

inversion in relative positions, from the first to the second halves of the period, of both 

worsening and improvement mobilities of banks 1 and 2. Bank 2 surpasses bank 1 in 

credit risk at the second half, with higher worsening and smaller improvement. Note 

that this also translates into the opening of an opportunity cost gap between two banks 

at the second half. That is the sort of within-group bank comparative analysis that can 

be useful to prompt closer investigations of specific banks. 

 

Figure 11: Trajectories of banks’ metrics of semester-restricted default matrices. 
All matrices are estimated by homogeneous survival. 
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5. Conclusion 

 

This paper investigates the measurement of credit delinquency through a flow approach 

instead of the easier and more popular stock methodology.  A flow approach does not 

let measurement of credit risk to be distorted by non-default events, such as the increase 

in the number of loans, as observed in Brazil in recent years. In order to avoid missing 

relevant information, this paper further proposes considering many default severities 

together, related to several past-due ranges, and the transition rates between them. The 

suggested approach becomes then a multivariate flow description of default risk (as well 

as of recovery risk), called default matrix, and metrics are proposed to compare 

different matrices. Besides the mobility metric suggested in the literature, this paper 

proposes an improvement and a worsening mobility metrics, in order to disentangle the 

good and bad parts of mobility, as well as a cost metric that penalizes more some 

transitions to more severe default classifications. 

 

One-semester default matrices are estimated for consumer credit at four large Brazilian 

banks. Default matrices present very high mobility, more located on the worsening 

direction. Only their improvement mobility is already of similar order to the whole 

mobility of 1-year rating agencies’ matrices. Default matrices are also shown useful to 

explore or compare different default severities, focusing on aspects such as probability 

monotonicity and risk discrimination. In particular, this paper points out problematic 

risk discrimination between default classifications related to large number of days in 

arrears. 

 

As far as estimating techniques are concerned, this paper indicates the efficiency gains 

of survival compared to discrete estimation, reflected in the larger survival estimated 

probabilities for typical default and recovery migrations. The effect of the homogeneity 

assumption is shown, in general, less important than the difference between survival and 

discrete estimation, but, contrary to the case of rating agencies, it is far from 

insignificant and, for some banks, quite pronounced through the lens of the worsening 

mobility metric. The non-homogeneous survival estimator could be, therefore, a useful 

tool for closely monitoring within-semester time specific shocks on a bank level. 
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As far as time evolution of default risk is concerned, empirical results of this study show 

that the sharp increase in Brazilian consumer credit during the period from 2003 until 

2007 was followed by strong heterogeneity of credit risk over time and across banks. 

That heterogeneity is observed not only in some default classification transitions but 

also through the consolidated credit risk behavior reflected in default matrices’ metrics. 

That indicates that time and bank variations in growth strategies, in renegotiation 

policies, among other credit policies, have also been high in recent years. On the other 

hand, from 2006 until the end of 2007, a common decreasing move across banks is 

noted in transition from the no-arrears, non-renegotiated state to the 90-days past-due 

default definition, although that trend is not identified from the trajectories of the bank 

worsening metrics. In fact, default matrices metrics can display important distinctions in 

their trajectories with regard to particular migration paths. The paper finds examples 

where the worsening metric works as an early warning indicator to a particular default 

definition or radically reverses the behavior of a migration path.  

 

Metrics also provide credit risk distances between banks in a straightforward manner 

that can be useful to supervisory purposes. Among the four banks analyzed, metrics 

identify the most similar and the most dissimilar pairs of banks. The respective 

similarity and dissimilarity of the two pairs are more pronounced according to 

worsening rather than to improvement mobility. Also, these characteristics are valid not 

only on a static comparison but also over time. Nevertheless, the banks forming the 

similar pair inverse their relative metric positions from the first to the second halves of 

the period analyzed, a fact more clearly noted through the use of metrics again. 

 

Two final notes about applications of this work are worth mentioning. First, it should be 

remarked that the sort of results produced, coupled with other sources of bank risk 

information available to the supervisory authority, such as on-site supervision, should 

allow it to better understand the behavior of realized default over time on a bank level 

and prompt closer investigations when necessary. Second, longer time series of 

Brazilian default matrices could assist in drawing relationships between multivariate 

flow measured default risk and credit spreads, business cycle indicators and/or 

macroeconomic variables, shedding new light on past studies that usually employ 

default stock rates. 
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