Pricing Asian Interest Rate Options with a Three-Factor HJM Model

Claudio Henrique da Silveira Barbedo, José Valentim Machado Vicente and Octávio Manuel Bessada Lion

June, 2009
Working Paper Series

Edited by Research Department (Depep) – E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br
Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br
Head of Research Department: Carlos Hamilton Vasconcelos Araújo – E-mail: carlos.araujo@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.
Reproduction is permitted only if source is stated as follows: Working Paper n. 188.
Authorized by Mário Mesquita, Deputy Governor for Economic Policy.

General Control of Publications
Banco Central do Brasil
Secre/Surel/Dimep
SBS – Quadra 3 – Bloco B – Edifício-Sede – 1º andar
Caixa Postal 8.670
70074-900 Brasília – DF – Brazil
Phones: +55 (61) 3414-3710 and 3414-3567
Fax: +55 (61) 3414-3626
E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, é requerida a citação da fonte, mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center
Banco Central do Brasil
Secre/Surel/Diate
SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º subsolo
70074-900 Brasília – DF – Brazil
Fax: +55 (61) 3414-2553
Internet: http://www.bcb.gov.br/?english
Pricing Asian Interest Rate Options with a Three-Factor HJM Model

Claudio Henrique da Silveira Barbedo*
José Valentim Machado Vicente**
Octávio Manuel Bessada Lion***

Abstract

Pricing interest rate derivatives is a challenging task that has attracted the attention of many researchers in recent decades. Portfolio and risk managers, policymakers, traders and more generally all market participants are looking for valuable information from derivative instruments. We use a standard procedure to implement the HJM model and to price IDI options. We intend to assess the importance of the principal components of pricing and interest rate hedging derivatives in Brazil, one of the major emerging markets. Our results indicate that the HJM model consistently underprices IDI options traded in the over-the-counter market while it overprices those traded in the exchange studied. We also find a direct relationship between time to maturity and pricing error and a negative relation with moneyness.

Keywords: IDI Options, Term Structure, HJM.
JEL Classification: G12, G13

* Demab, Banco Central do Brasil. Email: claudio.barbedo@bcb.gov.br
** Depep, Banco Central do Brasil. Email: jose.valentim@bcb.gov.br
*** Depep, Banco Central do Brasil. Email: octavio.bessada@bcb.gov.br
1- Introduction

Pricing interest rate derivatives is a challenging task that has attracted the attention of many researchers in recent decades. From a practical point of view, many reasons can justify this interest. Portfolio and risk managers, policymakers, traders, and more generally all market participants find valuable information in forward, swap, and option contracts. This information plays an important role in their strategies and decision-making process. On the other hand, the yield curve is undoubtedly the most important economic variable. In this paper, we implement a version of the famous Heath-Jarrow-Morton (HJM) model (Heath et al., 1992) in order to analyze its ability to capture features of a very popular interest rate option offered in the Brazilian market.

The general methodology to evaluate an asset is through a general equilibrium model. However, from an empirical perspective, implementing such a tool may be cumbersome. A smart solution to this problem consists of using arbitrage-free conditions, a replication technique of asset payoffs that retains the core fundamentals of equilibrium models. Interest rate arbitrage-free models can be divided into two classes. The first approach started with the seminal papers of Vasicek (1977), Cox et al. (1985) and Black et al. (1990). In this approach, the short-rate dynamics are directly modeled. The main advantage of this method is the freedom to specify the evolution of interest rates. However, short-rate models have a hard time fitting the current term structure. Alternatively, the HJM model considers the forward-rate as the basic ingredient in modeling the interest rate evolution. The assumption of arbitrage-free conditions restrains the ability to set the drift of the forward-rate process, since it is completely determined by the diffusion coefficient. Nevertheless, the initial term structure is, by construction, an input of the model and consequently any yield curve can be matched within the HJM framework.

In order to implement the HJM model, one has to specify the volatility structure of forward rates. There are many alternatives to make this choice (see Brigo and Mercurio, 2006). In this paper, we use a standard procedure in which the volatility of forward rates is determined by principal components analysis (see for instance Bühler et al., 1999). Factor

1 See Harrison and Kreps (1979) and Harrison and Pliska (1981) for seminal works on this topic.
2 A major problem with the HJM model lies in the fact that the short-rate process may not be a Markov process. See Richter and Sankarasubramanian (1995) for a deeper discussion about this point.
models have been employed since the empirical works of Litterman and Scheinkman (1991) and Knez et al. (1994) pointed to the existence of three main movements (level, slope, and curvature) driving the volatility of interest rates.\(^3\)

Our aim here is to assess the importance of the principal components to pricing and hedging interest rate derivatives in one of the major emerging markets. To this end, we use the HJM model with the volatilities of the instantaneous forward rates computed by the factor loadings and the volatilities of the independent factors. We analyze models with one, two and three factors.

Based on a dataset of interest rate Asian options traded in the Brazilian market (IDI options), we find that the most naive specification, that is, the one with information of only the first principal component of the interest rate, performs best. This could mean that the models used by market agents to price these options simplify the interest rate volatility structure to only one component or that the market price of IDI options\(^4\) may not be an appropriate measure to quantify the quality of the HJM model.

IDI options are Asian options reflecting the behavior of interest rates between the trade date and the maturity of the option. Thus traditional pricing models developed for other markets should be adjusted to evaluate them. Some recent studies have addressed this issue using different term structure models. Junior et al. (2003) fitted the spot rate term structure with the Hull-White model. Gluckstern (2001) adopted the Hull-White model (Hull and White, 1993) and found good performance. Almeida et al. (2003) also used the Hull-White model and identified that some parameters are unstable in times with high volatility or after crises. Vieira Neto and Valls Pereira (2000), assuming that short-term rates follow a Vasicek (1977) model, obtained a closed-form formula to price IDI options. Barbachan and Ornelas (2003) adopted the Cox-Ingersol-Ross model (Cox et al., 1985) and Almeida and Vicente (2006) used affine models (see Duffie and Kan, 1996) to evaluate IDI options.

\(^3\) In the Brazilian market, Barcinski (2000) tests the hypothesis of three factors with data from nine different maturities and obtain similar results to those of the U.S. market.

\(^4\) IDI options are traded in the Brazilian exchange and over-the-counter market. The liquidity in the Brazilian exchange is very poor and the prices collected in the over-the-counter market are obtained by means of a call process. Therefore the prices can present some sample errors.
Notwithstanding the fact that the aim of all the above papers was to price IDI options, they differ from ours in that they worked only with data from the Brazilian exchange and only with short-rate models. Thus, this work has a second goal, which is to use the non-Markovian implementation of the HJM model for the first time to price this kind of Brazilian option. Chiarelli and Kwon (2007) pointed out that although the models of Vasicek, Cox-Ingersoll-Ross and Hull-White are the most popular to price interest rate derivatives, the HJM model is more consistent. Furthermore, they showed that the HJM model is a general model and the others are just special cases of it. We contribute to the financial literature in at least more two aspects: by comparing over-the-counter and exchange market prices and applying the model of Bühler et al. for an emerging market database.

Our results indicate that the HJM model consistently underprices IDI options traded in the over-the-counter market, while it apparently overprices these options when traded in the exchange market. We also test, by running linear regression, whether the time to maturity, moneyness or seasonal effects can affect the pricing error. We show there is a direct relationship between time to maturity and pricing error and a negative relation between moneyness and pricing error (the more at-the-money the option is, the less the pricing error is) for both the over-the-counter and exchange market database. The calendar dummy variable is not significant.

This work is organized as follows. Section 2 presents the characteristics of the sample and treatment of the database. The Section 3 covers the methodology. The results are presented and commented in Section 4 and Section 5 concludes.
2 – Sample

Our data consist of time series of the yields of the One-day Interbank Deposit Future Contract (ID-Future)\(^5\) for all different liquid maturities, and the values of IDI options for different strikes and maturities traded in the over-the-counter and exchange market. The data cover the period from January 12, 2004 to July 5, 2008.

The ID-Future database yields allow extracting forward rates by cubic spline interpolation to fixed maturities for all trading days. For each fixed time to maturity, a reference bond is a zero coupon bond with the same time to maturity. We fixed the times to maturity from 21 to 546 days, with increments of 21 business day. Cubic spline interpolation can cause a bias due to the incorporation of similar information at all vertices. However, as we obtain the same three factors verified in Brazilian finance literature as meaningful, according to Luna (2006) the bias is not so strong.

IDI options have as underlying assets the theoretical value of 100,000 points on an initial date defined by the BM&F\(^6\), accumulated by the one-day interest rate computed every business day by the clearinghouse CETIP until the maturity date. The option is European.

Our initial database of exchange market options consisted of 4,928 call and 1,525 put options. We excluded away put options from our sample, first because their liquidity was low – only 10% of financial volume – and second, because on about 50% of the days, the number of trades was at most two.

The over-the-counter database is composed of trades, settled or not, registered through underlying asset volatility. The initial sample consisted of 63,654 individual call option volatility trades. We put this volatility, estimated by Black’s model from market participants, into the original model to price the options and to allow comparison with HJM prices.

\(^5\) The ID rate is the average one-day interbank borrowing/lending rate, calculated by CETIP (Center for Custody and Financial Settlement of Securities) every business day. The ID rate is expressed in effective rate per annum, based on 252 business days.

\(^6\) The Brazilian Mercantile and Futures Exchange, which has now merged with the São Paulo Stock Exchange (Bovespa).
We performed two filtering procedures in both databases. The first filter aimed to reduce the problem that the data are not obtained by observing simultaneous option and underlying asset prices during trading hours. We eliminated all trades whose implied volatility was not determined by Black (1976) and we also eliminated trades whose implied volatilities were 35% higher or lower than the last trading day’s implied volatility. This maximum variation was estimated to avoid a substantial reduction of the sample and at the same time to allow a reasonable variation in volatility behavior. As our aim is just to check the relative performance of the presented models, we believe that this filtering does not cause bias in our sample. Besides this, we eliminated options with time to maturity lower than five days. The final database of traded exchange options consisted of 2,977 observations with all moneyness and maturity until 546 days.

The second filtering, applied to the over-the-counter database, eliminated options whose prices, estimated by Black’s model, were equal to zero and whose volatilities were higher than 200%. We also eliminated options with time to maturity lower than five days. The final database of over-the-counter options consisted of 46,243 observations with all moneyness and maturity until 546 days.

3 – Methodology

An IDI option is an interest rate derivative instrument traded in the BM&F used to hedge and to speculate on interest rates. Consequently, pricing this instrument means pricing the Brazilian yield curve. This study aims to identify the weight of principal components in the process of option pricing. We apply the model of Heath, Jarrow and Morton (1992) considering one factor, two factors and three factors driving the IDI pricing.

As noted by Almeida and Vicente (2006), an IDI option is just an Asian option whose payoff is a function of the short-term rate through the path between the trading date \(t \) and the option maturity date \(T \).

\[
IDI_T = IDI_0 \prod_{i=1}^{T-t} (1 + CDI_i)
\]

(1)

where \(CDI_i = (1 + CDI_i \%_{\text{year}})^{\frac{1}{252}} - 1 \)
Denote by $c(t, T)$ the time t price of a call option on the IDI, with time to maturity T and strike price K. Then the payoff is:

$$c(t = T, T) = \max(0, IDI_t - K)$$ (2)

If the accumulated IDI rate between the trading date and the option maturity is higher than the implicit option interest rate, given by the ratio of the exercise price and the IDI spot price, the option will be exercised.

The class of term structure models chosen is a multi-factor model. A one-factor model assumes that all bonds are influenced by the same source of uncertainty. By incorporating multiple factors, we allow different types of shifts in the interest rate behavior, despite the great computation effort. Besides this, the term structure put into the HJM model follows the market behavior, which avoids arbitrage transactions. The main feature of the HJM model is that it allows interest rate volatility to change across time, which gives flexibility to pricing derivatives. However, the demand for the volatility term structure complicates this model’s use even in the international literature.

Amin and Morton (1994) analyzed different specifications for the volatility term structure of the forward rates in a HJM framework for Eurodollar futures and options during the period from 1987 to 1992. They found that the single-factor HJM model fared well in valuing short-term options because it results in implied parameter estimates that are more stable.

Bühler et al. (1999) performed a comprehensive empirical study of one- and two-factor HJM type models. Principal components analysis was performed in order to determine the parameters for the one- and for the two-factor models. They found the surprising result that the one-factor HJM with proportional linear volatility outperformed the two-factor model for German interest rate warrants over 1989 to 1993. According to the authors, this could be due to the incorrect estimation of the factor loadings of the second factor. The volatility parameters were estimated directly from the volatilities of the two factors and the corresponding factor loadings. Here we adapt the Bühler et al. work for an Asian option and include the three-factor HJM model.
3.1 – Principal Components

Principal components analysis can be used to reduce the dimensionality of the data through an orthogonal linear transformation so that the greatest variance by any projection of the data comes to lie on the first coordinate of a new coordinate system, and so on. This technique helps to investigate data. The time window used by PCA comprehends all the period from January 02, 2003 to June 5, 2008.

Figure 1 shows that the three-factor model is a good representation of the yield curve, for the entire period studied. This is the same model represented in international curves by Litterman and Scheinkman (1991).

The process of estimating variance for the next day requires calculating principal components on each day. So, we built a daily database of factor series for each vertex and subsequently estimated the volatility according to a definite methodology.

3.2 – Volatility

We estimated the forward rate volatility structure through historical series of the yield curve for two reasons. First, the implied volatility demands simultaneousness between option price and underlying asset price. Second, pricing based on implied volatility means a local test, according Bühler et al. (1999), because in this case volatility is only used to price the option in the next period. As this work proposes a global, or an overall, test, comparing
the model performance with one, two and three factors, we chose not to use information from the derivatives market. The process of estimating total variance follows Bühler et al. (1999) and the generalized formula is given by:

\[\sigma_p^2 = \sigma_{\text{factor1}}^2 \times L_1 + \sigma_{\text{factor2}}^2 \times L_2 + \sigma_{\text{factor3}}^2 \times L_3 \]

(3)

where \(\sigma_{\text{factor}}^2 \) is the factor variance and \(L \) is the factor loading. When testing only the one-factor model, we used only the first part of the equation’s right side. When testing the two-factor model, we used the first and second part, and all parts for the three-factor model.

We used two methods to compute the factor variance. First, we estimated volatilities based on standard deviation of a 378 business day window. Second, we selected a GARCH (1,1) methodology. So, for each vertex we have six volatilities: volatilities according to the number of factors (one, two or three) and according to the volatility method (standard deviation or GARCH). The proportional forward rate volatility structure for the six volatilities is built by:

\[\sigma_{t_1,t_2}^2 = \frac{\sigma_{t_1,t_2}^2 \times D_{t_1,t_2} - \sigma_{t_2,t_2}^2 \times D_{t_2,t_2}}{D_{t_1,t_2}} \]

(4)

where \(D_{t_1,t_2} \) is the number of business day between T1 and T2 and the forward volatility, and \(\sigma_{t_1,t_2}^2 \) means the expected volatility between two dates.

3.3 – The tree of the HJM model

The HJM model starts with a fixed number of unspecified factors that drive the dynamics of the forward rates:

\[df(t,T) = \alpha(t,T,f)dt + \sum_{i=1}^{3} \sigma_i(t,T,f)dz_i(t) \]

(5)

where \(df(t,T) \) denotes the instantaneous forward interest rate on date \(t \) for borrowing or lending on date \(T \), \(z_i(t) \) is independent one-dimensional Wiener process, \(\alpha(t,T,f)dt \) is the drift and \(\sigma_i(t,T,f) \) the volatility coefficients of the forward rate of maturity \(T \). As the
original HJM paper shows, the drift of the forward rates under the risk-neutral measure is determined by the volatility functions as:

\[\alpha(t,T,f)dt = \sum_{i=1}^{3} \sigma_i(t,T,f) \int_{t}^{T} \sigma_i(t,s,f)ds \] \hspace{1cm} (6)

The equation above denotes the main result in that paper. It shows that when a number of regularity conditions and a standard no-arbitrage condition are satisfied, \(\alpha(t,T,f)dt \) is uniquely determined by the forward volatility functions. In this work, we adopt six volatility specifications: two volatilities for each factor model.

From the forward rate volatility structure and the interest rate term structure, we created the HJM forward rate tree. This tree represents the evolution of the IDI, based on a HJM statistical process. The payoff in the last step is given by Equation (2).

When the HJM process is non-Markovian, the tree becomes bushy, the number of branches increases exponentially and they never recombine. However, Heath, Jarrow, Morton and Spindel (1992) showed that, assuming the twelve-step tree as a benchmark, the error beyond five steps is always within 0.5%. The trees in this work have a minimum of three and a maximum of twelve steps until maturity and they were driven by the time to maturity of each option.

3.4 – Pricing errors

We compared the performance of the HJM model with one, two and three factors by the difference between the model price and the market price, using the root mean square error as the metric.

Our final step was to check for any systematic pricing errors by regressing the root mean square error on time to expiration, moneyness and the semester of valuation, along with dummy variables that specify the model used. We used the regression equation below to evaluate the errors associated with the call option pricing:

\[Error_i = \alpha + \beta_1(T - t) + \beta_2M_i + \beta_3S_i + \sum_{i=1}^{3} \delta_iD_i \] \hspace{1cm} (7)
where $T - t$ is the time to maturity, M_t is the moneyness, calculated by dividing the underlying asset price by the present value of the strike price, S_t is the semester that the option was traded and D is the dummy variable used to classify if the error was caused by the HJM model with one, two or three factors. Our null hypothesis was that the dummy coefficients are statistically different from zero, so that we could check for a relationship between pricing errors and the chosen method. We also checked if the results of the three models are significantly different from each other through the nonparametric Kruskal-Wallis test.

4 – Results

Table 1 shows the root mean square error statistics considering the model with one, two and three factors for the trades in the exchange market.

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Factors</th>
<th>Average error</th>
<th>Standard deviation error</th>
<th>1stQ (errors)</th>
<th>3rdQ (errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical standard deviation</td>
<td>I</td>
<td>39.82%</td>
<td>31.65%</td>
<td>16.41%</td>
<td>73.77%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>41.62%</td>
<td>32.22%</td>
<td>15.67%</td>
<td>74.24%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>45.86%</td>
<td>33.57%</td>
<td>23.11%</td>
<td>85.75%</td>
</tr>
</tbody>
</table>

Kruskal Wallis: p-value 0.0000

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Factors</th>
<th>Average error</th>
<th>Standard deviation error</th>
<th>1stQ (errors)</th>
<th>3rdQ (errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH</td>
<td>I</td>
<td>38.16%</td>
<td>33.12%</td>
<td>17.72%</td>
<td>78.17%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>38.58%</td>
<td>33.31%</td>
<td>13.82%</td>
<td>75.95%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>42.56%</td>
<td>34.59%</td>
<td>20.98%</td>
<td>85.54%</td>
</tr>
</tbody>
</table>

Kruskal Wallis: p-value 0.0000

The Kruskal-Wallis test’s null hypothesis of similar distribution functions for the three models is rejected at 10% significance level. This means that we really are changing the results when we include new factors in the HJM model. The one-factor models present the lowest RMSE and standard deviation and the one with GARCH volatility performs best.
These results can mean that the principal component factors are not enough to explain the movements of derivative prices. In fact, Collin-Dufresne and Goldstein (2002) and Heiddari and Wu (2003) also suggested that term structure factors are not sufficient to explain the dynamics of fixed-income derivatives.

Since the GARCH volatility performed relatively better for each factor model, we chose this methodology to price the options traded in the over-the-counter market.

Table 2 – Error measure statistics from HJM model with one, two and three factors and standard deviation or GARCH volatility. The database is composed of options traded in the over-the-counter market.

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Factors</th>
<th>Average error</th>
<th>Standard deviation error</th>
<th>1stQ (errors)</th>
<th>3rdQ (errors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GARCH</td>
<td>I</td>
<td>86.29%</td>
<td>24.09%</td>
<td>50.79%</td>
<td>97.96%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>88.47%</td>
<td>25.57%</td>
<td>57.25%</td>
<td>97.78%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>94.85%</td>
<td>106.87%</td>
<td>61.06%</td>
<td>98.36%</td>
</tr>
</tbody>
</table>

Table 2 shows that the RMSEs of the over-the-counter data are considerably higher. This can be explained by the high volatilities registered in over-the-counter trading. For instance, as the average annual volatility of this database is around 60%, the average annual short-rate volatility estimated by the first principal component is around 15%. Another explanation would be in the IDI market microstructure, with market makers usually taking short positions on call options and clients buying call options. Thus, market makers have an incentive to overprice quotes. A last possible explanation is a bias in the database, i.e., the database is composed only by quoted ask prices, instead of mid prices.

Besides the comparison with market prices, we evaluated the models’ performances through mispricing patterns. We expected the calibrated models to be balanced and the results to be neither underpriced nor overpriced most of the time. Table 3 presents the results for the exchange market data by volatility. The metric in this case is given by the model price minus the market price. In this case, the three-factor model presented the steadiest results, i.e., a lower bias.
Table 3 – Overpricing and underpricing from HJM model with one, two and three factors and standard deviation or GARCH volatility. The database is composed of options traded in the exchange market.

<table>
<thead>
<tr>
<th>Volatility</th>
<th>Factors</th>
<th>Overpricing</th>
<th>Underpricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Historical Standard</td>
<td>I</td>
<td>64.08%</td>
<td>35.92%</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>II</td>
<td>64.91%</td>
<td>35.09%</td>
</tr>
<tr>
<td>GARCH</td>
<td>III</td>
<td>51.66%</td>
<td>48.34%</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>59.43%</td>
<td>40.57%</td>
</tr>
<tr>
<td></td>
<td>II</td>
<td>64.65%</td>
<td>35.35%</td>
</tr>
<tr>
<td></td>
<td>III</td>
<td>50.56%</td>
<td>49.44%</td>
</tr>
</tbody>
</table>

For the over-the-counter data, all the factor models showed underpricing. This reinforces the finding of higher volatilities of these operations when compared to the historical interest rate volatilities. For the models with one, two and three factors, the underpricing measured was 99%, 98.2% and 97.8%, respectively. This can be explained by the fact that the forward rate volatility structure of our model does not replicate the realized implied volatility. However, we used historical data to perform a global test.

We also analyzed pricing errors for the different models. First, for the exchange market data, we regressed the price RSME as the dependent variable of each model and respective volatility. This gave six regressions on the variables in Section 3.4. The moneyness and the time to maturity were significant in all regressions. We consistently found a significantly positive relationship between time to maturity and pricing errors and a negative relationship between moneyness and pricing errors. This means that long maturity and out-of-the-money options are the hardest options for pricing following the HJM model. In-the-money and at-the-money options performed well according to this model. The calendar dummy variables were not significant.

To support these results and to find a more robust result, we ran a panel data analysis with pricing errors from all models. Table 4 presents the results for the exchange market data.
Table 4 – Error measure regression considering the HJM model with one, two and three factors and standard deviation (SD) or GARCH volatility. The database is composed of options traded in the exchange market.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (p-value)</th>
<th>SD</th>
<th>GARCH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to maturity</td>
<td>0.0009 (0.0000)</td>
<td>0.0003 (0.0236)</td>
<td></td>
</tr>
<tr>
<td>Moneyness</td>
<td>-2.3632 (0.0000)</td>
<td>-2.5071 (0.0000)</td>
<td></td>
</tr>
<tr>
<td>2-factor dummy</td>
<td>0.0784 (0.0000)</td>
<td>0.0406 (0.0003)</td>
<td></td>
</tr>
<tr>
<td>3-factor dummy</td>
<td>-0.0675 (0.0000)</td>
<td>-0.0310 (0.0085)</td>
<td></td>
</tr>
<tr>
<td>Intercept</td>
<td>3.0226 (0.0000)</td>
<td>3.2517 (0.0000)</td>
<td></td>
</tr>
<tr>
<td>Adjusted R^2</td>
<td>0.0276</td>
<td>0.0354</td>
<td></td>
</tr>
<tr>
<td>F statistic P-value</td>
<td>0.0000</td>
<td>0.0000</td>
<td></td>
</tr>
</tbody>
</table>

The same relationship in the prior regression between moneyness and the time to maturity was verified. The dummy variables included to differentiate the number of factors were statistically significant at 5%, indicating pricing differences among the models. Besides this, the coefficients’ sign indicates that the third factor reduces the pricing error while the second increases this error. For the GARCH volatility, the third factor reduces the pricing error less. The second factor sign is similar to the finding of Bühler et al. (1999), who claimed that the outperformance could be due to the incorrect estimation of the loadings of this factor. The second factor is closely related to the spread between the long and the short rate and appears to be important, as the highest is the period studied. The regression considering only over-the-counter data has the same sign for the variables moneyness and time to maturity. However, the sign of the third factor dummy shows that this term increases the pricing errors. Table 5 reports these conclusions.
Table 5 – Error measure regression considering the HJM model with one, two and three factors and standard deviation or GARCH volatility. The database is composed of options traded in over-the-counter market.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Coefficient (p-value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to maturity</td>
<td>0.0003 (0.0049)</td>
</tr>
<tr>
<td>Moneyness</td>
<td>-1.2402 (0.0000)</td>
</tr>
<tr>
<td>2-factor dummy</td>
<td>0.0217 (0.0154)</td>
</tr>
<tr>
<td>3-factor dummy</td>
<td>0.0855 (0.0000)</td>
</tr>
<tr>
<td>Intercept</td>
<td>1.9314 (0.0000)</td>
</tr>
</tbody>
</table>

Adjusted R^2: 0.0124
F statistic P-value: 0.0000

Table 6 presents the correlation between pricing errors across models for the exchange database. Our results are quite different from those of Bühler et al. (1999). In that work, the authors found correlations close to 1. Table 6 shows that correlations of the first factor with the other models are very low. This result is closer to those of Amin and Morton (1994) and can mean that the simplicity of the first factor model is closer to the Brazilian market empirical models.

Table 6 – Correlation between pricing errors across HJM models with standard deviation (SD) and GARCH volatility. The database is composed of options traded in the exchange market.

<table>
<thead>
<tr>
<th>Model</th>
<th>1-factor GARCH</th>
<th>2-factor GARCH</th>
<th>3-factor GARCH</th>
<th>1-factor SD</th>
<th>2-factor SD</th>
<th>3-factor SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-factor GARCH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-factor GARCH</td>
<td>0.55</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-factor GARCH</td>
<td>0.47</td>
<td>0.74</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-factor SD</td>
<td>0.52</td>
<td>0.86</td>
<td>0.55</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-factor SD</td>
<td>0.29</td>
<td>0.87</td>
<td>0.53</td>
<td>0.88</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3-factor SD</td>
<td>0.32</td>
<td>0.79</td>
<td>0.91</td>
<td>0.70</td>
<td>0.73</td>
<td>1</td>
</tr>
</tbody>
</table>
5– Conclusion

The aim of this study was to assess the importance of the principal components to pricing and hedging IDI options in the Brazilian market. We analyzed the HJM model with one, two and three factors with data covering the period from January 12, 2004 to July 5, 2008.

We found that the one-factor model, with information from only the first principal component of the interest rate, performs better, i.e., has the lowest error measure and the lowest standard deviation. This could mean that the models used by agents of the market to price these options simplify the interest rate volatility structure to only one component or even that the market price of IDI options may not be an appropriate measure to quantify the quality of the HJM model. We also showed that the second factor raises the error measure and the third factor increases or decreases it in accordance with the database. For the IDI options traded in the over-the-counter market, the third factor increases the error measure and for the IDI options traded in the exchange market, it decreases the error.

Regarding the huge percentage of underpricing of the OTC data, one explanation would be in the IDI market microstructure, with market makers usually taking short positions on call options and clients buying call options. Another possible explanation is that the call process to create this database is composed by quoted ask prices, instead of mid prices.

We also tested whether the time to maturity, moneyness or seasonal effects can affect the pricing error. We showed that there is a direct relationship between time to maturity and pricing error and a negative relation between moneyness and pricing error for both over-the-counter and exchange market databases.

To our knowledge, this is the first paper to work with exchange and over-the-counter market data and to price Asian options with a three-factor model. We suggest complementing this work with the implementation of delta hedging strategies to verify arbitrage opportunities. We recognize that we limit our study by the fact that data are not obtained by observing simultaneous option and underlying asset prices during trading hours. However we believe that our results are representativeness.
References

1 Implementing Inflation Targeting in Brazil
 Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
 Jul/2000

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
 Eduardo Lundberg
 Monetary Policy and Banking Supervision Functions on the Central Bank
 Eduardo Lundberg
 Jul/2000

3 Private Sector Participation: a Theoretical Justification of the Brazilian Position
 Sérgio Ribeiro da Costa Werlang
 Jul/2000

4 An Information Theory Approach to the Aggregation of Log-Linear Models
 Pedro H. Albuquerque
 Jul/2000

5 The Pass-Through from Depreciation to Inflation: a Panel Study
 Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
 Jul/2000

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks
 José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira
 Jul/2000

7 Leading Indicators of Inflation for Brazil
 Marcelle Chauvet
 Sep/2000

8 The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
 José Alvaro Rodrigues Neto
 Sep/2000

9 Estimating Exchange Market Pressure and Intervention Activity
 Emanuel-Werner Kohlscheen
 Nov/2000

 Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flôres Júnior
 Mar/2001

11 A Note on the Efficient Estimation of Inflation in Brazil
 Michael F. Bryan and Stephen G. Cecchetti
 Mar/2001

12 A Test of Competition in Brazilian Banking
 Márcio I. Nakane
 Mar/2001
<table>
<thead>
<tr>
<th></th>
<th>Título</th>
<th>Autor(e)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Ncías Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Cha and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flóres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícinas Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisio Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>Page</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Llacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanilho Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo and Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thais Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani Teixeira de C. Guillen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
76 Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfouri Muinhos
Jul/2003

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
Out/2003

81 Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
Mar/2004

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbosa
May/2004

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
Maio/2004

87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Bank Privatization and Productivity: Evidence for Brazil</td>
<td>Márcio I. Nakane and Daniela B. Weintraub</td>
<td>Dec/2004</td>
</tr>
<tr>
<td>92</td>
<td>Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil</td>
<td>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>93</td>
<td>Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial</td>
<td>Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Abr/2005</td>
</tr>
<tr>
<td>95</td>
<td>Comment on Market Discipline and Monetary Policy by Carl Walsh</td>
<td>Mauricio S. Bugarin and Fábia A. de Carvalho</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>96</td>
<td>O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina</td>
<td>Anthero de Moraes Meirelles</td>
<td>Ago/2005</td>
</tr>
<tr>
<td>100</td>
<td>Targets and Inflation Dynamics</td>
<td>Sérgio A. L. Alves and Waldyr D. Areosa</td>
<td>Oct/2005</td>
</tr>
<tr>
<td>101</td>
<td>Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates</td>
<td>Marcelo Kfoury Muinhos and Márcio I. Nakane</td>
<td>Mar/2006</td>
</tr>
<tr>
<td>102</td>
<td>Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans</td>
<td>Ana Carla A. Costa and João M. P. de Mello</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>103</td>
<td>The Effect of Adverse Supply Shocks on Monetary Policy and Output</td>
<td>Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roommate’s Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
</tbody>
</table>
119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação
Ricardo Schechtman
Out/2006

120 Forecasting Interest Rates: an Application for Brazil
Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak
Oct/2006

121 The Role of Consumer’s Risk Aversion on Price Rigidity
Sergio A. Lago Alves and Mirta N. S. Bugarin
Nov/2006

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil
Arnildo da Silva Correa and André Minella
Nov/2006

123 A Neoclassical Analysis of the Brazilian “Lost-Decades”
Flávia Mourão Graminho
Nov/2006

124 The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil
Benjamin M. Tabak
Nov/2006

125 Herding Behavior by Equity Foreign Investors on Emerging Markets
Barbara Alemanhi and José Renato Haas Ornelas
Dec/2006

126 Risk Premium: Insights over the Threshold
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
Dec/2006

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil
Ricardo Schechtman
Dec/2006

128 Term Structure Movements Implicit in Option Prices
Caio Ibsen R. Almeida and José Valentim M. Vicente
Dec/2006

129 Brazil: Taming Inflation Expectations
Afonso S. Bevilaqua, Mário Mesquita and André Minella
Jan/2007

130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter?
Daniel O. Cajueiro and Benjamin M. Tabak
Jan/2007

131 Long-Range Dependence in Exchange Rates: the Case of the European Monetary System
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
Mar/2007

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the Joint Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins and Eduardo Saliby
Mar/2007

133 A New Proposal for Collection and Generation of Information on Financial Institutions’ Risk: the Case of Derivatives
Gilneu F. A. Vivan and Benjamin M. Tabak
Mar/2007

134 Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão
Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins
Abr/2007
135 Evaluation of Default Risk for the Brazilian Banking Sector
Marcelo Y. Takami and Benjamin M. Tabak
May/2007

136 Identifying Volatility Risk Premium from Fixed Income Asian Options
Caio Ibsen R. Almeida and José Valentim M. Vicente
May/2007

137 Monetary Policy Design under Competing Models of Inflation Persistence
Solange Gouvea e Abhijit Sen Gupta
May/2007

138 Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil
Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak
May/2007

139 Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features
Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén
Jun/2007

140 Inflation Targeting, Credibility and Confidence Crises
Rafael Santos and Aloíssio Araújo
Aug/2007

141 Forecasting Bonds Yields in the Brazilian Fixed income Market
Jose Vicente and Benjamin M. Tabak
Aug/2007

142 Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall
Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho
Ago/2007

143 Price Rigidity in Brazil: Evidence from CPI Micro Data
Solange Gouvea
Sep/2007

144 The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options
Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber
Oct/2007

145 The Stability-Concentration Relationship in the Brazilian Banking System
Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima e Eui Jung Chang
Oct/2007

146 Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial
Caio Almeida, Romeu Gomes, André Leite e José Vicente
Out/2007

Adriana Soares Sales and Maria Eduarda Tannuri-Pianto
Oct/2007

148 Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial
Felipe Pinheiro, Caio Almeida e José Vicente
Out/2007

149 Joint Validation of Credit Rating PDs under Default Correlation
Ricardo Schechtman
Oct/2007
150 A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks
Roberta Blass Staub and Geraldo da Silva e Souza
Oct/2007

151 Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability
Eduardo José Araújo Lima and Benjamín Miranda Tabak
Nov/2007

152 Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?
Fernando N. de Oliveira and Walter Novaes
Dec/2007

153 Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro
Jaqueline Terra Moura Marins
Dez/2007

154 Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves
Adriana Soares Sales and Maria Tannuri-Pianto
Dec/2007

155 Does Curvature Enhance Forecasting?
Caio Almeida, Romeu Gomes, André Leite and José Vicente
Dec/2007

156 Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil
Sérgio Mikiyo Koyama e Márcio I. Nakane
Dez/2007

157 Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil
Tito Nícias Teixeira da Silva Filho
Jan/2008

158 Characterizing the Brazilian Term Structure of Interest Rates
Osmani T. Guillén and Benjamín M. Tabak
Feb/2008

159 Behavior and Effects of Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas
Feb/2008

160 The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?
Fábia A. de Carvalho and Cynthia F. Azevedo
Feb/2008

161 Evaluating Value-at-Risk Models via Quantile Regressions
Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton
Feb/2008

162 Balance Sheet Effects in Currency Crises: Evidence from Brazil
Marcio M. Janot, Marcio G. P. Garcia and Walter Novaes
Apr/2008

163 Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case
Tito Nícias Teixeira da Silva Filho
May/2008

164 Foreign Banks’ Entry and Departure: the recent Brazilian experience (1996-2006)
Pedro Fachada
Jun/2008

165 Avaliação de Opções de Troca e Opções de Spread Européias e Americanas
Giuliano Carrozza Uzédà Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo
Jul/2008
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>166</td>
<td>Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study</td>
<td>Fernando de Holanda Barbosa and Tito Nícius Teixeira da Silva Filho</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>167</td>
<td>O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras</td>
<td>Clodoaldo Aparecido Annibal</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>168</td>
<td>An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks</td>
<td>Weneramy Ramos de Alcântara</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>170</td>
<td>Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação</td>
<td>Adriana Soares Sales</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>171</td>
<td>Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil</td>
<td>Sérgio Mikio Koyama e Márcio Issao Nakane</td>
<td>Ago/2008</td>
</tr>
<tr>
<td>172</td>
<td>Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap</td>
<td>Marta Areosa</td>
<td>Aug/2008</td>
</tr>
<tr>
<td>173</td>
<td>Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions</td>
<td>Eduardo José Araújo Lima and Benjamin Miranda Tabak</td>
<td>Aug/2008</td>
</tr>
<tr>
<td>174</td>
<td>Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate</td>
<td>Frederico Pechir Gomes, Marcelo Yoshio Tokami and Vinicius Ratton Brandi</td>
<td>Aug/2008</td>
</tr>
<tr>
<td>176</td>
<td>Fiat Money and the Value of Binding Portfolio Constraints</td>
<td>Máximo R. Pássco, Myrian Petrossi and Juan Pablo Torres-Martínez</td>
<td>Dec/2008</td>
</tr>
<tr>
<td>177</td>
<td>Preference for Flexibility and Bayesian Updating</td>
<td>Gil Riella</td>
<td>Dec/2008</td>
</tr>
<tr>
<td>178</td>
<td>An Econometric Contribution to the Intertemporal Approach of the Current Account</td>
<td>Wagner Piazza Gaglianone and João Victor Issler</td>
<td>Dec/2008</td>
</tr>
<tr>
<td>179</td>
<td>Are Interest Rate Options Important for the Assessment of Interest Rate Risk?</td>
<td>Caio Almeida and José Vicente</td>
<td>Dec/2008</td>
</tr>
<tr>
<td>180</td>
<td>A Class of Incomplete and Ambiguity Averse Preferences</td>
<td>Leandro Nascimento and Gil Riella</td>
<td>Dec/2008</td>
</tr>
<tr>
<td>181</td>
<td>Monetary Channels in Brazil through the Lens of a Semi-Structural Model</td>
<td>André Minella and Nelson F. Souza-Sobrinho</td>
<td>Apr/2009</td>
</tr>
<tr>
<td>ID</td>
<td>Title</td>
<td>Authors</td>
<td>Publication Date</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>------------------</td>
</tr>
<tr>
<td>182</td>
<td>Avaliação de Opções Americanas com Barreiras Monitoradas de Forma Discreta</td>
<td>Giuliano Carrozza Uzêda Iorio de Souza e Carlos Patrício Samanez</td>
<td>Abr/2009</td>
</tr>
<tr>
<td>184</td>
<td>Behavior Finance and Estimation Risk in Stochastic Portfolio Optimization</td>
<td>José Luiz Barros Fernandes, Juan Ignacio Peña and Benjamin Miranda Tabak</td>
<td>Apr/2009</td>
</tr>
<tr>
<td>185</td>
<td>Market Forecasts in Brazil: performance and determinants</td>
<td>Fabia A. de Carvalho and André Minella</td>
<td>Apr/2009</td>
</tr>
<tr>
<td>186</td>
<td>Previsão da Curva de Juros: um modelo estatístico com variáveis macroeconômicas</td>
<td>André Luís Leite, Romeu Braz Pereira Gomes Filho e José Valentim Machado Vicente</td>
<td>Maio/2009</td>
</tr>
<tr>
<td></td>
<td>an approach through historical average and logistic regression on probability of default</td>
<td>Marins, Myrian Beatriz Eiras da Neves and Giovani Antonio Silva Brito</td>
<td></td>
</tr>
</tbody>
</table>

33