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1 Introduction

The subjective expected utility model Savage formulated in 19541 has been criticized

on the basis it does not provide a good description of a decision maker’s attitude

towards ambiguity. It was initially suggested by Ellsberg (1961) that the decision

maker does not behave as if he forms a unique subjective probability (or is sur-

rounded by a set of priors and ignores all but one). The same critique applies to the

alternative formulation of Anscombe and Aumann (1963). Here the independence

axiom precludes the Ellsberg-type behavior that has been observed in experimental

work.2 A broad literature has attempted to formulate models of decision making

that accommodate the Ellsberg-type behavior. A large part of this literature works

within the Anscombe-Aumann framework and weakens the independence axiom.

The majority of models of decision making (under uncertainty or not) assume

that preferences are complete in that every pair of alternatives is comparable. Such

a postulate has been criticized as being unrealistic. For instance, in an early con-

tribution to the study of incomplete preferences, Aumann (1962) argued that the

completeness axiom is an inaccurate description of reality and also hard to accept

from a normative viewpoint: “rationality” does not demand the agent to make a

definite comparison of every pair of alternatives. Mandler (2005) formalizes the last

point by showing that agents with incomplete preferences are not necessarily subject

to money-pumps, and consequently not “irrational” in some sense.

In the context of decision making under uncertainty in the Anscombe-Aumann

framework, the Knightian uncertainty model of Bewley (1986) and the recent single-

prior expected multi-utility model of Ok, Ortoleva, and Riella (2008) remain the only

ones which satisfy transitivity, monotonicity and allow for incompleteness of pref-

erences.3 Nevertheless, because both models satisfy the independence axiom, they

cannot cope with the sort of criticism initially raised by Ellsberg (1961). At the

same time, preferences that accommodate Ellsberg-type behavior such as the multi-

ple priors model of Gilboa and Schmeidler (1989) and the (more general) variational

preferences of Maccheroni, Marinacci, and Rustichini (2006) are complete.

Our main contribution is to identify a class of preferences that is incomplete and

1Savage (1972).
2See Camerer (1995) for a survey of the experimental work testing Ellsberg’s predictions.
3If we do not require the agent’s preferences to be monotone, then we also have the additively

separable expected multi-utility model as another example of incomplete preferences under un-
certainty. See Ok et al. (2008) and the references therein for the details. Faro (2008) derives a
generalization of Bewley (1986) by not requiring preferences to be transitive.
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at the same time can explain the Ellsberg-type of behavior. Building on behaviorally

meaningful axioms on an enlarged domain of lotteries of Anscombe-Aumann acts,

we construct multiple selves versions of the Gilboa and Schmeidler (1989) and Mac-

cheroni et al. (2006) models. We also sketch a more general version of an incomplete

and ambiguity averse preference relation along the lines of Cerreia-Vioglio, Mac-

cheroni, Marinacci, and Montrucchio (2008) on the domain of Anscombe-Aumann

acts.

To illustrate our representation, consider for instance the standard Gilboa and

Schmeidler (1989) model. The decision maker entertains a “set of priors” M , and

ranks an act f according to the single utility index

VGS (f) = min
µ∈M

∫
u (f) dµ.

In our representation the decision maker conceives a “class” M of possible sets of

priors, and prefers the act f to g iff

V M
GS (f) = min

µ∈M

∫
u (f) dµ ≥ min

µ∈M

∫
u (g) dµ = V M

GS (g) for all M ∈M.

Instead of looking at a single objective function VGS, his decisions are now driven

by the vector
(
V M
GS

)
M∈M of objectives.4 If each set M is a singleton, this is exactly

the model proposed by Bewley (1986). When the class M is a singleton, we obtain

the Gilboa-Schmeidler model. Another contribution of this paper is to show that

the canonical model of Knightian uncertainty of Bewley (1986) belongs to the same

class of incomplete preferences as the (complete) multiple priors and variational

preferences.

This paper faces two major difficulties in axiomatizing the multiple selves version

of the models mentioned above. First, we do not have an answer to what happens

if one drops the completeness axiom in its entirety. Instead, we assume a weak

form of completeness by requiring that the preference relation is complete on the

subdomain of constant acts. That is, the Partial Completeness axiom of Bewley

(1986) is assumed. Second, as we have already pointed out, in most of the paper

we work with preferences defined on the domain of lotteries of acts, and not on the

4That collection of objectives arises from the multiplicity of sets of priors. Such multiplicity
seems to be as plausible as the existence of second order beliefs. For instance, they can be inter-
preted as the support of a collection of second order beliefs, and the decision maker is a pessimistic
agent which extracts a utility index from each of those beliefs by looking at the worst event (in
this case the worst prior) in the support. As an incomplete list of recent models of second order
beliefs, see Klibanoff, Marinacci, and Mukerji (2005), Nau (2006), and Seo (2007).
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standard domain of Anscombe-Aumann acts. This enlarged domain is not a novel

feature of this paper, and it was recently employed by Seo (2007). Our representation

in such a framework induces a characterization of a class of incomplete preferences

on the subdomain of Anscombe-Aumann acts whose relation to other classes of

preferences in the literature is depicted in Figure 1.

Anscombe-Aumann

Bewley

Incomplete Gilboa-Schmeidler

Incomplete Variational Preferences

Gilboa-Schmeidler

Variational Preferences

Figure 1: Preferences satisfying partial completeness and monotonicity

In spite of using the same setup of Seo (2007), who constructs a model that

accommodates ambiguity aversion and does not assume reduction of compound ob-

jective lotteries, our model is not able to explain Halevy’s (2007) findings of a strong

empirical association between reduction of compound objective lotteries and ambi-

guity neutrality. We explicitly assume reduction of such lotteries in our axioms, and

at the same time claim that decision makers with the preferences axiomatized in

this paper are ambiguity averse provided a mild “consistency” condition among the

multiple selves holds.

Every model is false, and ours are not immune to that. Nevertheless, we do not

share the view that our models are subject to Halevy’s (2007) criticisms. His exper-

iments are a valid test of his main thesis (viz. the correlation between ambiguity

neutrality and reduction of compound objective lotteries) provided his auxiliary as-
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sumptions, especially the completeness of preferences, are true. Therefore, it is not

clear whether his critique applies when preferences are incomplete. For instance, the

mechanism Halevy (2007) uses to elicit preferences from subjects is valid only under

the completeness axiom.5 To the best of our knowledge, there is no experimental

work that explores the results of Eliaz and Ok (2006) regarding choice correspon-

dences rationalized by an incomplete preference relation in order to correctly elicit

those preferences.

1.1 Ellsberg-type behavior: example

Consider the example from Ellsberg (2001) as described by Seo (2007). There is a

single urn, with 200 balls. Each ball can have one and only one of four colors: two

different shades of red (RI and RII), and two different shades of black (BI and

BII). One hundred balls are either RI or BI. Fifty of the remaining balls are RII,

and the other fifty are BII. There are six alternative bets available to the decision

maker. Bet A is such that he wins if a ball of color RI is drawn. Similarly, define

the bets B,C and D on the colors BI, RII, and BII, respectively. Also define the

bet AB as the bet in which the decision maker wins if a ball of color RI or BI is

drawn, and the bet CD as the bet in which he wins if a ball of color RII or BII

is drawn. Finally, assume the winning prize is such that the utility of winning is 1,

and the utility of losing is 0.

In the original experiment, agents rank the bets according to: C ∼ D � A ∼ B,

and AB ∼ CD. Our model can explain the case in which AB ∼ CD, C ∼ D � A,B,

and A and B are not comparable. Consider, for example, a Gilboa-Schmeidler

incomplete preference relation.

The state space is S := {RI,BI,RII, BII}. The decision maker entertains

two sets of priors: the first one is given by M1 := co
{(

1
4
, 1

4
, 1

4
, 1

4

)
,
(
0, 1

2
, 1

4
, 1

4

)}
and

the second by M2 := co
{(

1
4
, 1

4
, 1

4
, 1

4

)
,
(

1
2
, 0, 1

4
, 1

4

)}
.6 That is, the decision maker is

composed of two selves. One self, associated with M1, has two extreme priors on

states: a uniform prior, and one that assigns zero probability to the event a ball of

color RI is drawn. The other self, associated with M2, shares one of the extreme

priors (
(

1
4
, 1

4
, 1

4
, 1

4

)
), but is less confident about the odds of a ball of color BI: he

also contemplates a prior that attaches zero probability to the event BI is drawn.

5The very existence of certainty equivalents to bets on Halevy’s (2007) urns, which the author
used to elicit preferences, hinges on the completeness assumption.

6The convex hull of any subset z of a vector space is denoted by co (z).
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The bets are ranked according to

U (A) =

[
0
1
4

]
, U (B) =

[
1
4

0

]
,

U (C) = U (D) =

[
1
4
1
4

]
,

U (AB) = U (CD) =

[
1
2
1
2

]
,

where the first component of each vector denotes the utility associated with the set

of priors M1, and the second component is associated with M2. One can check that

this ranking explains the Ellsberg-type behavior mentioned above.

1.2 Outline of the paper

The paper is organized as follows. In Section 2 we introduce the basic setup. Section

3 gives a characterization of preferences represented by a multiple selves version of

the maxmin expected utility model and shows its uniqueness. In Section 4 we

characterize the multiple selves version of the variational preferences and prove a

similar uniqueness result. Section 5 discusses when those incomplete preferences are

ambiguity averse. In Section 6 we give some steps towards an axiomatization of

a more general version of an incomplete and ambiguity averse preference relation.

While Section 7 concludes the paper with additional remarks and open questions,

the Appendix contains the proofs of our main results.

2 Setup

The set X denotes a compact metric space. Let ∆ (X) be the set of Borel probability

measures on X, and endow it with any metric that induces the topology of weak

convergence. We denote by B (X) the Borel σ-algebra on X. Note that ∆ (X) is

a compact metric space. Let the set of states of the world be denoted by S, which

we assume to be finite. The set of Anscombe-Aumann acts is F := ∆ (X)S, and is

endowed with the product topology (hence compact).

The decision maker has preferences < on the set of lotteries on F , that is,

<⊆ ∆ (F) × ∆ (F). The class of sets B (F) is the Borel σ-algebra on F . The

domain of preferences ∆ (F) is endowed with the topology of weak convergence
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(hence compact). Let the binary relation <•⊆ ∆ (X)×∆ (X) be defined as p <• q

iff 〈p〉 < 〈q〉, where 〈r〉 ∈ F denotes the (constant) act h,7 where h (s) = r ∈ ∆ (X)

for all s ∈ S. That is, <• is the restriction of < to the set of all constant acts. Note

that, with a slight abuse of notation, ∆ (X) ⊆ F ⊆ ∆ (F) because we can identify

each p ∈ ∆ (X) with the constant act 〈p〉, and each f ∈ F with the degenerate

lottery δf ∈ ∆ (F).

Define two mixture operations, one on the space of Anscombe-Aumann acts,

and the other on the space of lotteries of acts, as follows. Let the mixture oper-

ation ⊕ on F be such that, for all f, g ∈ F , λ ∈ [0, 1], (λf ⊕ (1− λ) g) ∈ F is

defined as (λf ⊕ (1− λ) g) (s) (B) = λf (s) (B) + (1− λ) g (s) (B) for all s ∈ S, and

B ∈ B (X). That is, if we look at the inclusion F ⊆ ∆ (F), then (λf ⊕ (1− λ) g)

is identified with δλf+(1−λ)g. Also define the mixture operation + on ∆ (F) such

that, for all P,Q ∈ ∆ (F), λ ∈ [0, 1], (λP + (1− λ)Q) ∈ ∆ (F) is defined as

(λP + (1− λ)Q) (B) = λP (B) + (1− λ)Q (B) for all B ∈ B (F). Again, if we look

at the inclusion F ⊆ ∆ (F), then λf + (1− λ) g is identified with λδf + (1− λ) δg.

2.1 Remarks

The setup is the same as in Seo (2007). It ads to the standard setting a second layer

of objective uncertainty through the objective mixtures of acts. Each act f ∈ F
delivers an objective lottery f (s) ∈ ∆ (X) in state s, and the decision maker is

asked to make an assessment of any such act and of each possible objective lottery

P ∈ ∆ (F) whose prizes are Anscombe-Aumann acts.

The timing of events is the following. In the first stage, we run a spin with each

outcome f ∈ F having (objective) probability P (f). Next, nature selects a state

s ∈ S to be realized; this intermediate stage has subjective uncertainty. Finally,

in the second stage, we run another spin, conditional on the prize f from the first

stage and independently of anything else, with each outcome event B ∈ B (X)

having (objective) probability f (s) (B).

The introduction of an additional layer of objective uncertainty is not innocuous

and will play a distinct role in the axiomatization below. In particular, the way the

decision maker compares the objects λf + (1− λ) g and λf ⊕ (1− λ) g determines

part of the shape of his preferences. In the Anscombe-Aumann model, for instance,

the decision maker is indifferent between λf + (1− λ) g and λf ⊕ (1− λ) g: it does

7Or, being more precise, the degenerate lottery that gives probability one to the constant act
h.
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not matter whether the randomization comes before or after the realization of the

subjective state.

The indifference of the decision maker between λf +(1− λ) g and λf ⊕ (1− λ) g

is called “reversal of order” in the literature. In the setup of Seo (2007), ambiguity

neutrality can also be characterized in terms of reduction of compound lotteries, i.e.,

when the decision maker is indifferent between the objects λ 〈p〉 + (1− λ) 〈q〉 and

λ 〈p〉 ⊕ (1− λ) 〈q〉. Such characterization relies on a dominance axiom that will not

be assumed here. This means that, whenever we assume the weak condition that the

decision maker is always indifferent between λ 〈p〉+(1− λ) 〈q〉 and λ 〈p〉⊕(1− λ) 〈q〉,
this will not imply that his preferences also satisfy reversal of order.

3 Incomplete Multiple Priors Preferences

We will use the following set of axioms to characterize preferences.

Axiom A1 (Preference Relation). The binary relation < is a preorder.

Axiom A2 (First Stage Independence). For all P,Q,R ∈ ∆ (F), λ ∈ (0, 1): if

P < Q, then λP + (1− λ)R < λQ+ (1− λ)R.

Axiom A3 (Continuity). If (P n) , (Qn) ∈ ∆ (F)∞ are such that P n < Qn for all

n, P n → P ∈ ∆ (F), and Qn → Q ∈ ∆ (F), then P < Q.

Axiom A4 (Partial Completeness). The binary relation <• is complete.

Axiom A5 (Monotonicity). For all f, g ∈ F : if 〈f (s)〉 < 〈g (s)〉 for all s ∈ S,

then f < g.

Axiom A6 (C-Reduction). For all f ∈ F , p ∈ ∆ (X), λ ∈ (0, 1): λf ⊕
(1− λ) 〈p〉 ∼ λf + (1− λ) 〈p〉.

Axiom A7 (Strong Uncertainty Aversion). For all f, g ∈ F , λ ∈ (0, 1):

λf ⊕ (1− λ) g < λf + (1− λ) g.

Axiom A8 (Nondegeneracy). �6= ∅.

Axioms A1 and A4 are a weakening of the widespread “weak order” (complete

preorder) assumption in the literature. By relaxing the completeness requirement,
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our preferences can rationalize a wide range of behavior, including whatever choice

patterns were rationalized under the completeness axiom, plus, e.g., choice behav-

ior that violates the independence of irrelevant alternatives. Axiom A4 imposes a

minimum of comparability on preferences. It requires that, when facing only risk,

the decision maker’s preferences are complete. This Partial Completeness axiom

is also present in Bewley (1986). It allows us to pin down a single utility index

that represents the complete preference relation <• on the subdomain of objective

lotteries (constant acts).

The First Stage Independence axiom is also present in Seo (2007). It requires

the decision maker to satisfy independence when facing the objective probabilities

induced by the lotteries of acts. This requirement is standard in the literature:

whenever the individual faces objective uncertainty, it is common to impose inde-

pendence. Our Continuity axiom A3, also called “closed-continuity”, is also standard

and demands that pairwise comparisons are preserved in the limit.8

Axiom A5 is the AA-Dominance of Seo (2007). He also uses a stronger dominance

axiom to obtain a second order subjective expected utility representation, and this

axiom is not assumed here. Instead, we replace his stronger dominance axiom by A6

and A7, and also relax his completeness axiom on lotteries of acts. Also note that

axioms A1-A3 and A6 imply Second Stage Independence for constant acts, that is:

for all p, q, r ∈ ∆ (X), λ ∈ (0, 1), 〈p〉 < 〈q〉 iff λ 〈p〉⊕(1− λ) 〈r〉 < λ 〈q〉⊕(1− λ) 〈r〉.

From the original axioms of Gilboa and Schmeidler (1989), we only retain the

Monotonicity axiom A5 and the Nondegeneracy axiom A8 in their original formats,

and also part of their weak order axiom, which is weakened here to A1 and A4

after we drop the completeness requirement. The axioms A2 and A3 pertain to

the domain of lotteries of acts ∆ (F) and cannot be directly compared with the

Gilboa-Schmeidler axioms.

The axioms A6 and A7 together give the shape of each utility function in the

representation of < on F : they are concave, positively homogeneous, and vertically

invariant functions.9 Strong Uncertainty Aversion says that the degenerate lottery

of acts δλf+(1−λ)g is preferred to λδf + (1− λ) δg. Ultimately, the first stage mixture

λδf+(1− λ) δg contains two sources of subjective uncertainty: one is the uncertainty

8Note that axioms A1-A3 imply: for all P,Q,R ∈ ∆ (F), λ ∈ (0, 1): if λP + (1− λ)R <
λQ + (1− λ)R, then P < Q. See Dubra, Maccheroni, and Ok (2004) for an account of this fact
and a discussion of the Continuity axiom.

9A version of A6 was used by Epstein, Marinacci, and Seo (2007) under the name of “certainty
reversal of order” in the context of complete preferences over menus.
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about the payoff of f , and the other about the payoff of g. Therefore, axiom A7

can be interpreted as aversion to subjective uncertainty in that the decision maker

prefers (ex-ante) to face the single source of uncertainty present in λf ⊕ (1− λ) g

than face uncertainty on both f and g in λδf+(1− λ) δg. Now, both λδf+(1− λ) δ〈p〉

and λf⊕(1− λ) 〈p〉 have a single source of subjective uncertainty. The C-Reduction

axiom says that in this case the decision maker is indifferent between those lotteries

of acts.

Theorem 1. The following are equivalent:

(a) < satisfies A1-A8.

(b) There exist u : ∆ (X) → R continuous, affine, and nonconstant, and a class

M of nonempty, closed and convex subsets of the |S| − 1-dimensional simplex

∆ (S) such that, for all P,Q ∈ ∆ (F),

P < Q

iff∫ [
min
µ∈M

∫
u (f) dµ

]
dP (f) ≥

∫ [
min
µ∈M

∫
u (f) dµ

]
dQ (f) ,

(1)

for all M ∈M. In particular, for all f, g ∈ F ,

f < g iff min
µ∈M

∫
u (f) dµ ≥ min

µ∈M

∫
u (g) dµ for all M ∈M. (2)

If we define UM (f) := minµ∈M
∫
u (f) dµ, then (1) is the Expected Multi-Utility

representation of Dubra et al. (2004) on the set of lotteries on F with {UM : M ∈M}
being the set of utility functions on the space of prizes in their representation. The

restriction of < to the set of Anscombe-Aumann acts admits the representation in

(2). The maxmin expected utility representation of Gilboa and Schmeidler (1989)

now becomes a special case of (2) when |M| = 1. In the event each set M ∈ M is

a singleton, we obtain the Knightian uncertainty model of Bewley (1986). This is

easily done by strengthening A6 to the condition that, for all f, g ∈ F , λ ∈ (0, 1):

λf ⊕ (1− λ) g ∼ λf + (1− λ) g. By assuming in addition that < is complete one

obtains the Anscombe and Aumann (1963) representation.

Let M denote the class of all nonempty, closed and convex subsets of the |S| − 1

dimensional simplex. The set M is endowed with the Hausdorff metric dH . A pair

(u,M) that represents < is unique in the sense we establish next.
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Proposition 1. Let u, v ∈ C (∆ (X)) be affine and nonconstant, and M,N ⊆M.

The pairs (u,M) and (v,N ) represent < in the sense of Theorem 1 iff u is a positive

affine transformation of v, and cldH
(co (M)) = cldH

(co (N )).10

4 Incomplete Variational Preferences

In deriving the incomplete preferences version of Gilboa and Schmeidler (1989),

we explicitly used the C-Reduction axiom to make each U vertically invariant and

positively homogeneous. Incomplete variational preferences are more general and

only require U to be vertically invariant. This property is satisfied if we drop A5

and A6, and replace them by the following axioms.

Axiom A5’ (C-Mixture Monotonicity). For all f, g ∈ F , p, q ∈ ∆ (X), λ ∈
(0, 1]: if λ 〈f (s)〉 + (1− λ) 〈p〉 < λ 〈g (s)〉 + (1− λ) 〈q〉 for all s ∈ S, then λf +

(1− λ) 〈p〉 < λg + (1− λ) 〈q〉.

Axiom A6’ (Reduction of Lotteries). For all p, q ∈ ∆ (X), λ ∈ (0, 1): λ 〈p〉 ⊕
(1− λ) 〈q〉 ∼ λ 〈p〉+ (1− λ) 〈q〉.

Axiom A5’ is a generalization of the standard Monotonicity axiom A5. It in-

corporates A5 as a special case when λ = 1. Moreover, it is not difficult to show

that, under the C-Reduction axiom A6, A5’ is implied by A5. Note that A5 and

A5’ are distinct forms of monotonicity. The former is the standard Monotonicity

axiom because it pertains to the domain of acts, while the latter requires some sort

of monotonicity on the domain of objective mixtures (lotteries) of acts. Axiom A6’

is a weakening of A6. Technically, axiom A6’ is used to identify a single continuous

and affine utility function representing preferences on the subdomain of constant

acts.

We note in passing that axiom A5’ can be replaced by the following condition:

(1
2
-A.5’) For all f, g ∈ F , p, q ∈ ∆ (X): if 1

2
〈f (s)〉 + 1

2
〈p〉 < 1

2
〈g (s)〉 + 1

2
〈q〉 for

all s ∈ S, then 1
2
f + 1

2
〈p〉 < 1

2
g + 1

2
〈q〉.

The condition (1
2
-A.5’) is a weaker version of axiom A5’. It can also be interpreted

as a strengthening of the uniform continuity axiom of Cerreia-Vioglio et al. (2008)

10For any subset z of a metric space, cld (z) represents its closure relative to the metric d.
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provided the mixture (with equal weights) of a lottery 〈r〉 with the certainty equiv-

alent of an act h in their framework is identified with 1
2
h + 1

2
〈r〉. Building on an

axiom along the lines of condition (1
2
-A.5’), we provide in section 7 an alternative

axiomatization of the variational preferences of Maccheroni et al. (2006) that does

not require us to explicitly mention their weak c-independence axiom.

4.1 Remarks

We are after a multi-utility representation where each utility is a concave niveloid.

The term niveloid was first introduced by Dolecki and Greco (1991, 1995). They

define a niveloid as an isotone and vertically invariant functional in the space of

(extended) real-valued functions. They also give an alternative characterization of

a niveloid which we are about to exploit in our representation. Maccheroni et al.

(2006) mention such characterization but do not exploit it as we do here. To be

more concrete, let I : RS → R, and consider the following property:

(P) For all ξ, ζ ∈ RS, I (ξ)− I (ζ) ≤ maxs∈S [ξ (s)− ζ (s)].

Corollary 1.3 of Dolecki and Greco (1995)11 shows that I is a niveloid (in its

original sense) iff I satisfies (P). Given a multi-utility representation U ⊆ C (F) of

< in which each U agrees with the same affine function u ∈ C (∆ (X)) on constant

acts, the following property of < implies that the preference on utility acts induced

by each U can be represented by a niveloid:

(P<) For all f, g ∈ F , there exists s∗ ∈ S such that 1
2
g+ 1

2
〈f (s∗)〉 < 1

2
f+ 1

2
〈g (s∗)〉.

Proposition 2. A1, A2, A4, A5’ and A6’ imply (P<).

4.2 Representation

Theorem 2. The following are equivalent:

(a) < satisfies A1-A4, A5’, A6’, and A7-A8.

(b) There exist u : ∆ (X)→ R continuous, affine, and nonconstant, and a class C
of lower semicontinuous (l.s.c.), grounded12, and convex functions c : ∆ (S)→

11Also Lemma 22 of Maccheroni, Marinacci, and Rustichini (2004) and Theorem 2.2 of Dolecki
and Greco (1991).

12That is, infµ∈∆(S) c (µ) = 0.
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R+ such that, for all P,Q ∈ ∆ (F),

P < Q

iff∫ {
min
µ∈∆

[∫
u(f)dµ+ c(µ)

]}
dP (f) ≥

∫ {
min
µ∈∆

[∫
u(f)dµ+ c(µ)

]}
dQ(f),

for all c ∈ C. In particular, for all f, g ∈ F ,

f < g iff min
µ∈∆

[∫
u (f) dµ+ c (µ)

]
≥ min

µ∈∆

[∫
u (g) dµ+ c (µ)

]
for all c ∈ C.

Moreover, given c ∈ C, there exists a unique minimal cost function c∗ :

∆ (S) → R+ such that Uc (f) = Uc∗ (f), for all f ∈ F , where Ue (f) :=

minµ∈∆

[∫
u (f) dµ+ e (µ)

]
, e = c, c∗, and c∗ (µ) := maxf∈F{Uc(f)−

∫
u(f)dµ},

for all µ ∈ ∆(S).

When each cost function c is identical to the indicator function (in the sense of

convex analysis) of some closed and convex subset M of the |S| − 1 dimensional

simplex, Theorem 2 provides a characterization of an incomplete multiple priors

preference. In this case, there exists a class M of closed and convex subsets of

∆ (S) such that C := {δM : M ∈M}, that is, for all c ∈ C, c (µ) = δM (µ) = 0 if

µ ∈M , and +∞ if µ /∈M .

We note that each representation (u, C) of a given preference < naturaly induces

another representation (u, C∗) of <, where C∗ contains the minimal cost functions

associated to each c ∈ C. When C contains only minimal cost functions, or, al-

ternatively, C = C∗, we say that (u, C) is a representation of < with minimal cost

functions. We can now use this concept to write a uniqueness result in the spirit of

Proposition 1 for Theorem 2.

Proposition 3. Let u, v ∈ C (∆ (X)) be affine and nonconstant, and C and E be

two classes of l.s.c., grounded and convex functions c, e : ∆ (S) → R+. The pairs

(u, C) and (v, E) are representations with minimal cost functions of < in the sense

of Theorem 2 iff there exists (α, β) ∈ R++ × R such that u = αv + β and

cl‖·‖∞ (coepi (C)) = αcl‖·‖∞ (coepi (E)) ,

where coepi (A) := {a : ∆ (S) → R+ : epi (a) ∈ co (epi (A))}, and epi (A) :=

{epi (a) : a ∈ A}, for A = C, E.13

13We denote by epi (a) the epigraph of the function a.
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5 Relation to Ambiguity Aversion

Let <1 and <2 be two preference relations on F . Following Ghirardato and Mari-

nacci (2002), we say that <2 is more ambiguity averse than <1 if they induce the

same preferences on ∆ (X) and, for all p ∈ ∆ (X), f ∈ F , if 〈p〉 <1 f , then 〈p〉 <2 f .

We take as benchmark for an ambiguity neutral preference relation the subjective

expected utility model of Anscombe and Aumann (1963). Again following Ghi-

rardato and Marinacci (2002), we say that a relation <⊆ F ×F is ambiguity averse

if it is more ambiguity averse than some Anscombe-Aumann preference <∗.14 In

other words, <⊆ ∆ (F) ×∆ (F) is ambiguity averse if it is more ambiguity averse

than <∗.

Here < stands for a preference relation on F such that its restriction to ∆ (X)

can be represented by a single utility u : ∆ (X)→ R that is continuous, nonconstant,

and affine. The first (and less general) version of our result says that the absence of

complete disagreement among the decision marker’s selves about the priors on the

state space is a necessary and sufficient condition for an incomplete multiple priors

preference relation to be ambiguity averse.

Proposition 4. Let < ⊆ F×F be an incomplete multiple priors preference relation

represented by the pair (u,M). Then < is ambiguity averse iff
⋂

M∈M
M 6= ∅.

In general, one can show that the incomplete variational preferences are also

ambiguity averse, so that Proposition 4 becomes a particular case of the following.

Proposition 5. Let < ⊆ F × F be an incomplete variational preference relation

represented by the pair (u, C). Then < is ambiguity averse iff
⋂
c∈C
{µ ∈ ∆(S) : c(µ) =

0} 6= ∅.

The nonempty intersection condition that characterizes ambiguity aversion in

our framework is related to Rigotti, Shannon, and Strzalecki’s (2008) notion of

subjective beliefs. For a given M ∈M, the priors in M are the subjective beliefs at

any constant act of one of the selves of the decision maker. For a fixed c ∈ C, the

set {µ ∈ ∆ (S) : c (µ) = 0} has the same interpretation. Therefore, the incomplete

preference relations above are ambiguity averse iff the selves of the decision maker

share at least one subjective belief at any constant act.

14Alternatively, we could have taken as benchmark the single-prior expected multi-utility model
of Ok et al. (2008), but since all relations considered here satisfy Partial Completeness, the re-
quirement that the benchmark relation induce the same risk preference as the relation under study
would force it to be of the Anscombe-Aumann type anyway.
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6 Towards a General Case

In this section we adapt the analysis of Cerreia-Vioglio et al. (2008) to the case of

incomplete preferences. We depart from the setup in the previous sections in the

sense that we do not work in an environment with lotteries of acts. The reason

is inherently technical. The analysis in Cerreia-Vioglio et al. (2008) is based on a

duality theory for monotone quasiconcave functions. The basic advantage of working

in an environment with lotteries of acts was the possibility of using the expected

multi-utility theory to derive a multi-utility representation with some particular

cardinal properties. Since quasiconcavity is an ordinal property, having an extra

layer of objective randomization in the present section would be of little use.

Formally, we consider a binary relation D on the domain of AA acts F , that

is, D⊆ F × F . Define the binary relation D•⊆ ∆ (X) × ∆ (X) by p D• q iff

〈p〉 D 〈q〉.The mixing operator + is defined so that, for all f, g ∈ F , λ ∈ [0, 1],

(λf + (1− λ) g) (s) (B) = λf (s) (B)+(1− λ) g (s) (B) for all s ∈ S, and B ∈ B (X).

Consider the following set of axioms on D .

Axiom B1 (Preference Relation). The binary relation D is a preorder.

Axiom B2 (Upper Semicontinuity). For all f ∈ F , the set {g ∈ F : g D f} is

closed.

Axiom B3 (Convexity). For all f ∈ F , the set {g ∈ F : g D f} is convex.

Axiom B4 (Monotonicity). For all f ∈ F : if 〈f (s)〉 D 〈g (s)〉 for all s ∈ S,

then f D g.

Axiom B5 (Partial Completeness). The binary relation D• is complete.

Axiom B6 (Weak Continuity). If (pn) , (qn) ∈ ∆ (X)∞ are such that pn D• qn

for all n, pn → p ∈ ∆ (X), and qn → q ∈ ∆ (X), then p D• q.

Axiom B7 (Risk Independence). For all p, q, r ∈ ∆ (X), λ ∈ (0, 1): if p D• q,

then λp+ (1− λ) r D• λq + (1− λ) r.

Axioms B5-B7 allow us to find an expected utility representation for the re-

lation D•. Axiom B4 is the same standard monotonicity property that was used

in the previous sections. Convexity of preferences is necessary to guarantee that
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we can represent D by a set of quasiconcave functions. In the complete case this

property is replaced by Uncertainty Aversion, but in the presence of Completeness,

Monotonicity and Continuity they are equivalent.

Finally, we ask that D satisfy only Upper Semicontinuity. As pointed out by

Evren and Ok (2007), it is fairly easy to represent an upper semicontinuous pref-

erence relation by a set of upper semicontinuous functions. However, finding a

continuous multi-utility representation is a much more demanding task. Indeed, we

do not know of conditions that make D representable by a set of continuous and

quasiconcave functions. In any event, the postulates above are enough to give us a

multiple selves version of the representation in Cerreia-Vioglio et al. (2008).

Theorem 3. The following are equivalent:

(a) < satisfies B1-B7.

(b) There exist u : ∆ (X) → R continuous and affine, and a collection G of upper

semicontinuous functions (u.s.c.) G : u (∆ (X))×∆ (S)→ R such that:

1. For all f, g ∈ F ,

f D g

iff

inf
µ∈∆(S)

G

(∫
u (f) dµ, µ

)
≥ inf

µ∈∆(S)
G

(∫
u (g) dµ, µ

)
for all G ∈ G.

2. For all µ ∈ ∆ (S), G ∈ G, G (·, µ) is increasing, and there exists H ∈ G
such that infµ∈∆(X) H (·, µ) is strictly increasing.

7 Discussion

7.1 Alternative axiomatization of variational preferences

The alternative axiomatization of the variational preferences of Maccheroni et al.

(2006) we propose is linked to the recent generalization of Cerreia-Vioglio et al.

(2008). Our goal in this alternative axiomatization is to show that one can dis-

pense with the weak c-independence axiom of Maccheroni et al. (2006), as we do in

our multiple selves version. All one needs is to replace it by independence on the

subdomain of constant acts plus a stronger monotonicity axiom.
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The setup is the same as in sections 2 and 3, except that the binary relation

3 is defined on the domain of Anscombe-Aumann acts F . The restriction of 3 to

the subdomain of constant acts is denoted by 3•. A utility index U : F → R that

represents 3 can be constructed provided the following axioms are satisfied.

Axiom VP1 (Nondegenerate Weak Order). The binary relation 3 is a com-

plete preorder, and �6= ∅.

Axiom VP2 (Monotonicity). For all f ∈ F : if f (s) 3•g (s) for all s ∈ S, then

f 3 g.

Axiom VP3 (Risk Independence). For all p, q, r ∈ ∆ (X), λ ∈ (0, 1): if p 3• q,

then λp+ (1− λ) r 3• λq + (1− λ) r.

Axiom VP4 (Continuity). If (fn) , (gn) ∈ F∞ are such that fn 3 qn for all n,

fn → f ∈ F , and gn → g ∈ F , then f 3 g.

It is not difficult to check that axioms VP1-VP4 imply the existence of a non-

constant and affine function u ∈ C (∆ (X)) representing 3•, the existence of a

certainty equivalent pf for every act f , and that the function U : F → R defined

by U (f) = u (pf ) represents 3. Assume w.l.o.g. that u (∆ (X)) = [−1, 1].

Identify each f ∈ F with the vector of utils u (f) ∈ [−1, 1]S, and define the

preorder v on [−1, 1]S by u (f) = ξf v ξg = u (g) iff f % g. Because IU , as defined

by IU (ξf ) = U (f), represents v, this establishes the following lemma.

Lemma 1. There exists a nonconstant, continuous and monotonic function IU :

[−1, 1]S → R that represents v. Moreover, IU (a1S) = a for all a ∈ [−1, 1].

Two additional axioms are needed. One is the standard Uncertainty Aversion

axiom, and the other is a strengthening of the “uniform continuity” axiom of Cerreia-

Vioglio et al. (2008).15 We refer to our last axiom as “1
2
-c-mixture monotonicity*”

because of its similarity with axiom A5’.

Axiom VP5 (Uncertainty Aversion). For all f, g ∈ F , λ ∈ (0, 1): if f ∼ g,

then λf + (1− λ) g 3 f .

15Cerreia-Vioglio et al. (2008) make use of an object (viz. the certainty equivalent of an act)
that is not a primitive of the model to write that axiom. We avoid this issue here by adding one
additional quantifier to our axiom VP6.
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Axiom VP6 (1
2
-C-Mixture Monotonicity*). For all f, g ∈ F , p, q ∈ ∆ (X):

if 1
2
f (s) + 1

2
p 3• 1

2
g (s) + 1

2
q for all s ∈ S, then 1

2
rf + 1

2
p 3• 1

2
rg + 1

2
q for any

rf , rg ∈ ∆ (X) such that f ∼ rf and g ∼ rg.

Axiom VP6 implies that IU is a niveloid, that is, for all ξf , ξg ∈ [−1, 1]S, I (ξf )−
I (ξg) ≤ maxs∈S [ξf (s)− ξg (s)]. To see this, note that all we need is to show that

the following property holds:

(P∗) For all f, g ∈ F , there exists s∗ ∈ S such that 1
2
pg + 1

2
f (s∗) 3• 1

2
pf + 1

2
g (s∗).

The proof that P∗ actually holds is an easy consequence of the representation

obtained so far and axiom VP6. Lemma 20 of Maccheroni et al. (2004) guarantees

that (using VP5) IU is in fact a concave niveloid. Therefore, using the same argument

as in the last paragraph of the proof of Theorem 2, we can show that 3 has a

variational preference representation. The converse of the statement can be checked

through standard arguments. Finally, note that one could have replaced VP6 by an

axiom similar to C-Mixture Monotonicity if we replace the weight 1
2

by some generic

λ ∈ (0, 1], and assume the statement of the axiom is true for all λ ∈ (0, 1].

7.2 Open questions

We are mainly interested in the incomplete preference relation defined on the do-

main of Anscombe-Aumann acts. It is not clear, though, how to provide a direct

axiomatization for preferences defined on such domain. Bewley (1986) and Ok et al.

(2008) provided axiomatizations on such domain. In their cases, independence holds,

and one can employ the technique of finding a set of utility functions by looking at

the linear functionals which support the Aumann cone at the origin. Without the

independence axiom, it is not clear how to provide a generalization of their theorems

using the original domain.

A better understanding of general ambiguity averse preferences is also missing

in this paper. Although we managed to sketch a representation in the format of

Cerreia-Vioglio et al. (2008) in section 6, we had to work with a multi-utility rep-

resentation with functions that were only upper semicontinuous. A closer multiple

selves generalization of the result in Cerreia-Vioglio et al. (2008) would obtain a

multi-utility representation U ⊆ C (F) and at the same time guarantee that each

U ∈ U was quasiconcave and continuous. The existence of the set U is not a problem

(e.g., Evren and Ok (2007)), but we were not able to show that each U ∈ U can be
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made quasiconcave and continuous at the same time.16,17

Finally, we conjecture that, provided we work with simple acts, our represen-

tations above (including section 6) would go through if we assume a general state

space S (not necessarily finite), and that the set of consequences is a convex and

compact metric space. We did not pursue such a path here because it would not

add much to our understanding of incomplete and ambiguity averse preferences.

A Appendix: Proofs

A.1 Proof of Theorem 1

The proof of the direction (b)⇒(a) is standard, and thus omitted. We now prove

(a)⇒(b).

Claim A.1.1. There exists a closed and convex set U ⊆ C (F) such that, for all

P,Q ∈ ∆ (F), P < Q iff
∫
F UdP ≥

∫
F UdQ for all U ∈ U .

Proof of Claim A.1.1. Because F is a compact metric space, ∆ (F) is endowed with

the topology of weak convergence, and < satisfies A1-A3, the Expected Multi-Utility

Theorem of Dubra et al. (2004) applies.

Claim A.1.2. There exists an affine, continuous and nonconstant function u :

∆ (X)→ R such that, for all p, q ∈ ∆ (X), p <• q iff u (p) ≥ u (q).

Proof of Claim A.1.2. The binary relation <• is a preorder on ∆ (X). One can

verify A3 implies that <• is closed-continuous. Moreover, it is complete by A4.

Now use A2, A3, and A6 to obtain that, for all p, q, r ∈ ∆ (X), λ ∈ (0, 1), p <• q

iff 〈p〉 < 〈q〉 iff λ 〈p〉 ⊕ (1− λ) 〈r〉 ∼ λ 〈p〉 + (1− λ) 〈r〉 < λ 〈q〉 + (1− λ) 〈r〉 ∼
λ 〈p〉 ⊕ (1− λ) 〈r〉 iff λp + (1− λ) r <• λq + (1− λ) r. Therefore, <• satisfies all

the assumptions of the Expected Utility Theorem, and it can be represented by an

affine and nonconstant function u ∈ C(∆ (X)). Moreover, using A5 and A8 one can

show u is nonconstant.18

16In particular, if the set U were compact and the function e : F → C (U) as defined by
e (f) (u) = u (f) were K-quasiconcave in the sense of Benoist, Borwein, and Popovici (2002), one
could have applied their theorem 3.1. We were not successful in establishing those two properties.

17A general problem is that convex incomplete preferences may admit multi-utility representa-
tions with some functions that fail to be quasiconcave.

18For any compact subset z of a normed vector space, C (z) stands for the set of continuous
functions on z, and is endowed with the sup norm.
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The set U may contain constant functions. They are not essential to the rep-

resentation and can be discarded at this point. Therefore, assume w.l.o.g. that U
contains only nonconstant functions. By axiom A8, U 6= ∅.

We can employ standard arguments to prove the existence of x, x ∈ X such

that 〈δx〉 �• 〈δx〉, and 〈δx〉 <• 〈p〉 <• 〈δx〉 for all p ∈ ∆ (X). Moreover, because

of C-Reduction, Continuity, Partial Completeness and Independence over lotteries,

it can also be shown that, for all p ∈ ∆ (X), there exists λp ∈ [0, 1] such that

〈p〉 ∼ λp 〈δx〉 ⊕ (1− λp) 〈δx〉. The implication 〈p〉 � 〈q〉 ⇒ λp > λq is also true.

Fix any U ∈ U , and use Monotonicity to show that U (〈δx〉) > U (〈δx〉). As a

consequence, whenever 〈p〉 � 〈q〉, it is false that U (〈p〉) = U (〈q〉). If this equality

were true, then using axiom A6 and Independence on the subdomain of constant

acts we obtain

U (〈p〉) = λp (U (〈δx〉)− U (〈δx〉)) + U (〈δx〉)

= λq (U (〈δx〉)− U (〈δx〉)) + U (〈δx〉) = U (〈q〉) ,

implying (λp − λq) (U (〈δx〉)− U (〈δx〉)) = 0. Because of U (〈δx〉) > U (〈δx〉), we

have λp = λq, a contradiction. Conclusion: for any fixed U ∈ U , U |∆(X) is affine and

represents <•.

Claim A.1.3. Each U ∈ U can be normalized so that U |∆(X) = u.

Proof of Claim A.1.3. Fix any U ∈ U . Because <• is complete, for all p, q ∈ ∆ (X),

p <• q iff U (〈p〉) ≥ U (〈q〉). Therefore, U |∆(X) and u are both affine representations

of <•. By cardinal uniqueness, we know there exists (αU , βU) ∈ R++ ×R such that

U |∆(X) = αUu+ βU .

Because ∆ (X) is weak* compact and u is continuous, there exist p, p ∈ ∆ (X)

such that u (p) ≥ u (p) ≥ u
(
p
)

for all p ∈ ∆ (X). By A5 and A8 it must be that p 6=
p. W.l.o.g. normalize u so that u (p) = 1 and u

(
p
)

= −1. Then u (∆ (X)) = [−1, 1]

(use Second Stage Independence for constant acts). Given p ∈ ∆ (X), it follows from

our normalization of U in the previous step that U (〈p〉) = u (p). Therefore, for all

f ∈ F , let ξf := u ◦ f ∈ [−1, 1]S. Let the functional IU : [−1, 1]S → R be defined by

IU (ξf ) = U (f), for all ξf ∈ [−1, 1]S (A5 guarantees that IU is well-defined).

Claim A.1.4. IU is positively homogeneous.

Proof of Claim A.1.4. Take any U ∈ U . Let p0 ∈ ∆ (X) be such that u (p0) = 0.

Let ξf ∈ [−1, 1]S, λ ∈ (0, 1). Axiom A6 implies λf⊕(1− λ) 〈p0〉 ∼ λf+(1− λ) 〈p0〉,
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and hence IU (λξf ) = U (λf + (1− λ) 〈p0〉) = λU (f) + (1− λ)U (〈p0〉) = λIU (ξf ).

If λ > 1 and λξf ∈ [−1, 1]S, then IU (ξf ) = IU
(

1
λ

(λξf )
)

iff λIU (ξf ) = IU (λξf )

(because 1
λ
< 1).

Using an argument similar to Gilboa and Schmeidler (1989), we extend IU to RS

(call this extension I∗U): for all ξ ∈ RS, let I∗U (ξ) = 1
λ
I∗U (λξ), for all λ > 0 such that

λξ ∈ [−1, 1]S. Standard arguments can be employed to show the extension does not

depend on which λ is used to shrink ξ towards the origin.

Claim A.1.5. I∗U is increasing, positively homogenous, superadditive, C-additive,

and normalized.

Proof of Claim A.1.5. Let ξ, ξ′ ∈ RS, and λ > 0 be such that λξ, λξ′ ∈ [−1, 1]S

and ξ ≥ ξ′. Then λξ ≥ λξ′, and by A5 we obtain that IU (λξ) = U (fλξ) ≥
U (fλξ′) = IU (λξ′), where fλξ and fλξ′ are the acts associated with λξ and λξ′, re-

spectively. Hence I∗U (ξ) ≥ I∗U (ξ′), and I∗U is increasing. It is not difficult to verify I∗U
is positively homogeneous. For any ξ, ξ′ ∈ RS, I∗U

(
1
2
ξ + 1

2
ξ′
)

= 1
λ
IU
(
λ
(

1
2
ξ + 1

2
ξ′
))

,

with λ > 0 being such that λ
(

1
2
ξ + 1

2
ξ′
)
, λ1

2
ξ, λ1

2
ξ′ ∈ [−1, 1]S. By A7 we obtain

IU
(

1
2
λξ + 1

2
λξ′
)
≥ 1

2
IU (λξ)+ 1

2
IU (λξ′), and hence I∗U

(
1
2
ξ + 1

2
ξ′
)
≥ 1

2
I∗U (ξ)+ 1

2
I∗U (ξ′).

Using positive homogeneity of I∗U we conclude that I∗U (ξ + ξ′) ≥ I∗U (ξ) + I∗U (ξ′),

and I∗U is superadditive. Now take ξ ∈ RS, a ∈ R, and let λ > 0 be such that

λ
(

1
2
ξ + 1

2
a
)
, λ1

2
ξ, λ1

2
a ∈ [−1, 1]S (with abuse of notation, we write a instead of

a1S). Using A6 we know that IU
(

1
2
λξ + 1

2
λa
)

= U
(

1
2
fλξ + 1

2
〈pλa〉

)
= 1

2
U (fλξ) +

1
2
U (〈pλa〉) = 1

2
IU (λξ) + 1

2
IU (λa), where u ◦ fλξ = λξ and u (pλa) = λa, with

fλξ, 〈pλa〉 ∈ F . Therefore, using positive homogeneity we obtain I∗U (ξ + a) =

I∗U (ξ) + I∗U (a), and I∗U is C-additive. It is clear that I∗U is normalized, that is,

I∗U (1) = 1.

Because, given any U ∈ U , I∗U satisfies all the properties proved in the previous

step, we can write I∗U (ξ) = minµ∈MU

∫
ξdµ for all ξ ∈ RS, where MU is a closed

and convex subset of the |S| − 1-dimensional simplex (see Gilboa and Schmeidler

(1989)). Therefore, for all f ∈ F , U (f) = I∗U (u ◦ f) = minµ∈MU

∫
u (f) dµ. Now

define M := {MU : U ∈ U}, and note that the pair (u,M) induces the desired

representation of < on ∆ (F).

A.2 Proof of Proposition 1

The proof of the “if” part is trivial and thus omitted. Let U ,V ⊆ C (F) be two

representations of < induced, respectively, by the pairs (u,M) and (v,N ). Because
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both u and v represent <•, from the cardinal uniqueness of such a representation

it follows that u is a positive affine transformation of v. Also note that, from the

uniqueness of the expected multi-utility representation of Dubra et al. (2004), it

follows that cl‖·‖∞ (cone (U) + {θ1F : θ ∈ R}) = cl‖·‖∞ (cone (V) + {θ1F : θ ∈ R}).19

Now we prove two claims, which remain true if we replace U by V in their statements.

Claim A.2.1. For any nonconstant U ∈ cone (U) + {θ1F : θ ∈ R}, it is possible

to find (Ui)
n
i=1 ∈ Un, ρ ∈ ∆({1, ..., n}), and (α, β) ∈ R++ × R such that, U(f) =

minµ∈Σn
i=1ρiMUi

∫
(αu(f) + β)dµ, for all f ∈ F , where, for all i ∈ {1, ..., n}, Ui (f) =

minµ∈MUi

∫
u (f) dµ, for all f ∈ F .

Proof of Claim A.2.1. By definition, there exist (Ui)
n
i=1 ∈ Un, (γi)

n
i=1 ∈ Rn

+\ {0},
and β ∈ R such that U =

∑n
i=1 γiUi + β, and then U = α

∑n
i=1 ρiUi + β, where

α =
∑n

i=1 γi and ρi = γi

α
for all i ∈ {1, ..., n}. Because every Ui can be written

as Ui (f) = −σMUi
(−u (f)), where σMUi

stands for the support function of MUi
, it

follows that U (f) = αminΣn
i=1ρiMUi

∫
u (f) dµ+β (see, e.g., section 5.19 of Aliprantis

and Border (1999)).

Claim A.2.2. For any nonconstant U ∈ cl‖·‖∞ (cone (U) + {θ1F : θ ∈ R}), there

exist (α, β) ∈ R++ × R, and M ∈ cldH
(co (M)) such that, for all f ∈ F , U (f) =

minµ∈M
∫

(αu (f) + β) dµ.

Proof of Claim A.2.2. We can take (Un) ∈ (cone (U) + {θ1F : θ ∈ R})∞, where each

Un is nonconstant w.l.o.g., and such that Un → U . For all n ∈ N, f ∈ F , Un (f) =

αn (−σMn (−u (f))) + βn. Let p, q ∈ ∆ (X) be such that u (p) > u (q). Because (Un)

also converges pointwise, limn [αnu (p) + βn] = U (〈p〉) and limn [αnu (q) + βn] =

U (〈q〉), which implies limn αn [u (p)− u (q)] = U (〈p〉) − U (〈q〉). Hence αn → α ≥
0, and indeed α > 0 because U is nonconstant. Therefore βn → β, for some

β ∈ R. Now use the fact M is compact to obtain a convergent subsequence (Mnk
),

and clearly Mnk
→dH

M ∈ cldH
(co (M)). Each σMn is a real-valued function on

u (∆ (X))S, which is compact. Then
(
σMnk

)
converges uniformly to σM .20

From claims A.2.1 and A.2.2, it follows that cl (cone (U) + {θ1F : θ ∈ R}) =

{U ∈ C (F) : U (f) = minµ∈M
∫

(αu (f) + β) dµ, α ≥ 0, β ∈ R, M ∈ cldH
(co (M))},

where a similar equality holds if U is replaced by V . Now use the uniqueness re-

sults of Dubra et al. (2004) and Gilboa and Schmeidler (1989) to conclude that

cldH
(co (M)) = cldH

(co (N )).

19For any subset z of a vector space, cone (z) is the smallest convex cone which contains z.
20This last part follows from Hirirart-Urruty and Lemarechal (2001, Corollary 3.3.8, p.156)
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A.3 Proof of Proposition 2

Claim A.3.1. Fix any f, g ∈ F . There exists s∗ ∈ S such that 1
2
〈g (s)〉 +

1
2
〈f (s∗)〉 < 1

2
〈f (s)〉+ 1

2
〈g (s∗)〉 for all s ∈ S.

Proof of Claim A.3.1. Assume by way of contradiction this is not the case. Then,

using Reduction of Lotteries and Partial Completeness, for any si ∈ S there exists

sj such that
1

2
〈g (sj)〉+

1

2
〈f (si)〉 ≺

1

2
〈f (sj)〉+

1

2
〈g (si)〉 .

Enumerate S = {s1, ..., sn} and let sn1 := s1. If k ≥ 1, let nk+1 be such that

1

2

〈
g
(
snk+1

)〉
+

1

2
〈f (snk

)〉 ≺ 1

2

〈
f
(
snk+1

)〉
+

1

2
〈g (snk

)〉 .

Let l > 1 be the smallest integer to satisfy snl+1
∈ {sn1 , ..., snl

}. Then snl+1
= snk

for some k ∈ {1, ..., l − 1}, and by the repeated application of A2, A4, and A6’, one

obtains

l+1∑
o=k+1

1

Nl,k

〈g (sno)〉+
l∑

o=k

1

Nl,k

〈f (sno)〉 ≺
l+1∑

o=k+1

1

Nl,k

〈f (sno)〉+
l∑

o=k

1

Nl,k

〈g (sno)〉 ,

where Nl,k := 2 (l + 1− k) and the summation symbol
∑

operates w.r.t. the mix-

ture operation “+”. This contradicts reflexivity as the lotteries of acts on both sides

are the same.

Now use A5’ to obtain 1
2
g + 1

2
〈f (s∗)〉 < 1

2
f + 1

2
〈g (s∗)〉.

A.4 Proof of Theorem 2

The proof of the direction (b)⇒(a) is standard, and thus omitted. We now prove

(a)⇒(b).

Use claims A.1.1, A.1.2 and A.1.3 to obtain a set U ⊆ C (F) such that, for all

P,Q ∈ ∆ (F), P < Q iff
∫
F UdP ≥

∫
F UdQ for all U ∈ U , and each U satisfies

U |∆(X) = u, for some affine u ∈ C (∆ (X)) with u (∆ (X)) = [−1, 1]. For all U , let

the functional IU : [−1, 1]S → R be defined as IU (ξf ) = U (f).

Take any U ∈ U , ξf , ξg ∈ [−1, 1]S. Using A1, A2, A4, A5’ and A6’, Proposition

2 implies the existence of s∗ ∈ S such that 1
2
IU (ξg) + 1

2
ξf (s∗) ≥ 1

2
IU (ξf ) + 1

2
ξg (s∗),

which is the case iff IU (ξf )−IU (ξg) ≤ maxs∈S [ξf (s)− ξg (s)]. Moreover, A7 implies

25



that for all f, g ∈ F , λ ∈ (0, 1), IU(λξf + (1− λ) ξg) ≥ λIU (ξf ) + (1− λ) IU (ξg).

Therefore IU is a concave niveloid. Moreover, for any a ∈ [−1, 1], we have, for some

p ∈ ∆ (X), IU (a) = U (〈p〉) = u (〈p〉) = a. Hence IU is also normalized.

By putting together Lemma 24, Corollary 28 and Remark 3 of Maccheroni et al.

(2004), we obtain that, for all U ∈ U , there exists a l.s.c., grounded and convex

function cU : ∆ → R+ such that, for all ξf , IU (ξf ) = minµ∈∆

[∫
ξfdµ+ cU (µ)

]
.

Define C := {cU : U ∈ U}, and note that the pair (u, C) yields the desired repre-

sentation of < on ∆ (F). The proof that, for each cU , there exists a minimal c∗U
defined as c∗U (µ) := −minf∈F

{∫
u (f) dµ− U (f)

}
is a consequence of Lemma 27

of Maccheroni et al. (2004).

A.5 Proof of Proposition 3

The proof of the “if” part is trivial and thus omitted. Let U ,V ⊆ C (F) be two

representations of < induced, respectively, by the pairs (u, C) and (v, E) with mininal

cost functions. Therefore, U |∆(X) = u and V |∆(X) = v for all (U, V ) ∈ U × V . (In

this case we say that U and V are normalized.)

Claim A.5.1. For any nonconstant V ∈ cone (V) + {θ1F : θ ∈ R}, there exist(
α, β

)
∈ R++ × R and a nonconstant V ∈ co (V) such that V = αV + β.

Proof of Claim A.5.1. For some n ∈ N, there exist λ ∈ Rn
+\ {0}, V1, ..., Vn ∈ V , and

θ ∈ R such that V =
∑n

i=1 λiVi + θ. Now define α :=
∑n

i=1 λi > 0 and β := θ, and

note that V = αV + β, where V := 1
α
V ∈ co (V) is nonconstant.

Claim A.5.2. For any nonconstant V ∈ cl‖·‖∞ (cone (V) + {θ1F : θ ∈ R}), there

exist
(
α, β

)
∈ R++×R and a nonconstant V ∈ cl‖·‖∞ (co (V)) such that V = αV +β.

Proof of Claim A.5.2. Let (Vn) ∈ (cone (V) + {θ1F : θ ∈ R})∞ be such that Vn →
V . Using Claim 1, each Vn = αnV n + βn, for some

(
αn, βn

)
∈ R++ × R and

V n ∈ co (V). Let p, q ∈ ∆ (X) be such v (p) > v (q), and note that Vn → V implies

that Vn (〈p〉)−Vn (〈q〉)→ V (〈p〉)−V (〈q〉), which is equivalent to αn [v (p)− v (q)]→
V (〈p〉) − V (〈q〉). Therefore, there exists α ≥ 0 such that αn → α. Because V is

nonconstant, we have α > 0. Using the fact that αnv (p)+βn → V (〈p〉), we conclude

that βn → β, for some β ∈ R. Conclusion: V = limn

(
αnV n + βn

)
= αV + β, and

V is nonconstant.

Claim A.5.3. If U ,V ⊆ C (F) are normalized, then they represent < iff there exists

(α, β) ∈ R++ × R such that cl‖·‖∞ (co (U)) = α
[
cl‖·‖∞ (co ( V))

]
+ β.
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Proof of Claim A.5.3. The proof of the “if” part is trivial and thus omitted. Now

assume that U ,V ⊆ C (F) are normalized representations of <. It follows from the

uniqueness theorem of Dubra et al. (2004) that cl‖·‖∞ (cone (U) + {θ1F : θ ∈ R}) =

cl‖·‖∞ (cone (V) + {θ1F : θ ∈ R}). The (cardinal) uniqueness of the standard Ex-

pected Utility theorem implies the existence of (α, β) ∈ R++ × R such that, for

all (U, V ) ∈ U × V , U |∆(X) = αV |∆(X) + β. Pick any U ∈ cl‖·‖∞ (co (U)), so that

U ∈ cl‖·‖∞ (cone (V) + {θ1F : θ ∈ R}). Since U is normalized and < is nontriv-

ial and monotonic, U is nonconstant. Claim 2 implies the existence of
(
α, β

)
∈

R++ × R and a nonconstant V ∈ cl‖·‖∞ (co (V)) such that U = αV + β. Because

U |∆(X) = αV |∆(X) + β, we obtain α = α and β = β. Therefore cl‖·‖∞ (co (U)) ⊆
α
[
cl‖·‖∞ (co ( V))

]
+ β. A symmetric argument can be employed to show that

α
[
cl‖·‖∞ (co ( V))

]
+ β ⊆ cl‖·‖∞ (co (U)).

For each c ∈ C, define the function Uc by Uc (f) := minµ∈∆(S)

[∫
u (f) dµ+ c (µ)

]
,

for all f ∈ F . Similarly define functions Ve. We note that the collections U := {Uc :

c ∈ C} and V := {Ve : e ∈ E} are both normalized expected multi-utility represen-

tations of <. By Claim 3, there exists (α, β) ∈ R++ × R such that cl‖·‖∞ (co (U)) =

αcl‖·‖∞ (co (V)) + β.

Claim A.5.4. co (U) = {Uc : epi (c) ∈ coepi (C)}, and each cost function c ∈ coepi (C)
is minimal for some Uc ∈ co (U).

Proof of Claim A.5.4. Let (a, b) :=
(
minp∈∆(X) u (p) ,maxp∈∆(X) u (p)

)
. For each c ∈

C, define Ic : [a, b]S → R by

Ic (ξ) = min
µ∈∆(S)

[∫
ξdµ+ c (µ)

]
,

for all ξ ∈ [a, b]. Let I := {Ic : c ∈ C}. We note that in order to prove the claim it is

enough to show that co (I) = {Ic : c ∈ epi (c)}. Now, fix I, J ∈ I and let cI , cJ ∈ C
be the cost functions in the definition of I and J . Put L := λI + (1− λ) J , for some

λ ∈ (0, 1), and define cL such that

cL (µ) := max
ξ∈[a,b]S

[
L (ξ)−

∫
ξdµ

]
.

Lemma 27 of Maccheroni et al. (2004) shows that cL is the minimal function satis-

fying

L (ξ) = min
µ∈∆(S)

[∫
ξdµ+ cL (µ)

]
, for all ξ ∈ [a, b]S .
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Let cλ be the function that satisfies epi (cλ) = λepi (cI) + (1− λ) epi (cJ). We want

to prove that cL = cλ.

Following Maccheroni et al. (2004), for A = I, J, L, we extend A to [a, b]S + R
using vertical invariance of A. Call this extension Ã. Now, we further extend A to

RS by

Â (ξ) = max
(
κ ∈ R : ∃ξ̃ ∈ [a, b]S + R with ξ − κ ≥ ξ̃ and Ã

(
ξ̃
)
≥ 0
)
.

Lemma 24 of Maccheroni et al. (2004) shows that Â is the minimum niveloid that

extends A to RS. For each ξ ∈ RS, define ξ̃ such that

ξ̃s := min

{
ξs,min

s∈S
{ξs}+ (b− a)

}
.

Note that ξ ≥ ξ̃ and that ξ̃ ∈ [a, b]S + R. Moreover, ξ − Ã(ξ̃) ≥ ξ̃ − Ã(ξ̃) and

Ã(ξ̃−Ã(ξ̃)) = A(ξ̃)−A(ξ̃) = 0. For any ε > 0 and ζ ∈ [a, b]S+R, if ξ−Ã(ξ̃)−ε ≥ ζ,

then ξ̃ − Ã(ξ̃) ≥ ζ. Therefore Â (ξ) = Ã(ξ̃), for A = I, J, L.

Now we show that L̂ = λÎ + (1− λ) Ĵ . First note that for all (ξ, κ) ∈ [a, b]S×R,

L̃ (ξ + κ) = L (ξ) + κ

= λ (I (ξ) + κ) + (1− λ) (J (ξ) + κ)

= λĨ (ξ + κ) + (1− λ) J̃ (ξ + κ) .

Using the fact Â (ξ) = Ã(ξ̃) for all ξ ∈ [a, b]S, A = I, J, L, we obtain

L̂ (ξ) = L̃
(
ξ̃
)

= λĨ
(
ξ̃
)

+ (1− λ) J̃
(
ξ̃
)

= λÎ (ξ) + (1− λ) Ĵ (ξ) .

From Lemma 27 of Maccheroni et al. (2004), we know that cA, for A = I, J, L is

the unique l.s.c. and convex function such that

Â (ξ) = min
µ∈∆(S)

[∫
ξdµ+ cA (µ)

]
, for all ξ ∈ RS.

28



It can be easily checked that

λÎ (ξ) + (1− λ) Ĵ (ξ) = min
µ∈∆(S)

[∫
ξdµ+ cλ (µ)

]
, for all ξ ∈ RS.

Conclusion: cL = cλ. A simple inductive argument completes the proof of the

claim.

Claim A.5.5. cl‖·‖∞ (co (U)) =
{
Uc : c ∈ cl‖·‖∞ (coepi (C))

}
, and each cost function

c ∈ cl‖·‖∞ (coepi (C)) is minimal for some Uc ∈ cl‖·‖∞ (co (U)).

Proof of Claim A.5.5. By the previous claim, co (U) = {Uc : c ∈ coepi (C)} and all

c ∈ coepi (C) are minimal, so it is enough to show that for any sequence ( cn) ∈
(coepi (C))∞, cn → c if and only if Ucn → Uc and c is the minimal cost function

associated to Uc. Suppose that Ucn → Uc, where c is the minimal cost function

associated to Uc. Fix ε > 0. There exists N ∈ N such that, for all f ∈ F ,

|Ucn (f)− Uc (f)| < ε for all n > N . Each e ∈ {c} ∪ {cn}∞n=1 satisfies:

e (µ) = max
f∈F

[
Ue (f)−

∫
u (f) dµ

]
.

Fix some µ ∈ ∆ (S), and let fc and {fn}∞n=1 be the maximizers associated to c (µ)

and {cn}∞n=1, respectively, in the expression above. We note that, for all n > N ,

Uc (fc)−Ucn (fc) < ε. This implies that, for all n > N , cn (µ) > c (µ)− ε. Similarly,

for all n > N , Ucn (fn) − Uc (fn) < ε. Again, this implies that, for all n > N ,

c (µ) > cn (µ) − ε. We conclude that, for all n > N , |c (µ)− cn (µ)| < ε. Since µ

is arbitrary, (cn) converges uniformly to c. We can perform a similar analysis using

the fact that for each c,

Uc (f) = min
µ∈∆(S)

[∫
u (f) dµ− c (µ)

]
to show that uniform convergence of the functions (cn) implies uniform convergence

of the functions Ucn . By what we have proved before this will, in turn, imply that

c is minimal, which completes the proof of the claim.

To complete the proof of the proposition, we simply observe that for any U

with variational representation (u, c), for all (α, β) ∈ R++ × R, the variational

representation of αU + β is (αu+ β, αc).
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A.6 Proof of Proposition 5

Assume that there exists some µ∗ ∈
⋂
c∈C

Mc, where Mc := {µ ∈ ∆ (S) : c (µ) = 0}. If

(p, f) ∈ ∆ (X)×F is such that u (p) ≥
∫
u (f) dµ∗, then u (p) ≥

∫
u (f) dµ∗+c (µ∗) ≥

minµ∈∆(S)

{∫
u (f) dµ+ c (µ)

}
for all c ∈ C.

Now suppose that
⋂
c∈C

Mc = ∅, and assume w.l.o.g. that u (∆ (X)) = [−1, 1]. For

all ε > 0, define M ε
c := {µ ∈ ∆ (S) : c (µ) ≤ ε}.

Claim A.6.1. If
⋂
c∈C

Mc = ∅, then there exists ε > 0 such that
⋂
c∈C

M ε
c = ∅.

Proof of Claim A.6.1. Suppose that
⋂
c∈C

M ε
c 6= ∅ for all ε > 0. Then for all n ∈ N

there exists µn ∈ ∆ (S) such that c (µn) ≤ 1
n

for all c ∈ C. Use compactness of ∆ (S)

to extract a subsequence (µnk
) such that µnk

→ µ̃ for some µ̃ ∈ ∆ (S). For any fixed

c ∈ C we use the l.s.c. of c to obtain c (µ̃) ≤ lim inf c (µnk
) ≤ lim inf 1

nk
= 0, thus

contradicting
⋂
c∈C

Mc = ∅.

From the previous claim, we know there exists some ε > 0 such that
⋂
c∈C

M ε
c = ∅.

Fix any µ∗ and note that µ∗ /∈M ε
ĉ for some ĉ ∈ C. Because ĉ is convex and l.s.c., the

nonempty set M ε
ĉ is closed and convex. Using the Separating Hyperplane Theorem

we can find uf ∈ [−1, 1]S such that
∫
ufdµ

∗ <
∫
ufdµ̂ for all µ̂ ∈ M ε

ĉ . We can also

assume w.l.o.g. that
∣∣∫ ufdµ∣∣ < ε

3
for all µ ∈ ∆ (S).

Now pick p ∈ ∆ (X) such that u (p) =
∫
ufdµ

∗ and note that, by construction,

u (p) <
∫
ufdµ̂ + c (µ̂) for all µ̂ ∈ M ε

ĉ . Hence u (p) < minµ∈Mε
ĉ

{∫
ufdµ+ c (µ)

}
,

where in the last inequality we used the fact M ε
ĉ is compact. For all µ ∈ ∆ (X) \M ε

ĉ

we have u (p) < ε
3
< 2ε

3
<
∫
ufdµ+ c (µ). As a consequence, since ∆ (S) is compact,

we must have u (p) < minµ∈∆(S)

{∫
ufdµ+ c (µ)

}
. Let f ∈ F be such that u (f) =

uf , and <∗ be the Anscombe-Aumann preference relation induced by the pair (u, µ∗).

Therefore 〈p〉 ∼∗ f , but ¬ 〈p〉 < f . Because µ∗ was arbitrary, this implies < is not

ambiguity averse.

A.7 Proof of Theorem 3

Claim A.7.1. Let a, b ∈ R, b > a, and V : [a, b]S → R. The following are equivalent:

(i) V is increasing, u.s.c., and quasiconcave.
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(ii) There exists an u.s.c. function G : [a, b] × ∆ (S) → R such that, for all ξ ∈
[a, b]S,

V (ξ) = inf
µ∈∆(S)

G

(∫
ξdµ, µ

)
,

and, for all µ ∈ ∆ (S), G (·, µ) is increasing.

Proof of Claim A.7.1. (i)⇒(ii). Define Ṽ : RS → R∪{−∞} by Ṽ (ξ) := sup{V (ζ) :

ζ ∈ [a, b]S and ζ ≤ ξ}. It can be checked that Ṽ is an increasing, u.s.c., and

quasiconcave extension of V . Now define the function Ṽ : R×∆ (S)→ R ∪ {−∞}
as G̃ (r, µ) := supξ∈RS{Ṽ (ξ) :

∫
ξdµ ≤ r}. By construction, for any fixed ξ ∈ RS,

Ṽ (ξ) ≤ G̃
(∫

ξdµ, µ
)

for all µ ∈ ∆ (S); hence Ṽ (ξ) ≤ infµ∈∆(S) G̃
(∫

ξdµ, µ
)
. If

{ζ ∈ RS : Ṽ (ζ) ≥ Ṽ (ξ)} = ∅, then infµ∈∆(S) G̃
(∫

ξdµ, µ
)
≤ Ṽ (ξ). Otherwise, there

exists ε̄ > 0 such that Γε := {ζ ∈ RS : Ṽ (ζ) ≥ Ṽ (ξ) + ε} 6= ∅ for all ε ∈ (0, ε̄].

Because Γε is closed and convex, and ξ /∈ Γε, by the Separating Hyperplane Theorem

there exists q ∈ RS \ {0} such that
∫
ζdq >

∫
ξdq for all ζ ∈ Γε. Since Ṽ is

increasing, q ∈ RS
+ \ {0}. Therefore, it is w.l.o.g. to take ν ∈ ∆ (S) such that∫

ζdν >
∫
ξdν for all ζ ∈ Γε. This implies that G̃

(∫
ξdν, ν

)
≤ Ṽ (ξ) + ε and,

consequently, infµ∈∆(S) G̃
(∫

ξdµ, µ
)
≤ Ṽ (ξ) + ε. Since ε ∈ (0, ε̄] was arbitrary, we

obtain infµ∈∆(S) G̃
(∫

ξdµ, µ
)
≤ Ṽ (ξ). Conclusion: Ṽ (ξ) = infµ∈∆(S) G̃

(∫
ξdµ, µ

)
for all ξ ∈ RS.

Now let α ∈ R be such that A := {(r, µ) ∈ R × ∆ (S) : G̃ (r, µ) ≥ α} 6= ∅.
Let (rn, µn) ∈ A∞ satisfy (rn, µn) → (r, µ). For all n, pick ξn ∈ [a, b]S such that∫
ξndµn ≤ rn and Ṽ (ξn) ≥ Ṽ (ζ). The existence of ξn follows from the way Ṽ and

G̃ were constructed. Note that, we can assume w.l.o.g. that ξn → ξ, by passing to

a subsequence if necessary. Clearly,
∫
ξdµ ≤ r, so that G̃ (r, µ) ≥ Ṽ (ξ). Because

Ṽ (ξn) ≥ α for all n, and Ṽ is u.s.c., we conclude that Ṽ (ξ) ≥ α, implying that

G̃ (r, µ) ≥ α. Therefore G̃ is u.s.c.. It is also increasing in the first argument, as it can

be easily checked. Put G := G̃|[a,b]×∆(S) and note that V (ξ) = infµ∈∆(S) G
(∫

ξdµ, µ
)

for all ξ ∈ [a, b]S.

(ii)⇒(i). Let ξ, ζ ∈ [a, b]S be such that ξ ≥ ζ. For all µ ∈ ∆ (S), V (ζ) ≤
G
(∫

ζdµ, µ
)
≤ G

(∫
ξdµ, µ

)
, where the last inequality follows from the fact G (·, µ)

is increasing. Therefore V (ζ) ≤ infµ∈∆(S) G
(∫

ξdµ, µ
)

= V (ξ), and V must be

increasing. Now let λ ∈ (0, 1) and ξ and ζ be any two elements in [a, b]S. For all
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µ ∈ ∆ (S),

G

(
λ

∫
ξdµ + (1− λ)

∫
ζdµ, µ

)
≥ min

{
G

(∫
ξdµ, µ

)
, G

(∫
ζdµ, µ

)}
≥ min

{
inf

µ∈∆(S)
G

(∫
ξdµ, µ

)
, inf
µ∈∆(S)

G

(∫
ζdµ, µ

)}
.

Hence V (λξ+(1−λ)ζ) = infµ∈∆(S) G(λ
∫
ξdµ+(1−λ)

∫
ζdµ, µ) ≥ min{V (ξ) , V (ζ)},

implying V is quasiconcave. Finally, let α ∈ R be such that B := {ζ ∈ [a, b]S :

V (ζ) ≥ α} 6= ∅, and take a sequence (ξn) ∈ B∞ such that ξn → ξ. By construction,

G(
∫
ξndµ, µ) ≥ V (ξn) ≥ α for all n ∈ N, for all µ ∈ ∆(S). Because G is u.s.c., we

must have G
(∫

ξdµ, µ
)
≥ α, and hence V (ξ) ≥ α.

Claim A.7.2. Every upper semicontinuous and convex preorder can be represented

by a set of upper semicontinuous and quasiconcave utility functions.

Proof of Claim A.7.2. Adapt the arguments of Evren and Ok (2007) and Kochov

(2007). (The representation is induced by the set of indicator functions of the upper

contour sets of all elements on the domain of preferences.)

(a)⇒(b). Standard arguments can be employed to show the existence of a con-

tinuous and affine function u : ∆ (X)→ R such that, for all p, q ∈ ∆ (X), p D• q iff

u (p) ≥ u (q). Now every act f ∈ F can mapped into a vector of utils ξf := u (f) ∈
u (∆ (X))S. We can also define a binary relation %⊆ u (∆ (X))S × u (∆ (X))S so

that, for all ξf , ξg ∈ u (∆ (X))S, ξf % ξg iff f D g. The monotonicity axiom B4

guarantees % is well-defined. It is easy to see that % is a monotonic preorder. Now

take any sequence (ξfn) in u (∆ (X))S such that ξfn % ξg for all n ∈ N, some g ∈ F
, and ξfn → ξ. Because F is a compact metric space, we may assume, by passing

to a subsequence if necessary, that fn → f , for some f ∈ F . As a consequence,

using the continuity axiom B2, we conclude ξ = ξf % ξg. Therefore % is upper

semicontinuous. It is a standard exercise to show % is also convex. Now apply claim

A.7.2 to find a set V of u.s.c. and quasiconcave function such that, for all f, g ∈ F ,

f D g iff ξf % ξg iff V (ξf ) ≥ V (ξg) for all V ∈ V . Monotonicity of % implies each

V ∈ V must be increasing.

For all c ∈ u (∆ (X)), let Vc denote the function in V which takes the value 1

when evaluated at ξf with ξf % c1S, and 0 otherwise. Consider the enumeration

{d1, d2, ...} of the set D := u (∆ (X))∩Q, and define the function W :=
∑∞

i=1
1
2iVdi

.
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Because W is the uniform limit of a sequence of u.s.c. functions, it is itself a u.s.c.

function. Now we show W is quasiconcave. For all j ∈ N, define Wj :=
∑j

i=1
1
2iVdi

and εj :=
∑∞

i=j+1
1
2i > 0. Let α ∈ (0, 1], and f, g ∈ F be such that W (ξf ) ≥ α and

W (ξg) ≥ α. Note Wj (ξf ) ≥ α − εj and Wj (ξg) ≥ α − εj. For some j such that

α − εj > 0, put d∗j :=
{
d ∈ {d1, ..., dj} :

∑j
i=1

1
2iVdi

(d) ≥ α− εj
}

. By construction,

d∗j is well-defined. Because Wj (ξf ) ≥ α− εj, we must have ξf % d∗j1S, for otherwise

¬ξf % d∗j1S implies Vd (f) = 0 for all d ≥ d∗j . As a consequence, in order to

attain Wj (ξf ) ≥ α− εj, we must have
∑j

i=1
1
2iVdi

(d∗) ≥ α− εj for some d∗ < d∗j , a

contradiction with the definition of d∗j . A similar argument can be employed to show

ξg % d∗j1S. Because % is convex, for all λ ∈ (0, 1), we have λξf + (1− λ) ξf % d∗j1S,

which in turn implies W (λξf + (1− λ) ξf ) ≥ W
(
d∗j
)
≥ α − εj +

∑∞
i=j+1

1
2iVdi

(
d∗j
)
.

If we let j →∞, we obtain W (λξf + (1− λ) ξf ) ≥ α. Therefore, W is quasiconcave.

Also note that, for all c, d ∈ u (∆ (X)), c ≥ d iff W (c) ≥ W (d). Moreover, we can

consider V ∪{W} instead of V , and infµ∈∆(X) H (·, µ) is strictly increasing for all

µ ∈ ∆ (S), where H : u (∆ (X)) × ∆ (S) → R is defined as in the proof of claim

A.7.1.

(b)⇒(a). First note that, for all p, q ∈ ∆ (X), p D• q iff u (p) ≥ u (q). Clearly

u(p) ≥ u(q) impliesG(u(p), µ) ≥ G(u(q), µ). As a consequence infµ∈∆(S) G(u(p)), µ ≥
infµ∈∆(S) G(u(q), µ) and p D• q. Now assume u(p) > u(q), then infµ∈∆(S) H(u(p), µ) >

infµ∈∆(S) H(u(q), µ), and infµ∈∆(S) G(u(p), µ) ≥ infµ∈∆(S) G(u(q), µ) for all other

G ∈ G. This implies p B q. Therefore, u is an expected utility representation

of D•, and D• must satisfy B5-B7. Second, let (fn) ∈ F∞ be such that fn < g ∈ F
for all n ∈ N. Fix any G ∈ G, and note that infµ∈∆(S) G

(∫
u (fn) dµ, µ

)
≥

infµ∈∆(S) G
(∫

u (g) dµ, µ
)
. As the pointwise infimum of a family of u.s.c. functions,

ξ 7→ infµ∈∆(S) G
(∫

ξdµ, µ
)

is itself a continuous function. Since u(fn) → u(f), we

obtain

inf
µ∈∆(S)

G

(∫
u (f) dµ, µ

)
= lim

n
inf

µ∈∆(S)
G

(∫
u(fn)dµ, µ

)
≥ inf

µ∈∆(S)
G

(∫
u (g) dµ, µ

)
).

Therefore, < is u.s.c. Third, let f, g < h, λ ∈ (0, 1), and G ∈ G. Because G (·, µ)

is increasing and λu (f) + (1− λ)u (g) ≥ min {u (f) , u (g)}, one obtains, for all
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µ ∈ ∆ (S),

G

(∫
u(λf + (1− λ) g)dµ, µ

)
≥ min{G

(∫
u (f) dµ, µ

)
, G

(∫
u (g) dµ, µ

)
}

≥ min{ inf
µ∈∆(S)

G

(∫
u (f) dµ, µ

)
, inf
µ∈∆(S)

G

(∫
u (g) dµ, µ

)
}

≥ inf
µ∈∆(S)

G

(∫
u (h) dµ, µ

)
.

Hence infµ∈∆(S) G
(∫

u (λf + (1− λ) g) dµ, µ
)
≥ infµ∈∆(S) G

(∫
u (h) dµ, µ

)
. Since

G ∈ G was arbitrary, then λf + (1− λ) g < h, and < must be convex. Finally,

let f, g ∈ F be such that f (s) D• g (s) for all s ∈ S. Therefore
∫
u (f) dµ ≥∫

u (g) dµ for all µ ∈ ∆ (S) and, since G (·, µ) is an increasing function, we obtain

that infµ∈∆(S) G
(∫

u (f) dµ, µ
)
≥ infµ∈∆(S) G

(∫
u (g) dµ, µ

)
for all G ∈ G.

References

Aliprantis, C. and K. Border (1999). Infinite Dimensional Analysis (2nd ed.).

Springer.

Anscombe, F. and R. Aumann (1963). A definition of subjective probability. The

Annals of Mathematical Statistics 34, 199–205.

Aumann, R. (1962). Utility theory without the completeness axiom. Economet-

rica 30, 445–462.

Benoist, J., J. Borwein, and N. Popovici (2002). A characterization of quasiconvex

vector-valued functions. Proceedings of the American Mathematical Society 131,

1109–1113.

Bewley, T. (1986). Knightian decision theory: Part i. Cowles Foundation Discussion

Papers .

Camerer, C. (1995). Individual decision making. In J. Kagel and A. Roth (Eds.), The

Handbook of Experimental Economics, pp. 587–703. Princeton University Press.

Cerreia-Vioglio, S., F. Maccheroni, M. Marinacci, and L. Montrucchio (2008). Un-

certainty averse preferences. manuscript.

34



Dolecki, S. and G. Greco (1991). Niveloides: fonctionnelles isotones commutant avec

l’addition de constantes finies. Comptes Rendus de l’Academie des Sciences. Serie

I. Mathematique 312, 113–118.

Dolecki, S. and G. Greco (1995). Niveloids. Topological Methods in Nonlinear

Analysis 5, 1–22.

Dubra, J., F. Maccheroni, and E. Ok (2004). Expected utility theory without the

completeness axiom. Journal of Economic Theory 115, 118–133.

Eliaz, K. and E. Ok (2006). Indifference or indecisiveness? choice theoretic founda-

tions of incomplete preferences. Games and Economic Behavior 56, 61–86.

Ellsberg, D. (1961). Risk, ambiguity, and the savage axioms. The Quarterly Journal

of Economics 75, 643–669.

Ellsberg, D. (2001). Risk, Ambiguity and Decisions. Gerland Publishing.

Epstein, L., M. Marinacci, and K. Seo (2007). Coarse contingencies and ambiguity.

Theoretical Economics 2, 355–394.

Evren, O. and E. Ok (2007). On the multi-utility representation of preference rela-

tions. manuscript.

Faro, J. (2008). General ambiguity index for bewley preferences. manuscript.

Ghirardato, P. and M. Marinacci (2002). Ambiguity made precise: A comparative

foundation. Journal of Economic Theory 102, 251–289.

Gilboa, I. and D. Schmeidler (1989). Maxmin expected utility with non-unique

prior. Journal of Mathematical Economics 18, 141–153.

Halevy, Y. (2007). Ellsberg revisited: an experimental study. Econometrica 75,

503–536.

Hirirart-Urruty, J.-B. and C. Lemarechal (2001). Fundamentals of convex analysis.

Springer.

Klibanoff, P., M. Marinacci, and S. Mukerji (2005). A smooth model of decision

making under ambiguity. Econometrica 73, 1849–1892.

Kochov, A. (2007). Subjective states without the completeness axiom. manuscript.

35



Maccheroni, F., M. Marinacci, and A. Rustichini (2004). Ambiguity aversion, malev-

olent nature, and the variational representation of preferences. Working Paper.

Maccheroni, F., M. Marinacci, and A. Rustichini (2006). Ambiguity aversion, ro-

bustness, and the variational representation of preferences. Econometrica 74,

1447–1498.

Mandler, M. (2005). Incomplete preferences and rational intransitivity of choice.

Games and Economic Behavior 50, 255–277.

Nau, R. (2006). Uncertainty aversion with second-order utilities and probabilities.

Management Science 52, 136–145.

Ok, E., P. Ortoleva, and G. Riella (2008). Incomplete preferences under uncertainty:

Indecisiveness in beliefs vs. tastes. manuscript.

Rigotti, L., C. Shannon, and T. Strzalecki (2008). Subjective beliefs and ex-ante

trade. Econometrica 76, 1167–1190.

Savage, L. (1972). The Foundations of Statistics. Dover.

Seo, K. (2007). Ambiguity and second-order belief. manuscript.

36



 

 37 

Banco Central do Brasil 
 
 

Trabalhos para Discussão 
Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, 

no endereço: http://www.bc.gov.br 
 

Working Paper Series 
Working Papers in PDF format can be downloaded from: http://www.bc.gov.br 

 
 
 

 
1 Implementing Inflation Targeting in Brazil 

Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa 
Werlang 
 

Jul/2000 

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no 
Banco Central do Brasil 
Eduardo Lundberg 
 
Monetary Policy and Banking Supervision Functions on the Central 
Bank 
Eduardo Lundberg 
 

Jul/2000 
 
 
 

Jul/2000 

3 Private Sector Participation: a Theoretical Justification of the Brazilian 
Position 
Sérgio Ribeiro da Costa Werlang 
 

Jul/2000 

4 An Information Theory Approach to the Aggregation of Log-Linear 
Models 
Pedro H. Albuquerque 
 

Jul/2000 

5 The Pass-Through from Depreciation to Inflation: a Panel Study 
Ilan Goldfajn and  Sérgio Ribeiro da Costa Werlang 
 

Jul/2000 

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks 
José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira 
 

Jul/2000 

7 Leading Indicators of Inflation for Brazil 
Marcelle Chauvet 
 

Sep/2000 

8 The Correlation Matrix of the Brazilian Central Bank’s Standard Model 
for Interest Rate Market Risk 
José Alvaro Rodrigues Neto 
 

Sep/2000 

9 Estimating Exchange Market Pressure and Intervention Activity 
Emanuel-Werner Kohlscheen 
 

Nov/2000 

10 Análise do Financiamento Externo a uma Pequena Economia 
Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior 
 

Mar/2001 

11 A Note on the Efficient Estimation of Inflation in Brazil 
Michael F. Bryan and Stephen G. Cecchetti 
 

Mar/2001 

12 A Test of Competition in Brazilian Banking 
Márcio I. Nakane 
 

Mar/2001 



 

 38 

13 Modelos de Previsão de Insolvência Bancária no Brasil 
Marcio Magalhães Janot 
 

Mar/2001 

14 Evaluating Core Inflation Measures for Brazil 
Francisco Marcos Rodrigues Figueiredo 
 

Mar/2001 

15 Is It Worth Tracking Dollar/Real Implied Volatility? 
Sandro Canesso de Andrade and Benjamin Miranda Tabak 
 

Mar/2001 

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do 
Brasil para a Taxa de Variação do IPCA 
Sergio Afonso Lago Alves 
 
Evaluation of the Central Bank of Brazil Structural Model’s Inflation 
Forecasts in an Inflation Targeting Framework 
Sergio Afonso Lago Alves 
 

Mar/2001 
 
 
 

Jul/2001 
 
 

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função 
de Produção 
Tito Nícias Teixeira da Silva Filho 
 
Estimating Brazilian Potential Output: a Production Function Approach 
Tito Nícias Teixeira da Silva Filho 
 

Abr/2001 
 
 
 

Aug/2002 

18 A Simple Model for Inflation Targeting in Brazil 
Paulo Springer de Freitas and Marcelo Kfoury Muinhos 
 

Apr/2001 

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange 
Rate Forecast Model 
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo 
 

May/2001 

20 Credit Channel without the LM Curve 
Victorio Y. T. Chu and Márcio I. Nakane 
 

May/2001 

21 Os Impactos Econômicos da CPMF: Teoria e Evidência 
Pedro H. Albuquerque 
 

Jun/2001 

22 Decentralized Portfolio Management 
Paulo Coutinho and Benjamin Miranda Tabak 
 

Jun/2001 

23 Os Efeitos da CPMF sobre a Intermediação Financeira 
Sérgio Mikio Koyama e Márcio I. Nakane 
 

Jul/2001 

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and 
IMF Conditionality 
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and 
Alexandre Antonio Tombini 
 

Aug/2001 

25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 
1999/00 
Pedro Fachada 
 

Aug/2001 

26 Inflation Targeting in an Open Financially Integrated Emerging 
Economy: the Case of Brazil 
Marcelo Kfoury Muinhos 
 

Aug/2001 

27 
 

Complementaridade e Fungibilidade dos Fluxos de Capitais 
Internacionais 
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior 
 

Set/2001 



 

 39 

28 
 

Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma 
Abordagem de Expectativas Racionais 
Marco Antonio Bonomo e Ricardo D. Brito 
 

Nov/2001 

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil 
Pedro H. Albuquerque and Solange Gouvêa 
 

Nov/2001 

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of 
Interest Rates 
Benjamin Miranda Tabak and Sandro Canesso de Andrade 
 

Nov/2001 

31 Algumas Considerações sobre a Sazonalidade no IPCA 
Francisco Marcos R. Figueiredo e Roberta Blass Staub 
 

Nov/2001 

32 Crises Cambiais e Ataques Especulativos no Brasil 
Mauro Costa Miranda 
 

Nov/2001 

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation 
André Minella 
 

Nov/2001 

34 Constrained Discretion and Collective Action Problems: Reflections on 
the Resolution of International Financial Crises 
Arminio Fraga and Daniel Luiz Gleizer 
 

Nov/2001 

35 Uma Definição Operacional de Estabilidade de Preços 
Tito Nícias Teixeira da Silva Filho 
 

Dez/2001 

36 Can Emerging Markets Float? Should They Inflation Target? 
Barry Eichengreen 
 

Feb/2002 

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, 
Public Debt Management and Open Market Operations 
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein 
 

Mar/2002 

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para 
o Mercado Brasileiro 
Frederico Pechir Gomes 
 

Mar/2002 

39 Opções sobre Dólar Comercial e Expectativas a Respeito do 
Comportamento da Taxa de Câmbio 
Paulo Castor de Castro 
 

Mar/2002 

40 Speculative Attacks on Debts, Dollarization and Optimum Currency 
Areas 
Aloisio Araujo and Márcia Leon 
 

Apr/2002 

41 Mudanças de Regime no Câmbio Brasileiro 
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho 
 

Jun/2002 

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de 
Risco e do Câmbio 
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella 
 

Jun/2002 

43 The Effects of the Brazilian ADRs Program on Domestic Market 
Efficiency 
Benjamin Miranda Tabak and Eduardo José Araújo Lima 
 

Jun/2002 



 

 40 

44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial 
no Brasil 
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén 
 

Jun/2002 

45 Optimal Monetary Policy, Gains from Commitment, and Inflation 
Persistence  
André Minella 
 

Aug/2002 

46 The Determinants of Bank Interest Spread in Brazil 
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane 
 

Aug/2002 

47 Indicadores Derivados de Agregados Monetários  
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior 
 

Set/2002 

48 Should Government Smooth Exchange Rate Risk? 
Ilan Goldfajn and Marcos Antonio Silveira 
 

Sep/2002 

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no 
Brasil: Evidências de Causalidade 
Orlando Carneiro de Matos 
 

Set/2002 

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country 
Model 
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira 
 

Sep/2002 

51 Credit Channel with Sovereign Credit Risk: an Empirical Test 
Victorio Yi Tson Chu 
 

Sep/2002 

52 Generalized Hyperbolic Distributions and Brazilian Data 
José Fajardo and Aquiles Farias 
 

Sep/2002 

53 Inflation Targeting in Brazil: Lessons and Challenges 
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and 
Marcelo Kfoury Muinhos 
 

Nov/2002 

54 Stock Returns and Volatility 
Benjamin Miranda Tabak and Solange Maria Guerra 
 

Nov/2002 

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil 
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de 
Guillén 
 

Nov/2002 

56 Causality and Cointegration in Stock Markets: 
the Case of Latin America 
Benjamin Miranda Tabak and Eduardo José Araújo Lima 
 

Dec/2002 

57 As Leis de Falência: uma Abordagem Econômica 
Aloisio Araujo 
 

Dez/2002 

58 The Random Walk Hypothesis and the Behavior of Foreign Capital 
Portfolio Flows: the Brazilian Stock Market Case 
Benjamin Miranda Tabak 
 

Dec/2002 

59 Os Preços Administrados e a Inflação no Brasil 
Francisco Marcos R. Figueiredo e Thaís Porto Ferreira 
 

Dez/2002 

60 Delegated Portfolio Management 
Paulo Coutinho and Benjamin Miranda Tabak 
 

Dec/2002 



 

 41 

61 O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e 
do Valor em Risco para o Ibovespa  
João Maurício de Souza Moreira e Eduardo Facó Lemgruber 
 

Dez/2002 

62 Taxa de Juros e Concentração Bancária no Brasil 
Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama 
 

Fev/2003 

63 Optimal Monetary Rules: the Case of Brazil 
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza 
and Benjamin Miranda Tabak 
 

Feb/2003 

64 Medium-Size Macroeconomic Model for the Brazilian Economy 
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves 
 

Feb/2003 

65 On the Information Content of Oil Future Prices 
Benjamin Miranda Tabak 
 

Feb/2003 

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla 
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos 
 

Fev/2003 

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de 
Mercado de Carteiras de Ações no Brasil 
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente  
 

Fev/2003 

68 Real Balances in the Utility Function: Evidence for Brazil 
Leonardo Soriano de Alencar and Márcio I. Nakane 
 

Feb/2003 

69 r-filters: a Hodrick-Prescott Filter Generalization 
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto 
 

Feb/2003 

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest 
Rates 
Benjamin Miranda Tabak 
 

Feb/2003 

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems 
Rodrigo Penaloza 
 

Apr/2003 
 

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros 
Brasileiras 
Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani 
Teixeira de C. Guillen 
 

Maio/2003 

73 Análise de Componentes Principais de Dados Funcionais – uma 
Aplicação às Estruturas a Termo de Taxas de Juros 
Getúlio Borges da Silveira e Octavio Bessada 
 

Maio/2003 

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções 
Sobre Títulos de Renda Fixa  
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das 
Neves 
 

Maio/2003 

75 Brazil’s Financial System: Resilience to Shocks, no Currency 
Substitution, but Struggling to Promote Growth 
Ilan Goldfajn, Katherine Hennings and Helio Mori 
 

Jun/2003 

   



 

 42 

76 Inflation Targeting in Emerging Market Economies 
Arminio Fraga, Ilan Goldfajn and André Minella 
 

Jun/2003 

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange 
Rate Volatility 
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury 
Muinhos 
 

Jul/2003 

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo 
de Precificação de Opções de Duan no Mercado Brasileiro 
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio 
Carlos Figueiredo, Eduardo Facó Lemgruber 
 

Out/2003 

79 Inclusão do Decaimento Temporal na Metodologia  
Delta-Gama para o Cálculo do VaR de Carteiras  
Compradas em Opções no Brasil 
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo,  
Eduardo Facó Lemgruber 
 

Out/2003 
 
 
 

 

80 Diferenças e Semelhanças entre Países da América Latina: 
uma Análise de Markov Switching para os Ciclos Econômicos 
de Brasil e Argentina 
Arnildo da Silva Correa 
 

Out/2003 

81 Bank Competition, Agency Costs and the Performance of the  
Monetary Policy 
Leonardo Soriano de Alencar and Márcio I. Nakane 
 

Jan/2004 

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital 
no Mercado Brasileiro 
Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo 
 

Mar/2004 

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD 
Industrial Countries 
Thomas Y. Wu 
 

May/2004 

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare 
Analysis 
Aloisio Araujo and Marcia Leon 
 

May/2004 

85 Risk Premia for Emerging Markets Bonds: Evidence from Brazilian 
Government Debt, 1996-2002 
André Soares Loureiro and Fernando de Holanda Barbosa 
 

May/2004 

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações 
sobre Testes de Modelos de Consumo 
Fabio Araujo e João Victor Issler 
 

Maio/2004 

87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito 
Total e Habitacional no Brasil 
Ana Carla Abrão Costa 
 

Dez/2004 

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime 
Markoviano para Brasil, Argentina e Estados Unidos 
Arnildo da Silva Correa e Ronald Otto Hillbrecht 
 

Dez/2004 

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições 
Financeiras a Intervenções do Banco Central 
Fernando N. de Oliveira 
 

Dez/2004 



 

 43 

90 Bank Privatization and Productivity: Evidence for Brazil 
Márcio I. Nakane and Daniela B. Weintraub 
 

Dec/2004 

91 Credit Risk Measurement and the Regulation of Bank Capital and 
Provision Requirements in Brazil – a Corporate Analysis 
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and 
Guilherme Cronemberger Parente 
 

Dec/2004 

92 
 
 
 

Steady-State Analysis of an Open Economy General Equilibrium Model 
for Brazil 
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes 
Silva, Marcelo Kfoury Muinhos 
 

Apr/2005 

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco 
Cambial 
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e 
Ricardo S. Maia Clemente 
 

Abr/2005 

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo 
Histórico de Cálculo de Risco para Ativos Não-Lineares 
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo 
Facó Lemgruber  
 

Abr/2005 

95 Comment on Market Discipline and Monetary Policy by Carl Walsh 
Maurício S. Bugarin and Fábia A. de Carvalho 
 

Apr/2005 

96 O que É Estratégia: uma Abordagem Multiparadigmática para a 
Disciplina 
Anthero de Moraes Meirelles 
 

Ago/2005 

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov 
Switching 
Ryan A. Compton and Jose Ricardo da Costa e Silva 
 

Aug/2005 

98 Capital Flows Cycle: Stylized Facts and Empirical Evidences for 
Emerging Market Economies 
Helio Mori e Marcelo Kfoury Muinhos 
 

Aug/2005 

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência 
de Capital para Estratégias de Opções no Mercado Brasileiro 
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo 
Facó Lemgruber  
 

Set/2005 

100 Targets and Inflation Dynamics 
Sergio A. L. Alves and Waldyr D. Areosa 
 

Oct/2005 

101 Comparing Equilibrium Real Interest Rates: Different Approaches to 
Measure Brazilian Rates 
Marcelo Kfoury Muinhos and Márcio I. Nakane 
 

Mar/2006 

102 Judicial Risk and Credit Market Performance: Micro Evidence from 
Brazilian Payroll Loans 
Ana Carla A. Costa and João M. P. de Mello 
 

Apr/2006 

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output 
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and 
Jose Ricardo C. Silva 
 

Apr/2006 

 



 

 44 

104 Extração de Informação de Opções Cambiais no Brasil 
Eui Jung Chang e Benjamin Miranda Tabak 
 

Abr/2006 

105 Representing Roommate’s Preferences with Symmetric Utilities 
José Alvaro Rodrigues Neto 
 

Apr/2006 

106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation 
Volatilities 
Cristiane R. Albuquerque and Marcelo Portugal 
 

May/2006 

107 Demand for Bank Services and Market Power in Brazilian Banking 
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk 
 

Jun/2006 

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos 
Pessoais 
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda 
 

Jun/2006 

109 The Recent Brazilian Disinflation Process and Costs 
Alexandre A. Tombini and Sergio A. Lago Alves 
 

Jun/2006 
 

110 Fatores de Risco e o Spread Bancário no Brasil 
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues 
 

Jul/2006 

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do 
Cupom Cambial  
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian 
Beatriz Eiras das Neves 
 

Jul/2006 

112 Interdependence and Contagion: an Analysis of Information 
Transmission in Latin America's Stock Markets  
Angelo Marsiglia Fasolo 
 

Jul/2006 

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil 
Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. 
Cajueiro 
 

Ago/2006 

114 The Inequality Channel of Monetary Transmission 
Marta Areosa and Waldyr Areosa 
 

Aug/2006 
 

115 Myopic Loss Aversion and House-Money Effect Overseas: an 
Experimental Approach 
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak  
 

Sep/2006 

116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join 
Use of Importance Sampling and Descriptive Sampling 
Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos 
Santos 
 

Sep/2006 

117 An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and 
Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian 
Banks 
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak  
 

Sep/2006 

118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial 
Economy with Risk Regulation Constraint 
Aloísio P. Araújo and José Valentim M. Vicente  
 

Oct/2006 



 

 45 

119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de 
Informação 
Ricardo Schechtman  
 

Out/2006 

120 Forecasting Interest Rates: an Application for Brazil 
Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak 
 

Oct/2006 

121 The Role of Consumer’s Risk Aversion on Price Rigidity 
Sergio A. Lago Alves and Mirta N. S. Bugarin 
 

Nov/2006 

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips 
Curve Model With Threshold for Brazil 
Arnildo da Silva Correa and André Minella 
 

Nov/2006 

123 A Neoclassical Analysis of the Brazilian “Lost-Decades” 
Flávia Mourão Graminho 
 

Nov/2006 

124 The Dynamic Relations between Stock Prices and Exchange Rates: 
Evidence for Brazil 
Benjamin M. Tabak 
 

Nov/2006 

125 Herding Behavior by Equity Foreign Investors on Emerging Markets 
Barbara Alemanni and José Renato Haas Ornelas 
 

Dec/2006 

126 Risk Premium: Insights over the Threshold 
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña 
 

Dec/2006 

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de 
Capital para Risco de Crédito no Brasil  
Ricardo Schechtman  
 

Dec/2006 

128 Term Structure Movements Implicit in Option Prices 
Caio Ibsen R. Almeida and José Valentim M. Vicente 

Dec/2006 

129 Brazil: Taming Inflation Expectations  
Afonso S. Bevilaqua, Mário Mesquita and André Minella 

Jan/2007 

130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type 
Matter? 
Daniel O. Cajueiro and Benjamin M. Tabak 
 

Jan/2007 

131 Long-Range Dependence in Exchange Rates: the Case of the European 
Monetary System  
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. 
Cajueiro 
 

Mar/2007 

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ 
Model: the Joint Use of Importance Sampling and Descriptive Sampling 
Jaqueline Terra Moura Marins and Eduardo Saliby 
  

Mar/2007 

133 A New Proposal for Collection and Generation of Information on 
Financial Institutions’ Risk: the Case of Derivatives 
Gilneu F. A. Vivan and Benjamin M. Tabak 
  

Mar/2007 

134 Amostragem Descritiva no Apreçamento de Opções Européias através 
de Simulação Monte Carlo: o Efeito da Dimensionalidade e da 
Probabilidade de Exercício no Ganho de Precisão 
Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra 
Moura Marins  
 

Abr/2007 



 

 46 

135 Evaluation of Default Risk for the Brazilian Banking Sector 
Marcelo Y. Takami and Benjamin M. Tabak 
 

May/2007 

136 Identifying Volatility Risk Premium from Fixed Income Asian Options 
Caio Ibsen R. Almeida and José Valentim M. Vicente  
 

May/2007 

137 Monetary Policy Design under Competing Models of Inflation 
Persistence 
Solange Gouvea e Abhijit Sen Gupta 
 

May/2007 

138 Forecasting Exchange Rate Density Using Parametric Models:  
the Case of Brazil  
Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak  
 

May/2007 

139 Selection of Optimal Lag Length inCointegrated VAR Models with 
Weak Form of Common Cyclical Features 
Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani 
Teixeira de Carvalho Guillén 
 

Jun/2007 
 

140 Inflation Targeting, Credibility and Confidence Crises 
Rafael Santos and Aloísio Araújo 
 

Aug/2007 
 

141 Forecasting Bonds Yields in the Brazilian Fixed income Market 
Jose Vicente and Benjamin M. Tabak 
 

Aug/2007 
 

142 Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro 
de Ações e Desenvolvimento de uma Metodologia Híbrida para o 
Expected Shortfall 
Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto 
Rebello Baranowski e Renato da Silva Carvalho 
 

Ago/2007 
 

143 Price Rigidity in Brazil: Evidence from CPI Micro Data 
Solange Gouvea 
 

Sep/2007 
 

144 The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a 
Case Study of Telemar Call Options 
Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber 
 

Oct/2007 

145 The Stability-Concentration Relationship in the Brazilian Banking 
System 
Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo 
Lima and Eui Jung Chang 
 

Oct/2007 

146 Movimentos da Estrutura a Termo e Critérios de Minimização do Erro 
de Previsão em um Modelo Paramétrico Exponencial 
Caio Almeida, Romeu Gomes, André Leite e José Vicente 
 

Out/2007 

147 Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects 
(1994-1998) 
Adriana Soares Sales and Maria Eduarda Tannuri-Pianto 
 

Oct/2007 

148 Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a 
Curva de Cupom Cambial 
Felipe Pinheiro, Caio Almeida e José Vicente 
 

Out/2007 

149 Joint Validation of Credit Rating PDs under Default Correlation 
Ricardo Schechtman 
 

Oct/2007 



 

 47 

150 A Probabilistic Approach for Assessing the Significance of Contextual 
Variables in Nonparametric Frontier Models: an Application for 
Brazilian Banks 
Roberta Blass Staub and Geraldo da Silva e Souza 
 

Oct/2007 

151 Building Confidence Intervals with Block Bootstraps for the Variance 
Ratio Test of Predictability 

Nov/2007 

 Eduardo José Araújo Lima and Benjamin Miranda Tabak  
 

152 Demand for Foreign Exchange Derivatives in Brazil:  
Hedge or Speculation?  
Fernando N. de Oliveira and Walter Novaes  
 

Dec/2007 

153 Aplicação da Amostragem por Importância 
à Simulação de Opções Asiáticas Fora do Dinheiro 
Jaqueline Terra Moura Marins 
 

Dez/2007 

154 Identification of Monetary Policy Shocks in the Brazilian Market  
for Bank Reserves 
Adriana Soares Sales and Maria Tannuri-Pianto 
 

Dec/2007 

155 Does Curvature Enhance Forecasting? 
Caio Almeida, Romeu Gomes, André Leite and José Vicente 
 

Dec/2007 

156 Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão 
em Duas Etapas Aplicado para o Brasil 
Sérgio Mikio Koyama e Márcio I. Nakane 
 

Dez/2007 

157 Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects 
of Inflation Uncertainty in Brazil 
Tito Nícias Teixeira da Silva Filho  
 

Jan/2008 

158 Characterizing the Brazilian Term Structure of Interest Rates 
Osmani T. Guillen and Benjamin M. Tabak 
 

Feb/2008 

159 Behavior and Effects of Equity Foreign Investors on Emerging Markets 
Barbara Alemanni and José Renato Haas Ornelas 
 

Feb/2008 

160 The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders 
Share the Burden? 
Fábia A. de Carvalho and Cyntia F. Azevedo 
 

Feb/2008 

161 Evaluating Value-at-Risk Models via Quantile Regressions 
Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton 
 

Feb/2008 

162 Balance Sheet Effects in Currency Crises: Evidence from Brazil 
Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes 
 

Apr/2008 

163 Searching for the Natural Rate of Unemployment in a Large Relative 
Price Shocks’ Economy: the Brazilian Case  
Tito Nícias Teixeira da Silva Filho  
 

May/2008 

164 Foreign Banks’ Entry and Departure: the recent Brazilian experience 
(1996-2006) 
Pedro Fachada 
 

Jun/2008 

165 Avaliação de Opções de Troca e Opções de Spread Européias e 
Americanas  
Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e 
Gustavo Santos Raposo 

Jul/2008 



 

 48 

166 Testing Hyperinflation Theories Using the Inflation Tax Curve: a case 
study  
Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho 
 

Jul/2008 

167 O Poder Discriminante das Operações de Crédito das Instituições 
Financeiras Brasileiras  
Clodoaldo Aparecido Annibal 
 

Jul/2008 

168 An Integrated Model for Liquidity Management and Short-Term Asset 
Allocation in Commercial Banks  
Wenersamy Ramos de Alcântara 
 

Jul/2008 

169 Mensuração do Risco Sistêmico no Setor Bancário com Variáveis 
Contábeis e Econômicas 
Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar 
 

Jul/2008 

170 Política de Fechamento de Bancos com Regulador Não-Benevolente: 
Resumo e Aplicação 
Adriana Soares Sales 
 

Jul/2008 

171 Modelos para a Utilização das Operações de Redesconto pelos Bancos 
com Carteira Comercial no Brasil 
Sérgio Mikio Koyama e Márcio Issao Nakane 
 

Ago/2008 

172 Combining Hodrick-Prescott Filtering with a Production Function 
Approach to Estimate Output Gap 
Marta Areosa 
 

Aug/2008 

173 Exchange Rate Dynamics and the Relationship between the Random 
Walk Hypothesis and Official Interventions 
Eduardo José Araújo Lima and Benjamin Miranda Tabak 
 

Aug/2008 
 

 

174 Foreign Exchange Market Volatility Information: an investigation of 
real-dollar exchange rate 
Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton 
Brandi 
 

Aug/2008 

175 Evaluating Asset Pricing Models in a Fama-French Framework 
Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone 
 

Dec/2008 

176 Fiat Money and the Value of Binding Portfolio Constraints 
Mário R. Páscoa, Myrian Petrassi and Juan Pablo Torres-Martínez 
 

Dec/2008 

177 Preference for Flexibility and Bayesian Updating 
Gil Riella 
 

Dec/2008 

178 An Econometric Contribution to the Intertemporal Approach of the 
Current Account 
Wagner Piazza Gaglianone and João Victor Issler 
 

Dec/2008 

179 Are Interest Rate Options Important for the Assessment of Interest 
Rate Risk? 
Caio Almeida and José Vicente 
 

Dec/2008 

 
 
 


	modelo_4_iniciais_net_ingles.pdf
	ISSN 1518-3548
	CGC 00.038.166/0001-05
	Working Paper Series

	lista_atualizada_wps_tds_ate179.pdf
	Banco Central do Brasil
	Trabalhos para Discussão
	Working Paper Series
	Working Papers in PDF format can be downloaded from: http://www.bc.gov.br
	Implementing Inflation Targeting in Brazil
	Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and
	Alexandre Antonio Tombini
	Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
	Benjamin Miranda Tabak and Eduardo José Araújo Lima
	As Leis de Falência: uma Abordagem Econômica
	Aloisio Araujo
	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
	Os Preços Administrados e a Inflação no Brasil


	Francisco Marcos R. Figueiredo e Thaís Porto Ferreira
	Delegated Portfolio Management
	Paulo Coutinho and Benjamin Miranda Tabak
	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber




