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Preference for Flexibility and Bayesian Updating�
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Abstract

The Working Papers should not be reported as representing the views of the Banco
Central do Brasil. The views expressed in the papers are those of the author(s) and

do not necessarily re�ect those of the Banco Central do Brasil.

Dekel, Lipman, and Rustichini (2001) show that preferences over menus of

lotteries can be represented by the use of a unique subjective state space and

a prior. We provide foundations for Bayesian updating in such a setup. When

the subjective state space is �nite, we show that Bayesian updating is linked

to a comparative theory of preference for �exibility. Without the �niteness

of the subjective state space, Bayesian updating is characterized by a more

technical condition.
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1 Introduction

The issue of updating ones preferences on uncertain alternatives on the face of

additional information is a topic that is extensively studied in individual decision

theory. In particular, the Bayesian underpinnings of such updating are well under-

stood within the realm of the Savagean theory of decision making, where the state

space is regarded as exogenously given. When, however, the decision model at hand

regards the state space as endogenous, as in the recently developed dynamic theory

of choice over menus, the foundations for the notion of Bayesian updating become

much less transparent. In a nutshell, the paper is an attempt to provide such a

foundation by using the notion of preference for �exibility.

Consider the following situation. At 11 AM Jane has to choose a place for her

evening drink with her friends. Suppose the only way places vary is in the menu

of drinks they o¤er and Jane always has only one drink. Let X be the set of all

possible drinks and X be the set of all conceivable drink menus, each menu being

represented by capital letters A;B;C; etc.. As in Kreps (1979), we assume that Jane

has a well-de�ned preference relation % on X and this relation exhibits preference

for �exibility in the sense that, for any two menus A and B,

A � B implies A % B:

Moreover, we assume that her preferences admit the following representation:

A % B i¤
X
s2S

� (s)max
x2A

U (x; s) �
X
s2S

� (s)max
x2B

U (x; s) ; (1)

where S is a �nite state-space, � is a probability measure on S and U is a state-

dependent utility function. The interpretation is that Jane is uncertain about the

future and, in particular, she is not sure what kind of drink she will be in the mood

for in the evening. The representation above thus says that she chooses a place

that maximizes the expected utility she can get from the place�s drink menu, with

respect to some prior � about her future tastes.

At lunch, Jane will meet with her friends and one of them is going to be selected

as the designated driver for the evening. If Jane gets to be the designated driver,

and only in that situation, she would very much appreciate if the place they went

had orange juice, with the other drinks being unimportant. We represent the �Jane

being the designated driver situation�by the state s� 2 S. If we use the letter j
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to represent the orange juice alternative, the discussion above can be formalized as

follows:

U (j; s�) > U (x; s�) and U (y; s�) = U (x; s�) ;

for all x; y 2 X distinct from j, and

U (j; s) < U (x; s) ;

for all x 2 X and s 2 S, distinct from j and s�, respectively.

Suppose, now, instead of choosing a place in the morning, Jane �rst goes for

lunch with her friends and at that occasion she is informed that she will not have

to drive that evening. In terms of the representation above, this is equivalent to say

that she learns that the state s� will not happen. Finally, we assume that Jane is

Bayesian, so, upon learning that state s� is no longer a possibility, she uses Bayes

rule to update her prior about the states of the world. Except for that, she follows

(1) to make her decision about where to go for drinks in the evening.

The situation described in the previous paragraphs is entirely standard in eco-

nomics. Indeed, were the state-space S observable by the modeler, we could eas-

ily axiomatize Jane�s Bayesian behavior by a Dynamic Consistency like condition.

However, in the preference over menus literature, the state-space is not part of the

speci�cation of the model, being instead derived as part of the representation of

the agent�s preferences. For that reason, an axiomatization of Bayesian updating

in the present setting is bound to be related to conditions that have a completely

di¤erent interpretation. The main goal of the present paper is to provide such an

axiomatization and discuss the conditions related to Bayesian updating when the

primitives of our model consist of preference relations over a space of menus.

Obviously, without an exogenously speci�ed state-space, we cannot write a con-

dition that explicitly deals with the fact that Jane receives new information at lunch.

Nonetheless, the fact that she is Bayesian still implies some consistency conditions

relating her preferences before and after lunch. To organize the discussion, let %1
represent her preference before lunch and %2 the one after lunch. Now suppose that
A and B are two menus such that A �2 B, but B %1 A. That is, before lunch she
considers menu B at least as good as menu A, but after she learns that she will not

have to drive in the evening, menu A becomes strictly more attractive than B. We

note that, by (1) and the assumption that Jane is Bayesian, this can happen only if

j 2 B, but j =2 A. Intuitively, the only di¤erence between Jane�s preferences before
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and after lunch is that after lunch she no longer cares whether the place she goes has

orange juice or not. So, if her before lunch preference relation values menu B more

than her after lunch relation, it has to be because B o¤ers exactly the alternative

that loses its value once Jane learns she will not have to drive that evening.

Following the insight provided by this example, we investigate in this paper the

Bayesian updating behavior when the state-space of the model is subjective. We

work in the setup of Dekel et al. (2001) �henceforth DLR�and our main condition

is a generalization of the idea discussed in the previous paragraph. In words, our

condition says that if menus A and B are such that A �2 B, but B %1 A, then it
must be the case that %1 sees some gain in �exibility when moving from menu A

to menu A [ B that %2 does not see. In our example, this corresponds to the fact
that %1 considers it worthwhile to have the option j in menu B, while for %2 this
is entirely irrelevant.

When %1 and %2 satisfy this condition, we say that %2 is a less �exibility loving
version of %1. The upshot of the present paper is that this condition is intrinsically
related to the possibility of representing %2 as a Bayesian update of %1�s represen-
tation. If the state-space used in the representation of %1 is �nite, we show that this
connection is tight, that is, being a less �exibility loving version of %1 is necessary
and su¢ cient to make %2 representable by a Bayesian update of %1�s representation.
Without the �niteness of the state-space used in %1�s representation, an additional
technical condition is necessary in order to obtain a similar result.

In more abstract terms, this paper can be also seen as relating a comparative

theory of preference for �exibility to Bayesian updating. DLR show that for a pair

of relations %1 and %2 that can be represented as in (1), if %1 values �exibility more
than %2, then the state-space used in the representation of %1 is larger than the
one used in the representation of %2. We discuss this result formally in Section 3
bellow, but it is worth noting here that the results in this paper may be seen in the

garb of an extension of that analysis. Basically, our �less �exibility loving version�

condition may be interpreted as saying that %1 values �exibility more than %2 and,
in some sense, this is the only di¤erence between this two relations.

In terms of the literature, the results here are related to two groups of papers.

First, they can be seen as contributing to the extensive literature on updating. Of

course, it departs from the tradition, since most of that literature works in a standard

Savagean setup with an exogenously given state-space.1

1See Epstein and Le Breton (1993), Ghirardato (2002) and the references therein, for a discus-
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On the other hand this paper is related to the preferences over menus litera-

ture.2 This literature had an increase in popularity after the works of DLR and Gul

and Pesendorfer (2001). In that literature, however, only a few papers have per-

formed exercises similar to the one performed here, by way of studying how some

comparative notion relating a pair of menu preferences a¤ects the properties of a

given model. For example, Gul and Pesendorfer (2001) show that a self-control

preference %1 has more self-control than another such preference %2 if and only if
%2�s temptation ranking is closer to her �temptation free preference�than %1�s. In
a similar fashion Sarver (2008) links two di¤erent measures of regret attitudes to

interesting properties of his regret representation.

The remainder of our paper is organized as follows. We discuss the primitives of

the model and revisit some results of DLR, Dekel, Lipman, Rustichini, and Sarver

(2007) �henceforth DLRS�and Dekel, Lipman, and Rustichini (2008) �henceforth

DLR2�in Section 2. In Section 3, we present the comparative theory of preference

for �exibility that will be later related to Bayesian updating. In particular, we

de�ne the fundamental notion of a less �exibility loving version. Next, in Section

4, we prove our �rst result relating the notion of a less �exibility loving version to

Bayesian updating in the �nite state-space case. Section 5 extends the analysis in

Section 4 to the case of an in�nite state-space. The Bayesian updating result found

in Section 5 characterizes Bayesian updating only when the observed event satis�es

a certain topological condition. For completeness, we give a general characterization

of Bayesian updating in Section 6, but for that we have to pay the cost of working

with further technical conditions. Section 7 concludes. We relegate most of the

proofs to the appendix.

2 Preference for Flexibility and Additive EU Representations

In this section we brie�y revisit some results from DLR and DLRS that we shall

need for our subsequent analysis. We �rst describe the primitives of their model.

Let X be a �nite set of alternatives and �(X) the space of lotteries (probability

distributions) on X. We view �(X) as a metric subspace of RjXj and represent its

sion of Bayesian updating in the classic Savagean framework. For a discussion of non-Bayesian
updating rules, see Epstein (2006) and Epstein, Noor, and Sandroni (2008). On updating in the
context of the multiple priors model of Gilboa and Schmeidler (1989), see Epstein and Schneider
(2003), Gilboa and Schmeidler (1993), Hanany and Klibano¤ (2007) and Siniscalchi (2006).

2See Kreps (1979), Nehring (1999), Gul and Pesendorfer (2001) and DLR.
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elements by p; q; r, etc..3 Let X represent the space of nonempty closed subsets of

the relative interior of �(X). That is, X is the set of all nonempty closed subsets

of �(X) that include only lotteries with full support. We consider binary relations

% on X . As usual, we denote the symmetric part of % by � and the asymmetric

part by �. The elements of X are represented by capital letters A;B;C; etc., and

are called menus.

The idea here is that an agent whose preference relation is % faces a two-period
decision problem. In the �rst period she chooses a menu knowing that in the next

period she will have to make a choice from that menu. Following DLR, we do not

explicitly model the agent�s second period choice, leaving it as part of the interpre-

tation of the results presented in this section.

2.1 Representations

The uncertainty of the agent about her future tastes is modeled by a probability

measure over a set of possible ex post utility functions. As in DLR, we impose the

restriction that each ex post utility function be of the expected utility type. Because

expected utility functions are only unique up to positive a¢ ne transformations, it

is convenient to impose a normalization on the set of ex post utility functions we

use in our representations. Consequently, we de�ne the set of normalized expected

utility functions on �(X) as

U :=

8<:u 2 RjXj :
jXjX
i=1

ui = 0 and
jXjX
i=1

u2i = 1

9=; :
Just like �(X), we view U as a metric subspace of RjXj.

We are now ready to introduce the concept of a Positive Additive Expected Utility

representation that will be extensively used in this paper.

De�nition. We say that a binary relation % on X has a Positive Additive Ex-
pected Utility (PAEU) representation, �, if � is a Borel probability measure
on U such that the function W : X ! R, which is de�ned by

W (A) :=

Z
U
max
p2A

Ep (u)� (ds) ;

3Since X is �nite, this is equivalent to endow �(X) with the topology of weak convergence.
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represents % :4

In what follows we shall also have the opportunity to consider PAEU represen-

tations in which only a �nite number of states are relevant for the agent�s decisions:

De�nition. We say that a binary relation % on X has a �nite PAEU represen-
tation, �, if � is a PAEU representation of % with �nite support.

2.2 Axioms and Representation Theorems

We now present the postulates that characterize when a binary relation % on X
admits a PAEU or a �nite PAEU representation.

Axiom 1 (Preorder). % is a complete preorder on X .

Axiom 2 (vNM Continuity). For any menus A;B;C with A � B � C, there exist
two numbers, � and � in (0; 1) such that

A�� C � B � A�� C:5

Axiom 3 (Independence). For any two menus A and B;

A � B implies A�� C � B �� C;

for any � 2 (0; 1] and C 2 X :

Axiom 4 (Nontriviality). There exist two menus A and B such that A � B:

These properties are extensively discussed in DLR and DLRS, so we shall not

elaborate on them here. In addition to these four postulates, here we will also work

with the assumption that the binary relation % satis�es the monotonicity property
introduced by Koopmans (1964).

Axiom 5 (Monotonicity). For any two menus A and B;

B � A implies A % B:
4Here Ep (u) represents the expectation of the random variable on RjXj that takes value ui with

probability pi, i = 1; :::; jXj :
5Notation: For any two menus A;B and � 2 [0; 1] , by A �� B we mean the set

fp 2 �(X) : p = �q + (1� �) r for some q 2 A and r 2 Bg :
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This property is what Kreps (1979) refers to as preference for �exibility. The

interpretation comes from the idea that the agent chooses today a menu from which

she will have to make a choice tomorrow. With regards to this interpretation, the

Monotonicity axiom says that the agent always likes the �exibility of having more

options to choose from in the future.

In their seminal contributions, DLR and DLRS prove that an individual whose

preference relation on X abides by the above �ve postulates is guaranteed to have

a PAEU representation.

Theorem 1 (DLRS). A binary relation % on X satis�es Preorder, vNM Continuity,

Independence, Nontriviality and Monotonicity if and only if it has a unique PAEU

representation.6

Motivated by this result, we call % a PAEU preference whenever it satis�es

Preorder, vNM Continuity, Independence, Nontriviality and Monotonicity.

Some of the results in this paper will be derived under the assumption that %
has, in fact, a �nite PAEU representation. The following condition, found by DLR2,

characterizes this case.

Axiom 6 (Finiteness). Every menu A has a �nite subset C such that A � C.

This property is powerful enough to guarantee that a PAEU preference admits

a �nite PAEU representation.

Theorem 2 (DLR2). A binary relation % on X satis�es Preorder, vNM Continuity,

Independence, Nontriviality, Monotonicity and Finiteness if and only if it has a

unique �nite PAEU representation.

Throughout the present paper we refer to a binary relation on X that satis�es

the six postulates in the statement of Theorem 2 as a �nite PAEU preference.

3 Comparative Desire for Flexibility

In this section we discuss some comparative notions of desire for �exibility. We

begin with the following de�nition due to DLR.
6Actually, DLRS do not state this result in terms of the normalized space U as we do here.

Instead, they write it in terms of a generic measurable space and a generic state-dependent utility
function. As it is clear from the proof in their paper, however, a binary relation % on X has a
representation in terms of generic measurable state and state-dependent utility function if and only
if it has a representation in terms of the normalized state-space used here.
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De�nition. We say that a binary relation %1 on X values �exibility more than
some other binary relation %2 on X if and only if, for any two menus A and B with

B � A;
A �2 B implies A �1 B:

In words, %1 values �exibility more than %2 if in any situation where %2 strictly
prefers the �exibility of having more options, so does%1. When%1 and%2 are PAEU
preferences, one can show that this property has a rather intuitive characterization.

Lemma 1. Suppose %1 and %2 are PAEU preferences with representations �1 and
�2, respectively. Then, %1 values �exibility more than %2 if and only if

supp (�2) � supp (�1) :7

This result says that %1 values �exibility more than %2 if and only if every future
state considered possible by %2 is also considered possible by %1. The �if�part of
this fact is, of course, straightforward. We prove its �only if�in the Appendix, but,

in passing, we note that the needed argument basically consists of showing that if

supp (�2)nsupp (�1) 6= ;, then it is possible to �nd two menus A and B with B � A
such that A �2 B, but A �1 B:

In DLR we �nd a more general version of Lemma 1. First, instead of writing

the result in terms of the normalized set U , they state it in terms of a generic state
space and a suitable topology on the space of expected utility preferences on �(X).

Moreover, they show that the assertion is true for a class of binary relations larger

than the class of PAEU preferences. The simpler version of the result stated here,

however, will be enough for our purposes.

Now, let A and B be any two menus such that A � B. We want to be able to
say that %1 values the �exibility provided by the extra options in B more than %2.
We are going to represent such a situation by the binary relation B de�ned below.

De�nition. For any two menus A and B, we say that B B A, if and only if A � B
and there exists a menu C such that

A [ C �2 B [ C, but A [ C �1 B [ C:
7Notation: For a given probability measure � we use supp (�) to represent the support of �:
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We call B the Extra-�exibility relation and note that it is an asymmetric
binary relation on X (The dependence of B on %1 and %2 is suppressed in our
notation for simplicity.)

In the de�nition above, the presence of the options in C makes the �exibility

gained with the extra options in B worthless for %2. However, %1 sees the oppor-
tunity of choosing from that larger menu in the future as a strict improvement.

When %1 and %2 are PAEU preferences, the Extra-�exibility relation has an

interesting characterization.

Lemma 2. Suppose %1 and %2 are preferences with PAEU representations �1 and
�2, respectively, and de�ne Si := supp (�i) for i = 1; 2. For any two menus A and

B such that A � B, we have B B A if and only if there exists some u 2 S1 nS2 such
that

max
p2B

Ep (u) > max
p2A

Ep (u) :

This result says that the existence of a situation where %2 does not see any gain
in having the possibility of choosing from the larger menu, B, while %1 does, is
equivalent to the existence of some state, considered possible only by %1, at which
it is strictly better to make a choice from B than from A:

Above, we learned how to characterize when %1 values �exibility more than %2.
That de�nition is valid even if the di¤erences between %1 and %2 go far beyond
the way they value �exibility. In some cases, it might be interesting to be able to

say that the only di¤erence between %1 and %2 is the fact that %1 values �exibility
more than %2. One way to capture this idea is to require that any disagreement
between %1 and %2 be only a consequence of %1�s higher desire for �exibility. The
de�nition below formalizes this discussion.

De�nition. We say that %2 is a less �exibility loving version of %1 if for any
menus A and B;

A �2 B and B %1 A imply A [B B A:

Thus, if %2 is a less �exibility loving version of %1, and we have A �2 B, but
B %1 A, then it must be the case that there exists at least one situation where
%2 sees no value in adding the options in B to A, but %1 still sees that as a
strict improvement. In this sense, whenever the two preferences disagree in the way

described above, we can blame the disagreement on the fact that %1 sees more value
in the �exibility achieved by adding B to A than %2 :
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We note that if %1 and %2 are PAEU preferences and %2 is a less �exibility
loving version of %1, then, clearly, %1 values �exibility more than %2. Intuitively,
if B � A, then neither %1 nor %2 see any gain in �exibility when B is added to A.

Therefore, we will never be able to �nd a situation where %1 sees a strict gain in
adding the options in B to A and %2 does not. But then, it is immediate from the

assumption that %2 is a less �exibility loving version of %1 that A �1 B if A �2 B.
We summarize this discussion with the following lemma:

Lemma 3. Let %1 and %2 be two PAEU preferences. If %2 is a less �exibility loving
version of %1, then %1 values �exibility more than %2.

The next two sections will be dedicated to the characterization of the less �exi-

bility loving versions of a given PAEU preference, %1. We are going to see that if %1
is a �nite PAEU preference, then they correspond exactly to the preferences which

can be represented as a Bayesian update of the representation of %1. When %1 does
not have a PAEU representation with a �nite support an additional condition will

be needed in order to obtain a similar result.

4 Finite PAEU Preferences and Bayesian Updating

In the previous section we introduced the notion of a less �exibility loving version

of a given PAEU preference %1. That property captured the idea of a relation
di¤ering from %1 only because of its weaker desire for �exibility. We now show that
when %1 has a representation with a �nite support, its less �exibility loving versions
correspond exactly to the relations that can be obtained as a Bayesian update of

%1�s representation. The formal result is the following:

Theorem 3. Let %1 be a �nite PAEU preference. A PAEU preference %2 is a
less �exibility loving version of %1 if and only if there exists a Borel subset T of U
such that the PAEU representation, �2, of %2 is the Bayesian update of the PAEU
representation, �1, of %1 after the observation of T:

The intuition for the result above is simple. Suppose �rst that the representation,

�2, of %2 is a Bayesian update of the representation, �1, of %1. Let Si := supp (�i),

13



for i = 1; 2. It is easy to see that this implies that, for any two menus A and B;X
u2S2

�2 (u)max
p2A

Ep (u) �
X
u2S2

�2 (u)max
p2B

Ep (u)

()X
u2S2

�1 (u)max
p2A

Ep (u) �
X
u2S2

�1 (u)max
p2B

Ep (u) :

So, if A �2 B and B %1 A for some pair of menus A and B, it must be the case
that there exists u� 2 S1 n S2 such that

max
p2B

Ep (u
�) > max

p2A
Ep (u

�) :

By Lemma 2, we know that this implies that A [ B B A. We conclude that %2 is
a less �exibility loving version of %1. Conversely, suppose that the representation,
�2, of %2 is not a Bayesian update of the representation, �1, of %1. In the appendix
we show that in this case we can always �nd two menus A and B such thatX

u2S2

�2 (u)max
p2A

Ep (u) >
X
u2S2

�2 (u)max
p2B

Ep (u) ;

but X
u2S1

�1 (u)max
p2A

Ep (u) �
X
u2S1

�1 (u)max
p2B

Ep (u)

and

max
p2A

Ep (u) � max
p2B

Ep (u) for all u 2 S1 n S2:

Again, by Lemma 2, this implies that A [ B B A is false and, therefore, %2 is not
a less �exibility loving version of %1.

In brief, the proof of Theorem 3 consists of showing that if it is not the case

that the representation of %2 is a Bayesian update of the representation of %1, then
we can always �nd two menus A and B such that %1 and %2 disagree about the
ranking of these two menus, but the reason for that is not %1�s stronger desire for
�exibility. This makes the behavioral implications of the Bayesian updating result

in Theorem 3 intuitive and easy to understand.

The tight connection between the concept of a less �exibility loving version and

Bayesian updating for �nite PAEU preferences naturally makes one wonder if such

a result remains true when the �niteness assumption is dropped. Unfortunately, as

Example 1 bellow shows, this is not the case.
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S1

S2
u�

Figure 1

Example 1. Suppose jXj = 3. In this case U is simply a circle of radius one and
center (0; 0; 0) located on the hyperplane that is parallel to the simplex and touches

the origin. Let �1 be a prior over U whose support, S1, is an arc of this circle (for
simplicity we represent this arc as a line segment in Figure 1). We also assume that

�1 has a unique mass point, u
�, located somewhere between the two extremities of

the arc S1. Now consider another prior, �2, whose support, S2, is an arc that goes

from one of the extremities of the arc S1 to the point u� (See Figure 1). Finally, we

assume that �1 and �2 satisfy

�2 (V )

�2 (S2 n fu�g)
=

�1 (V )

�1 (S2 n fu�g)
, for all V � S2 n fu�g ;

and
�2 (fu�g)

�2 (S2 n fu�g)
=
1

2

�1 (fu�g)
�1 (S2 n fu�g)

:

Now consider the PAEU preferences %1 and %2 induced by the priors �1 and �2,
and let A and B be any two menus such that A [B B A is false. By Lemma 2, we
know that this is equivalent to say that

max
p2A

Ep (u) � max
p2B

Ep (u) for all u 2 S1 n S2:

It is not hard to see that this implies

max
p2A

Ep (u
�) � max

p2B
Ep (u

�) :

But then,Z
S1

�
max
p2A

Ep (u)�max
p2B

Ep(u)

�
�1 (du) �

Z
S2

�
max
p2A

Ep (u)�max
p2B

Ep (u)

�
�1(du)

� �

Z
S2

�
max
p2A

Ep (u)�max
p2B

Ep (u)

�
�2(du);
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Less Flexibility
Loving Version Bayesian Updating-�

Finite State-space

6

?

6

?

Theorem 4 Theorem 6

?��
��

��
��
??

Figure 2

where

� :=
�1 (S2 n fu�g)
�2 (S2 n fu�g)

:

It is now clear that if A �2 B, which is equivalent to say thatZ
S2

�
max
p2A

Ep (u)�max
p2B

Ep (u)

�
�2 (du) > 0;

then Z
S1

�
max
p2A

Ep (u)�max
p2B

Ep (u)

�
�1 (du) > 0;

which is equivalent to A �1 B. That is, %2 is a less �exibility loving version of
%1 : �

Example 1 shows that being a less �exibility loving version of %1 is not enough to
make%2 representable as a Bayesian update of%1�s representation when%1 does not
necessarily satisfy Finiteness. This leaves us with two open questions, represented

by the diagram in Figure 2. First of all, we may investigate the consequences of

the less �exibility loving version concept when the �niteness assumption is dropped.

This is the subject of Section 5, where we will see that although such a concept is not

powerful enough to deliver a full Bayesian updating result in the in�nite state-space

case, it is still related to some quasi-bayesian property linking the representations

of %1 and %2.

Of course, alternatively, one could abandon the concept of a less �exibility loving

version and simply focus on the characterization of Bayesian updating for generic

PAEU preferences. We do that in Section 6. Unfortunately, the conditions that
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deliver such a result are more technical and harder to interpret than the property

of being a less �exibility loving version.

5 Less Flexibility Loving Versions of an In�nite PAEU Preference

We now characterize the less �exibility loving versions of a generic, not necessarily

�nite, PAEU preference, %1. Although it is no longer true that any less �exibility
loving version, %2, of %1 can be represented as a Bayesian update of %1 0s represen-
tation, we will see that this property is still related to some quasi-bayesian behavior

from the part of %2. We �rst present the formal result and discuss it afterwards.

Theorem 4. Suppose %1 and %2 have PAEU representations �1 and �2, respectively.
De�ne S1 := supp (�1). Then, %2 is a less �exibility loving version of %1 if and only
if there exists a closed subset, T , of S1 such that �2 (T ) = 1 and either intS1 (T ) = ;
or, for any Borel subset V of U ;

�2 (V )

�2 (intS1 (T ))
� �1 (V )

�1 (intS1 (T ))
, with equality if V � intS1 (T ) :8 (2)

So, the theorem above says that if %2 is a less �exibility loving version of %1,
then we can �nd a closed subset, T , of the state-space used to represent %1 such
that %2�s representation will act as a Bayesian update of %1�s representation in the
interior of T . We note that if �2 were a Bayesian update of �1 after the observation

of intS1 (T ), then, for events V 2 S1 n intS1 (T ) we would have �2 (V ) = 0. On the
other hand, if �2 were a Bayesian update of �1 after the observation of T , then we

would have (2) satis�ed with equality even for the events V � T n intS1 (T ). So, for
events in T n intS1 (T ), �2 assigns probabilities that lie in between what a Bayesian
updater that had observed intS1 (T ) and what a Bayesian updater that had observed

T would assign.

We note that Example 1 can be perfectly mapped into the conditions in Theorem

4. If we de�ne T to be S2 in that example, then intS1 (T ) = S2 n fu�g and it can be
easily checked that condition (2) in Theorem 4 is satis�ed.

In fact, Example 1 points out to the main reason why the concept of a less

�exibility loving version does not imply a full Bayesian updating result when %1 is
8Notation: By intS1 (T ) we mean the interior of T relative to the metric subspace S1.
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not a �nite PAEU preference. This is a consequence of the continuity of

max
p2A

Ep (:) ;

when viewed as a function from U to R, for any menu A. Because of that, whenever
we have two menus A and B such that A [ B B A is false, which, by Lemma 2, is
equivalent to

max
p2A

Ep (u) � max
p2B

Ep (u) for all u 2 S1 n S2;

we in fact have

max
p2A

Ep (u) � max
p2B

Ep (u) for all u 2 cl (S1 n S2) :9

We can now see that if �2 acts as a Bayesian update of �1 inside intS1 (S2), we are

no longer capable of �nding two menus A and B that contradict the fact that %2 is
a less �exibility loving version of %1 the same way we did in the proof of Theorem
3.

We now discuss a possible way to strengthen Theorem 4 to a full Bayesian

updating result. The idea here will be to impose a condition that guarantees that

the left-hand side of (2) is null whenever V � U n intS1 (T ). It turns out that
this is related to a sort of independence condition between the relations %2 and B.
Formally, we consider the following property:

De�nition. For any two PAEU preferences, %1 and %2, we say that %2 is strongly
independent from B if and only if for any two menus A and B, A �2 B implies

that there exists a set D 2 X[f;g such that

A �2 B [D, but A [B [D B B [D is false.

Loosely speaking, the condition above says that it can never be the case that the

reason for %2 to prefer a menu A to a menu B is the extra �exibility that %1 sees in
A, when compared to %2. The axiom presents a strong version of this idea. It asks

that whenever %2 strictly prefers a menu A to a menu B, it must be possible to add
options to menu B in a way that it eliminates any extra �exibility %1 might see in
A, but it still does not reverse %2�s preference. It turns out that this postulate is too
strong for our objectives, so we need to weaken it by instead of asking the above to

be immediately true, we allow �rst for the mixing of A and B with some other menu
9Notation: For any set T , by cl (T ) we mean the closure of T:
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C. Formally, we work with the following weaker version of the de�nition above:

De�nition. For any two PAEU preferences, %1 and %2, we say that %2 is inde-
pendent from B if and only if for any two menus A and B, A �2 B implies that

there exist menus C and D and number � 2 [0; 1) such that

C �� A �2 (C �� B) [D, but [C �� (A [B)] [D B (C �� B) [D is false.

Given the representations of %1 and %2, we have that for any menu C and

� 2 [0; 1) ;
A %i B () C �� A %i (C �� B) for i = 1; 2:

So, this new condition, besides being a genuine weakening of the previous one, still

carries the same interpretation. As we have pointed out before, when added to the

requirement that %2 be a less �exibility loving version of %1, the condition above
delivers a Bayesian updating result in the spirit of Theorem 3.

Theorem 5. Suppose %1 and %2 have PAEU representations �1 and �2, respectively,
and let S1 := supp (�1). Then %2 is a less �exibility loving version of %1 that is
independent from B if and only if there exists a set T that is regularly open in the

subspace S1 such that �2 is the Bayesian update of �1 after the observation of T:
10

In the appendix (Lemma 7) we prove that %2 is independent fromB if and only if
�2 (S2 \ cl (S1 n S2)) = 0.11 If S2 � S1, this is equivalent to say that �2 (intS1 (S2)) =
1. The theorem above is, therefore, an easy corollary of this fact and Theorem 4.

Theorem 5 uses an auxiliary condition to relate the concept of a less �exibility

loving version to a particular Bayesian updating result relating two PAEU prefer-

ences. It leaves open the question about which condition, if any, would generically

characterize Bayesian updating. In the next section we provide such a condition.

Unfortunately, that condition is more technical and far less intuitive than the prop-

erty of being a less �exibility loving version.

6 In�nite PAEU Preferences and Bayesian Updating

So far, our main goal has been to characterize the less �exibility loving versions of

a given PAEU preference, %1. We now depart from that goal and, instead, aim at

10Given a topological space Z, a subset O of Z is regularly open if and only if O = int (cl (O)) :
11In the language of Example 1 this means simply �2 (fu�g) = 0:
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�nding a condition that generically characterizes when a PAEU preference %2 can
be represented as a Bayesian update of the PAEU representation of %1. We begin
with a de�nition.

De�nition. Consider a PAEU preference, %. We say that a pair of menus C and D
preserve % in the limit if, for any two menus A and B with A � B, there exists
�� 2 (0; 1) such that

C �� A [ [D �� (A [B)] � (C �� B) [ [D �� (A [B)] ;

for all � 2
�
��; 1
�
:

Note that, for any � 2 (0; 1) ;

A � B () C �� A � C �� B;

but, of course, the addition of the term [D �� (A [B)] could, in general, reverse the
preference above. The de�nition above says that C and D preserve % in the limit

if the term [D �� (A [B)] is always inconsequential when � is large enough.

We now use the de�nition above to write the condition that generically charac-

terizes Bayesian updating in the present setting.

De�nition. For a pair of PAEU preferences, %1 and %2, we say that %2 can be
extracted from %1 if for any pair of menus A and B with A �2 B we can �nd a

number �� 2 (0; 1) and menus C and D that preserve %2 in the limit such that

(C �� A) [ [D �� (A [B)] �1 (C �� B) [ [D �� (A [B)] ; (3)

for all � 2
�
��; 1
�
:

As we have already mentioned, this condition gives a general characterization of

Bayesian updating for PAEU preferences.

Theorem 6. Suppose %1 and %2 have PAEU representations �1 and �2, respectively.
Then %2 can be extracted from %1 if and only if there exists a Borel subset T of

supp (�1) such that either �1 (T ) = 0 and �2 (T ) = 1 or �2 is the Bayesian update

of �1 after the observation of T:

The interpretation of Theorem 6 is simple. Whenever %2 can be extracted from
%1, we can represent %2 as being an instance of %1 after having learned that the
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event T occurred. If %1 assigns probability zero to the event T , then the theorem
does not impose any restriction on%2�s beliefs over T . However, whenever �1 (T ) > 0
and, therefore, Bayesian updating is well-de�ned, %2 makes use of the Baye�s rule
to update �1:

7 Conclusion

We studied updating in the absence of an exogenously speci�ed state-space. We

worked in the framework of Dekel et al. (2001), where the state-space is endogenously

obtained as part of the representation of a preference relation over menus. In that

environment, we proved results that connected Bayesian updating to a comparative

theory of preference for �exibility.

The analysis in this paper is essentially static, so a natural way to extend the

results here is to embed them in a truly dynamic model. Also, we only work with the

model that can be considered to be the correspondent, in the preference over menus

literature, to the standard subjective expected utility model in a Savagean world.

The same way the updating theory is extended to other models when the state-

space is exogenously given, it would also be interesting to see which implications

the conditions here would have for some of the alternative models that have been

studied in the preferences over menus literature.12

A Proofs

A.1 Preliminaries

In this section we collect a series of results that will be useful for the proof of the

theorems in the main text. As we did in the main text, de�ne

U :=

0@u 2 RjXj : jXjX
i=1

ui = 0 and
jXjX
i=1

u2i = 1

1A :
For any menu A, the support function �A : U ! R is de�ned by

�A (u) := max
p2A

Ep (u) , for each u 2 U .

12A natural candidate would be the menu preferences version of the maxmim model proved by
Epstein, Marinacci, and Seo (2007).
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It is easy to show that the map that associates to each menu its support function is

injective. If % has a PAEU representation with prior �, then, for any two menus A
and B;

A % B ()
Z
U
�A (u)� (du) �

Z
U
�B (u)� (du) :

The following lemma collect some standard results about support functions:

Lemma 4. For any two menus A and B, the following conditions are satis�ed:13

1. ��A+(1��)B = ��A + (1� �)�B for any � 2 [0; 1] ;

2. �A[B = �A _ �B; 14

3. dHausdorff (A;B) = dSupnorm (�A; �B) :

Now, let C (U) be the space of continuous functions over U endowed with the
supnorm distance. It is well known that

C� := f�A : A is a menug � C (U) :

We are also going to work with the following subsets of C (U) :

H :=
S
r�0
rC�

and

H� := H �H:

DLR prove that H� satis�es the following properties:

Lemma 5. H� satis�es the following conditions:

1. H� is a linear subspace of C (U) ;

2. For any f 2 H�, there exists r > 0 and �1; �2 2 C� such that f = r (�1 � �2) ;

3. The set H� is dense in C (U) :
13All properties can be easily checked from the de�nition of a support function. The �rst two

can be found in Rockafellar (1997), chapter 13.
14That is, for any u 2 U , �A[B (u) = max f�A (u) ; �B (u)g :
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A.2 A Useful Lemma

Let C and D be any two menus and let % be a preference that has a PAEU repre-
sentation with probability measure �. De�ne a set T � U by

T := fu 2 U : �C (u) > �D (u)g .

We can prove that:

Lemma 6. For any two menus A and B, de�ne

f� := �(C��A)[[D��(A[B)] � �(C��B)[[D��(A[B)]

and

f̂� := �(C��A) � �(C��B)[[D��(A[B)]:

It must be the case that

lim
�"1

1

1� �

Z
U
f� (u)� (du) =

Z
T

(�A � �B) (u)� (du) = lim
�"1

1

1� �

Z
T

f̂� (u)� (du) :

To prove the lemma, �rst note that for any �;Z
U
f� (u)� (du) =

Z
T

f� (u)� (du) :

Now let " > 0 and pick any closed subset T" of T such that � (T n T") < "=2.15 We
need the following claim:

Claim 1. There exists �� 2 (0; 1) such that for any � 2
�
��; 1
�
and any u 2 T";

�D��(A[B) (u) < min f�C��A (u) ; �C��B (u)g :

Proof of Claim. Since T" is a compact set and �C and �D are continuous functions

that satisfy �C (u) > �D (u) for any u 2 T", we know that there exists � > 0 such
that

�C (u) > �D (u) + �;

for all u 2 T". Now note that for any two menus A and B and any u 2 U ,
15Since � is a Borel probability measure over the metric space U it is regular, so we can always

�nd such a set T":

23



j�A (u)� �B (u)j � 2. So if we make �� = 2= (2 + �), for any � > ��,

�D��(A[B) (u) = ��D (u) + (1� �)�A[B (u)
< � (�C (u)� �) + (1� �)�A (u) + (1� �) (�A[B (u)� �A (u))
� �C��A (u)� �� + 2 (1� �)
< �C��A (u) :

Of course, the very same reasoning shows that �D��(A[B) (u) < �C��B (u), so the

claim is proved. k

So, for any � 2
�
��; 1
�
,Z

T

f̂� (u)� (du) �
Z
T

f� (u)� (du)

=

Z
T"

(�C��A � �C��B) (u)� (du) +
Z
TnT"

f� (u)� (du)

�
Z
T"

(�C��A � �C��B) (u)� (du)

+

Z
TnT"

�
�C��(A[B) � �(C��B)

�
(u)� (du)

= (1� �)
�Z

T"

(�A � �B) (u)�(du) +
Z
TnT"

(�A[B � �B) (u)�(du)
�

= (1� �)
�Z

T

(�A � �B) (u)�(du) +
Z
TnT"

(�A[B � �A) (u)�(du)
�

� (1� �)
�Z

T

(�A � �B) (u)� (du) + 2� (T n T")
�

< (1� �)
�Z

T

(�A � �B) (u)� (du) + "
�
:
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Similarly,Z
T

f� (u)� (du) �
Z
T

f̂� (u)� (du)

=

Z
T"

�
�(C��A) � �(C��B)

�
(u)� (du) +

Z
TnT"

f̂� (u)� (du)

�
Z
T"

�
�(C��A) � �(C��B)

�
(u)� (du)

+

Z
TnT"

�
�(C��A) � �(C��(A[B))

�
(u)� (du)

= (1� �)
�Z

T"

(�A � �B) (u)�(du) +
Z
TnT"

(�A � �A[B) (u)�(du)
�

= (1� �)
�Z

T

(�A � �B) (u)�(du) +
Z
TnT"

(�B � �A[B) (u)�(du)
�

� (1� �)
�Z

T

(�A � �B) (u)� (du)� 2� (T n T")
�

> (1� �)
�Z

T

(�A � �B) (u)� (du)� "
�
:

But this means that for any � 2
�
��; 1
�
we haveZ

T

(�A � �B) (u)� (du) + " >
1

1� �

Z
U
f� (u)� (du)

� 1

1� �

Z
T

f̂� (u)� (du)

>

Z
T

(�A � �B) (u)� (du)� ":

This completes the proof of the lemma. �

A.3 Proof of Lemma 1

Obviously, if supp (�2) =: S2 � S1 := supp (�1), then %1 values �exibility more than
%2, so we only need to show the converse. But suppose that S2 n S1 6= ; and let E
be any closed sphere in the interior of �(X).16 De�ne menus A and B by

B :=
S
u2S1

argmax
p2E

Ep (u)

16That is, let E � �(X) be such that E =
�
q 2 RjXj : d (p; q) � �

	
for some p 2 int (� (X))

and � > 0 small enough.
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and A := E.17 It is easy to see that �A (u) = �B (u) for all u 2 S1, which implies that
B �1 A. On the other hand, �B (u) < �A (u) for all u 2 S2 n S1. This implies that
B �2 A and, therefore, it is not true that %1 values �exibility more than %2. �

A.4 Proof of Lemma 2

Suppose that there exists u� 2 S1 n S2 with �B (u�) > �A (u�). We �rst note that
for any u; v 2 U and p 2 �(X) ;

jEp (u)� Ep (v)j � d (u; v) : (4)

We can now prove the following claim:

Claim 1. Let ~" := (�B (u�)� �A (u�)) =4. There exists 0 < � < 2 such that for any
u 2 U satisfying d (u;�u�) � � we can �nd qu 2 �(X) with

Equ (u
�) < �B (u

�)� ~"

and

Equ (u) � �B (u) :

Proof of Claim. Since support functions are continuous, we know that there exists

0 < �1 < 2 such that �B (u�)�2~" > �A (u) for any u such that d (u; u�) � �1. De�ne
� := min f�1; ~"g. For any u such that d (�u; u�) � �, pick

qu 2 arg max
q2�(X)

Eq (u) .

By construction we have

Equ (u) � ��A (�u) ;

which implies that

Equ (�u) = �Equ (u)
� �A (�u)
< �B (u

�)� 2~":
17Since E is a sphere, it is easy to see that each expected-utility function has a unique maximizer

in E. Moreover, no q 2 E maximizes two di¤erent expected-utility functions in U :
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By (4) we have

jEqu (�u)� Equ (u�)j � d (�u; u�) � ~":

Combining the two conditions above we get

Equ (u
�) < �B (u

�)� ~":

Since obviously Equ (u) � �B (u), this completes the proof of the claim. k

Now consider the following set

T := fu 2 S2 : �B (u) > �A (u)g :

We also need the following claim:

Claim 2. There exists "̂ > 0 such that for any u 2 T such that d (�u; u�) > �,

where the � here is the one found in the claim above, there exists qu 2 int (� (X))
with the property that

Equ (u
�) < �B (u

�)� "̂

and

Equ (u) � �B (u) :

Proof of Claim. Since B � int (� (X)), we know that there exists �1 > 0 such that
for any p 2 B and any point r 2 aff (� (X)) with (d (p; r))2 � �1 necessarily has
to be in int (� (X)).18 Moreover, since u� 2 S1 n S2, there exists 0 < �2 < 2 such
that for any u 2 S2,

d (u; u�) > �2;

or, equivalently,

u � u� < 1� �
2
2

2
:

Now observe that d (�u; u�) > � is equivalent to say that

� (u � u�) < 1� �
2

2
:

18By aff (� (X)) we mean the a¢ ne hull of �(X). More speci�cally, aff (� (X)) :=n
r 2 RjXj :

PjXj
i=1 ri = 1

o
:
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So, for any u 2 T with d (�u; u�) > � we have

(u � u�)2 < �3 :=
�
max

�
1� �

2
2

2
; 1� �

2

2

��2
< 1:

Now pick an arbitrary u 2 T satisfying the condition above and choose some q 2
argmaxp2B Ep (u). De�ne qu to be

qu := q �
s

�1

1� (u � u�)2
u� + (u � u�)

s
�1

1� (u � u�)2
u:

First observe that qu � 1 = 1 and (d (q; qu))2 = �1, so qu 2 �(X). Also, observe that
qu � u = q � u and

qu � u� =

 
q �

s
�1

1� (u � u�)2
u� + (u � u�)

s
�1

1� (u � u�)2
u

!
� u�

= q � u� �
�q�

1� (u� � u)2
�
�1

�
< q � u� �

�p
(1� �3) �1

�
� �B (u

�)�
�p

(1� �3) �1
�
:

So if we make "̂ :=
p
(1� �3) �1 we have the claim. k

Combining the two claims above we have the following result:

Claim 3. There exists " > 0 such that for any u 2 T , there exists qu 2 �(X) with
the property that

Equ (u
�) < �B (u

�)� "

and

Equ (u) � �B (u) :

Now �x " satisfying the condition in the claim above. For each u 2 T pick

some qu 2 �(X) such that Equ (u�) < �B (u
�) � " and Equ (u) � �B (u). From

the argument used in the proof of the previous claim we see that we can, in fact,

choose such lotteries qu�s in a way that they be uniformly distanced away from the

boundary of the simplex. De�ne C to be the closure of the set of all qu�s found this

way. By what we have just discussed, C � int (� (X)). It is now clear that for all
u 2 S2 we must have

�A[C (u) = �A[B[C (u) ;
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and this implies that A [ C �2 A [ B [ C. On the other hand, we have, by

construction, that

�A[C (u
�) < �A[B[C (u

�) ;

which implies that A [ C �1 A [B [ C. We conclude that A [B B A.

Conversely, suppose that A is such that �A (u) � �B (u) for all u 2 S1 n S2.
From the representation of %2 we know that for any menu C such that A [ C �2
A [ B [ C we must necessarily have �A[C (u) � �B[C (u) for all u 2 S2. The fact
that �A (u) � �B (u) for all u 2 S1 n S2 implies that �A[C (u) � �B[C (u) for all

u 2 S1 nS2. But then we have that �A[C (u) � �B[C (u) for all u 2 S1 which implies
that A [ C �1 A [ B [ C. We conclude that A [ B 7 A and this completes the

proof of the lemma. �

A.5 Proof of Theorem 3

[Necessity] Suppose that there exists S; T; �1 and �2 as in the statement of the

theorem. Now suppose that A and B are such that A �2 B and B %1 A. Let
S1 := supp (�1). Given the representations of %1 and %2, it is clear that there must
exist u� 2 S1 n S2 such that

�B (u
�) > �A (u

�) :

By Lemma 2, we know that this implies that B B A:

[Su¢ ciency] Let �1 be the prior used in representation of %1 and �2 be the one
used in the representation of %2. By Lemmas 1 and 3, we know that supp (�2) =:
S2 � S1 := supp (�1). Suppose, then, that �2 is not the Bayesian updating of �1
after the observation of S2. By a separation argument we can show that this implies

that there exists f 2 C (U) such thatX
u2S2

�2 (u) f (u) > 0 >
X
u2S2

�1 (u) f (u) :

Moreover, we can �nd such a function f that in addition to the above also satis�es:X
u2S1

�1 (u) f (u) < 0

and f (u) = " for all u 2 S1 n S2 where " > 0.19 But then, Lemma 5 implies that
19For the details about how to �nd such a function, see the argument in the proof of Theorem

4. Alternatively, one can derive this direction of the proof as a straightforward corollary of that
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there exist menus A and B such thatX
u2S2

�2 (u)�A (u) >
X
u2S2

�2 (u)�B (u) ;

X
u2S1

�1 (u)�A (u) <
X
u2S1

�1 (u)�B (u)

and �A (u) > �B (u) for all u 2 S1 n S2. The conditions above imply that A �2 B,
B �1 A. But now notice that for any menu C such that A [ C �2 A [ B [ C, we
must necessarily have �A[C (u) � �B[C (u) for all u 2 S2. Since �A (u) > �B (u)

for all u 2 S1 n S2, it must be the case that �A[C (u) � �B[C (u) for all u 2 S1,
which implies that A [ C �1 A [B [ C. This contradicts the fact that %2 is a less
�exibility loving version of %1. We conclude that �2 must be the Bayesian update
of �1 after the observation of S2: �

A.6 Proof of Theorem 4

[Necessity] Suppose %1;%2 have representations �1; �2 that satisfy the conditions in
the statement of the theorem and let Si := supp (�i) for i = 1; 2. It is easy to see

that S2 = T and intS1 (T ) = S2 n cl (S1 n S2). Now pick any two menus A and B
such that A �2 B and B %1 A. Suppose �rst that S2 � cl (S1 n S2). Since A �2 B
and B %1 A, there must exist u 2 S1 such that �B (u) > �A (u). If u =2 S1 nS2, then
u 2 S2 � cl (S1 n S2). But then, for u� 2 S1 n S2 su¢ ciently close to u it must still
be true that �B (u�) > �A (u�). By Lemma 2, this implies that A [ B B A. Now

assume that S2ncl (S1 n S2) 6= ; and suppose that �A (u) � �B (u) for all u 2 S1nS2.
Since support functions are continuous, this implies that

�B (u) � �A (u)

for all u 2 cl (S1 n S2) as well. We can now show that our representation implies
thatZ
S2\cl(S1nS2)

(�A � �B)(u)�1(du) �
�1(S2 n cl(S1 n S2))
�2(S2 n cl(S1 n S2))

Z
S2\cl(S1nS2)

(�A � �B)(u)�2(du):

To see that, let fm be an increasing sequence of non-negative simple functions over

S2 \ cl (S1 n S2) converging to the restriction of �A��B to S2 \ cl (S1 n S2). But for

Theorem.
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any simple function fm,Z
S2\cl(S1nS2)

fm (u)�1 (du) =
X

c2fm(S2\cl(S1nS2))

c � �1
�
(fm)�1 (c)

�
� �1 (S2 n cl (S1 n S2))

�2 (S2 n cl (S1 n S2))
X

c2fm(S2\cl(S1nS2))

�2
�
(fm)�1 (c)

�
=

Z
S2\cl(S1nS2)

fm (u)�2 (du) ;

where

(fm)�1 (c) := fu 2 S2 \ cl (S1 n S2) : fm (u) = cg :

An application of the monotone convergence theorem shows thatZ
S2\cl(S1nS2)

(�A � �B)(u)�1(du) �
�1(S2 n cl(S1 n S2))
�2(S2 n cl(S1 n S2))

Z
S2\cl(S1nS2)

(�A � �B)(u)�2(du):

But thenZ
S1

(�A � �B) (u)�1 (du) �
Z

S2ncl(S1nS2)

(�A � �B) (u)�1 (du)

+

Z
S2\cl(S1nS2)

(�A � �B) (u)�1 (du)

� �1 (S2 n cl (S1 n S2))
�2 (S2 n cl (S1 n S2))

Z
S2

(�A � �B) (u)�2 (du)

> 0;

where the �rst line uses the fact that �A��B is nonnegative in S1nS2 and the second
uses what we have just proved together with the representation. But this contradicts

the assumption that B %1 A: We conclude that there must exist u� 2 S1 n S2 with
�B (u

�) > �A (u
�) and, by Lemma 2 again, we know that this implies that A[B B A:

[Su¢ ciency] Now suppose that %2 is a less �exibility loving version of %1 and
let �1 and �2 be their PAEU representations. By Lemmas 1 and 3 we know that

supp (�2) =: S2 � S1 := supp (�1). Suppose that S2 n cl (S1 n S2) 6= ;. We can prove
the following claim.
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Claim 1. For any Borel set V � So2 := S2 n cl (S1 n S2) ;

�2 (V ) =
�1 (V )

�1 (S
o
2)
:

Proof of Claim. De�ne the auxiliary measure ~�2 by

~�2 (V ) = �1 (S
o
2)�2 (V ) , for any Borel set V � U :

Clearly, the claim is equivalent to say that ~�2 (V ) = �1 (V ) whenever V � So2 .

Suppose this is not true. By a separation argument we can �nd a function f 2 C (U)
such that Z

So2

f (u)�1 (du) >

Z
So2

f (u) ~�2 (du) :

We can assume without loss of generality thatZ
So2

f (u)�1 (du) > 0 >

Z
So2

f (u) ~�2 (du) :

Let � > 0 be such that jf (u)j < � for any u 2 U . For each i 2 N consider the sets

Oi :=

�
u 2 U : d (u; cl (S1 n S2)) <

1

i

�
.

Observe that Oi & cl (S1 n S2), so there exists i� such that

�1 (S
o
2 \Oi�) ; ~�2 (So2 \Oi�) <

min
nR

So2
f (u)�1 (du) ;�

R
So2
f (u) ~�2 (du)

o
�

:

Now notice that U n Oi� and cl (S1 n S2) are disjoint closed sets, so we can use
Urysohn�s Lemma to �nd a continuous function g : U ! [0; 1] such that g (u) = 1 if
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u 2 U nOi� and g (u) = 0 if u 2 cl (S1 n S2). Moreover,Z
U
g (u) f (u)�1 (du) =

Z
S2nOi�

g (u) f (u)�1 (du) +

Z
So2\Oi�

g (u) f (u)�1 (du)

=

Z
S2nOi�

f (u)�1 (du) +

Z
So2\Oi�

g (u) f (u)�1 (du)

=

Z
So2

f (u)�1 (du) +

Z
So2\Oi�

(g (u)� 1) f (u)�1 (du)

�
Z
So2

f (u)�1 (du)�
Z
So2\Oi�

��1 (du)

=

Z
So2

f (u)�1 (du)� ��1 (So2 \Oi�)

>

Z
So2

f (u)�1 (du)� �
 R

So2
f (u)�1 (du)

�

!
= 0:

Similarly,Z
U
g (u) f (u) ~�2 (du) =

Z
So2nOi�

g (u) f (u) ~�2 (du) +

Z
So2\Oi�

g (u) f (u) ~�2 (du)

=

Z
S2nOi�

f (u) ~�2 (du) +

Z
So2\Oi�

g (u) f (u) ~�2 (du)

=

Z
So2

f (u) ~�2 (du) +

Z
So2\Oi�

(g (u)� 1) f (u) ~�2 (du)

�
Z
So2

f (u) ~�2 (du) +

Z
So2\Oi�

�~�2 (du)

=

Z
So2

f (u) ~�2 (du) + �~�2 (S
o
2 \Oi�)

<

Z
So2

f (u) ~�2 (du) + �

 
�
R
So2
f (u) ~�2 (du)

�

!
= 0:

So, there exists fg =: h 2 C (U) such that h (u) = 0 for all u 2 cl (S1 n S2) andZ
U
h (u)�1 (du) > 0 >

Z
U
h (u) ~�2 (du) :

Let ~h := h� " for some " > 0 such that it is still true thatZ
U
(h (u)� ")�1 (du) > 0 >

Z
U
(h (u)� ") ~�2 (du) :
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Since H� is dense in C (U), we can use ~h to �nd h� 2 H� such that h� (u) < 0 for

all u 2 cl (S1 n S2) andZ
U
h� (u)�1 (du) > 0 >

Z
U
h� (u) ~�2 (du) :

This implies that there exist menus A;B 2 2�(X) n f;g such thatZ
U
(�B � �A) (u)�1 (du) > 0 >

Z
U
(�B � �A) (u) ~�2 (du) ;

and �A (u) > �B (u) for all u 2 cl (S1 n S2). Of course, the condition above implies
that B �1 A and A �2 B. By Lemma 2, this implies that B 7 A, which contradicts
the fact that %2 is a less �exibility loving version of %1. We conclude that �1 (V ) =
~�2 (V ) for any V � So2 : k

To complete the proof of the theorem we need one last claim.

Claim 2. For any Borel subset V of U ;

�2 (V )

�2 (S
o
2)
� �1 (V )

�1 (S
o
2)
:

Proof of Claim. Suppose that there exists Borel set V � U with

�2 (V )

�2 (S
o
2)
>
�1 (V )

�1 (S
o
2)
:

De�ne ~�2 as in the previous claim. The condition above is equivalent to ~�2 (V ) >

�1 (V ). Since �1 and ~�2 are positive Borel measures over the metric space U and,
therefore, are regular, we can assume without loss of generality that V is closed.

De�ne � := (~�2 (V )� �1 (V )) =2 and let OV be some open subset of U such that

V � OV and �1 (OV n V ) < �. By the Urysohn�s Lemma, there exists a continuous
function f : S ! [�; 1] such that f (u) = 1 for all u 2 V and f (u) = � for all
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u 2 U nOV . This implies thatZ
U
f (u) ~�2 (du) �

Z
V

f (u) ~�2 (du)

= ~�2 (V )

= �1 (V ) + 2�

>

Z
V

f (u)�1 (du) +

Z
OV nV

1�1 (du) +

Z
UnOV

��1 (du)

�
Z
V

f (u)�1 (du) +

Z
OV nV

f (u)�1 (du) +

Z
UnOV

f (u)�1 (du)

=

Z
U
f (u)�1 (du) :

Let " :=
�R
U f (u) ~�2 (du)�

R
U f (u)�1 (du)

�
. Now let F be any closed set in S2 n

cl (S1 n S2) with �1 (F ) > 0 and let OF be an open subset of U such that�R
U f (u)�1 (du) + "=2

�
�1;2 (F )

�1;2 (OF n F ) < "=2;

and

F � OF � U n cl (S1 n S2) :20

Again, we can make use of Urysohn�s Lemma to �nd a continuous function g :

U !
�
�
�R
U f (u)�1 (du) + "=2

�
=�1;2 (F ) ; 0

�
such that, for any u 2 F , g (u) =

�
�R
U f (u)�1 (du) + "=2

�
=�1;2 (F ) and, for any u 2 U nOF , g (u) = 0. Now observe

thatZ
U
g (u) ~�2 (du) � �

Z
OF

��Z
U
f (u)�1 (du) + "=2

�
=�1;2 (F )

�
~�2 (du)

= �
��Z

U
f (u)�1 (du) + "=2

�
=�1;2 (F )

�
�1;2 (OF )

= �
��Z

U
f (u)�1 (du) + "=2

�
=�1;2 (F )

�
(�1;2(F ) + �1;2(OF n F ))

> �
�Z

U
f (u)�1 (du) + "=2

�
� "=2

= �
Z
U
f (u)�1 (du)� "

= �
Z
U
f (u) ~�2 (du) :

20Notation: We write �1;2 (F ) and �1;2 (OF n F ) to indicate that �1 and ~�2 agree for this sets.
This is a consequence of the previous claim.
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and Z
U
g (u)�1 (du) � �

Z
F

��Z
U
f (u)�1 (du) + "=2

�
=�1;2 (F )

�
�1 (du)

= �
Z
U
f (u)�1 (du)� "=2:

But then Z
U
(f + g) (u) ~�2 (du) =

Z
U
f (u) ~�2 (du) +

Z
U
g (u) ~�2 (du)

>

Z
U
f (u) ~�2 (du)�

Z
U
f (u) ~�2 (du)

= 0;

and Z
U
(f + g) (u)�1 (du) =

Z
U
f (u)�1 (du) +

Z
U
g (u)�1 (du)

�
Z
U
f (u)�1 (du)�

Z
U
f (u)�1 (du)� "=2

= �"=2:

De�ne h := f + g and observe that h (u) = f (u) � �, for all u 2 cl (S1 n S2). By
Lemma 5, we know that this implies the existence of menus A;B such thatZ

U
(�A � �B) (u) ~�2 (du) > 0 >

Z
U
(�A � �B) (u)�1 (du)

and �A (u) > �B (u) for all u 2 cl (S1 n S2). But the conditions above imply that
A �2 B, B �1 A and A [ B 7 A, which contradicts the fact that %2 is a less
�exibility loving version of %1. We conclude that we must have ~�2 (V ) � �1 (V ) for
all Borel subsets V of U : k

Making T := S2 and using the two claims above concludes the proof of the

theorem. �

A.7 Proof of Theorem 5

The theorem will be a consequence of the following lemma:

Lemma 7. Let %1;%2 be PAEU preferences with representations �1; �2 and de-

�ne Si := supp (�i), i = 1; 2. Then, %2 is independent from B if and only if
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�2 (cl (S1 n S2)) = 0:

Proof of Lemma. Suppose �2 (cl (S1 n S2)) = 0 and let A and B be two menus such
that A �2 B. Let C be any closed sphere in the interior of �(X) and de�ne

D :=
S

u2cl(S1nS2)
argmax

p2C
Ep (u) :

We note that, by construction, fu 2 U : �C (u) > �D (u)g = Uncl (S1 n S2). For
each � 2 (0; 1), de�ne f̂� := �(C��A) � �(C��B)[[D��(A[B)]. By Lemma 6, we know
that

lim
�"1

1

1� �

Z
Uncl(S1nS2)

f̂� (u)�2 (du) =

Z
Uncl(S1nS2)

(�A � �B) (u)�2 (du) :

Since �2 (cl (S1 n S2)) = 0, the condition above implies that

lim
�"1

1

1� �

Z
Uncl(S1nS2)

f̂� (u)�2 (du) =

Z
U
(�A � �B) (u)�2 (du) > 0:

So, for � su¢ ciently close to one, we have C �� A �2 (C �� B) [ [D �� (A [B)].
Since obviously �(C��B)[[D��(A[B)] (u) � �(C��A) (u) for all u 2 cl (S1 n S2), we also
have that [C �� (A [B)] [ [D �� (A [B)] 7 (C �� B) [ [D �� (A [B)].21 We

conclude that %2 is indeed independent from B :

Conversely, suppose now that �2 (cl (S1 n S2)) > 0. Now pick any " > 0 such

that "�2 (S2 n cl (S1 n S2)) < �2 (cl (S1 n S2) \ S2). Now pick a closed subset T of
S2 n cl (S1 n S2) such that

�2 (S2 n cl (S1 n S2))� �2 (T ) �
"

1 + "
�2 (S2 n cl (S1 n S2)) :

We can now use Urysohn�s Lemma to �nd a continuous function f : U ! [�"; 1]
such that f (u) = �" for all u 2 T and f (u) = 1 for all u 2 S2 \ cl (S1 n S2). By
construction we have Z

S2ncl(S1nS2)
f (u)�2 (du) � 0;

with equality only if S2 � cl (S1 n S2), andZ
S2

f (u)�2 (du) > 0:

21Note that cl (A) � int (� (X)) implies that cl (C �� A) � int (� (X)) and
cl ([C �� (A [B)] [ [D �� (A [B)] n (C �� B) [ [D �� (A [B)]) � cl (C �� A) :
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We can now use Lemma 5 to �nd menus A and B such thatZ
S2ncl(S1nS2)

(�A � �B) (u)�2 (du) � 0

and Z
S2

(�A � �B) (u)�2 (du) > 0:

By Lemma 2, we know that for any menus C;D and � 2 (0; 1] such that

[C �� (A [B)] [D 7 (C �� B) [D

we must necessarily have �(C��B)[D (u) � �(C��A) (u) for all u 2 cl (S1 n S2). But
this implies thatZ
S2

(�(C��B)[D � �(C��A))(u)�2(du) �
Z
S2ncl(S1nS2)

(�(C��B)[D � �(C��A))(u)�2(du)

�
Z
S2ncl(S1nS2)

(�(C��B) � �(C��A))(u)�2(du)

= �

Z
S2ncl(S1nS2)

(�B � �A) (u)�2 (du)

� 0:

We conclude that %2 is not independent from B and this �nishes the proof of the

lemma. k

Now note that theorem 5 is a straightforward corollary of Theorem 4 and the

lemma above. �

A.8 Proof of Theorem 6

The proof will make use of the following lemmas:

Lemma 8. Let % be a PAEU preference with representation �. If C;D preserve �

in the limit, then � (f�C > �Dg) = 1:

Proof of Lemma. Suppose � (f�D � �Cg) > 0 and let T := f�D � �Cg and � :=
� (T ). Find a closed subset S of f�C > �Dg with � (f�C > �Dg) � � (S) < �� (S),
where � := �(T )

2�(f�C>�Dg) . Now use Urysohn�s Lemma to �nd a continuous function

38



f : U [��; 1] such that f (u) = �� for u 2 S and f (u) = 1 for u 2 T . Note thatZ
U
f (u)� (du) > � (T )� �� (f�C > �Dg)

= � (T )� � (T )
2

> 0;

but Z
f�C>�Dg

f (u)� (du) < ��� (S) + (� (f�C > �Dg)� � (S))

< 0:

By lemma 5, we can �nd menus A and B such thatZ
U
�A (u)� �B (u)� (du) > 0;

but Z
f�C>�Dg

�A (u)� �B (u)� (du) < 0:

By Lemma 6, the second inequality implies that (C �� B) [ [D �� (A [B)] �
(C �� A)[ [D �� (A [B)] when � is large, while, by assumption, the �rst is equiv-
alent to say that A � B. This contradicts the assumption that C and D preserve %
in the limit and, therefore, we conclude that we must have � (f�C > �Dg) = 1: k

Lemma 9. Let (
;�) be a measurable space and let �1; �2 be two probability mea-
sures over (
;�). There exists S 2 � such that �2 (S) = 1 and for any T � S,

�2 (T ) = 0 =) �1 (T ) = 0:

Proof of Lemma. By the Lebesgue decomposition theorem, there exists signed mea-

sures ~�1; �̂1 such that �1 = ~�1 + �̂1, ~�1 << �2 and �̂1 ? �2. Since �̂1 ? �2, we

know that there exists disjoint T 0; T 00 such that T 0 [ T 00 = 
, �̂1 is zero on all mea-
surable subsets of T 0 and �2 (T

00) = 0. It is clear now that the lemma is satis�ed for

S := T 0: k

Lemma 10. Let (
;�) be a measurable space and let �1; �2 be two probability mea-
sures over (
;�). Fix a measurable set S such that �2 (S) = 1 and for any mea-

surable set T � S, �2 (T ) = 0 =) �1 (T ) = 0. �2 is the Bayesian update of �1
after the observation of some set only if �2 is the Bayesian update of �1 after the

observation of S:
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Proof of Lemma. Suppose that �2 is the Bayesian update of �1 after the observation

of a set ~S. First note that

1 = �2 (S) =
�1

�
S \ ~S

�
�1

�
~S
� ;

which implies that �1
�
~S n S

�
= 0. Also note that �2

�
S n ~S

�
= 0, which by our

assumptions imply that �1
�
S n ~S

�
= 0. We learn that �1 (S) = �1

�
~S
�
. Now �x

any measurable set T . Note that:

�2 (T ) = �2 (T \ S) =
�1

�
T \ S \ ~S

�
�1

�
~S
� =

�1 (T \ S)
�1 (S)

:

This concludes the proof of the lemma. k

Now we are ready to �nish the proof of the theorem.

[Necessity] Suppose �rst that %1 and %2 have PAEU representations �1; �2,

respectively, and that there exists a Borel set T � S1 := supp (�1) satisfying one of
the conditions in the statement of the theorem. Fix some pair of menus A;B such

that A �2 B. We �rst need the following claim:

Claim 1. There exists a set T̂ � T such thatZ
T̂

�A (u)�1 (du) >

Z
T̂

�B (u)�1 (du) :

Proof of Claim. If �2 is the Bayesian update of �1 after the observation of T , then

we can simply make T̂ := T . Suppose, then, that �1 (T ) = 0 and �2 (T ) = 1. Since

A �2 B, we know that that �A (u�) > �B (u�) for some u� 2 T � S1. By continuity
of support functions, we know that in fact we must have �A (u) > �B (u) for all u

in some neighborhood of u�. This implies thatZ
f�A>�Bg[T

(�A � �B) (u)�1 (du) =

Z
f�A>�Bg

(�A � �B) (u)�1 (du)

> 0:

De�ning T̂ := f�A > �Bg [ T completes the proof of the claim. k

Now let T̂ be as in the claim above. By regularity of �1, we can �nd an open
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superset O of T̂ such thatZ
O

�A (u)�1 (du) >

Z
O

�B (u)�1 (du) :

Now let E be any closed sphere in the interior of �(X). De�ne the following sets:

C := E and D :=
�
p 2 E : fpg = argmax

q2E
Eq (u) for some u 2 UnO

�
:

By construction, f�C > �Dg = O and, by Lemma 6, it must be the case that

(C �� A) [ [D �� (A [B)] �1 (C �� B) [ [D �� (A [B)] when � is large. Again,
by Lemma 6, it is clear that for any two menus A0; B0 with A0 �2 B0 we must
necessarily have (C �� A0)[ [D �� (A0 [B0)] �2 (C �� B0)[ [D �� (A0 [B0)] when
� is large, so that C and D preserve %2 in the limit.

[Su¢ ciency] Suppose that %1 and %2 have PAEU representations with priors �1
and �2, respectively, and suppose that %2 can be extracted from %1. Fix any Borel
set T � U such that �2 (T ) = 1 and for any Borel subset T̂ of T , �2(T̂ ) = 0 =)
�1(T̂ ) = 0. By Lemma 9 above, we know that such a set always exists. We need the

following claim:

Claim 2. Let S1 := supp (�1). It must be the case that �2 (T \ S1) = 1:

Proof of Claim. Suppose �2 (T n S1) > 0. Let E be any closed sphere in the interior
of �(X) and de�ne

A := E and B :=
�
p 2 E : fpg = argmax

q2E
Eq (u) for some u 2 S1

�
:

Notice that, by construction, f�A > �Bg = UnS1 and f�A = �Bg = S1. This implies
that Z

U
(�A � �B) (u)�2 (du) =

Z
TnS1

(�A � �B) (u)�2 (du) > 0;

or, equivalently, A �2 B. Now pick any two menus C;D. For each � 2 (0; 1), de�ne
f� := �(C��A)[[D��(A[B)] � �(C��B)[[D��(A[B)]. Now note that, for any � 2 (0; 1) ;Z

U
f� (u)�1 (du) =

Z
S1

f� (u)�1 (du)

=

Z
S1

0�1 (du)

= 0:
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Since C;D were entirely arbitrary, this contradicts the assumption that %2 can be
extracted from %1 and, therefore, we conclude that �2 (T \ S1) = 1: k

Given the claim above, we now assume, without loss of generality, that T � S1.
If �1 (T ) = 0, the proof is complete, so assume that �1 (T ) > 0. If �2 is not the

Bayesian update of �1 after the observation of T , by a separation argument, we can

�nd a continuous function f : U ! R such thatZ
T

f (u)�2 (du) > 0, but
Z
T

f (u)�1 (du) < 0:

Let

� := max
u2U

jf (u)j ;

and let " > 0 be such that

" <
1

�
min

�����Z
T

f (u)�1 (du)

���� ;Z
T

f (u)�2 (du)

�
:

Since �1 and �2 are Borel probability measures over a metric space, they are both

regular. Therefore, we can �nd closed sets T 0 � T and T 00 � (UnT ) such that

�i (T )� �i(T 0) < "=3, for i = 1; 2

and

�i (U n T )� �i(T 00) < "=3, for i = 1; 2:

Using Urysohn�s lemma we can �nd a continuous function g : U ! [0; 1] such that

g (u) = 0 for all u 2 T 00 and g (u) = 1 for all u 2 T 0. Finally, de�ne the function h
by h := f � g. We note that h is a continuous function, so there exists menus A and
B and r > 0 such that

jr (�A (u)� �B (u))� h (u)j <
�"

3
for all u 2 U :
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This implies that

r

Z
U
(�A (u)� �B (u))�2 (du) >

Z
U
h (u)�2 (du)�

�"

3

=

Z
T

f (u)�2 (du)

+

Z
TnT 0

(f (u) g (u)� f (u))�2 (du)�
�"

3

�
Z
T

f (u)�2 (du)� ��2 (T n T 0)�
�"

3

>

Z
T

f (u)�2 (du)� �"

> 0:

So A �2 B. Finally, let C and D be any two menus that preserve %2 in the
limit. By Lemma 8, this implies that �2 (T \ f�C > �Dg) = 1, or, equivalently,

�2 (T n f�C > �Dg) = 0. By construction, this implies that �1 (T n f�C > �Dg) = 0
and, therefore, �1 (T ) = �1 (T \ f�C > �Dg). For each � 2 (0; 1) de�ne f� :=

�(C��A)[[D��(A[B)] � �(C��B)[[D��(A[B)]. By Lemma 6, we know that

lim
�"1

1

1� �

Z
U
f� (u)�1 (du) =

Z
f�C>�Dg

(�A (u)� �B (u))�1 (du) :

But now note thatZ
f�C>�Dg

r(�A(u)� �B(u))�1(du) <

Z
f�C>�Dg

h (u)�1 (du) +
�"

3

=

Z
T

h (u)�1 (du)�
Z
Tnf�C>�Dg

h (u)�1 (du)

+

Z
f�C>�DgnT

h (u)�1 (du) +
�"

3

=

Z
T

h (u)�1 (du)

+

Z
f�C>�DgnT

h (u)�1 (du) +
�"

3

<

Z
T

f (u)�1 (du) + ��1 (T n T 0)

+��1 ((f�C > �Dg n T ) n T 00) +
�"

3

<

Z
T

f (u)�1 (du) + �"

< 0:
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So, for � large enough we must necessarily have

(C �� B) [ [D �� (A [B)] �1 (C �� A) [ [D �� (A [B)] ;

which contradicts the assumption that %2 can be extracted from %1. We conclude
that �2 must be the Bayesian update of �1 after the observation of T: �
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