Evaluating Asset Pricing Models in a Fama-French Framework

Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglivanone
December, 2008
Evaluating Asset Pricing Models in a Fama-French Framework

Carlos Enrique Carrasco Gutierrez*
Wagner Piazza Gaglianone†

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

In this work we propose a methodology to compare different stochastic discount factor (SDF) proxies based on relevant market information. The starting point is the work of Fama and French, which evidenced that the asset returns of the U.S. economy could be explained by relative factors linked to characteristics of the firms. In this sense, we construct a Monte Carlo simulation to generate a set of returns perfectly compatible with the Fama and French factors and, then, investigate the performance of different SDF proxies. Some goodness-of-fit statistics and the Hansen and Jagannathan distance are used to compare asset pricing models. An empirical application of our setup is also provided.

Keywords: Asset Pricing, Stochastic Discount Factor, Hansen-Jagannathan distance.
JEL Classification: G12, C15, C22.

*Corresponding author. FUCAPE Business School. Vitória ES-Brazil and Graduate School of Economics, Getulio Vargas Foundation, Praia de Botafogo 190, s.1104, Rio de Janeiro, Brazil (e-mail: carlos.gutierrez@fucape.br).
†Research Department, Central Bank of Brazil (e-mail: wagner.gaglianone@bcb.gov.br).
1 Introduction

In this work, we propose a new methodology to compare different stochastic discount factor or pricing kernel proxies.\(^1\) In asset pricing theory, one of the major interests for empirical researchers is oriented by testing whether a particular asset pricing model is (indeed) supported by the data. In addition, a formal procedure to compare the performance of competing asset pricing models is also of great importance in empirical applications.

In both cases, it is of utmost relevance to establish an objective measure of model misspecification. The most useful measure is the well-known Hansen and Jagannathan (1997) distance (or simply HJ-distance), which has been used both as a model diagnostic tool and as a formal criterion to compare asset pricing models. This type of comparison has been employed in many recent papers.\(^2\)

As argued by Hansen and Richard (1987), observable implications of candidate models of asset markets are conveniently summarized in terms of their implied stochastic discount factors. As a result, some recent studies of the asset pricing literature have been focused on proposing an estimator for the SDF and also on comparing competing pricing models in terms of the SDF model. For instance, see Lettau and Ludvigson (2001b), Chen and Ludvigson (2008), Araujo, Issler and Fernandes (2006).

A different route to investigate and compare asset pricing models has also been suggested in the literature. The main idea is to assume a data generation process (DGP) for a set of asset returns, based on some assumptions about the asset prices and, then, create a controlled framework, which is used to evaluate and compare the asset pricing models.

In this sense, Fernandes and Vieira (2006) study through Monte Carlo simulations the performance of different SDF estimatives at different environments. For instance, the authors consider that all asset prices follow a geometric Brownian motion.

\(^1\)We use the term "stochastic discount factor" as a label for a state-contingent discount factor.

\(^2\)For instance, by using the HJ-distance, Campbell and Cochrane (2000) explain why the CAPM and its extensions better approximate asset pricing models than the standard consumption based model; Jagannathan and Wang (2002) compare the SDF method with Beta method in estimating a risk premium; Dittmar (2002) uses the HJ-distance to estimate the nonlinear pricing kernels in which the risk factor is endogenously determined and preferences restrict the definition of the pricing kernel. Other examples in the literature include Jagannathan, Kubota and Takehara (1998), Farnsworth, Ferson, Jackson, and Todd (2002), Lettau and Ludvigson (2001a) and Chen and Ludvigson (2008).
In this case, one should expect that a SDF proxy based on a geometric Brownian motion assumption would have a better performance, in comparison to an asset pricing model that does not assume this hypothesis. The authors also study competing asset pricing models in a stationary Ornstein-Uhlenbeck process as done in Vasicek (1977).

However, a critical issue of this procedure is that the best asset pricing model inside these particular environments (i.e., when the asset prices are supposed to follow a geometric Brownian motion or a stationary Ornstein-Uhlenbeck process), might not be a good model in the real world. In other words, the best estimator for each controlled framework might not necessarily exhibit the same performance for observed stock market prices of a real economy.

In this paper, we use the controlled approach of Fernandes and Vieira (2006), but instead of generating the asset returns from an ad-hoc assumption about the DGP of returns, we use related market information from the real economy. Our starting point is the work of Fama and French, which evidenced that asset returns of the U.S. economy could be explained by relative factors linked to characteristics of the firms\(^3\).

Based on the Fama and French factors, we firstly construct a Monte Carlo simulation to generate a set of returns that is perfectly compatible with these factors. The next step is to create a framework to compare the competing asset pricing models. To do so, we consider two sets of returns: The first sample is used to estimate the different SDF proxies, whereas the remaining sample is used to analyze the out-of-sample performance of each asset pricing model. Although we do not directly use market returns data in this paper, we are able to compare different SDFs by using important market information provided by the Fama-French factors.\(^4\)

Finally, because our approach enables us to construct a data generation process of the SDF provided by the Fama and French specification, it is possible to compare competing proxies through some goodness-of-fit statistics. In addition, it is relevant to test if a set of SDF candidates satisfy the law of one price, such that \(1 = E_t (m_{t+1}R_{t+1})\), where \(m_{t+1}\) is referred to the investigated stochastic discount factor. Thus, we say that a SDF correctly "prices" the assets if this equation is (in fact) satisfied. In this sense, we test the previous restriction by evaluating, out-of-sample, the HJ-distance of each SDF candidate model.

\(^3\)Fama and French (1993, 1995) argue that a three-factor model is successful because it proxies for unobserved common risk in portfolio returns.

\(^4\)Notice that this procedure could also be adopted to compare models by using real data, but with some limitations since the DGP would be unknown.
As shown by Hansen and Jagannathan, the HJ-distance $\delta = \min_{m \in \mathcal{M}} \| y - m \|$, defined in the L^2 space, is the distance of the SDF model y to a family of SDFs, $m \in \mathcal{M}$, that correctly price the assets. In other interpretation, Hansen and Jagannathan show that the HJ-distance is the pricing error for the portfolio that is most mispriced by the underlying model. In this sense, even though the investigated SDF models are misspecified, in practical terms, we are interested in those models with the lowest HJ-distance.

The main objective here is not to propose a DGP process of actual market returns, but to provide a controlled environment that allows one to properly compare and evaluate different SDF proxies. This work follows the idea of Farnsworth et al. (2002), which study different SDFs by constructing artificial mutual funds using real stock returns from the CRSP data.

To illustrate our methodology, we present an empirical application, in which three SDF models are compared: a) The novel nonparametric estimator of Araujo, Issler and Fernandes (2006); b) The Brownian motion pricing model studied in Brandt, Cochrane and Saint-Clara (2006); and c) The (traditional) unconditional linear CAPM.

This work is organized as follows: Section 2 presents the Fama and French model and describes the Monte Carlo simulation strategy; Section 3 presents the results of the empirical application; and Section 4 shows the main conclusions.

2 The stochastic discount factor and the Fama and French model

A general framework to asset pricing is well described in Harrison and Kreps (1979), Hansen and Richard (1987) and Hansen and Jagannathan (1991), associated to the stochastic discount factor (SDF), which relies on the pricing equation:

$$ p_t = E_t (m_{t+1} x_{i,t+1}), $$

where $E_t(\cdot)$ denotes the conditional expectation given the information available at time t, p_t is the asset price, m_{t+1} the stochastic discount factor, $x_{i,t+1}$ the asset payoff of the i-th asset in $t+1$. This pricing equation means that the market value today of an uncertain payoff tomorrow is represented by the payoff multiplied by the discount factor, also taking into account different states of nature by using the underlying probabilities.
The stochastic discount factor model provides a general framework for pricing assets. As documented by Cochrane (2001), asset pricing can basically be summarized by two equations:

\[
\begin{align*}
p_t &= E_t [m_{t+1} x_{t+1}], \quad (2) \\
m_{t+1} &= f (\text{data, parameters}). \quad (3)
\end{align*}
\]

where the model is represented by the function \(f(\cdot)\), and the (2) can lead to different predictions stated in terms of returns. For instance, in the Consumption-based Capital Asset Pricing Model (CCAPM) context, the first-order conditions of the consumption-based model, summarized by the well-known Euler equation: \(p_t = E_t \left[\beta \frac{u(c_{t+1})}{u'(c_t)} x_{t+1} \right] \). The specification of \(m_{t+1}\) corresponds to the intertemporal marginal rate of substitution. Hence, \(m_{t+1} = f(c, \beta) = \beta \frac{u(c_{t+1})}{u'(c_t)}\), where \(\beta\) is the discount factor for the future, \(c_t\) is consumption and \(u(\cdot)\) is a given utility function. The pricing equation (2) mainly illustrates the fact that consumers (optimally) equate marginal rates of substitution to prices.

2.1 Fama and French framework

Fama and French (1992) show that, besides the market risk, there are other important factors that help explain the average return in the stock market. This evidence has been demonstrated in several works for different stock markets (see Gaunt (2004) and Griffin (2005) for a good review). Although there is not a clear link between these factors and the economic theory (e.g., CAPM model), these evidences show that some additional factors might (quite well) help to understand the dynamics of the average return.

These factors are known as the size and the book-to-market equity and represent special features about firms. Fama and French (1992) argue that size and book-to-market equity are indeed related to economic fundamentals. Although they appear to be "ad hoc variables" in an average stock returns regression, these authors justify them as expected and natural proxies for common risk factors in stock returns.

The factors

(i) The SMB (Small Minus Big) factor is constructed to measure the size premium. In fact, it is designed to track the additional return that investors have historically received by investing in stocks of companies with relatively small market capitalization. A positive SMB in a given month indicates that small cap stocks have outperformed the large cap stocks in that month. On the other hand, a negative SMB suggests that large caps have outperformed.
(ii) The HML (High Minus Low) factor is constructed to measure the premium-value provided to investors for investing in companies with high book-to-market values. A positive HML in a given month suggests that “value stocks” have outperformed the “growth stocks” in that month, whereas a negative HML indicates that growth stocks have outperformed.\(^5\)

(iii) The Market factor is the market excess return in comparison to the risk-free rate. For instance, we proxy the excess return on the market \((R_M - R_f)\), in the U.S. economy, by the value-weighted portfolio of all stocks listed on the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and NASDAQ stocks (from CRSP) minus the one-month Treasury Bill rate.

The Model

Fama and French (1993, 1996) propose a three-factor model for expected returns (see also Fama and French (2004) for a good survey).

\[
E(R_{it}) - R_{ft} = \beta_{im} [E(R_{Mt}) - R_{ft}] + \beta_{is} E(SMB_{it}) + \beta_{ih} E(HML_{it}), \quad i \in \{1, \ldots, N\}, \quad (4)
\]

where the betas \(\beta_{im}, \beta_{is}\) and \(\beta_{ih}\) are slopes in the multiple regression (4). Hence, one implication of the expected return equation of the three-factor model is that the intercept in the time-series regression (5) is zero for all assets \(i:\)

\[
R_{it} - R_{ft} = \beta_{im} (R_{Mt} - R_{ft}) + \beta_{is} SMB_{it} + \beta_{ih} HML_{it} + \varepsilon_{it}. \quad (5)
\]

Using this criterion, Fama and French (1993, 1996) find that the model captures much of the variation in the average return for portfolios formed on size, book-to-market equity and other price ratios.

Expected return - beta representation

The Fama and French approach is (in fact) a multifactor model that can be seen as an expected-beta\(^6\) representation of linear factor pricing models of the form:

\[
E(R_{i}) = \gamma + \beta_{im}\lambda_m + \beta_{is}\lambda_s + \beta_{ih}\lambda_h + \alpha_i, \quad i \in \{1, \ldots, N\}. \quad (6)
\]

\(^5\)Notice that, in respect to SMB, small companies logically are expected to be more sensitive to many risk factors, as a result of their relatively undiversified nature, and also their reduced ability to absorb negative financial events. On the other hand, the HML factor suggests higher risk exposure for typical value stocks in comparison to growth stocks.

\(^6\)The main objective of the beta model is to explain the variation in terms of average returns across assets.
If we run this cross-sectional regression of average returns on betas, one can estimate the parameters \((\gamma, \lambda_m, \lambda_s, \lambda_h)\). Notice that \(\gamma\) is the intercept and \(\lambda_m, \lambda_s\), and \(\lambda_h\) the slope in this cross-sectional relation. In addition, the \(\beta_{im}, \beta_{is}\), and \(\beta_{ih}\) are the unconditional sensitivities of the \(i\)-th asset to the factors\(^7\). Moreover, \(\beta_{ij}\), for some \(j \in \{m, s, h\}\), can be interpreted as the amount of risk exposure of asset \(i\) to factor \(j\), and \(\lambda_j\) as the price of such risk exposure. Hence, the betas are defined as the coefficients in a multiple regression of returns on factors:

\[
R_{it} - R_{ft} = \beta_{im} R_{Mt}^{ex} + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}, \quad t \in \{1, \ldots, T\},
\]

where \(R_{Mt}^{ex} = (R_{Mt} - R_{ft})\). Following the equivalence between this beta-pricing model and the linear model for the discount factor \(M\), in an unconditional setting (see Cochrane, 2001), we can estimate \(M\) as:

\[
M = a + b' f,
\]

where \(f = [R_{Mt}^{ex}, SMB, HML]'\), and the relations between \(\lambda e \gamma\), and \(a\) and \(b\), are given by:

\[
a = \frac{1}{\gamma} \quad \text{and} \quad b = -\gamma \left[\text{cov} (f f') \right]^{-1} \lambda.
\]

2.2 Evaluating the performance of competing models

In the asset pricing literature, some measures are suggested to compare competing asset pricing models. The most famous measure is the Hansen and Jagannathan distance. However, as long as the data generation process (DGP) is known in each specification of the Fama and French model, it is also possible to use some simple sample statistics. In addition, we use the Hansen and Jagannathan distance to test for model misspecification and to compare the performance of different asset pricing models.

The Hansen-Jagannathan (1997) distance measure is a summary of the mean pricing errors across a group of assets. It may also be interpreted as the distance between the SDF candidate and one that would correctly price the primitive assets. The pricing error can be written by \(\alpha_t = E_t (m_{t+1} R_{i,t+1}) - 1\). Notice, in particular, that \(\alpha_t\) depends on the considered SDF, and the SDF is not unique (unless markets are complete). Thus, different SDF proxies can produce similar HJ measures. In this sense, even though the investigated SDF models are misspecified, in practical terms, we are interested in those models with the lowest HJ-distance.

\(^7\)An unconditional time-series approach is used here. The conditional approaches to test for international pricing models include those by Ferson & Harvey (1994, 1999) and Chan, Karolyi and Stulz (1992).
Goodness-of-fit statistics

We use two goodness-of-fit statistics to compare different SDF proxies. The \widehat{MSE}_s is merely a standardized version of the mean squared error of the SDF proxies, whereas the $\widehat{\gamma}_s$ compares the sample correlation between the actual and estimated stochastic discount factors. Let M_t be the stochastic discount factor generated by the Fama and French specification (DGP), and \widehat{M}_t^s the SDF proxy provided by model s in a family S of asset pricing models. The standardized mean squared error is computed as:

$$\widehat{MSE}_s = \frac{\sum_{t=1}^T \left(\widehat{M}_t^s - M_t \right)^2}{\sum_{t=1}^T M_t^2}, \quad \text{for } s \in S.$$ (10)

and the sample correlation between the actual and estimated SDF is given by:

$$\widehat{\gamma}_s = \text{corr}(\widehat{M}_t^s, M_t), \quad \text{for } s \in S.$$ (11)

2.3 Constructing the Fama and French environment

Based on the assumption that R_{Mt}, SMB_t and HML_t are known variables, we can reproduce a Fama and French environment following the three factors of the Fama and French model:

$$R_{i,t} - R_{ft} = \beta_{im} (R_{Mt} - R_{ft}) + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}. $$ (7)

The simulated asset returns are generated using equation (7). This way, we propose the following steps of a Monte Carlo simulation:

1) Firstly, calibrate each parameter β_{ij}^k, for $j \in \{m, s, h\}$ and $i \in \{1, ..., N\}$ according to previous estimations of Fama and French (1992,1993). Therefore, we will generate for each j a N-dimensional vector of asset returns.

2) By considering β_{ij}^k created in step 1 for some $i \in \{1, ..., N\}$ and using the known factors R_{Mt}, SMB_t and HML_t, we generate a vector of returns along the time dimension, through equation (7). The iid shock ε_{it} is assumed to be a white noise with zero mean and constant variance.

3) Repeating step 2 for each $i \in \{1, ..., N\}$, we create the matrix R^k of asset returns, in which rows are formed by different returns and columns represent the time dimension.
4) Evaluate the mean of R_k across each row to generate a cross-section vector. Now, it is possible to estimate the parameters γ^k and λ^k through equation (6).

5) Estimate parameters a^k and b^k from the equivalence relation shown in equation (9). Finally, the stochastic discount factor can be estimated by using equation (8).

6) Repeat steps 1 to 5 for an amount of K replications in order to construct the Monte Carlo simulation.

7) Since our approach enables us to construct a data generation process of the SDF provided by the Fama and French specification (computed with N assets), it is possible to compare the competing SDF proxies, obtained in steps 1 to 6, through the goodness-of-fit statistics described in the previous section, as it follows:

7.a) Split the set of N assets into two groups (with the same number of time series observations in each group). Firstly, consider an amount of $\tilde{N} < N$ assets to estimate the SDF candidates (henceforth, this first group of assets will be denominated in-sample). Based on the estimated SDF proxies (\hat{M}_t) we compute the in-sample goodness-of-fit statistics \hat{MSE}_s and $\hat{\gamma}_s$, in order to compare every SDF proxy with the correct SDF provided by the Fama and French setup. Secondly, the remaining $(N - \tilde{N})$ assets are used to generate the out-of-sample to compute the Hansen and Jagannathan distance. That is, we want to know how well the proxies are carried on when new information is considered.

3 Empirical Application

In this section, we present a simple empirical exercise of our proposed framework for the U.S economy. Three asset pricing models discussed in the literature are compared:

A. The Brownian motion pricing model (studied in Brandt et al., 2006)

Brandt, Cochrane and Santa-Clara (2006) consider that the asset prices follow a geometric Brownian motion (GBM). Such hypothesis is defined by the following partial differential equation:

$$\frac{dP}{P} = \left(R^f + \mu \right) dt + \Sigma^{\frac{1}{2}} dB, \quad (12)$$

where, $\frac{dP}{P} = \left(\frac{dP_1}{P_1^t} + ..., \frac{dP_N}{P_N^t} \right)^t$, $\mu = (\mu_1, ..., \mu_n)^t$, Σ is a $N \times N$ positive definite matrix, P_i is the price of the asset i, μ the risk premium vector, R^f the risk free rate, and B a standard GBM of
dimension N. Using Itô theorem, it is possible to show that:

$$R_{t+\Delta t}^i = \frac{P_{t+\Delta t}^i}{P_t^i} = e^{(R_t^i + \mu_i - \frac{1}{2} \Sigma_{i,t}^i) \Delta t + \sqrt{\Delta t} \left(\Sigma_{i,t}^i \right)' z_t},$$

(13)

where Z_t is a vector of N independent variables with Gaussian distribution. Therefore, the SDF proposed by these authors is calculated as

$$M_{t+\Delta t} = e^{-(R_t^i + \frac{1}{2} \Sigma_{i,t}^i) \Delta t - \sqrt{\Delta t} \left(\Sigma_{i,t}^i \right)' z_t}.$$

(14)

Thus, Brandt, Cochrane and Santa-Clara (2006) suggest the following SDF estimator:

$$\widehat{M_t} = e^{-(R_t^i + \frac{1}{2} \Sigma_{i,t}^i) \Delta t - \sqrt{\Delta t} \left(\Sigma_{i,t}^i \right)' (R_t - \bar{R})},$$

(15)

where, $\hat{\mu}, \bar{R}$ and Σ are estimated by:

$$\hat{\mu} = \frac{\bar{R} - R_t^f}{\Delta t},$$

(16)

$$\hat{\Sigma} = \frac{1}{\Delta t} \frac{1}{T} \sum_{t=1}^{T} (R_t - \bar{R}) (R_t - \bar{R})',$$

(17)

such that, $R_t = (R_t^1, ..., R_t^N)'$ and $\bar{R} = \frac{1}{T} \sum_{t=1}^{T} R_t$.

B. Araujo, Issler and Fernandes (2006)

A novel estimator for the stochastic discount factor (within a panel data context) is proposed by Araujo, Issler and Fernandes (2006). This setting is slightly more general than the GBM setup put forth by Brandt, Cochrane and Santa-Clara (2006). In fact, this estimator assumes that, for every asset $i \in \{1, ..., N\}$, $M_{t+1} R_{t+1}^i$ is conditionally homoskedastic and has a lognormal distribution. In addition, under asset pricing equation (1) and some mild additional conditions, they show that a consistent estimator for M_t is given by:

$$\widehat{M_t} = \left(\frac{\bar{R}_t^G}{\frac{1}{T} \sum_{t=1}^{T} \bar{R}_t^A \bar{R}_t^G} \right),$$

(18)

where $\bar{R}_t^A = \frac{1}{N} \sum_{i=1}^{N} R_{i,t}$ and $\bar{R}_t^G = \prod_{i=1}^{N} R_{i,t}^{-\frac{1}{N}}$ are respectively the cross-sectional arithmetic and geometric average of all gross returns. Therefore, this nonparametric estimator depends exclusively on appropriate averages of asset returns that can easily be implemented.
C. Capital Asset Pricing Model - CAPM

Assuming the unconditional CAPM, the SDF is a linear function of market returns calculated as: $m_{t+1} = a + bR_{w,t+1}$, where $R_{w,t+1}$ is the gross return on the market portfolio of all assets. For instance, in the U.S. economy, in order to implement the static CAPM, for practical purposes, it is commonly assumed that the return on the value-weighted portfolio of all stocks listed on NYSE, AMEX, and NASDAQ is a reasonable proxy for the return on the market portfolio of all assets of the U.S. economy.

3.1 Monte Carlo design

In order to compare these three SDF proxies we construct the Monte Carlo experiment following the procedure showed in section 2.3. For the U.S. economy, the factors $(R_{M_t} - R_{ft})$, SMB_t and HML_t are extracted from the Kenneth R. French website. Next, we calibrate the parameters β_{im}, β_{is} and β_{ih} according to previous estimations of Fama and French (1992,1993) and estimate the parameters $(\gamma, \lambda_m, \lambda_s, \lambda_h)$ from the cross-sectional regression (6), observing their significance through the F-statistic or the t-statistic for individual parameters.

We set $N = 36$ as our set of primitive assets, which are divided into two groups: The first one contains $\tilde{N} = 18$ assets that are used for the in-sample estimation. The second group has $(N - \tilde{N}) = 18$ assets, which are thus used for the out-of-sample analysis. We also consider, for each generated asset i, three sample sizes $T = \{200; 300; 400\}$.

This way, we estimate the stochastic discount factors for the three-factor model of Fama and French, and repeat the mentioned procedure for an amount of $K = 1,000$ replications. Some descriptive statistics of the generated SDFs are presented in appendix. Finally, the evaluation of the SDF proxies is conducted and the Monte Carlo results are summarized by two goodness-of-fit statistics (besides the HJ-distance), which are averaged across all replications.

We denote the SDF proxies, estimated in each replication, as \tilde{M}_{t}^{a}, \tilde{M}_{t}^{b} and \tilde{M}_{t}^{c} to Araujo, Issler and Fernandes (2006), Brandt, Cochrane and Santa-Clara (2006) and the unconditional CAPM respectively. In addition, the stochastic discount factor implied by the Fama and French setup (DGP) is denoted by M_t.

8 More information about data can be found in: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

For other economies, the factors can be constructed as showed in Fama and French (1992, 1993).
3.2 Results

In Figure 1, the estimates of the SDF proxies are shown for one replication of the Monte Carlo simulation, with a sample size $T = 200$. A simple graphical investigation reveals that the Brandt, Cochrane and Santa-Clara, \widehat{M}_t^B, and the CAPM proxy, \widehat{M}_t^C, are respectively the most and less volatile, which is a result confirmed by the descriptive statistics of Table 2 (in appendix). In addition, \widehat{M}_t^B appears to be the SDF proxy that best tracks the DGP M_t.

Figure 1 - Three factors, with a sample size $T = 200

Notes: a) Figure 1 shows one replication out of the total amount of 1,000 replications.

b) We adopt $\tilde{N} = 18$ assets and $T=200$ observations.

Regarding the performance of the SDF proxies, Table 1 reports the evaluation statistics provided by the Monte Carlo simulation. Notice that results are robust to sample size. In all cases, the mean square error of Brandt, Cochrane and Santa-Clara (2006) SDF proxy (\widehat{M}_t^B) shows quite a good
performance, whereas the CAPM proxy seems to exhibit the worst one. Nonetheless, the magnitude of the standard deviation might suggest that all these values are quite close to each other.

In respect to the correlation of the true SDF with the considered SDF proxies, we have obtained the following ranking order for all sample sizes: \(\hat{M}_t^b > \hat{M}_t^a > \hat{M}_t^c \). This implies that the Brandt, Cochrane and Santa-Clara (2006) proxy (in general) best tracks the dynamic path of the true SDF. On the other hand, the CAPM model exhibits again the worst performance (with a negative correlation in some cases!)

Finally, in respect to the out-of-sample analysis, the HJ distance results\(^9\) (which should be as close as possible to zero in a correctly-specified model) indicate that for \(T = 200 \) and \(T = 300 \): \(\bar{H}J_b < \bar{H}J_a < \bar{H}J_c \), revealing that the Brandt, Cochrane and Santa-Clara (2006) is the best proxy for forecasting purposes, followed by the Araujo et al. (2006) SDF estimator. For \(T = 400 \) we obtained similar results, except that in this case the CAPM model has a lower HJ-distance in comparison to the Araujo et al. (2006) proxy.\(^{10}\)

Putting all together, the numerical results show that (in general) the Brandt, Cochrane and Santa-Clara (2006) has the best out-of-sample performance. Notice that Figure 1 already showed this tendency, since the referred SDF best tracked the respective Fama-French DGP.

Finally, the CAPM model shows a negative correlation with the true SDF, revealing its weakness in tracking the real dynamic of the true SDF. This result is because the linear CAPM only uses one single factor, out of the three factors correct-specification in the Fama-French setup. This way, our methodology allows one to rank the competing SDF models (according to different evaluation criteria), based on simulated data generated from U.S. market information.

\(^9\)We compute the HJ distance based on the MatLab codes of Mike Cliff, available at: http://mcliff.cob.vt.edu/

\(^{10}\)The standard error of the HJ-distance is estimated by a Newey & West (1987) HAC procedure, in which the optimal bandwidth (number of lags=5) is given by \(m(T) = \text{int}(T^{2/3}) \), where \(\text{int}(\cdot) \) represents the integer part of the argument, and \(T \) is the sample size. The adopted kernel used to smooth the sample autocovariance function is given by a standard modified Bartlett kernel: \(w(j, m(T)) = 1 - |j/(m(T) + 1)| \). See Newey & West (1994) for an extensive discussion about lag selection in covariance matrix estimation, and also Kan & Robotti (2008).
Table 1 - Monte Carlo Simulation Results

<table>
<thead>
<tr>
<th>sample size: 200 (Over the time period from 09/1999 to 12/2007)</th>
<th>(\hat{MSE}_a)</th>
<th>(\hat{MSE}_b)</th>
<th>(\hat{MSE}_c)</th>
<th>(\hat{\gamma}_a)</th>
<th>(\hat{\gamma}_b)</th>
<th>(\hat{\gamma}_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>0.0962</td>
<td>0.1070</td>
<td>0.1056</td>
<td>0.2645</td>
<td>0.6429</td>
<td>-0.0113</td>
</tr>
<tr>
<td>HJ-a-distance</td>
<td>0.4114</td>
<td>0.3227</td>
<td>0.4207</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sample size: 300 (Over the time period from 05/1991 to 12/2007)</th>
<th>(\hat{MSE}_a)</th>
<th>(\hat{MSE}_b)</th>
<th>(\hat{MSE}_c)</th>
<th>(\hat{\gamma}_a)</th>
<th>(\hat{\gamma}_b)</th>
<th>(\hat{\gamma}_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>0.0796</td>
<td>0.0722</td>
<td>0.0923</td>
<td>0.3301</td>
<td>0.6989</td>
<td>-0.1041</td>
</tr>
<tr>
<td>HJ-a-distance</td>
<td>0.3489</td>
<td>0.2588</td>
<td>0.3631</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>sample size: 400 (Over the time period from 09/1974 to 12/2007)</th>
<th>(\hat{MSE}_a)</th>
<th>(\hat{MSE}_b)</th>
<th>(\hat{MSE}_c)</th>
<th>(\hat{\gamma}_a)</th>
<th>(\hat{\gamma}_b)</th>
<th>(\hat{\gamma}_c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSE</td>
<td>0.0779</td>
<td>0.0608</td>
<td>0.0702</td>
<td>0.3423</td>
<td>0.7182</td>
<td>0.4319</td>
</tr>
<tr>
<td>HJ-a-distance</td>
<td>0.3305</td>
<td>0.2275</td>
<td>0.3227</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: a) We simulate a panel with 25 asset returns from a Fama and French model of the form: \(R_{it} - R_{ft} = \beta_{im} (R_{Mt} - R_{ft}) + \beta_{ia} SMB_t + \beta_{ih} HML_t + \varepsilon_{it} \). b) All results are averaged across the 1,000 replications. The MSE and \(\gamma \) are computed "in-sample", i.e., \(N=18 \), whereas the HJ-distance is calculated from the "out-of-sample" set of \((N-\tilde{N})=18 \) assets. The standard deviation is presented in parentheses. c) The calibrated parameters varies from \(\beta_{im} \in [0.1, 0.9] \); \(\beta_{ia} \in [-1.4, 1.6] \); \(\beta_{ih} \in [-0.73, 8.7] \) in each replication of the Monte Carlo simulation.
4 Conclusions

In the present work, we propose a methodology to compare different stochastic discount factor models based on relevant market information. Based on the Fama and French factors, which are linked to characteristics of the firms in a particular economy, a Monte Carlo simulation strategy is proposed in order to generate a set of artificial returns that is perfectly compatible with those factors.

This way, we construct a Fama-French world through numerical simulations, in which SDF proxies are compared through some goodness-of-fit statistics and the Hansen and Jagannathan distance. An empirical application is provided to illustrate our methodology, in which returns time series are produced from factors such as the market portfolio return, size and book-to-market equity of the U.S. economy. The results reveal that the Brandt, Cochrane and Saint-Clara (2006) proxy dominates the other considered SDF estimators.

Therefore, the main contribution of this paper consists in a methodology to compare SDF models in a setup where the Fama and French factors are supposed to summarize the economic environment. This controlled framework allows one to use simple sample statistics to compare SDF candidates with the true SDF implied by the Fama and French DGP and, then, rank competing asset pricing models. In this case, the hypothesis of geometric Brownian motion, usually adopted in several empirical studies, seems to be quite reasonable for the simulated set of returns.

As a natural extension of this work, the proposed methodology could easily be adapted to compare asset pricing models based on real asset returns data. For instance, a principal component technique could be employed to generate factors from "real world" variables and, thus, these new factors could be used to generate a controlled environment in which SDF models are properly compared.
Acknowledgements

We are indebted to João Victor Issler, Caio Almeida, Carlos Eugênio, Luis Braido, Christian Gonzales as well as seminar participants at The 8th Brazilian Finance Society Meeting (Rio de Janeiro, Brazil), especially Sergio Bruno, for valuable comments. The opinions in this paper are those of the authors and do not necessarily reflect the point of view of the Central Bank of Brazil. Any remaining errors are ours.

References

19

Table 2 - Descriptive statistics of the SDF

<table>
<thead>
<tr>
<th>Sample size</th>
<th>Araujo</th>
<th>Saint Clara</th>
<th>CAPM</th>
<th>Fama & French</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>sample size = 200</td>
<td>0.9945</td>
<td>0.9900</td>
<td>1.1918</td>
<td>0.8860</td>
</tr>
<tr>
<td></td>
<td>0.9185</td>
<td>0.8380</td>
<td>2.9764</td>
<td>0.1867</td>
</tr>
<tr>
<td></td>
<td>0.9921</td>
<td>0.9927</td>
<td>1.1627</td>
<td>0.8121</td>
</tr>
<tr>
<td></td>
<td>0.9967</td>
<td>1.0002</td>
<td>2.1010</td>
<td>-0.5184</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>sample size = 300</td>
<td>0.9933</td>
<td>0.9889</td>
<td>1.2849</td>
<td>0.8728</td>
</tr>
<tr>
<td></td>
<td>0.9196</td>
<td>0.8564</td>
<td>2.9480</td>
<td>0.2381</td>
</tr>
<tr>
<td></td>
<td>0.9902</td>
<td>0.9917</td>
<td>1.1451</td>
<td>0.7905</td>
</tr>
<tr>
<td></td>
<td>0.9969</td>
<td>0.9878</td>
<td>2.1842</td>
<td>-0.2985</td>
</tr>
<tr>
<td></td>
<td>Mean</td>
<td>Median</td>
<td>Maximum</td>
<td>Minimum</td>
</tr>
<tr>
<td>sample size = 400</td>
<td>0.9925</td>
<td>0.9887</td>
<td>1.2938</td>
<td>0.8661</td>
</tr>
<tr>
<td></td>
<td>0.9181</td>
<td>0.8672</td>
<td>3.0148</td>
<td>0.1674</td>
</tr>
<tr>
<td></td>
<td>0.9942</td>
<td>0.9875</td>
<td>1.5317</td>
<td>0.6924</td>
</tr>
<tr>
<td></td>
<td>0.9952</td>
<td>1.0042</td>
<td>2.4968</td>
<td>-0.6743</td>
</tr>
<tr>
<td></td>
<td>Freq. Jarque-Bera</td>
<td>0.0150</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Notes: These statistics are computed in-sample. DGP (FF) means Data-Generating Process of the Fama & French model. The number of assets in-sample and out-of-sample is N=18. The descriptive statistics are averaged across the K=1,000 replications based on the sample sizes T={200,300,400}. For instance, for T=200 the Jarque-Bera statistic indicates the frequency of rejection of the normality hypothesis across the 1,000 replications (based on a 5% significance level). In this case, T=200, for the Araujo et al. (2006) proxy, the statistic Freq. Jarque-Bera is equal to 0.015, which means that in 1.5% of the replications the normality hypothesis is rejected at a 5% significance level.
Working Paper Series

1. Implementing Inflation Targeting in Brazil
 - Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
 - Jul/2000

2. Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
 - Eduardo Lundberg
 - Jul/2000

3. Private Sector Participation: a Theoretical Justification of the Brazilian Position
 - Sérgio Ribeiro da Costa Werlang
 - Jul/2000

4. An Information Theory Approach to the Aggregation of Log-Linear Models
 - Pedro H. Albuquerque
 - Jul/2000

5. The Pass-Through from Depreciation to Inflation: a Panel Study
 - Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
 - Jul/2000

6. Optimal Interest Rate Rules in Inflation Targeting Frameworks
 - José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira
 - Jul/2000

7. Leading Indicators of Inflation for Brazil
 - Marcelle Chauvet
 - Sep/2000

8. The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
 - José Alvaro Rodrigues Neto
 - Sep/2000

9. Estimating Exchange Market Pressure and Intervention Activity
 - Emanuel-Werner Kohlscheen
 - Nov/2000

10. Análise do Financiamento Externo a uma Pequena Economia
 - Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
 - Mar/2001
11 A Note on the Efficient Estimation of Inflation in Brazil
 Michael F. Bryan and Stephen G. Cecchetti
 Mar/2001

12 A Test of Competition in Brazilian Banking
 Márcio I. Nakane
 Mar/2001

13 Modelos de Previsão de Insolvência Bancária no Brasil
 Marcio Magalhães Janot
 Mar/2001

14 Evaluating Core Inflation Measures for Brazil
 Francisco Marcos Rodrigues Figueiredo
 Mar/2001

15 Is It Worth Tracking Dollar/Real Implied Volatility?
 Sandro Canesso de Andrade and Benjamín Miranda Tabak
 Mar/2001

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA
 Sérgio Afonso Lago Alves
 Mar/2001

 Evaluation of the Central Bank of Brazil Structural Model’s Inflation Forecasts in an Inflation Targeting Framework
 Jul/2001
 Sérgio Afonso Lago Alves

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção
 Tito Níciias Teixeira da Silva Filho
 Abr/2001

 Estimating Brazilian Potential Output: a Production Function Approach
 Aug/2002
 Tito Níciias Teixeira da Silva Filho

18 A Simple Model for Inflation Targeting in Brazil
 Paulo Springer de Freitas and Marcelo Kfoury Muinhos
 Apr/2001

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model
 Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
 May/2001

20 Credit Channel without the LM Curve
 Victorio Y. T. Chu and Márcio I. Nakane
 May/2001

21 Os Impactos Econômicos da CPMF: Teoria e Evidência
 Pedro H. Albuquerque
 Jun/2001

22 Decentralized Portfolio Management
 Paulo Coutinho and Benjamín Miranda Tabak
 Jun/2001

23 Os Efeitos da CPMF sobre a Intermediação Financeira
 Sérgio Mikio Koyama e Márcio I. Nakane
 Jul/2001

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality
 Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
 Aug/2001
25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
Aug/2001

26 Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil
Marcelo Kfoury Muinhos
Aug/2001

27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
Set/2001

28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais
Marco Antonio Bonomo e Ricardo D. Brito
Nov/2001

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque and Solange Gouvêa
Nov/2001

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak and Sandro Canesso de Andrade
Nov/2001

31 Algumas Considerações sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

32 Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

34 Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
Nov/2001

35 Uma Definição Operacional de Estabilidade de Preços
Tito Nícias Teixeira da Silva Filho
Dez/2001

36 Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Feb/2002

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
Mar/2002

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

39 Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002
40 Speculative Attacks on Debts, Dollarization and Optimum Currency Areas
Aloisio Araújo and Márcia Leon
Apr/2002

41 Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002

43 The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Jun/2002

44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella
Aug/2002

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane
Aug/2002

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
Set/2002

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira
Sep/2002

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
Orlando Carneiro de Matos
Set/2002

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joãoolho Rodolpho Teixeira
Sep/2002

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu
Sep/2002

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias
Sep/2002

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Nov/2002

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra
Nov/2002

25
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloísio Araujo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>61</td>
<td>O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>62</td>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
<tr>
<td>63</td>
<td>Optimal Monetary Rules: the Case of Brazil</td>
<td>Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva and Souza and Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>64</td>
<td>Medium-Size Macroeconomic Model for the Brazilian Economy</td>
<td>Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>65</td>
<td>On the Information Content of Oil Future Prices</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>68</td>
<td>Real Balances in the Utility Function: Evidence for Brazil</td>
<td>Leonardo Soriano de Alencar and Mário I. Nakane</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>69</td>
<td>r-filters: a Hodrick-Prescott Filter Generalization</td>
<td>Fabio Araujo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>Paper Number</td>
<td>Title</td>
<td>Authors</td>
<td>Publication Date</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
</tr>
<tr>
<td>70</td>
<td>Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>71</td>
<td>On Shadow-Prices of Banks in Real-Time Gross Settlement Systems</td>
<td>Rodrigo Penaloza</td>
<td>Apr/2003</td>
</tr>
<tr>
<td>72</td>
<td>O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras</td>
<td>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte and Osmani Teixeira de C. Guillen</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>73</td>
<td>Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros</td>
<td>Getúlio Borges da Silveira e Octávio Bessada</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>74</td>
<td>Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa</td>
<td>Octávio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza and César das Neves</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>75</td>
<td>Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth</td>
<td>Ilan Goldfajn, Katherine Hennings and Helio Mori</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Munhos</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnildo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>No.</td>
<td>Título</td>
<td>Autor(es)</td>
<td>Data</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloisio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econômética dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>90</td>
<td>Bank Privatization and Productivity: Evidence for Brazil</td>
<td>Márcio I. Nakane and Daniela B. Weintraub</td>
<td>Dec/2004</td>
</tr>
<tr>
<td>92</td>
<td>Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil</td>
<td>Mirita Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfouri Muinhos</td>
<td>Abr/2005</td>
</tr>
<tr>
<td>93</td>
<td>Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial</td>
<td>Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Abr/2005</td>
</tr>
</tbody>
</table>
95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006

104 Extração de Informação de Opções Cambiais no Brasil
Eui Jung Chang e Benjamin Miranda Tabak
Abr/2006

105 Representing Roommate’s Preferences with Symmetric Utilities
José Alvaro Rodrigues Neto
Apr/2006

106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
May/2006

107 Demand for Bank Services and Market Power in Brazilian Banking
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
Jun/2006

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda
Jun/2006

109 The Recent Brazilian Disinflation Process and Costs
Alexandre A. Tombini and Sergio A. Lago Alves
Jun/2006
110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
Jul/2006

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves
Jul/2006

112 Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets
Angelo Marsiglia Fasolo
Jul/2006

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil
Sergio Rubens Stancato de Souza, Benjamín Miranda Tabak e Daniel O. Cajueiro
Ago/2006

114 The Inequality Channel of Monetary Transmission
Marta Areosa e Waldyr Areosa
Aug/2006

115 Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
Sep/2006

116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos
Sep/2006

117 An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak
Sep/2006

118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint
Aloísio P. Araújo and José Valentim M. Vicente
Oct/2006

119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação
Ricardo Schechtman
Out/2006

120 Forecasting Interest Rates: an Application for Brazil
Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak
Oct/2006

121 The Role of Consumer’s Risk Aversion on Price Rigidity
Sergio A. Lago Alves and Mirta N. S. Bugarín
Nov/2006

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil
Arnildo da Silva Correa and André Minella
Nov/2006

123 A Neoclassical Analysis of the Brazilian “Lost-Decades”
Flávia Mourão Graminho
Nov/2006
124 The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil
Benjamin M. Tabak
Nov/2006

125 Herding Behavior by Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas
Dec/2006

126 Risk Premium: Insights over the Threshold
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
Dec/2006

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil
Ricardo Schechtman
Dec/2006

128 Term Structure Movements Implicit in Option Prices
Caio Ibsen R. Almeida and José Valentim M. Vicente
Dec/2006

129 Brazil: Taming Inflation Expectations
Afonso S. Bevilaqua, Márcio Mesquita and André Minella
Jan/2007

130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter?
Daniel O. Cajueiro and Benjamin M. Tabak
Jan/2007

131 Long-Range Dependence in Exchange Rates: the Case of the European Monetary System
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
Mar/2007

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the Joint Use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins and Eduardo Saliby
Mar/2007

133 A New Proposal for Collection and Generation of Information on Financial Institutions’ Risk: the Case of Derivatives
Gilneu F. A. Vivan and Benjamin M. Tabak
Mar/2007

134 Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão
Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins
Abr/2007

135 Evaluation of Default Risk for the Brazilian Banking Sector
Marcelo Y. Takami and Benjamin M. Tabak
May/2007

136 Identifying Volatility Risk Premium from Fixed Income Asian Options
Caio Ibsen R. Almeida and José Valentim M. Vicente
May/2007

137 Monetary Policy Design under Competing Models of Inflation Persistence
Solange Gouvea e Abhijit Sen Gupta
May/2007

138 Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil
Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak
May/2007

31
139 Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features
Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén
Jun/2007

140 Inflation Targeting, Credibility and Confidence Crises
Rafael Santos and Aloísio Araújo
Aug/2007

141 Forecasting Bonds Yields in the Brazilian Fixed income Market
Jose Vicente and Benjamin M. Tabak
Aug/2007

142 Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall
Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski and Renato da Silva Carvalho
Ago/2007

143 Price Rigidity in Brazil: Evidence from CPI Micro Data
Solange Gouvea
Sep/2007

144 The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options
Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber
Oct/2007

145 The Stability-Concentration Relationship in the Brazilian Banking System
Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang
Oct/2007

146 Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial
Caio Almeida, Romeu Gomes, André Leite and José Vicente
Out/2007

Adriana Soares Sales and Maria Eduarda Tannuri-Pianto
Oct/2007

148 Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial
Felipe Pinheiro, Caio Almeida e José Vicente
Out/2007

149 Joint Validation of Credit Rating PDs under Default Correlation
Ricardo Schechtman
Oct/2007

150 A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks
Roberta Blass Staub and Geraldo da Silva e Souza
Oct/2007

151 Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability
Eduardo José Araújo Lima and Benjamin Miranda Tabak
Nov/2007
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>152</td>
<td>Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?</td>
<td>Fernando N. de Oliveira and Walter Novaes</td>
<td>Dec/2007</td>
</tr>
<tr>
<td>153</td>
<td>Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro</td>
<td>Jaqueline Terra Moura Marins</td>
<td>Dez/2007</td>
</tr>
<tr>
<td>154</td>
<td>Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves</td>
<td>Adriana Soares Sales and Maria Tannuri-Pianto</td>
<td>Dec/2007</td>
</tr>
<tr>
<td>155</td>
<td>Does Curvature Enhance Forecasting?</td>
<td>Caio Almeida, Romeu Gomes, André Leite and José Vicente</td>
<td>Dec/2007</td>
</tr>
<tr>
<td>156</td>
<td>Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Dez/2007</td>
</tr>
<tr>
<td>157</td>
<td>Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil</td>
<td>Tito Nícius Teixeira da Silva Filho</td>
<td>Jan/2008</td>
</tr>
<tr>
<td>158</td>
<td>Characterizing the Brazilian Term Structure of Interest Rates</td>
<td>Osmani T. Guillen and Benjamin M. Tabak</td>
<td>Feb/2008</td>
</tr>
<tr>
<td>159</td>
<td>Behavior and Effects of Equity Foreign Investors on Emerging Markets</td>
<td>Barbara Alemanni and José Renato Haas Ornelas</td>
<td>Feb/2008</td>
</tr>
<tr>
<td>160</td>
<td>The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?</td>
<td>Fábia A. de Carvalho and Cyntia F. Azevedo</td>
<td>Feb/2008</td>
</tr>
<tr>
<td>161</td>
<td>Evaluating Value-at-Risk Models via Quantile Regressions</td>
<td>Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton</td>
<td>Feb/2008</td>
</tr>
<tr>
<td>163</td>
<td>Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case</td>
<td>Tito Nícius Teixeira da Silva Filho</td>
<td>May/2008</td>
</tr>
<tr>
<td>165</td>
<td>Avaliação de Opções de Troca e Opções de Spread Européias e Americanas</td>
<td>Giuliano Carrozza Uzêda Ior de Souza, Carlos Patricio Samanez e Gustavo Santos Raposo</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>166</td>
<td>Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study</td>
<td>Fernando de Holanda Barbosa and Tito Nícius Teixeira da Silva Filho</td>
<td>Jul/2008</td>
</tr>
<tr>
<td>167</td>
<td>O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clodoaldo Aparecido Annibal</td>
<td>Jul/2008</td>
<td></td>
</tr>
</tbody>
</table>

| 168 | An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks |
| | Wenersamy Ramos de Alcântara | Jul/2008 |

| 169 | Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas |

| 170 | Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação |
| | Adriana Soares Sales | Jul/2008 |

| 171 | Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil |
| | Sérgio Mikio Koyama e Márcio Issao Nakane | Ago/2008 |

| 172 | Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap |
| | Marta Areosa | Aug/2008 |

| 173 | Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions |
| | Eduardo José Araújo Lima and Benjamin Miranda Tabak | Aug/2008 |

| 174 | Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate |
| | Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi | Aug/2008 |