

Working Paper Series 7 75

Evaluating Asset Pricing Models in a Fama-French Framework Carlos Enrique Carrasco Gutierrez and Wagner Piazza Gaglianone December, 2008

Working Paper Series	Brasília	n. 175	Dec	2008	p. 1–34

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br Editorial Assistent: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br Head of Research Department: Carlos Hamilton Vasconcelos Araújo – E-mail: carlos.araujo@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 175.

Authorized by Mário Mesquita, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil Secre/Surel/Dimep SBS – Quadra 3 – Bloco B – Edifício-Sede – 1° andar Caixa Postal 8.670 70074-900 Brasília – DF – Brazil Phones: +55 (61) 3414-3710 and 3414-3567 Fax: +55 (61) 3414-3626 E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Banco Central do Brasil Secre/Surel/Diate SBS – Quadra 3 – Bloco B – Edifício-Sede – 2º Subsolo 70074-900 Brasília – DF – Brazil Fax: +55 (61) 3414-2553 Internet: http://www.bcb.gov.br/?english

Evaluating Asset Pricing Models in a Fama-French Framework

Carlos Enrique Carrasco Gutierrez*

Wagner Piazza Gaglianone[†]

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

In this work we propose a methodology to compare different stochastic discount factor (SDF) proxies based on relevant market information. The starting point is the work of Fama and French, which evidenced that the asset returns of the U.S. economy could be explained by relative factors linked to characteristics of the firms. In this sense, we construct a Monte Carlo simulation to generate a set of returns perfectly compatible with the Fama and French factors and, then, investigate the performance of different SDF proxies. Some goodness-of-fit statistics and the Hansen and Jagannathan distance are used to compare asset pricing models. An empirical application of our setup is also provided.

Keywords: Asset Pricing, Stochastic Discount Factor, Hansen-Jagannathan distance. JEL Classification: G12, C15, C22.

^{*}Corresponding author. FUCAPE Business School. Vitória ES-Brazil and Graduate School of Economics, Getulio Vargas Foundation, Praia de Botafogo 190, s.1104, Rio de Janeiro, Brazil (e-mail: carlos.gutierrez@fucape.br).

[†]Research Department, Central Bank of Brazil (e-mail: wagner.gaglianone@bcb.gov.br).

1 Introduction

In this work, we propose a new methodology to compare different *stochastic discount factor* or *pricing kernel* proxies.¹ In asset pricing theory, one of the major interests for empirical researchers is oriented by testing whether a particular asset pricing model is (indeed) supported by the data. In addition, a formal procedure to compare the performance of competing asset pricing models is also of great importance in empirical applications.

In both cases, it is of utmost relevance to establish an objective measure of model misspecification. The most useful measure is the well-known Hansen and Jagannathan (1997) distance (or simply HJ-distance), which has been used both as a model diagnostic tool and as a formal criterion to compare asset pricing models. This type of comparison has been employed in many recent papers.²

As argued by Hansen and Richard (1987), observable implications of candidate models of asset markets are conveniently summarized in terms of their implied stochastic discount factors. As a result, some recent studies of the asset pricing literature have been focused on proposing an estimator for the SDF and also on comparing competing pricing models in terms of the SDF model. For instance, see Lettau and Ludvigson (2001b), Chen and Ludvigson (2008), Araujo, Issler and Fernandes (2006).

A different route to investigate and compare asset pricing models has also been suggested in the literature. The main idea is to assume a data generation process (DGP) for a set of asset returns, based on some assumptions about the asset prices and, then, create a *controlled framework*, which is used to evaluate and compare the asset pricing models.

In this sense, Fernandes and Vieira (2006) study through Monte Carlo simulations the performance of different SDF estimatives at different environments. For instance, the authors consider that all asset prices follow a geometric Brownian motion.

 $^{^{-1}}$ We use the term "stochastic discount factor" as a label for a state-contingent discount factor.

 $^{^{2}}$ For instance, by using the HJ-distance, Campbell and Cochrane (2000) explain why the CAPM and its extensions better approximate asset pricing models than the standard consumption based model; Jagannathan and Wang (2002) compare the SDF method with Beta method in estimating a risk premium; Dittmar (2002) uses the HJ-distance to estimate the nonlinear pricing kernels in which the risk factor is endogenously determined and preferences restrict the definition of the pricing kernel. Other examples in the literature include Jagannathan, Kubota and Takehara (1998), Farnsworth, Ferson, Jackson, and Todd (2002), Lettau and Ludvigson (2001a) and Chen and Ludvigson (2008).

In this case, one should expect that a SDF proxy based on a geometric Brownian motion assumption would have a better performance, in comparison to an asset pricing model that does not assume this hypothesis. The authors also study competing asset pricing models in a stationary Ornstein-Uhlenbeck process as done in Vasicek (1977).

However, a critical issue of this procedure is that the best asset pricing model inside these particular environments (i.e., when the asset prices are supposed to follow a geometric Brownian motion or a stationary Ornstein-Uhlenbeck process), might not be a good model in the real world. In other words, the best estimator for each *controlled framework* might not necessarily exhibit the same performance for observed stock market prices of a real economy.

In this paper, we use the controlled approach of Fernandes and Vieira (2006), but instead of generating the asset returns from an *ad-hoc* assumption about the DGP of returns, we use related market information from the real economy. Our starting point is the work of Fama and French, which evidenced that asset returns of the U.S. economy could be explained by relative factors linked to characteristics of the firms³.

Based on the Fama and French factors, we firstly construct a Monte Carlo simulation to generate a set of returns that is perfectly compatible with these factors. The next step is to create a framework to compare the competing asset pricing models. To do so, we consider two sets of returns: The first sample is used to estimate the different SDF proxies, whereas the remaining sample is used to analyze the out-of-sample performance of each asset pricing model. Although we do not directly use market returns data in this paper, we are able to compare different SDFs by using important market information provided by the Fama-French factors.⁴

Finally, because our approach enables us to construct a data generation process of the SDF provided by the Fama and French specification, it is possible to compare competing proxies through some goodness-of-fit statistics. In addition, it is relevant to test if a set of SDF candidates satisfy the law of one price, such that $1 = E_t (m_{t+1}R_{i,t+1})$, where m_{t+1} is referred to the investigated stochastic discount factor. Thus, we say that a SDF correctly "prices" the assets if this equation is (in fact) satisfied. In this sense, we test the previous restriction by evaluating, out-of-sample, the HJ-distance of each SDF candidate model.

³Fama and French (1993, 1995) argue that a three-factor model is successful because it proxies for unobserved common risk in portfolio returns.

⁴Notice that this procedure could also be adopted to compare models by using real data, but with some limitations since the DGP would be unknown.

As shown by Hansen and Jagannathan, the HJ-distance $\delta = \min_{m \in \mathcal{M}} ||y - m||$, defined in the L^2 space, is the distance of the SDF model y to a family of SDFs, $m \in \mathcal{M}$, that correctly price the assets. In other interpretation, Hansen and Jagannathan show that the HJ-distance is the pricing error for the portfolio that is most mispriced by the underlying model. In this sense, even though the investigated SDF models are misspecified, in practical terms, we are interested in those models with the lowest HJ-distance.

The main objective here is not to propose a DGP process of actual market returns, but to provide a controlled environment that allows one to properly compare and evaluate different SDF proxies. This work follows the idea of Farnsworth et al. (2002), which study different SDFs by constructing artificial mutual funds using real stock returns from the CRSP data.

To illustrate our methodology, we present an empirical application, in which three SDF models are compared: a) The novel nonparametric estimator of Araujo, Issler and Fernandes (2006); b) The Brownian motion pricing model studied in Brandt, Cochrane and Saint-Clara (2006); and c) The (traditional) unconditional linear CAPM.

This work is organized as follows: Section 2 presents the Fama and French model and describes the Monte Carlo simulation strategy; Section 3 presents the results of the empirical application; and Section 4 shows the main conclusions.

2 The stochastic discount factor and the Fama and French model

A general framework to asset pricing is well described in Harrison and Kreps (1979), Hansen and Richard (1987) and Hansen and Jagannathan (1991), associated to the stochastic discount factor (SDF), which relies on the pricing equation:

$$p_t = E_t \left(m_{t+1} x_{i,t+1} \right), \tag{1}$$

where $E_t(\cdot)$ denotes the conditional expectation given the information available at time t, p_t is the asset price, m_{t+1} the stochastic discount factor, $x_{i,t+1}$ the asset payoff of the *i*-th asset in t+1. This pricing equation means that the market value today of an uncertain payoff tomorrow is represented by the payoff multiplied by the discount factor, also taking into account different states of nature by using the underlying probabilities.

The stochastic discount factor model provides a general framework for pricing assets. As documented by Cochrane (2001), asset pricing can basically be summarized by two equations:

$$p_t = E_t [m_{t+1} x_{t+1}], (2)$$

$$m_{t+1} = f(\text{data, parameters}).$$
 (3)

where the model is represented by the function $f(\cdot)$, and the (2) can lead to different predictions stated in terms of returns. For instance, in the Consumption-based Capital Asset Pricing Model (CCAPM) context, the first-order conditions of the consumption-based model, summarized by the well-known Euler equation: $p_t = E_t \left[\beta \frac{u'(c_{t+1})}{u'(c_t)} x_{t+1}\right]$. The specification of m_{t+1} corresponds to the intertemporal marginal rate of substitution. Hence, $m_{t+1} = f(c,\beta) = \beta \frac{u'(c_{t+1})}{u'(c_t)}$, where β is the discount factor for the future, c_t is consumption and $u(\cdot)$ is a given utility function. The pricing equation (2) mainly illustrates the fact that consumers (optimally) equate marginal rates of substitution to prices.

2.1 Fama and French framework

Fama and French (1992) show that, besides the market risk, there are other important factors that help explain the average return in the stock market. This evidence has been demonstrated in several works for different stock markets (see Gaunt (2004) and Griffin (2005) for a good review). Although there is not a clear link between these factors and the economic theory (e.g., CAPM model), these evidences show that some additional factors might (quite well) help to understand the dynamics of the average return.

These factors are known as the *size* and the *book-to-market equity* and represent special features about firms. Fama and French (1992) argue that size and book-to-market equity are indeed related to economic fundamentals. Although they appear to be "*ad hoc* variables" in an average stock returns regression, these authors justify them as expected and natural proxies for common risk factors in stock returns.

The factors

(i) The SMB (Small Minus Big) factor is constructed to measure the size premium. In fact, it is designed to track the additional return that investors have historically received by investing in stocks of companies with relatively small market capitalization. A positive SMB in a given month indicates that small cap stocks have outperformed the large cap stocks in that month. On the other hand, a negative SMB suggests that large caps have outperformed.

(*ii*) The HML (High Minus Low) factor is constructed to measure the premium-value provided to investors for investing in companies with high book-to-market values. A positive HML in a given month suggests that "value stocks" have outperformed the "growth stocks" in that month, whereas a negative HML indicates that growth stocks have outperformed.⁵

(*iii*) The Market factor is the market excess return in comparison to the risk-free rate. For instance, we proxy the excess return on the market $(R_M - R_f)$, in the U.S. economy, by the valueweighted portfolio of all stocks listed on the New York Stock Exchange (NYSE), the American Stock Exchange (AMEX), and NASDAQ stocks (from CRSP) minus the one-month Treasury Bill rate.

The Model

Fama and French (1993, 1996) propose a three-factor model for expected returns (see also Fama and French (2004) for a good survey).

$$E(R_{it}) - R_{ft} = \beta_{im} \left[E(R_{Mt}) - R_{ft} \right] + \beta_{is} E(SMB_t) + \beta_{ih} E(HML_t), \quad i \in \{1, ..., N\}, \quad (4)$$

where the betas β_{im} , β_{is} and β_{ih} are slopes in the multiple regression (4). Hence, one implication of the expected return equation of the three-factor model is that the intercept in the time-series regression (5) is zero for all assets *i*:

$$R_{it} - R_{ft} = \beta_{im} \left(R_{Mt} - R_{ft} \right) + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}.$$
(5)

Using this criterion, Fama and French (1993, 1996) find that the model captures much of the variation in the average return for portfolios formed on size, book-to-market equity and other price ratios.

Expected return - beta representation

The Fama and French approach is (in fact) a multifactor model that can be seen as an expectedbeta⁶ representation of linear factor pricing models of the form:

$$E(R_i) = \gamma + \beta_{im}\lambda_m + \beta_{is}\lambda_s + \beta_{ih}\lambda_h + \alpha_i, \qquad i \in \{1, ..., N\}.$$
(6)

⁵Notice that, in respect to SMB, small companies logically are expected to be more sensitive to many risk factors, as a result of their relatively undiversified nature, and also their reduced ability to absorb negative financial events. On the other hand, the HML factor suggests higher risk exposure for typical value stocks in comparison to growth stocks.

⁶The main objective of the beta model is to explain the variation in terms of average returns across assets.

If we run this cross sectional regression of average returns on betas, one can estimate the parameters $(\gamma, \lambda_m, \lambda_s, \lambda_h)$. Notice that γ is the intercept and λ_m, λ_s and λ_h the slope in this cross-sectional relation. In addition, the β_{im}, β_{is} and β_{ih} are the unconditional sensitivities of the *i*-th asset to the factors⁷. Moreover, β_{ij} , for some $j \in \{m, s, h\}$, can be interpreted as the amount of risk exposure of asset *i* to factor *j*, and λ_j as the price of such risk exposure. Hence, the betas are defined as the coefficients in a multiple regression of returns on factors:

$$R_{it} - R_{ft} = \beta_{im} R_{Mt}^{ex} + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}, \qquad t \in \{1, ..., T\},$$

$$(7)$$

where $R_{Mt}^{ex} = (R_{Mt} - R_{ft})$. Following the equivalence between this beta-pricing model and the linear model for the discount factor M, in an unconditional setting (see Cochrane, 2001), we can estimate M as:

$$M = a + b'f,\tag{8}$$

where $f = [R_M^{ex}, SMB, HML]'$, and the relations between $\lambda \in \gamma$, and a and b, are given by:

$$a = \frac{1}{\gamma}$$
 and $b = -\gamma \left[cov \left(ff' \right) \right]^{-1} \lambda.$ (9)

2.2 Evaluating the performance of competing models

In the asset pricing literature, some measures are suggested to compare competing asset pricing models. The most famous measure is the Hansen and Jagannathan distance. However, as long as the data generation process (DGP) is known in each specification of the Fama and French model, it is also possible to use some simple sample statistics. In addition, we use the Hansen and Jagannathan distance to test for model misspecification and to compare the performance of different asset pricing models.

The Hansen-Jagannathan (1997) distance measure is a summary of the mean pricing errors across a group of assets. It may also be interpreted as the distance between the SDF candidate and one that would correctly price the primitive assets. The pricing error can be written by $\alpha_t = E_t (m_{t+1}R_{i,t+1}) - 1$. Notice, in particular, that α_t depends on the considered SDF, and the SDF is not unique (unless markets are complete). Thus, different SDF proxies can produce similar HJ measures. In this sense, even though the investigated SDF models are misspecified, in practical terms, we are interested in those models with the lowest HJ-distance.

⁷An unconditional time-series approach is used here. The conditional approaches to test for international pricing models include those by Ferson & Harvey (1994, 1999) and Chan, Karolyi and Stulz (1992).

Goodness-of-fit statistics

We use two goodness-of-fit statistics to compare different SDF proxies. The \widehat{MSE}_s is merely a standardized version of the mean squared error of the SDF proxies, whereas the $\widehat{\gamma}_s$ compares the sample correlation between the actual and estimated stochastic discount factors. Let M_t be the stochastic discount factor generated by the Fama and French specification (DGP), and \widehat{M}_t^s the SDF proxy provided by model s in a family S of asset pricing models. The standardized mean squared error is computed as:

$$\widehat{MSE}_s = \frac{\sum_{t=1}^T \left(\widehat{M}_t^s - M_t\right)^2}{\sum_{t=1}^T M_t^2}, \quad for \ s \in S.$$

$$(10)$$

and the sample correlation between the actual and estimated SDF is given by:

$$\widehat{\gamma}_s = corr(\widehat{M}_t^s, M_t), \quad for \ s \in S.$$
(11)

2.3 Constructing the Fama and French environment

Based on the assumption that R_{Mt} , SMB_t and HML_t are known variables, we can reproduce a Fama and French environment following the three factors of the Fama and French model:

$$R_{i,t} - R_{ft} = \beta_{im} \left(R_{Mt} - R_{ft} \right) + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}.$$

$$\tag{7}$$

The simulated asset returns are generated using equation (7). This way, we propose the following steps of a Monte Carlo simulation:

1) Firstly, calibrate each parameter β_{ij}^k , for $j \in \{m, s, h\}$ and $i \in \{1, ..., N\}$ according to previous estimations of Fama and French (1992,1993). Therefore, we will generate for each j a N-dimensional vector of asset returns.

2) By considering β_{ij}^k created in step 1 for some $i \in \{1, ..., N\}$ and using the known factors R_{Mt} , SMB_t and HML_t , we generate a vector of returns along the time dimension, through equation (7). The *iid* shock ε_{it} is assumed to be a white noise with zero mean and constant variance.

3) Repeating step 2 for each $i \in \{1, ..., N\}$, we create the matrix \mathbf{R}^k of asset returns, in which rows are formed by different returns and columns represent the time dimension.

4) Evaluate the mean of \mathbf{R}^k across each row to generate a cross-section vector. Now, it is possible to estimate the parameters γ^k and λ^k through equation (6).

5) Estimate parameters a^k and b^k from the equivalence relation shown in equation (9). Finally, the stochastic discount factor can be estimated by using equation (8).

6) Repeat steps 1 to 5 for an amount of K replications in order to construct the Monte Carlo simulation.

7) Since our approach enables us to construct a data generation process of the SDF provided by the Fama and French specification (computed with N assets), it is possible to compare the competing SDF proxies, obtained in steps 1 to 6, through the goodness-of-fit statistics described in the previous section, as it follows:

7.a) Split the set of N assets into two groups (with the same number of time series observations in each group). Firstly, consider an amount of $\tilde{N} < N$ assets to estimate the SDF candidates (henceforth, this first group of assets will be denominated *in-sample*). Based on the estimated SDF proxies (\widehat{M}_t^s) we compute the *in-sample* goodness-of-fit statistics \widehat{MSE}_s and $\widehat{\gamma}_s$, in order to compare every SDF proxy with the correct SDF provided by the Fama and French setup. Secondly, the remaining $(N - \tilde{N})$ assets are used to generate the *out-of-sample* to compute the Hansen and Jagannathan distance. That is, we want to know how well the proxies are carried on when new information is considered.

3 Empirical Application

In this section, we present a simple empirical exercise of our proposed framework for the U.S economy. Three asset pricing models discussed in the literature are compared:

A. The Brownian motion pricing model (studied in Brandt et al., 2006)

Brandt, Cochrane and Santa-Clara (2006) consider that the asset prices follow a geometric Brownian motion (GBM). Such hypothesis is defined by the following partial differential equation:

$$\frac{dP}{P} = \left(R^f + \mu\right) dt\phi + \Sigma^{\frac{1}{2}} dB,\tag{12}$$

where, $\frac{dP}{P} = \left(\frac{dP_1}{P_1} + ..., \frac{dP_N}{P_N}\right)'$, $\mu = (\mu_1, ..., \mu_n)'$, Σ is a $N \times N$ positive definite matrix, P_i is the price of the asset i, μ the risk premium vector, R^f the risk free rate, and B a standard GBM of

dimension N. Using Itô theorem, it is possible to show that:

$$R_{t+\Delta t}^{i} = \frac{P_{t+\Delta t}^{i}}{P_{t}^{i}} = e^{\left(R^{f} + \mu_{i} - \frac{1}{2}\Sigma_{i,i}\right)\Delta t + \sqrt{\Delta t}\left(\Sigma_{i}^{\frac{1}{2}}\right)' Z_{t}},\tag{13}$$

where Z_t is a vector of N independent variables with Gaussian distribution. Therefore, the SDF proposed by these authors is calculated as

$$M_{t+\Delta t} = e^{-\left(R^f + \frac{1}{2}\mu'\Sigma^{-1}\mu\right)\Delta t - \sqrt{\Delta t}\mu\left(\Sigma^{-\frac{1}{2}}\right)'Z_t}.$$
(14)

Thus, Brandt, Cochrane and Santa-Clara (2006) suggest the following SDF estimator:

$$\widehat{M}_t = e^{-\left(R^f + \frac{1}{2}\widehat{\mu}'\widehat{\Sigma}^{-1}\widehat{\mu}\right)\Delta t - \widehat{\mu}'\widehat{\Sigma}^{-1}\left(R_t - \bar{R}\right)},\tag{15}$$

where, $\hat{\mu}, \overline{R}$ and $\hat{\Sigma}$ are estimated by:

$$\widehat{\mu} = \frac{\overline{R} - R^f}{\Delta t},\tag{16}$$

$$\widehat{\Sigma} = \frac{1}{\Delta t} \frac{1}{T} \sum_{t=1}^{T} \left(R_t - \bar{R} \right) \left(R_t - \bar{R} \right)', \qquad (17)$$

such that, $R_t = (R_t^1, ..., R_t^N)'$ and $\bar{R} = \frac{1}{T} \sum_{t=1}^T R_t$.

B. Araujo, Issler and Fernandes (2006)

A novel estimator for the stochastic discount factor (within a panel data context) is proposed by Araujo, Issler and Fernandes (2006). This setting is slightly more general than the GBM setup put forth by Brandt, Cochrane and Santa-Clara (2006). In fact, this estimator assumes that, for every asset $i \in \{1, ..., N\}$, $M_{t+1}R_{t+1}^i$ is conditionally homoskedastic and has a lognormal distribution. In addition, under asset pricing equation (1) and some mild additional conditions, they show that a consistent estimator for M_t is given by:

$$\widehat{M}_t = \left(\frac{\bar{R}_t^G}{\frac{1}{T}\sum_{t=1}^T \bar{R}_t^A \bar{R}_t^G}\right),\tag{18}$$

where $\bar{R}_t^A = \frac{1}{N} \sum_{i=1}^N R_{i,t}$ and $\bar{R}_t^G = \prod_{i=1}^N R_{i,t}^{-\frac{1}{N}}$ are respectively the cross-sectional arithmetic and geometric average of all gross returns. Therefore, this nonparametric estimator depends exclusively on appropriate averages of asset returns that can easily be implemented.

C. Capital Asset Pricing Model - CAPM

Assuming the unconditional CAPM, the SDF is a linear function of market returns calculated as: $m_{t+1} = a + bR_{w,t+1}$, where $R_{w,t+1}$ is the gross return on the market portfolio of all assets. For instance, in the U.S. economy, in order to implement the static CAPM, for practical purposes, it is commonly assumed that the return on the value-weighted portfolio of all stocks listed on NYSE, AMEX, and NASDAQ is a reasonable proxy for the return on the market portfolio of all assets of the U.S. economy.

3.1 Monte Carlo design

In order to compare these three SDF proxies we construct the Monte Carlo experiment following the procedure showed in section 2.3. For the U.S. economy, the factors $(R_{Mt} - R_{ft})$, SMB_t and HML_t are extracted from the Kenneth R. French website⁸. Next, we calibrate the parameters β_{im} , β_{is} and β_{ih} according to previous estimations of Fama and French (1992,1993) and estimate the parameters $(\gamma, \lambda_m, \lambda_s, \lambda_h)$ from the cross-sectional regression (6), observing their significance through the *F*-statistic or the *t*-statistic for individual parameters.

We set N = 36 as our set of primitive assets, which are divided into two groups: The first one contains $\tilde{N} = 18$ assets that are used for the *in-sample* estimation. The second group has $(N - \tilde{N}) = 18$ assets, which are thus used for the *out-of-sample* analysis. We also consider, for each generated asset *i*, three sample sizes $T = \{200; 300; 400\}$.

This way, we estimate the stochastic discount factors for the three-factor model of Fama and French, and repeat the mentioned procedure for an amount of K = 1,000 replications. Some descriptive statistics of the generated SDFs are presented in appendix. Finally, the evaluation of the SDF proxies is conducted and the Monte Carlo results are summarized by two goodness-of-fit statistics (besides the HJ-distance), which are averaged across all replications.

We denote the SDF proxies, estimated in each replication, as \widehat{M}_t^a , \widehat{M}_t^b and \widehat{M}_t^c to Araujo, Issler and Fernandes (2006), Brandt, Cochrane and Santa-Clara (2006) and the unconditional CAPM respectively. In addition, the stochastic discount factor implied by the Fama and French setup (DGP) is denoted by M_t .

⁸More information about data can be found in: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html For other economies, the factors can be constructed as showed in Fama and French (1992, 1993).

3.2 Results

In Figure 1, the estimates of the SDF proxies are shown for one replication of the Monte Carlo simulation, with a sample size T = 200. A simple graphical investigation reveals that the Brandt, Cochrane and Santa-Clara, \widehat{M}_t^b , and the CAPM proxy, \widehat{M}_t^c , are respectively the most and less volatile, which is a result confirmed by the descriptive statistics of Table 2 (in appendix). In addition, \widehat{M}_t^b appears to be the SDF proxy that best tracks the DGP M_t .

Figure 1 - Three factors, with a sample size T = 200

Notes: a) Figure 1 shows one replication out of the total amount of 1,000 replications. b) We adopt $\tilde{N} = 18$ assets and T=200 observations.

Regarding the performance of the SDF proxies, Table 1 reports the evaluation statistics provided by the Monte Carlo simulation. Notice that results are robust to sample size. In all cases, the mean square error of Brandt, Cochrane and Santa-Clara (2006) SDF proxy (\widehat{MSE}_b) shows quite a good performance, whereas the CAPM proxy seems to exhibit the worst one. Nonetheless, the magnitude of the standard deviation might suggest that all these values are quite close to each other.

In respect to the correlation of the true SDF with the considered SDF proxies, we have obtained the following ranking order for all sample sizes: $\widehat{M}_t^b \succ \widehat{M}_t^a \succ \widehat{M}_t^c$. This implies that the Brandt, Cochrane and Santa-Clara (2006) proxy (in general) best tracks the dynamic path of the true SDF. On the other hand, the CAPM model exhibits again the worst performance (with a negative correlation in some cases!)

Finally, in respect to the *out-of-sample* analysis, the HJ distance results⁹ (which should be as close as possible to zero in a correctly-specified model) indicate that for T = 200 and T = 300: $\widehat{HJ}_b < \widehat{HJ}_a < \widehat{HJ}_c$, revealing that the Brandt, Cochrane and Santa-Clara (2006) is the best proxy for forecasting purposes, followed by the Araujo et al. (2006) SDF estimator. For T = 400 we obtained similar results, except that in this case the CAPM model has a lower HJ-distance in comparison to the Araujo et al. (2006) proxy.¹⁰

Putting all together, the numerical results show that (in general) the Brandt, Cochrane and Santa-Clara (2006) has the best *out-of-sample* performance. Notice that Figure 1 already showed this tendency, since the referred SDF best tracked the respective Fama-French DGP.

Finally, the CAPM model shows a negative correlation with the true SDF, revealing its weakness in tracking the real dynamic of the true SDF. This result is because the linear CAPM only uses one single factor, out of the three factors correct-specification in the Fama-French setup. This way, our methodology allows one to rank the competing SDF models (according to different evaluation criteria), based on simulated data generated from U.S. market information.

⁹We compute the HJ distance based on the MatLab codes of Mike Cliff, available at: http://mcliff.cob.vt.edu/

¹⁰The standard error of the HJ-distance is estimated by a Newey & West (1987) HAC procedure, in which the optimal bandwidth (number of lags=5) is given by $m(T) = int(T^{1/3})$, where int(.) represents the integer part of the argument, and T is the sample size. The adopted kernel used to smooth the sample autocovariance function is given by a standard modified Bartlett kernel: $w(j, m(T)) = 1 - [j/\{m(T) + 1\}]$. See Newey & West (1994) for an extensive discussion about lag selection in covariance matrix estimation, and also Kan & Robotti (2008).

Table 1 - Monte Carlo Simulation Results

sample sız	e: 200 (O	ver the ti	me period	from $09/$	(1999 to 12/2007)
\widehat{MSE}_{a}	\widehat{MSE}_{b}	\widehat{MSE}_{c}	$\widehat{\gamma}_a$	$\widehat{\gamma}_b$	$\widehat{\gamma}_c$
0.0962	0.1070	0.1056	0.2645	0.6429	-0.0113
(0.0228)	(0.0374)	(0.0298)	(0.1106)	(0.0720)	(0.4387)
\widehat{HJ}_{d}	$_{a}$ -distance	\widetilde{H}	\widehat{IJ}_b -distan	ce	\widehat{HJ}_c -distance
0.	.4114		0.3227		0.4207
(0	.0806)		(0.0760)		(0.0792)
ample size:	300 (Over	r the time	e period fr	05/19	91 to $12/2007$)
\widehat{MSE}_{a}	\widehat{MSE}_{b}	\widehat{MSE}_{c}	$\widehat{\gamma}_a$	$\widehat{\gamma}_b$	$\hat{\gamma}_c$
0.0796	0.0722	0.0923	0.3301	0.6989	-0.1041
(0.0182)	(0.0221)	(0.0242)	(0.0895)	(0.0626)	(0.4399)
\widehat{HJ}_a -	distance	\widehat{HJ}_b	-distance	\widehat{HJ}	$_{c}$ -distance
0.	3489	0).2588	0	.3631
(0.	0660)	((0.0606)	(0	0.0643)
sample size:	400 (Over	r the time	e period fr	000000000000000000000000000000000000	74 to 12/2007)
\widehat{MSE}_a	\widehat{MSE}_b	\widehat{MSE}_{c}	$\widehat{\gamma}_a$	$\widehat{\gamma}_b$	$\widehat{\gamma}_c$
0.0779	0.0608	0.0702	0.3423	0.7182	0.4319
(0.0153)	(0.0161)	(0.0160)	(0.0933)	(0.0551)	(0.2351)
\widehat{HJ}_a -	-distance	\widehat{HJ}	$_{b}$ -distance	\widehat{H}	\tilde{J}_c -distance
0.	.3305	(0.2275		0.3227
(0	.0553)	(0.0520)	(0.0556)

Notes: a) We simulate a panel with 25 asset returns from a Fama and French model of the form: $R_{i,t} - R_{ft} = \beta_{im} \left(R_{Mt} - R_{ft} \right) + \beta_{is} SMB_t + \beta_{ih} HML_t + \varepsilon_{it}$. b) All results are averaged across the 1,000 replications. The MSE and γ are computed "in-sample", i.e., N=18, whereas the HJ-distance is calculated from the "out-of-sample" set of (N- \tilde{N})=18 assets. The standard deviation is presented in parentheses.

c) The calibrated parameters varies from $\beta_{im} \in [0.1, 0.9]$; $\beta_{is} \in [-1.4, 1.6]$; $\beta_{ih} \in [-0.73, 8.7]$ in each replication of the Monte Carlo simulation.

4 Conclusions

In the present work, we propose a methodology to compare different stochastic discount factor models based on relevant market information. Based on the Fama and French factors, which are linked to characteristics of the firms in a particular economy, a Monte Carlo simulation strategy is proposed in order to generate a set of artificial returns that is perfectly compatible with those factors.

This way, we construct a *Fama-French world* through numerical simulations, in which SDF proxies are compared through some goodness-of-fit statistics and the Hansen and Jagannathan distance. An empirical application is provided to illustrate our methodology, in which returns time series are produced from factors such as the market portfolio return, size and book-to-market equity of the U.S. economy. The results reveal that the Brandt, Cochrane and Saint-Clara (2006) proxy dominates the other considered SDF estimators.

Therefore, the main contribution of this paper consists in a methodology to compare SDF models in a setup where the Fama and French factors are supposed to summarize the economic environment. This controlled framework allows one to use simple sample statistics to compare SDF candidates with the *true SDF* implied by the Fama and French DGP and, then, rank competing asset pricing models. In this case, the hypothesis of geometric Brownian motion, usually adopted in several empirical studies, seems to be quite reasonable for the simulated set of returns.

As a natural extension of this work, the proposed methodology could easily be adapted to compare asset pricing models based on real asset returns data. For instance, a principal component technique could be employed to generate factors from "real world" variables and, thus, these new factors could be used to generate a controlled environment in which SDF models are properly compared.

Acknowledgements

We are indebted to João Victor Issler, Caio Almeida, Carlos Eugênio, Luis Braido, Christiam Gonzales as well as seminar participants at The 8th Brazilian Finance Society Meeting (Rio de Janeiro, Brazil), especially Sergio Bruno, for valuable comments. The opinions in this paper are those of the authors and do not necessarily reflect the point of view of the Central Bank of Brazil. Any remaining errors are ours.

References

- Araujo, F., Issler, J. V., Fernandes, M., 2006. Estimating the stochastic discount factor without a utility function. Princeton University, Getulio Vargas Foundation, and Queen Mary, University of London.
- [2] Brandt, M. W., Cochrane, J. H., Santa-Clara, P., 2006. International risk sharing is better than you think, or exchange rates are too smooth, forthcoming in Journal of Monetary Economics.
- [3] Campbell, J.Y., Cochrane, J.H. 2000. Explaining the poor performance of consumption-based "asset pricing models". Journal of Finance 55, 2863-2878.
- [4] Chan, K.C., Karolyi, G.A., Stulz, R.M., 1992. Global Financial Markets and the Risk Premium on U.S. Equity. NBER Working Paper n.4074.
- [5] Chen and Ludvigson, 2008. Land of Addicts? An Empirical Investigation of Habit-Based Asset Pricing Models. Working paper, New York University.
- [6] Cochrane, J. H., 2001. Asset Pricing, Princeton University Press, Princeton.
- [7] Dittmar, 2002. Nonlinear Pricing Kernels, Kurtosis Preference, and Evidence from the Cross Section of Equity Returns. Journal of Financial Economics 33, 3-56.
- [8] Fama, E. F. and K.R. French, 1992. The Cross Section of Expected Stock Returns, Journal of Finance 47, 427-465.
- [9] _____, 1993. Common risk factors in the returns on stocks and bonds, Journal of Financial Economics 33, 3-56.
- [10] _____, 1995. Size and Book-to-Market Factors in Earnings and Returns, Journal of Finance 50, 131-155.

- [11] _____, 1996. Multifactor Explanations of Asset Pricing Anomalies, Journal of Finance 51(1), 55-84.
- [12] ____, 1998. Value versus growth: the international evidence, Journal of Finance 53, 1975-1979.
- [13] ____, 2004. The Capital Asset Pricing Model: Theory and Evidence. The Journal of Economic Perspectives 18(3), 25-46.
- [14] Farnsworth, H., Ferson, W.E., Jackson, D., Todd, S., 2002. Performance evaluation with stochastic discount factors, Journal of Business 75, 473–503.
- [15] Fernandes, M., Vieira, G., 2006. Revisiting the efficiency of risk sharing between UK and US: Robust estimation and calibration under market incompleteness. Mimeo.
- [16] Ferson, W.E., Harvey, C.R., 1994. Sources of Risk and Expected Returns in Global Equity Markets. Journal of Banking and Finance 18, 775-803.
- [17] _____, 1999. Conditioning Variables and the Cross Section of Stock Returns. Journal of Finance 54(4), 1325-1360.
- [18] Gaunt, C., 2004. Size and book to market effects and the Fama French three factor asset pricing model: evidence from the Australian stock market. Accounting and Finance 44, 27-44.
- [19] Griffin, J.M., 2002. Are the Fama and French Factors Global or Country-Specific? The Review of Financial Studies 15(3), 783-803.
- [20] Hansen, L.P., Jagannathan, R., 1991. Implications of security market data for models of dynamic economies, Journal of Political Economy 99, 225-262.
- [21] ____, 1997. Assessing Specification Errors in Stochastic Discount Factor Models. Journal of Finance 52(2), 557-590.
- [22] Jagannathan, R., Kubota, K., Takehara, H., 1998. Relationship between Labor-Income Risk and Average Return: Empirical Evidence from the Japanese Stock Market. Journal of Business 71, 319-348.
- [23] Jagannthan, R., Wang, Z., 2002. Empirical evaluation of asset-pricing models: A comparison of the SDF and beta methods" Journal of Finance 57, 2337-2367.
- [24] Johnson, R.A., Wichern, D.W., 1992. Applied multivariate statistical analysis. Third edition. New Jersey: Prentice-Hall.

- [25] Kan, R., Robotti, C., 2008. Model Comparison Using the Hansen-Jagannathan Distance. Working paper, University of Toronto.
- [26] Lettau, M., Ludvigson, S., 2001a. Consumption, Aggregate Wealth, and Expected Stock Returns. Journal of Finance 56(3), 815-849.
- [27] ____, 2001b. Resurrecting the (C)CAPM: A Cross-Sectional Test When Risk Premia are Time-Varying. Journal of Political Economy 109(6), 1238-1287.
- [28] Lintner, J., 1965. The Valuation of Risk Assets and the Selection of Risky Investments in Stock Portfolios and Capital Budgets. Review of Economics and Statistics 47(1), 13-37.
- [29] Newey, W.K., West, K.D., 1987. A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica 55, 703-708.
- [30] _____, 1994. Automatic lag selection in covariance matrix estimation. The Review of Economic Studies 61(4), 631-653.
- [31] Sharpe, W.F., 1964. Capital Asset Prices: A Theory of Market Equilibrium under Conditions of Risk. Journal of Finance 19(3), 423-442.
- [32] Vasicek, O., 1977. An equilibrium characterization of the term structure, Journal of Financial Economics 5, 177-188.

Appendix

sample size = 200				
	Araujo	Saint Clara	CAPM	Fama & French
				DGP
Mean	0,9945	0,9185	0,9921	0,9967
Median	0,9900	0,8380	0,9927	1,0002
Maximum	1,1918	2,9764	1,1627	2,1010
Minimum	0,8860	0,1867	0,8121	-0,5184
Std. Dev	0,0482	0,4194	0,0531	0,3346
Skewness	0,7922	1,5141	-0,0567	-0,5456
Kurtosis	4,6444	7,4416	4,1835	6,0446
Freq. Jarque-Bera	0,0150	0,0000	0,0000	0,0000
sample size = 300				
Mean	0,9933	0,9196	0,9902	0,9959
Median	0,9889	0,8564	0,9917	0,9878
Maximum	1,2849	2,9480	1,1451	2,1842
Minimum	0,8728	0,2381	0,7905	-0,2985
Std. Dev	0,0506	0,3647	0,0426	0,3058
Skewness	1,1507	1,5303	-0,2606	-0,2345
Kurtosis	7,4321	8,2266	6,2824	5,3050
Freq. Jarque-Bera	0,0000	0,0000	0,0000	0,0000
sample size = 400				
Sample 3126 - 400				
Mean	0,9925	0,9181	0,9942	0,9952
Median	0,9887	0,8672	0,9875	1,0042
Maximum	1,2838	3,0148	1,5317	2,1668
Minimum	0,8661	0,1674	0,6924	-0,6743
Std. Dev	0,0504	0,3355	0,0998	0,3049
Skewness	0,9412	1,6279	0,5455	-0,9058
Kurtosis	6,4386	9,6505	5,4933	9,2686
Freq. Jarque-Bera	0,0000	0,0000	0,0000	0,0000

Table 2 - Descriptive statistics of the SDF

Notes: These statistics are computed in-sample. DGP (FF) means Data-Generating Process of the Fama & French model. The number of assets in-sample and out-of-sample is N=18. The descriptive statistics are averaged across the K=1,000 replications based on the sample sizes $T=\{200,300,400\}$. For instance, for T=200 the Jarque-Bera statistic indicates the frequency of rejection of the normality hypothesis across the 1,000 replications (based on a 5% significance level). In this case, T=200, for the Araujo et al. (2006) proxy, the statistic Freq. Jarque-Bera is equal to 0.015, which means that in 1.5% of the replications the normality hypothesis is rejected at a 5% significance level.

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank <i>Eduardo Lundberg</i>	Jul/2000
3	Private Sector Participation: a Theoretical Justification of the Brazilian Position <i>Sérgio Ribeiro da Costa Werlang</i>	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models <i>Pedro H. Albuquerque</i>	Jul/2000
5	The Pass-Through from Depreciation to Inflation: a Panel Study Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil Marcelle Chauvet	Sep/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk <i>José Alvaro Rodrigues Neto</i>	Sep/2000
9	Estimating Exchange Market Pressure and Intervention Activity <i>Emanuel-Werner Kohlscheen</i>	Nov/2000
10	Análise do Financiamento Externo a uma Pequena Economia Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001

11	A Note on the Efficient Estimation of Inflation in Brazil <i>Michael F. Bryan and Stephen G. Cecchetti</i>	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001
13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade and Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework <i>Sergio Afonso Lago Alves</i>	Jul/2001
17	Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção <i>Tito Nícias Teixeira da Silva Filho</i>	Abr/2001
	Estimating Brazilian Potential Output: a Production Function Approach <i>Tito Nícias Teixeira da Silva Filho</i>	Aug/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas and Marcelo Kfoury Muinhos	Apr/2001
19	Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo	May/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu and Márcio I. Nakane	May/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência <i>Pedro H. Albuquerque</i>	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini	Aug/2001

25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 <i>Pedro Fachada</i>	Aug/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil Marcelo Kfoury Muinhos	Aug/2001
27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais <i>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</i>	Set/2001
28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais <i>Marco Antonio Bonomo e Ricardo D. Brito</i>	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil Pedro H. Albuquerque and Solange Gouvêa	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates <i>Benjamin Miranda Tabak and Sandro Canesso de Andrade</i>	Nov/2001
31	Algumas Considerações sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil <i>Mauro Costa Miranda</i>	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises Arminio Fraga and Daniel Luiz Gleizer	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços <i>Tito Nícias Teixeira da Silva Filho</i>	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? <i>Barry Eichengreen</i>	Feb/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de <i>Stress</i> : um Teste para o Mercado Brasileiro <i>Frederico Pechir Gomes</i>	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio <i>Paulo Castor de Castro</i>	Mar/2002

40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas <i>Aloisio Araujo and Márcia Leon</i>	Apr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio	Jun/2002
	Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	
43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency	Jun/2002
	Benjamin Miranda Tabak and Eduardo José Araújo Lima	
44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil	Jun/2002
	Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence <i>André Minella</i>	Aug/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane	Aug/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn and Marcos Antonio Silveira	Sep/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two-Country Model	Sep/2002
	Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira	
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Sep/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo and Aquiles Farias	Sep/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak and Solange Maria Guerra	Nov/2002

55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: the Case of Latin America Benjamin Miranda Tabak and Eduardo José Araújo Lima	Dec/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case <i>Benjamin Miranda Tabak</i>	Dec/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002
60	Delegated Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Dec/2002
61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: the Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak	Feb/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves	Feb/2003
65	On the Information Content of Oil Future Prices <i>Benjamin Miranda Tabak</i>	Feb/2003
66	A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar and Márcio I. Nakane	Feb/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto	Feb/2003

70	Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates <i>Benjamin Miranda Tabak</i>	Feb/2003
71	On Shadow-Prices of Banks in Real-Time Gross Settlement Systems <i>Rodrigo Penaloza</i>	Apr/2003
72	O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras <i>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani</i> <i>Teixeira de C. Guillen</i>	Maio/2003
73	Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros Getúlio Borges da Silveira e Octavio Bessada	Maio/2003
74	Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves	Maio/2003
75	Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth <i>Ilan Goldfajn, Katherine Hennings and Helio Mori</i>	Jun/2003
76	Inflation Targeting in Emerging Market Economies Arminio Fraga, Ilan Goldfajn and André Minella	Jun/2003
77	Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Jul/2003
78	Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro <i>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio</i> <i>Carlos Figueiredo, Eduardo Facó Lemgruber</i>	Out/2003
79	Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber	Out/2003
80	Diferenças e Semelhanças entre Países da América Latina: uma Análise de <i>Markov Switching</i> para os Ciclos Econômicos de Brasil e Argentina Arnildo da Silva Correa	Out/2003
81	Bank Competition, Agency Costs and the Performance of the Monetary Policy Leonardo Soriano de Alencar and Márcio I. Nakane	Jan/2004

82	Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo	Mar/2004
83	Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries <i>Thomas Y. Wu</i>	May/2004
84	Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis Aloisio Araujo and Marcia Leon	May/2004
85	Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002 <i>André Soares Loureiro and Fernando de Holanda Barbosa</i>	May/2004
86	Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo Fabio Araujo e João Victor Issler	Maio/2004
87	Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil Ana Carla Abrão Costa	Dez/2004
88	Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht	Dez/2004
89	O Mercado de <i>Hedge</i> Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central Fernando N. de Oliveira	Dez/2004
90	Bank Privatization and Productivity: Evidence for Brazil Márcio I. Nakane and Daniela B. Weintraub	Dec/2004
91	Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis <i>Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and</i> <i>Guilherme Cronemberger Parente</i>	Dec/2004
92	Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil <i>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes</i> <i>Silva, Marcelo Kfoury Muinhos</i>	Apr/2005
93	Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Abr/2005
94	Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber	Abr/2005

95	Comment on Market Discipline and Monetary Policy by Carl Walsh <i>Maurício S. Bugarin and Fábia A. de Carvalho</i>	Apr/2005
96	O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina Anthero de Moraes Meirelles	Ago/2005
97	Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching Ryan A. Compton and Jose Ricardo da Costa e Silva	Aug/2005
98	Capital Flows Cycle: Stylized Facts and Empirical Evidences for Emerging Market Economies <i>Helio Mori e Marcelo Kfoury Muinhos</i>	Aug/2005
99	Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber	Set/2005
100	Targets and Inflation Dynamics Sergio A. L. Alves and Waldyr D. Areosa	Oct/2005
101	Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates <i>Marcelo Kfoury Muinhos and Márcio I. Nakane</i>	Mar/2006
102	Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans Ana Carla A. Costa and João M. P. de Mello	Apr/2006
103	The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva	Apr/2006
104	Extração de Informação de Opções Cambiais no Brasil Eui Jung Chang e Benjamin Miranda Tabak	Abr/2006
105	Representing Roommate's Preferences with Symmetric Utilities José Alvaro Rodrigues Neto	Apr/2006
106	Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities <i>Cristiane R. Albuquerque and Marcelo Portugal</i>	May/2006
107	Demand for Bank Services and Market Power in Brazilian Banking Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk	Jun/2006
108	O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda	Jun/2006
109	The Recent Brazilian Disinflation Process and Costs Alexandre A. Tombini and Sergio A. Lago Alves	Jun/2006

110	Fatores de Risco e o Spread Bancário no Brasil Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues	Jul/2006
111	Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves	Jul/2006
112	Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets Angelo Marsiglia Fasolo	Jul/2006
113	Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro	Ago/2006
114	The Inequality Channel of Monetary Transmission Marta Areosa and Waldyr Areosa	Aug/2006
115	Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak	Sep/2006
116	Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos	Sep/2006
117	An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak	Sep/2006
118	Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint <i>Aloísio P. Araújo and José Valentim M. Vicente</i>	Oct/2006
119	A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação Ricardo Schechtman	Out/2006
120	Forecasting Interest Rates: an Application for Brazil <i>Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak</i>	Oct/2006
121	The Role of Consumer's Risk Aversion on Price Rigidity Sergio A. Lago Alves and Mirta N. S. Bugarin	Nov/2006
122	Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil Arnildo da Silva Correa and André Minella	Nov/2006
123	A Neoclassical Analysis of the Brazilian "Lost-Decades" Flávia Mourão Graminho	Nov/2006

124	The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil <i>Benjamin M. Tabak</i>	Nov/2006
125	Herding Behavior by Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Dec/2006
126	Risk Premium: Insights over the Threshold José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña	Dec/2006
127	Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil Ricardo Schechtman	Dec/2006
128	Term Structure Movements Implicit in Option Prices	Dec/2006
	Caio Ibsen R. Almeida and José Valentim M. Vicente	
129	Brazil: Taming Inflation Expectations	Jan/2007
	Afonso S. Bevilaqua, Mário Mesquita and André Minella	
130	The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter? <i>Daniel O. Cajueiro and Benjamin M. Tabak</i>	Jan/2007
131	Long-Range Dependence in Exchange Rates: the Case of the European Monetary System	Mar/2007
	Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro	
132	Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics' Model: the Joint Use of Importance Sampling and Descriptive Sampling <i>Jaqueline Terra Moura Marins and Eduardo Saliby</i>	Mar/2007
133	A New Proposal for Collection and Generation of Information on Financial Institutions' Risk: the Case of Derivatives <i>Gilneu F. A. Vivan and Benjamin M. Tabak</i>	Mar/2007
134	Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins	Abr/2007
135	Evaluation of Default Risk for the Brazilian Banking Sector Marcelo Y. Takami and Benjamin M. Tabak	May/2007
136	Identifying Volatility Risk Premium from Fixed Income Asian Options Caio Ibsen R. Almeida and José Valentim M. Vicente	May/2007
137	Monetary Policy Design under Competing Models of Inflation Persistence Solange Gouvea e Abhijit Sen Gupta	May/2007
138	Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil <i>Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak</i>	May/2007

139	Selection of Optimal Lag Length inCointegrated VAR Models with Weak Form of Common Cyclical Features Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén	Jun/2007
140	Inflation Targeting, Credibility and Confidence Crises Rafael Santos and Aloísio Araújo	Aug/2007
141	Forecasting Bonds Yields in the Brazilian Fixed income Market Jose Vicente and Benjamin M. Tabak	Aug/2007
142	Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho	Ago/2007
143	Price Rigidity in Brazil: Evidence from CPI Micro Data Solange Gouvea	Sep/2007
144	The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options <i>Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber</i>	Oct/2007
145	The Stability-Concentration Relationship in the Brazilian Banking System <i>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo</i> <i>Lima and Eui Jung Chang</i>	Oct/2007
146	Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente	Out/2007
147	Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects (1994-1998) Adriana Soares Sales and Maria Eduarda Tannuri-Pianto	Oct/2007
148	Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial <i>Felipe Pinheiro, Caio Almeida e José Vicente</i>	Out/2007
149	Joint Validation of Credit Rating PDs under Default Correlation Ricardo Schechtman	Oct/2007
150	A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks Roberta Blass Staub and Geraldo da Silva e Souza	Oct/2007
151	Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability <i>Eduardo José Araújo Lima and Benjamin Miranda Tabak</i>	Nov/2007

152	Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation? Fernando N. de Oliveira and Walter Novaes	Dec/2007
153	Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins	Dez/2007
154	Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves <i>Adriana Soares Sales and Maria Tannuri-Pianto</i>	Dec/2007
155	Does Curvature Enhance Forecasting? <i>Caio Almeida, Romeu Gomes, André Leite and José Vicente</i>	Dec/2007
156	Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane	Dez/2007
157	Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil <i>Tito Nícias Teixeira da Silva Filho</i>	Jan/2008
158	Characterizing the Brazilian Term Structure of Interest Rates Osmani T. Guillen and Benjamin M. Tabak	Feb/2008
159	Behavior and Effects of Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Feb/2008
160	The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden? <i>Fábia A. de Carvalho and Cyntia F. Azevedo</i>	Feb/2008
161	Evaluating Value-at-Risk Models via Quantile Regressions Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton	Feb/2008
162	Balance Sheet Effects in Currency Crises: Evidence from Brazil Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes	Apr/2008
163	Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks' Economy: the Brazilian Case Tito Nícias Teixeira da Silva Filho	May/2008
164	Foreign Banks' Entry and Departure: the recent Brazilian experience (1996-2006) <i>Pedro Fachada</i>	Jun/2008
165	Avaliação de Opções de Troca e Opções de <i>Spread</i> Européias e Americanas	Jul/2008
166	Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study	Jul/2008
	Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho	

167	O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras <i>Clodoaldo Aparecido Annibal</i>	Jul/2008
168	An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks Wenersamy Ramos de Alcântara	Jul/2008
169	Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar	Jul/2008
170	Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação Adriana Soares Sales	Jul/2008
171	Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil Sérgio Mikio Koyama e Márcio Issao Nakane	Ago/2008
172	Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap <i>Marta Areosa</i>	Aug/2008
173	Exchange Rate Dynamics and the Relationship between the Random Walk Hypothesis and Official Interventions <i>Eduardo José Araújo Lima and Benjamin Miranda Tabak</i>	Aug/2008
174	Foreign Exchange Market Volatility Information: an investigation of real-dollar exchange rate Frederico Pechir Gomes, Marcelo Yoshio Takami and Vinicius Ratton Brandi	Aug/2008