Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap

Marta Areosa
August, 2008
Combining Hodrick-Prescott Filtering with a Production Function Approach to Estimate Output Gap

Marta Areosa

Abstract

This Working Paper should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the paper are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

The proposed methodology combines two of the most important techniques to estimate output gap: the production function approach and the Hodrick-Prescott filtering. Three main advantages can be derived from this method: (i) it adds some economic structure to a filtering method, (ii) it can be easily adapted to incorporate new characteristics into the filter and (iii) it simultaneously produces estimates for potential output and its unobservable components.

JEL Classification: C13, E23, E32
Keywords: Hodrick-Prescott filter, Production function, Kalman filter

*The author is grateful to José Alvaro Rodrigues Neto for his helpful comments. All remaining errors are my own responsibility.
†Banco Central do Brasil and Department of Economics, PUC-Rio, Brazil. E-mail: marta@econ.puc-rio.br.
1 Introduction

Estimation of output gap is a problem that has been debated for a long time. This intense discussion can be explained by the fact that output gap has become one of the most important unobserved economic time series. Its relationship with inflation, known as the Phillips curve, expresses a trade-off that is not only present in many macroeconomic models but has also been very useful for central banks that implicitly or explicitly target inflation.

Many methodologies have been proposed to estimate output gap. Two of the most popular techniques are Hodrick-Prescott (HP) filtering and the production function approach. Nevertheless, these methods present some flaws. While univariate statistical methods, such as filtering, deterministic trend extraction and latent variable models, lack economic content and impose statistical relations that are difficult to justify on a theoretical basis, a great uncertainty surrounds the estimates of the components that go into the growth-accounting formulas. \(^1\)

In the present case, I combine HP filtering with a production function approach to overcome some of the drawbacks involving both methods. While the production function is used to decompose output gap in a weighted average of unemployment gap and installed capacity utilization gap, HP filtering is used in the estimation of these three gaps. This strategy creates a multivariable filter that simultaneously produces estimates for potential output and the unobservable components of a production function. Additionally, two methods to build the filter are presented.

2 The Filter

In line with the approach presented in Proietti et al (2007), I use a Cobb-Douglas production function with constant returns to scale to assess output gap and potential output, that is,\(^2\)

\(^2\)In the present work \(z\) represents the series \(\{z_t\}_{t=1}^N\) or the column vector \((z_1, \ldots, z_N)'\).
\[Y_t = A_t (K_t C_t)^\alpha (L_t (1 - U_t))^{1 - \alpha} \]
\[Y^n_t = A_t (K^n_t C^n_t)^\alpha (L_t (1 - U^n_t))^{1 - \alpha} \]

where \(Y \) is the output, \(Y^n \) is the potential output, \(A \) is the productivity factor, \(K \) is the capital stock, \(L \) is the labor force, \(\alpha \) is the income capital share, \(C \) is the installed capacity utilization, \(U \) is the unemployment rate, \(U^n \) is the natural unemployment rate and \(C^n \) is the natural installed capacity utilization.\(^3\)

Equation (2) emphasizes that the uncertainty of estimating potential output is derived from the estimation of the unobserved components - \(U^n \) and \(C^n \) - and the errors obtained in the assessment of capital stock, labor force, and productivity. However, the Cobb-Douglas production function helps to eliminate unnecessary data problems and measuring errors generated in the estimation of both capital stock and productivity, since with it is possible to derive an expression for potential output that does not depend on \(A \), \(K \) and \(L \):

\[Y^n_t = Y_t \left(\frac{C^n_t}{C_t} \right)^\alpha \left(\frac{1 - U^n_t}{1 - U_t} \right)^{1 - \alpha} \]

(3)

Defining \(E_t \equiv 1 - U_t \) and \(E^n_t \equiv 1 - U^n_t \), it is possible to use the following equations to compute the output gap, \(x_t \):\(^4\)

\[x_t = \ln \left(\frac{Y_t}{Y^n_t} \right) = y_t - y^n_t \]
\[y^n_t = y_t + \alpha (c^n_t - c_t) + (1 - \alpha) (e^n_t - e_t) \]

(4)

(5)

where the lower-case variables represent the logarithms of corresponding upper-case variables.

Alternatively, if the HP filter is used in the series \(y \) to estimate its trend, the

\(^3\)The expression potential output does not refer to the concept used in the widespread New Keynesian literature. For further details see Clarida et al (1999). The term natural refers to the level that occurs when the economy is at its potential level.

\(^4\)\(E \) stands for employment, considering that \((1 - U_t) \) is the percentage of the labor force that is employed. Thus, \((1 - U^n_t) \) is the natural rate of employment.
resultant series y^n will be the solution of the following problem:\(^5\)

$$\min_{\{y^n_t\}_{t=1}^N} \left\{ \sum_{t=1}^N (y^n_t - y_t)^2 + \lambda_y \sum_{t=3}^N (\Delta^2 y^n_t)^2 \right\}$$ \hspace{1cm} (6)$$

The methodology used to build a filter that combines HP filtering and the production function approach can be summarized in two steps: (i) adding a constraint derived from a production function - equation (5) - to the optimization problem known as the HP filter - equation (6) - and (ii) extending the objective function to estimate the unobserved variables that appear in the production function, that is,

$$\begin{align*}
\min_{\{e^n_t\}_{t=1}^N,\{c^n_t\}_{t=1}^N} & \left\{ \begin{array}{c}
\beta_c Op_c + \\
\beta_e Op_e + \\
\beta_y \sum_{t=1}^N (y^n_t - y_t)^2 + \lambda \sum_{t=2}^N (\Delta^2 y^n_t)^2
\end{array} \right) \\
\text{s.t.} & \\
y^n_t = y_t + \alpha (e^n_t - c_t) + (1 - \alpha) (e^n_t - e_t)
\end{align*}$$ \hspace{1cm} (7)$$

where Op_c and Op_e represent the objective functions of any optimization process used to estimate c^n and e^n. The weights β_c, β_e, and β_y quantify the relative importance between optimization problems. If the HP objective function is also used to estimate these series, the resultant filter becomes

$$\begin{align*}
\min_{\{e^n_t\}_{t=1}^N,\{c^n_t\}_{t=1}^N} & \left\{ \begin{array}{c}
\beta_e \sum_{t=1}^N (e^n_t - e_t)^2 + \lambda_e \sum_{t=3}^N (\Delta^2 e^n_t)^2 + \\
\beta_c \sum_{t=1}^N (c^n_t - c_t)^2 + \lambda_c \sum_{t=3}^N (\Delta^2 c^n_t)^2 + \\
\beta_y \sum_{t=1}^N (y^n_t - y_t)^2 + \lambda_y \sum_{t=3}^N (\Delta^2 y^n_t)^2
\end{array} \right) \\
\text{s.t.} & \\
y^n_t = y_t + \alpha (naicu_t - c_t) + (1 - \alpha) (naire_t - e_t)
\end{align*}$$ \hspace{1cm} (8)$$

This procedure generates a multivariate filter that simultaneously estimates po-

potential output and its unobserved components, \(e^n \) and \(c^n \). While the series \(e^n \) and \(c^n \) are the solution of the optimization problem, the series \(x \) and \(y^n \) are built from equations (4) and (5).

Without using equation (5) as a constraint, the series \(e^n \), \(c^n \), and \(y^n \) obtained from the optimization problem defined in (8) would be the HP trend of the series \(e \), \(c \) and \(y \). Nevertheless, the results change considerably when (5) is used as a constraint. For instance, setting \(y = 0 \) is equivalent to estimating \(y^n \) from a production function where \(e^n \) and \(c^n \) are the HP trend of \(e \), and \(c \). For other values of \(\beta_y \), i.e., \(\beta_y \in (0, \infty) \), the potential output will be within the HP trend and that given by the production function.

3 Implementation

I use the Kalman Filter to estimate (8) in a way similar to how Harvey (1995) uses it to estimate the HP filter. For this estimation, it is necessary to express (8) in the following state-space form.

Transition Equation

\[
\begin{bmatrix}
 x^1_t \\
 x^2_t \\
 x^3_t \\
 x^4_t \\
 x^5_t \\
 x^6_t \\
\end{bmatrix} =
\begin{bmatrix}
 2 & -1 & 0 & 0 & 0 & 0 \\
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 2 & -1 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 2 & -1 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
 x^1_{t-1} \\
 x^2_{t-1} \\
 x^3_{t-1} \\
 x^4_{t-1} \\
 x^5_{t-1} \\
 x^6_{t-1} \\
\end{bmatrix} +
\begin{bmatrix}
 0 & 1 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 0 & 1 \\
 0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 \epsilon^1_t \\
 \epsilon^2_t \\
 \epsilon^3_t \\
 \epsilon^4_t \\
 \epsilon^5_t \\
\end{bmatrix}
\]

Measurement equation

\[
\begin{bmatrix}
 e_t \\
 c_t \\
 y_t \\
\end{bmatrix} =
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
 x^1_t \\
 x^2_t \\
 x^3_t \\
 x^4_t \\
 x^5_t \\
 x^6_t \\
\end{bmatrix} +
\begin{bmatrix}
 1 & 0 & 0 & 0 & 0 & 0 \\
 0 & 0 & 1 & 0 & 0 & 0 \\
 1 - \alpha & 0 & \alpha & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
 \epsilon^1_t \\
 \epsilon^2_t \\
 \epsilon^3_t \\
 \epsilon^4_t \\
 \epsilon^5_t \\
\end{bmatrix}
\]
Similarly to Harvey (1995), I found it necessary to impose some restrictions on the variances of the errors. These variance relations are not necessary to make the Kalman Filter run, but only to induce it to converge to the result that would be given by the filter specified in (8) when a given parameter set \(\{ \lambda_e, \beta_e, \lambda_c, \beta_c, \lambda_y, \beta_y \} \) is considered. Running the Kalman filter without restrictions is equivalent to finding the set of parameters that best fit the data.

It is easy to interpret this state-space. The series \(x^1, x^3, \) and \(x^5 \) are associated with \(e^n, c^n, \) and \(y^n. \) Therefore the gaps \(e - e^n, c - c^n, \) and \(y - y^n \) are given by \(\varepsilon^1, \varepsilon^3, \) and \((1 - \alpha) \varepsilon^1 + \alpha \varepsilon^3. \)

3.1 Incorporating the Phillips Curve

The non-accelerating inflation rate of unemployment - \(nairu \) - is usually regarded as the empirical counterpart of the natural rate of unemployment. However, as commented in Boone et al (2002), \(nairu \) estimation processes that do not exploit information about inflation may result in inefficient historical measures of the \(nairu, \) biased parameter estimates, and inefficient forecasts of \(nairu. \)

Therefore, I have incorporated a Phillips curve to the filter proposed in (8) in order to be able to interpret the estimate of the natural rate of unemployment as being the \(nairu. \) Analogous to the way Boone (2000) implements the multivariable filter proposed by Laxton and Tetlow (1992), it is possible to modify the state space specified in Section 3 by adding the Phillips curve as another measurement equation to simultaneously estimate output gap and the \(nairu. \)

4 Results

I used Brazilian quarterly data collected from 1995.Q1 to 2007.Q4 to generate the results presented in this section. The following series were used:\n

6See Appendix B for details.

7The \(nairu, \) as defined by Mondigliani and Papademos (1978), is different from the concept of the natural rate of unemployment, as expressed in Friedman (1968) and Phelps (1967). Estrella and Mishkin (1999) show that these concepts may diverge.

8See Appendix C for details about each estimation.

The results obtained when running the Kalman filter with no restriction on the variances are shown in the first line of Figure 1.

Additionally, the filter structure proposed in (7) can be modified to incorporate new features that may help on the output gap identification. A possible modification concerns the use of other objective functions to estimate \(e^n\) and \(c^n\). Since each observation of \(E\) and \(C\) lies inside the interval \([0, 1]\) and by consequence does not incorporate any linear trend, the HP filter is not recommended to estimate \(e^n\) and \(c^n\). Furthermore, I incorporated a Phillips curve into the filter. The results obtained from these modifications are shown on the second line of the Figure 1.

Figure 1: Results obtained on two different experiments
5 Conclusions and Extensions

To sharpen the identification of potential output, I generated a multivariate filter that imposes some economic structure onto an econometric method. In the present case, I combined HP filtering with a production function approach. The strategy used to build the filter can be summarized in two steps: (i) adding a constraint derived from a production function to the optimization problem known as the HP filter and (ii) extending the objective function to estimate the unobserved variables that appear in the production function. The ability to produce estimates not only for potential output but also for its unobservable components is one of the main advantages of this method. In addition to this, the filter does not require the specification of any productivity factor for this decomposition.

This basic structure can be easily adapted for situations. A possible modification concerns the use of other methods to estimate e^n and c^n. The optimization proposed in (8) implicitly imposes the utilization of the HP filter to estimate those series. If another estimation technique are preferred, HP objective functions can be replaced with other ones. It is also possible to modify the state-space proposed in Section 3 to estimate e^n and c^n as an ARMA process, or to incorporate a Phillips curve or any econometric relation as an additional measurement equation.

Nevertheless, the main idea is that results can change considerably when a statistical method incorporates some economic structure. Nevertheless, calibrating these models is not an easy task. Whenever a parameter - β_e, β_c, or β_y - changes, the whole problem is modified, since these parameters quantify the relative importance between optimizations problems.

References

Particular Attention to measurement of 'Business Cycle'," Journal of Monetary Economics, vol. 7 (March), 151-174.

Besides the method described in Section 3, it is possible to implement the filter proposed in (8) by solving a linear system. For this, it is necessary to compute the first order conditions (FOCs) of the optimization problem proposed in (8). It is important to emphasize that the objective function of (8) is convex since it is a sum of convex functions defined in an open convex domain.\(^9\) Therefore, the FOCs are not only necessary but also sufficient for the minimum.

The FOCs of the filter proposed in (8) can be expressed by the following linear system:

\[
\begin{bmatrix}
X_{11} & X_{12} \\
X_{21} & X_{22}
\end{bmatrix}
\begin{bmatrix}
e^n \\
e^n
\end{bmatrix}
=
\begin{bmatrix}
Y_{11} & Y_{12} & Y_{13} \\
Y_{21} & Y_{22} & Y_{23}
\end{bmatrix}
\begin{bmatrix}
e \\
c \\
y
\end{bmatrix}
\]

(9)

where \(X_{11}, X_{12}, X_{21}, X_{22}, Y_{11}, Y_{12}, Y_{13}, Y_{21}, Y_{22}\) and \(Y_{23}\) are N \(\times\) N matrices given by\(^{10}\)

\[
\begin{align*}
X_{11} &= \beta_e (I + \lambda_e B_2) + \beta_y (1 - \alpha)^2 (I + \lambda_y B_2) \\
X_{12} &= X_{21} = \beta_y \alpha (1 - \alpha) (I + \lambda_y B_2) \\
X_{22} &= \beta_e (I + \lambda_e B_2) + \beta_y \alpha^2 (I + \lambda_y B_2) \\
Y_{11} &= \beta_e I + \beta_y (1 - \alpha)^2 (I + \lambda_y B_2) \\
Y_{12} &= Y_{21} = \beta_y \alpha (1 - \alpha) (I + \lambda_y B_2) \\
Y_{13} &= -\beta_y (1 - \alpha) \lambda_y B_2 \\
Y_{22} &= \beta_e I + \beta_y \alpha^2 (I + \lambda_y B_2) \\
Y_{23} &= -\beta_y \alpha \lambda_y B_2
\end{align*}
\]

In the previous expressions \(I\) is the N \(\times\) N identity matrix, and \(B_2\) is an N \(\times\) N matrix that can be decomposed as \(B_2 = A \cdot D \cdot A^T\) where \(A\) and \(D\) are two N \(\times\) N diagonal matrices whose elements are given by the following formulas,\(^{11}\)

\[
a_{ij} = \begin{cases}
1 & \text{if } i = j \text{ or } i = j + 2 \\
-2 & \text{if } i = j + 1 \\
0 & \text{otherwise}
\end{cases} \quad \text{and} \quad d_{ij} = \begin{cases}
1 & \text{if } i = j \text{ and } i \leq N - 2 \\
0 & \text{otherwise}
\end{cases}
\]

\(^9\)See Appendix B in Araújo, Areosa and Rodrigues Neto (2003) for the complete proof of the fact that each Hodrick-Prescott objective function is convex.

\(^{10}\)Denoting \(F\) the objective function of (8), I obtain the first \(N\) lines of the system computing \(\frac{\partial F}{\partial e^t} = 0\) for \(t \in \{1, \ldots, N\}\). Analogously, I obtain the last \(N\) lines computing \(\frac{\partial F}{\partial c^t} = 0\) for \(t \in \{1, \ldots, N\}\).

\(^{11}\)The matrix is \(B_2\) is equal to the matrix \(B(2)\) described in Araújo, Areosa and Rodrigues Neto (2003). In particular, see Appendix A of the referenced paper for the proof of this decomposition.
The linear system proposed in (9) has the same solution as (8).

7 Appendix B

In this appendix I derive the variance relations that must be imposed to the Kalman Filter in order to make the model stated in Section 3 converge to same solution of optimization problem proposed in (8).

Let \(\varepsilon_1^t, \varepsilon_2^t, \varepsilon_3^t, \varepsilon_4^t, \text{and} \varepsilon_5^t \) be errors defined as

\[
\begin{align*}
\varepsilon_1^t &= e_t - e^n_t \\
\varepsilon_2^t &= \Delta^2 e^n_t - e_t^n - 2e_{t-1}^n + e_{t-2}^n \\
\varepsilon_3^t &= c_t - c^n_t \\
\varepsilon_4^t &= \Delta^2 c^n_t - c_t^n - 2c_{t-1}^n + c_{t-2}^n \\
\varepsilon_5^t &= \Delta^2 y^n_t - y_t^n - 2y_{t-1}^n + y_{t-2}^n
\end{align*}
\]

where

\[
\begin{bmatrix}
\varepsilon_1^t \\
\varepsilon_2^t \\
\varepsilon_3^t \\
\varepsilon_4^t \\
\varepsilon_5^t
\end{bmatrix} \sim iidN(0, \sigma^2 V)
\]

and

\[
V =
\begin{bmatrix}
\rho_{11} & 0 & \rho_{13} & 0 & 0 \\
0 & \rho_{22} & 0 & 0 & 0 \\
\rho_{13} & 0 & \rho_{33} & 0 & 0 \\
0 & 0 & 0 & \rho_{44} & 0 \\
0 & 0 & 0 & 0 & \rho_{55}
\end{bmatrix}
\]

For \(t \in \{3, \ldots, T\} \) the period log-likelihood function is expressed as

\[
\ln(f(\varepsilon_1^t, \varepsilon_2^t, \varepsilon_3^t, \varepsilon_4^t, \varepsilon_5^t)) = \ln\left(\frac{1}{(2\pi)^{5/2} \sigma^2 (\det(V))^{1/2}} \exp\left(-\frac{1}{2\sigma^2} \varepsilon^T_t V^{-1} \varepsilon_t\right)\right)
\]

being \(V^{-1} \) given by

\[
V^{-1} =
\begin{bmatrix}
\rho_{33} (\rho_{11} \rho_{33} - \rho_{13}^2)^{-1} & 0 & -\rho_{13} (\rho_{11} \rho_{33} - \rho_{13}^2)^{-1} & 0 & 0 \\
0 & \rho_{22}^{-1} & 0 & 0 & 0 \\
-\rho_{13} (\rho_{11} \rho_{33} - \rho_{13}^2)^{-1} & 0 & \rho_{11} (\rho_{11} \rho_{33} - \rho_{13}^2)^{-1} & 0 & 0 \\
0 & 0 & 0 & \rho_{44}^{-1} & 0 \\
0 & 0 & 0 & 0 & \rho_{55}^{-1}
\end{bmatrix}
\]
while for $t \in \{1, 2\}$ as

$$\ln (f (\varepsilon_t^1, \varepsilon_t^2)) = \ln \left(\frac{1}{(2\pi)^{2} \sigma^2 \det (\hat{V})^{1/2}} \right) \exp \left(- \frac{1}{2\sigma^2} \begin{bmatrix} \varepsilon_t^1 \\ \varepsilon_t^2 \end{bmatrix} \begin{bmatrix} \rho_{11} & \rho_{13} \\ \rho_{13} & \rho_{33} \end{bmatrix}^{-1} \begin{bmatrix} \varepsilon_t^1 \\ \varepsilon_t^2 \end{bmatrix} \right)$$

Therefore, maximizing the total log-likelihood generates the same solution as solving

$$\min_{\varepsilon^n, \varepsilon^n} \left\{ (\rho_{11} \rho_{33} - \rho_{13}^2)^{-1} \sum_{t=1}^{T} \begin{bmatrix} \rho_{33} (e_t - e_t^n)^2 \\ -2\rho_{13} (e_t - e_t^n) (c_t - c_t^n) \\ + \rho_{11} (c_t - c_t^n)^2 \\ + \sum_{t=3}^{T} \left[\rho_{22}^{-1} (\Delta^2 e_t^n)^2 + \rho_{44}^{-1} (\Delta^2 c_t^n)^2 + \rho_{55}^{-1} (\Delta^2 y_t^n)^2 \right] \right\}$$

Considering that I can write the filter proposed in (8) as

$$\min_{\varepsilon^n, \varepsilon^n} \left\{ (\beta_c + \beta_y (1 - \alpha)^2) \sum_{t=1}^{N} (e_t^n - e_t)^2 + \beta_c \lambda_c \sum_{t=3}^{N} (\Delta^2 e_t^n)^2 + (\beta_c + \beta_y \alpha^2) \sum_{t=1}^{N} (c_t - c_t^n)^2 + \beta_c \lambda_c \sum_{t=3}^{N} (\Delta^2 c_t^n)^2 + 2\beta_y \alpha (1 - \alpha) \sum_{t=1}^{N} (c_t - c_t^n) (e_t - e_t^n) + \beta_y \lambda_y \sum_{t=3}^{N} (\Delta^2 y_t^n)^2 \right\},$$

these two problems generate the same solution if

$$\rho_{11} = \frac{\beta_c + \beta_y \alpha^2}{\beta_c \beta_c + \beta_c \beta_y (1 - \alpha)^2 + \beta_c \beta_y \alpha^2}$$

$$\rho_{13} = \frac{\beta_y \alpha (1 - \alpha)}{\beta_c \beta_c + \beta_c \beta_y (1 - \alpha)^2 + \beta_c \beta_y \alpha^2}$$

$$\rho_{33} = \frac{\beta_c + \beta_y (1 - \alpha)^2}{\beta_c \beta_c + \beta_c \beta_y (1 - \alpha)^2 + \beta_c \beta_y \alpha^2}$$

$$\rho_{22} = \frac{1}{\beta_c \lambda_c}$$

$$\rho_{44} = \frac{1}{\beta_c \lambda_c}$$

$$\rho_{55} = \frac{1}{\beta_y \lambda_y}$$

(10)

These expressions turn into some variance relations for the Kalman filter since
$$Var(\varepsilon_t) = \sigma^2V$$ and σ^2 is not known. That is,

\[
\begin{align*}
\sigma^2_2 &= \frac{\rho_{22}}{\rho_{55}} \sigma^2_5 = \frac{\beta_y \lambda_y}{\beta_e \lambda_e} \sigma^2_5 \\
\sigma^2_4 &= \frac{\rho_{44}}{\rho_{55}} \sigma^2_5 = \frac{\beta_y \lambda_y}{\beta_e \lambda_e} \sigma^2_5 \\
\sigma^2_1 &= \frac{\rho_{11}}{\rho_{33}} \sigma^2_3 = \frac{\beta_c + \beta_y \alpha^2}{\beta_e + \beta_y (1 - \alpha)^2} \sigma^2_3 \\
\sigma_{13} &= \frac{\rho_{13}}{\rho_{33}} \sigma^2_3 = -\frac{\beta_y \alpha (1 - \alpha)}{\beta_e + \beta_y (1 - \alpha)^2} \sigma^2_3 \\
\sigma^2_3 &= \frac{\rho_{33}}{\rho_{55}} \sigma^2_5 = \frac{\beta_y \lambda_y \left[\beta_e + \beta_y (1 - \alpha)^2 \right]}{\beta_e \beta_c + \beta_c \beta_y (1 - \alpha)^2 + \beta_c \beta_y \alpha^2} \sigma^2_5
\end{align*}
\]

8 Appendix C

8.1 Example 1

State-space estimated in E-views 6.

@state sv1 = 2*sv1(-1)-sv2(-1) + [var=exp(C(2))]
@state sv2 = sv1(-1)
@state sv3 = 2*sv3(-1)-sv4(-1) + [var=exp(C(4))]
@state sv4 = sv3(-1)
@state sv5 = 2*sv5(-1)-sv6(-1) + [var=exp(C(5))]
@state sv6 = sv5(-1)
@evar cov(e1,e3)=-exp(C(6))
lnempr = sv1+ [ename = e1, var=exp(C(1))]
lnuci = sv3+ [ename = e3, var=exp(C(3))]
lnpib_sa = sv5+ 0.6*e1+0.4*e3
Method: Maximum likelihood (Marquardt)
Sample: 1995.Q1 to 2007.Q4
Log likelihood 375.4109

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>-10.12769</td>
<td>0.311508</td>
<td>-32.51186</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(2)</td>
<td>-12.82040</td>
<td>0.621337</td>
<td>-20.63355</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(3)</td>
<td>-9.328380</td>
<td>0.249306</td>
<td>-37.41741</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(4)</td>
<td>-9.489584</td>
<td>0.535375</td>
<td>-17.72513</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(5)</td>
<td>-8.200868</td>
<td>0.180615</td>
<td>-45.40527</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(6)</td>
<td>-10.80437</td>
<td>0.779915</td>
<td>-13.85326</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

8.2 Example 2

The objective of this example is to show that the basic filter structure can incorporate many modifications that might help on the estimation of output gap. This example not only includes a Phillips curve in the filter proposed in (7), but also replaces $O_{p_{e_{t}}}$ and $O_{p_{c}}$ with the objective function of the lowest order r-filter ($r=1$), that is,

$$\sum_{t=1}^{N} (z_{t}^{n} - z_{t})^{2} + \lambda \sum_{t=3}^{N} (\Delta z_{t}^{n})^{2} \quad z \in \{e, c\}$$

While the HP filter tries to identify a linear trend at the series z, this modified version tries to identify a steady-state level. The rationale behind this choice is that this modified filter causes less distortion in the border of the series.\(^{13}\) Rewriting the errors stated in Appendix B as

$$\varepsilon_{t}^{2} = \Delta e_{t}^{n} = e_{t}^{n} - e_{t-1}^{n}$$
$$\varepsilon_{t}^{4} = \Delta c_{t}^{n} = c_{t}^{n} - c_{t-1}^{n}$$

\(^{12}\)Araújo et al (2003) studies the r-filters, a two-parameter family of filters in which the HP filter is considered as the second order member ($r=2$). While the HP filter converges to a linear time trend as the smoothing factor (λ) grows, the higher order members of the proposed family converge to higher order polynomial time trends, while the lowest order filter ($r=1$) converges to a constant.\(^{13}\)The so-called *border effect*, a problem concerning the use of the HP filter, has been widely discussed in the literature. The hole r-filter family presents this weakness. However, as stated in Araújo et al (2003), this problem grows with the filter order.
the error variances take the same form as (10). Nevertheless, the results presented in Section 4 consider the limit case when

\[\beta_y \to 0, \quad \text{and} \quad \beta_y \lambda_y = \tilde{\lambda} \ (\text{constant}) \]

In this case, it is possible to write

\[
\begin{align*}
\rho_{11} &= \frac{1}{\beta_e}, & \rho_{13} &= 0, & \rho_{33} &= \frac{1}{\beta_e} \\
\rho_{22} &= \frac{1}{\beta_e \lambda_e}, & \rho_{44} &= \frac{1}{\beta_e \lambda_e}, & \rho_{55} &= \frac{1}{\lambda}
\end{align*}
\]

The variance relations previously obtained become

\[\sigma_1^2 = \lambda_c \sigma_2^2, \quad \sigma_2^2 = \sigma_5^2 \tilde{\lambda}/(\lambda_c \beta_e), \]
\[\sigma_3^2 = \lambda_c \sigma_4^2, \quad \text{and} \quad \sigma_4^2 = \sigma_5^2 \tilde{\lambda}/(\lambda_c \beta_e), \]

where \(\sigma_k^2 \) is the variance of \(\varepsilon_i^k \). However, this example considers only the restrictions for \(\sigma_1^2 \) and \(\sigma_3^2 \) when \(\lambda_e = \lambda_c = 40 \). Setting \(\lambda = 40 \) on a filter with \(r=1 \) is equivalent to \(\lambda = 1600 \) on the HP filter (\(r=2 \)).

The following state-space was estimated in E-views 6.

```plaintext
@state sv1 = sv1(-1) + [var=exp(C(2))]
@state sv3 = sv3(-1) + [var=exp(C(4))]
@state sv5 = 2*sv5(-1)-sv6(-1) + [var=exp(C(5))]
@state sv6 = sv5(-1)
@state sv7 = sv6(-1)
lnempr = sv1 + [ename = e1, var=40*exp(C(2))]
lnuci = sv3 + [ename = e3, var=40*exp(C(4))]
lnpib_sa = sv5 + 0.6*e1+0.4*e3
lnipca = c(6)*lnipca(1)+(1-c(6))*lnipca(-1)+c(8)*lnpib_sa(-1) - c(8)*sv6
+ [var=exp(C(11))]
```

\footnote{See Araújo et al (2003) for the concept of equivalence between r-filters.}
Method: Maximum likelihood (Marquardt)

Sample: 1995.Q1 to 2007.Q4

Log likelihood 546.5115

<table>
<thead>
<tr>
<th>Coefficient</th>
<th>Value</th>
<th>Std. Error</th>
<th>z-Statistic</th>
<th>Prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(2)</td>
<td>-12.88692</td>
<td>0.216206</td>
<td>-59.60478</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(4)</td>
<td>-11.92240</td>
<td>0.264955</td>
<td>-44.99776</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(5)</td>
<td>-8.154801</td>
<td>0.171000</td>
<td>-47.68878</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(6)</td>
<td>0.521173</td>
<td>0.085575</td>
<td>6.090278</td>
<td>0.0000</td>
</tr>
<tr>
<td>C(8)</td>
<td>0.254124</td>
<td>0.142861</td>
<td>1.778814</td>
<td>0.0753</td>
</tr>
<tr>
<td>C(11)</td>
<td>-9.020204</td>
<td>0.198590</td>
<td>-45.42124</td>
<td>0.0000</td>
</tr>
</tbody>
</table>
Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

<table>
<thead>
<tr>
<th>#</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
</tbody>
</table>
13 Modelos de Previsão de Insolvência Bancária no Brasil
Marcio Magalhães Janot
Mar/2001

14 Evaluating Core Inflation Measures for Brazil
Francisco Marcos Rodrigues Figueiredo
Mar/2001

15 Is It Worth Tracking Dollar/Real Implied Volatility?
Sandro Canesso de Andrade and Benjamin Miranda Tabak
Mar/2001

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA
Sergio Afonso Lago Alves
Mar/2001

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção
Tito Nícias Teixeira da Silva Filho
Abr/2001

18 A Simple Model for Inflation Targeting in Brazil
Paulo Springer de Freitas and Marcelo Kfoury Muinhos
Apr/2001

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
May/2001

20 Credit Channel without the LM Curve
Victorio Y. T. Chu and Márcio I. Nakane
May/2001

21 Os Impactos Econômicos da CPMF: Teoria e Evidência
Pedro H. Albuquerque
Jun/2001

22 Decentralized Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Jun/2001

23 Os Efeitos da CPMF sobre a Intermediação Financeira
Sérgio Mikio Koyama e Márcio I. Nakane
Jul/2001

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
Aug/2001

25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
Aug/2001

26 Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil
Marcelo Kfoury Muinhos
Aug/2001

27 Complementaridade e Fungibilidade dos Fluxos de Capitaís Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
Set/2001
<table>
<thead>
<tr>
<th>28</th>
<th>Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Marco Antonio Bonomo e Ricardo D. Brito</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
</tr>
<tr>
<td></td>
<td>Pedro H. Albuquerque e Solange Gouvêa</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
</tr>
<tr>
<td></td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
</tr>
<tr>
<td></td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
</tr>
<tr>
<td></td>
<td>Mauro Costa Miranda</td>
</tr>
<tr>
<td>33</td>
<td>Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation</td>
</tr>
<tr>
<td></td>
<td>André Minella</td>
</tr>
<tr>
<td>34</td>
<td>Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises</td>
</tr>
<tr>
<td></td>
<td>Arminio Fraga and Daniel Luiz Gleizer</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
</tr>
<tr>
<td></td>
<td>Tito Nírias Teixeira da Silva Filho</td>
</tr>
<tr>
<td>36</td>
<td>Can Emerging Markets Float? Should They Inflation Target?</td>
</tr>
<tr>
<td></td>
<td>Barry Eichengreen</td>
</tr>
<tr>
<td>37</td>
<td>Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations</td>
</tr>
<tr>
<td></td>
<td>Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
</tr>
<tr>
<td></td>
<td>Frederico Pechir Gomes</td>
</tr>
<tr>
<td>39</td>
<td>Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio</td>
</tr>
<tr>
<td></td>
<td>Paulo Castor de Castro</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
</tr>
<tr>
<td></td>
<td>Aloisio Araújo and Márcia Leon</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
</tr>
<tr>
<td></td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
</tr>
<tr>
<td></td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
</tr>
<tr>
<td></td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
</tr>
</tbody>
</table>
44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella
Aug/2002

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane
Aug/2002

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
Set/2002

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira
Sep/2002

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
Orlando Carneiro de Matos
Set/2002

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanilho Rodolpho Teixeira
Sep/2002

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu
Sep/2002

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias
Sep/2002

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Nov/2002

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra
Nov/2002

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guilién
Nov/2002

56 Causality and Cointegration in Stock Markets: the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Dec/2002

57 As Leis de Falência: uma Abordagem Econômica
Aloisio Araújo
Dez/2002

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
Benjamin Miranda Tabak
Dec/2002

59 Os Preços Administrados e a Inflação no Brasil
Francisco Marcos R. Figueiredo e Thaís Porto Ferreira
Dec/2002

60 Delegated Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Dec/2002
<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>62</td>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
<tr>
<td>63</td>
<td>Optimal Monetary Rules: the Case of Brazil</td>
<td>Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>64</td>
<td>Medium-Size Macroeconomic Model for the Brazilian Economy</td>
<td>Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>65</td>
<td>On the Information Content of Oil Future Prices</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>68</td>
<td>Real Balances in the Utility Function: Evidence for Brazil</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>69</td>
<td>r-filters: a Hodrick-Prescott Filter Generalization</td>
<td>Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>70</td>
<td>Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>71</td>
<td>On Shadow-Prices of Banks in Real-Time Gross Settlement Systems</td>
<td>Rodrigo Penaloza</td>
<td>Apr/2003</td>
</tr>
<tr>
<td>72</td>
<td>O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras</td>
<td>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmanı Teixeira de C. Guillen</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>74</td>
<td>Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa</td>
<td>Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>75</td>
<td>Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth</td>
<td>Ilan Goldfajn, Katherine Hennings and Helio Mori</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnaldo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloísio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
</tbody>
</table>
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Autor(es)</th>
<th>Ano</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roommate's Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignonato e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>120</td>
<td>Forecasting Interest Rates: an Application for Brazil</td>
<td>Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak</td>
<td>Oct/2006</td>
</tr>
<tr>
<td>121</td>
<td>The Role of Consumer’s Risk Aversion on Price Rigidity</td>
<td>Sergio A. Lago Alves and Mirta N. S. Bugarin</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>123</td>
<td>A Neoclassical Analysis of the Brazilian “Lost-Decades”</td>
<td>Flávia Mourão Graminho</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>125</td>
<td>Herding Behavior by Equity Foreign Investors on Emerging Markets</td>
<td>Barbara Alemanni and José Renato Haas Ornelas</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>126</td>
<td>Risk Premium: Insights over the Threshold</td>
<td>José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>128</td>
<td>Term Structure Movements Implicit in Option Prices</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>129</td>
<td>Brazil: Taming Inflation Expectations</td>
<td>Afonso S. Bevilaqua, Mário Mesquita and André Minella</td>
<td>Jan/2007</td>
</tr>
<tr>
<td>Paper ID</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>----------</td>
<td>---</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>136</td>
<td>Identifying Volatility Risk Premium from Fixed Income Asian Options</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>May/2007</td>
</tr>
<tr>
<td>137</td>
<td>Monetary Policy Design under Competing Models of Inflation Persistence</td>
<td>Solange Gouvea e Abhijit Sen Gupta</td>
<td>May/2007</td>
</tr>
<tr>
<td>139</td>
<td>Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclic Features</td>
<td>Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmán Teixeira de Carvalho Guillén</td>
<td>Jun/2007</td>
</tr>
<tr>
<td>140</td>
<td>Inflation Targeting, Credibility and Confidence Crises</td>
<td>Rafael Santos and Aloísio Araújo</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>141</td>
<td>Forecasting Bonds Yields in the Brazilian Fixed income Market</td>
<td>Jose Vicente and Benjamin M. Tabak</td>
<td>Aug/2007</td>
</tr>
<tr>
<td>142</td>
<td>Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall</td>
<td>Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski and Renato da Silva Carvalho</td>
<td>Ago/2007</td>
</tr>
<tr>
<td>143</td>
<td>Price Rigidity in Brazil: Evidence from CPI Micro Data</td>
<td>Solange Gouvea</td>
<td>Sep/2007</td>
</tr>
<tr>
<td>144</td>
<td>The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options</td>
<td>Claudio Henrique da Silveira Barbado and Eduardo Facó Lemgruber</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>145</td>
<td>The Stability-Concentration Relationship in the Brazilian Banking System</td>
<td>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang</td>
<td>Oct/2007</td>
</tr>
<tr>
<td>146</td>
<td>Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial</td>
<td>Caio Almeida, Romeu Gomes, André Leite e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>148</td>
<td>Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial</td>
<td>Felipe Pinheiro, Caio Almeida e José Vicente</td>
<td>Out/2007</td>
</tr>
<tr>
<td>149</td>
<td>Joint Validation of Credit Rating PDs under Default Correlation</td>
<td>Ricardo Schechtman</td>
<td>Oct/2007</td>
</tr>
</tbody>
</table>
A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks

Roberta Blass Staub and Geraldo da Silva e Souza

Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability

Eduardo José Araújo Lima and Benjamin Miranda Tabak

Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?

Fernando N. de Oliveira and Walter Novaes

Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro

Jaqueline Terra Moura Marins

Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves

Adriana Soares Sales and Maria Tannuri-Pianto

Does Curvature Enhance Forecasting?

Caio Almeida, Romeu Gomes, André Leite and José Vicente

Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil

Sérgio Mikio Koyama e Márcio I. Nakane

Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil

Tito Nícias Teixeira da Silva Filho

Characterizing the Brazilian Term Structure of Interest Rates

Osmani T. Guillen and Benjamin M. Tabak

Behavior and Effects of Equity Foreign Investors on Emerging Markets

Barbara Alemanni and José Renato Haas Ornelas

The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?

Fábia A. de Carvalho and Cyntia F. Azevedo

Evaluating Value-at-Risk Models via Quantile Regressions

Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton

Balance Sheet Effects in Currency Crises: Evidence from Brazil

Marcio M. Janot, Márcio G. P. García and Walter Novaes

Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case

Tito Nícias Teixeira da Silva Filho

Foreign Banks’ Entry and Departure: the recent Brazilian experience (1996-2006)

Pedro Fachada

Avaliação de Opções de Troca e Opções de Spread Européias e Americanas

Giuliano Carrozza Uzédia Ioride Souza, Carlos Patrício Samanez e Gustavo Santos Raposo
166 Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study
Fernando de Holanda Barbosa and Tito Nícius Teixeira da Silva Filho
Jul/2008

167 O Poder Discriminante das Operações de Crédito das Instituições Financeiras Brasileiras
Clodoaldo Aparecido Annibal
Jul/2008

168 An Integrated Model for Liquidity Management and Short-Term Asset Allocation in Commercial Banks
Wenersamy Ramos de Alcântara
Jul/2008

169 Mensuração do Risco Sistêmico no Setor Bancário com Variáveis Contábeis e Econômicas
Lucio Rodrigues Capelletto, Eliseu Martins e Luiz João Corrar
Jul/2008

170 Política de Fechamento de Bancos com Regulador Não-Benevolente: Resumo e Aplicação
Adriana Soares Sales
Jul/2008

171 Modelos para a Utilização das Operações de Redesconto pelos Bancos com Carteira Comercial no Brasil
Sérgio Mikio Koyama e Márcio Issao Nakane
Ago/2008