Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study

Fernando de Holanda Barbosa and Tito Níciar Teixeira da Silva Filho

July, 2008
Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study

Fernando de Holanda Barbosa**
Tito Nícias Teixeira da Silva Filho***

Abstract

This paper tests hyperinflation theories using the inflation tax curve. This curve is estimated directly instead of the usual approach which is a by-product of demand for money empirical estimates. The inflation tax functional form encompasses several specifications as particular cases and allows to test whether or not money is inelastic. This strategy is applied to the Brazilian annual data covering almost half a century. The money inelasticity hypothesis is rejected. Thus, both the bubble and the strict hyperinflation hypotheses are rejected. The weak hyperinflation hypothesis is not rejected and the Brazilian economy could have been in the ‘wrong’ side of the Laffer curve for some time during hyperinflation. This outcome, contrary to conventional wisdom, is predicted by the weak hypothesis.

Keywords: inflation, inflation tax, demand for money, money essentiality, financial innovation.

JEL Classification: E31; E41; E42.

* The authors would like to thank Alexandre Barros da Cunha and Fabio Araujo for their comments.
** Getulio Vargas Foundation. E-mail: fholanda@fgv.br.
*** Research Department, Central Bank of Brazil. E-mail: tito.nicias@bcb.gov.br
1. Introduction

The inflation tax curve has been estimated as a by-product of demand for money equations estimates, which, in general, assume Cagan’s (1956) functional form. In that specification the semi-elasticity (α) of the demand for money with regard to the inflation rate is constant and its inverse (times 100) equals the inflation rate that maximizes the government revenue from the inflation tax.

<table>
<thead>
<tr>
<th>Author</th>
<th>Semi-Elasticity (α)</th>
<th>Continuous Monthly Inflation Rate (100/α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cagan (1956)</td>
<td>5.46</td>
<td>18.3</td>
</tr>
<tr>
<td>Barro (1970)</td>
<td>3.79</td>
<td>26.4</td>
</tr>
<tr>
<td>Frenkel (1977)</td>
<td>3.51</td>
<td>28.5</td>
</tr>
<tr>
<td>Sargent (1977)</td>
<td>2.34</td>
<td>42.7</td>
</tr>
<tr>
<td>Goodfriend (1982)</td>
<td>5.27</td>
<td>19.0</td>
</tr>
<tr>
<td>Burmeister, Wall (1987)</td>
<td>1.66</td>
<td>60.3</td>
</tr>
<tr>
<td>Cristiano (1987)</td>
<td>1.76</td>
<td>56.8</td>
</tr>
<tr>
<td>Webb (1989)</td>
<td>3.33</td>
<td>30.0</td>
</tr>
<tr>
<td>Casella (1989)</td>
<td>0.87</td>
<td>115.0</td>
</tr>
<tr>
<td>Taylor (1991)</td>
<td>5.31</td>
<td>18.8</td>
</tr>
<tr>
<td>Engsted (1993)</td>
<td>4.96</td>
<td>20.2</td>
</tr>
<tr>
<td>Imrohoroglu (1993)</td>
<td>1.08</td>
<td>92.6</td>
</tr>
<tr>
<td>Michael et al. (1994)</td>
<td>0.70</td>
<td>143.0</td>
</tr>
</tbody>
</table>

Table 1 shows semi-elasticity estimates for the German hyperinflation made by several economists. The monthly inflation rate estimates that maximize the inflation tax range from 18.3% to 143%, with inflation being measured in continuous terms. Table 1 estimates, with the exception of those made by Casella (1989) and Michael et al. (1994), lead one to conclude that the German government could have obtained more tax revenue with lower inflation rates, during the hyperinflation. The estimates of Casella (1989) and Michael et al. (1994) correspond to discrete monthly inflation rates of 216%.
and 318%, respectively. Those rates were observed only in the last months of the German hyperinflation.

This paper tests hyperinflation theories using the inflation tax curve. This curve can be used to discriminate among hyperinflation theories because a bubble or a strict hyperinflation occurs only if money is inelastic and a weak hyperinflation occurs only if money is non-inelastic, as will be shown in Section 2. The empirical evidence presented here rejects both the bubble and the strict hyperinflation hypotheses, but does not reject the weak hyperinflation hypothesis. The weak hypothesis is consistent with the fact that the economy will be in the ‘wrong’ side of the Laffer curve for some time during a hyperinflation. This outcome, contrary to conventional wisdom, is predicted by the weak hypothesis and solves an old puzzle of the hyperinflation literature raised by Cagan’s (1956) seminal paper.

We follow a different strategy from other papers in the literature, as those listed above and estimate the inflation tax curve directly from a functional form that encompasses several specifications as particular cases. This approach also allows one to test whether or not the demand for money specification used by Cagan is appropriate. This methodology is applied to the Brazilian data and rejects money inelasticity. The inflation tax data are annual and were calculated by Cysne and Lisboa (2004) for the 1947–2003 period. This period includes the Brazilian hyperinflation, which started in the second half of the 1980s and ended in 1994 with the Real Plan. In contrast to other empirical studies on the subject, which use small samples covering only hyperinflation periods, the sample here covers almost half a century, in which both inflation and the inflation tax showed great variability.

The paper is organised as follows: Section 2 presents an abridged survey of hyperinflation theories; Section 3 lays out two functional forms for the inflation tax, one in which money is inelastic and another in which it is non-inelastic, as well as a functional form that encompasses both forms as particular cases; Section 4 presents graphical evidence on the link between the inflation rate and the inflation tax for Brazil; Section 5 provides the empirical results and Section 6 concludes by summarizing the results.
2. Hyperinflation Theories

Hyperinflation theories explain this phenomenon either through fundamentals or bubbles. In both cases the government finances its deficit \(f \) issuing money \(M \):

\[
\frac{\dot{M}}{P} = f, \quad f = f(t)
\]

(1)

where a dot represents a time derivative and \(P \) is the price level. The public deficit increases through time under a fiscal crisis. We define \(m = M/P \). Its derivative with respect to time and the hypothesis that the fiscal deficit is financed issuing money yields:

\[
\dot{m} = f - \pi = f(t) - \pi(m)
\]

(2)

where \(\pi \) is the rate of inflation and \(\tau(m) = \pi m \) is the inflation tax.

Figure 1
Strict Hyperinflation

Figure 1 shows the diagram of differential equation (2) where money is essential, e.g., the absolute value of the elasticity of the real quantity of money with
respect to the interest rate is less than or equal to one \(\tau'(m) \leq 0 \). The horizontal arrow towards the origin shows that a bubble may exist. On the other hand, if there is a fiscal crisis, the fiscal deficit increases through time, and the arrows on the inflation tax curve depicts a hyperinflation path \((HH)\), starting at the point where the real quantity of money is \(m(0) \). The rate of inflation goes to infinite and the real quantity of money approaches zero \(m(t_h) = 0 \). This is a strict hyperinflation [Barbosa et al. (2006), p. 188-192].

Figure 2

Weak Hyperinflation

![Figure 2](image)

Figure 2 shows the case where money is non-inelastic, e.g., the absolute value of the elasticity of the real quantity of money with respect to the interest rate can be non-inelastic \(|\tau(m)| \) is a bell-shaped curve. The horizontal arrow away from the origin indicates that there is no bubble when money is non-inelastic. If there is a fiscal crisis, the fiscal deficit increases, the rate of inflation increases and eventually will reach the ‘wrong’ side of the Laffer curve, as shown by the arrows on the inflation tax curve \((HH)\), with the initial value of the real quantity of money being given by \(m(0) \) and the

1 The fiscal deficit at the beginning of the fiscal crisis is \(f(0) \) and \(t_h \) represents the time that the hyperinflation may last. Thus \(f(t_h) \) is the fiscal deficit at this moment. The initial real quantity of money, for both cases [Figures 1 and 2] satisfies the inequality; \(m = f(0) - \tau(m(0)) < 0 \). For more details see Barbosa et al (2006).
final value by $m(t_n)$. This is a weak hyperinflation [Barbosa et al (2006), p.192-193], since the rate of inflation does not go to infinite and the real quantity of money does not approach zero. Thus, there is nothing wrong with being in the ‘wrong’ side of the Laffer curve, since this is the outcome of the dynamics of a weak hyperinflation.

The weak hyperinflation hypothesis is akin to Sargent and Wallace (1987) model with one caveat. In their model the public deficit is constant and the hyperinflation process is the transition path from the unstable steady state with low inflation to the stable one with high inflation, e.g., the path from point A to point B along the inflation tax curve in Figure 2. Sargent and Wallace do not provide a rationale for this path to come into existence. The weak hyperinflation path (HH in Figure 2) is generated by an increasing fiscal deficit financed by issuing money.

For the sake of completeness we shall present a standard hyperinflation model of a fiscal crisis with rigidity, either on expectations or adjustment on the money market, which can be found in textbooks such as [Romer (2001), p.514-519]. This model is based on Cagan’s demand for money,

$$\log m = k - \alpha \pi^e, \quad \alpha > 0$$

where π^e, the expected rate of inflation, follows the adaptive mechanism:

$$\dot{\pi}^e = \beta (\pi - \pi^e), \quad \beta > 0$$

By combining equations (1), (3) and (4) we obtain the following differential equation:

$$\dot{m} = -\frac{\alpha \beta}{1-\alpha \beta} f(t) + \frac{\beta}{1-\alpha \beta} m \log m, \quad 1 - \alpha \beta > 0$$

Figure (3) shows the phase diagram of equation (5). When the fiscal deficit is constant, there are two points of equilibrium, one stable and the other one unstable. Thus, a bubble may occur. If there is a fiscal crisis and the fiscal deficit, which is money financed, jumps to an unsustainable level (from A to B) the economy enters a hyperinflation path (HH), the rate of inflation goes to infinite and the real quantity of money approaches zero. This model yields a strict hyperinflation. However, it should be
pointed out that during this path, when the rate of inflation is skyrocketing, the inflation tax increases, e.g., money is inelastic.

Figure 3
Strict Hyperinflation with Rigidity

From this survey we may conclude that a bubble or a strict hyperinflation may occur only if money is inelastic; a weak hyperinflation may occur only if money is noninelastic. Thus, the inflation tax curve can be used as a device to discriminate among hyperinflation theories.

3. The Inflation Tax Curve

The inflation tax \(\tau \) equals the inflation rate \(\pi \) – the tax rate – times the real quantity of money \(m \) – the tax base. That is: \(\tau = \pi m \). Both the tax and the real quantity of money are defined in relation to real GDP, assuming a unity income elasticity of money. It is more convenient to write the inflation tax in its logarithmic form:

\[
\log \tau = \log \pi + \log m
\]

(6)

Note that the specification of equation (6) depends on the demand for money functional form. The two specifications below correspond, respectively, to the semi-
logarithmic and logarithmic cases. In the first case the semi-elasticity is constant and the absolute value of the real demand for money inflation elasticity $|\eta|$ is proportional to the inflation rate. In the second case the elasticity is constant.

$$\log m = k_1 - \alpha \pi, \quad |\eta| = \alpha \pi, \quad \alpha > 0$$ \hspace{1cm} (7)

$$\log m = k_2 - \beta \log \pi, \quad |\eta| = \beta < 1$$ \hspace{1cm} (8)

Hence the inflation tax functional forms for each case are as follows:

$$\log \tau = k_1 + \log \pi - \alpha \pi$$ \hspace{1cm} (9)

$$\log \tau = k_2 + (1 - \beta) \log \pi$$ \hspace{1cm} (10)

Figure 4

Two Cases for the Inflation Tax Curve

Figure 4a shows the inflation tax curve produced by equation (9), in which the semi-elasticity is constant. That curve has a maximum for a given inflation rate, that is, the inflation tax initially increases with inflation and after a certain rate it begins to decrease. Figure 4b shows the inflation tax curve yielded by equation (10), in which the demand for money curve has a logarithmic specification. The curve is a straight line, that is, the inflation tax increases as the inflation rate increases. In this case money is essential since the elasticity of the demand for money w.r.t. the inflation rate is always less than one [Barbosa and Cunha (2003) and Barbosa et al. (2006)].
Note that the two functional forms of the inflation tax curve are obtained as particular cases of the following function:

$$\log \tau = a_0 + a_1 \log \pi - a_2 \pi$$ \hspace{1cm} (11)

The two particular cases are as follows: a) constant semi-elasticity: $a_1 = 1$, $a_2 > 0$; constant elasticity: $a_2 = 0$. The functional form (11) also encompasses other possibilities that are not restricted to the above two cases. The inflation tax elasticity w.r.t. the inflation rate (ε) is given by:

$$\varepsilon = \frac{\partial \log \tau}{\partial \log \pi} = a_1 - a_2 \pi$$ \hspace{1cm} (12)

This elasticity may be either negative or positive, depending upon the tax curve parameters and the inflation rate. That is, the functional form (11) is flexible enough to allow the data to show the most adequate shape of the inflation tax curve.

4. The Inflation Tax Curve in Brazil

The inflation tax was an important source of government financing in Brazil up to 1994, when the monetary policy regime changed and the Central Bank began to have inflation control as its objective. During the 1994–1999 period the Brazilian Central Bank adopted a system of administered exchange rate in order to curb inflation, and since 1999 it has been operating under an inflation targeting framework.

Figure 5 shows how the inflation tax and the (continuous) inflation rate evolved in Brazil during the 1947–2003 period. The former increased from 1947 until middle 1960s, when it began to decrease until the beginning of the 1970s. Afterwards a new growth phase began, which ended with the Real Plan in 1994. Note that while the inflation tax peaked during the 1960s, inflation actually peaked during the 1990s. Indeed, inflation was substantially higher during the latter period, when hyperinflation was underway. This evidence strongly suggests the occurrence of important financial innovations during the period under analysis, which sharply decreased the base of the inflation tax for a given inflation rate.
Figure 6 displays four different scatter plots between the (continuous) inflation rate (x-axis) and the associated inflation tax (y-axis), according to the way each variable is measured. Note that the two graphs in the left half side do not show any obvious relationship between both variables. However, the graphs placed in the right half side are more revealing concerning the shape of the inflation tax curve. In both cases inflation is measured in log terms and a clear positive relationship arises. The double-log specification seems to provide a slightly better fit, although it also suggests the possibility of a non linear relationship.

\[\text{Figure 5} \quad \text{The Inflation Rate and the Inflation Tax in Brazil}^2\]

\[\text{Figure 6} \quad \text{Scatter plots between inflation rate and inflation tax}\]

\(^2\) The series are adjusted by their sample means for maximum fit.
5. Empirical Results

Table 2 shows ADF unit root tests results for the relevant variables and their transformations. Recall that inflation is measured in continuous terms. The test on the level of each variable does not reject the hypothesis of a unit root in all cases. However, the null is rejected when the variables are expressed in first differences, which means that all of them seem to be I (1). Those results open the possibility of estimating the inflation tax curve within a cointegration framework.

In order to uncover the inflation tax curve for Brazil a general-to-specific model selection strategy is used. The general unrestricted equilibrium correction model is as follows:

$$
\Delta \ln Tax_i = \alpha_0 + \alpha_1 T + \alpha_2 ST_{xx} + \ldots + \alpha_4 ST_{xx} + \beta_0 \ln Tax_{i,-1} + \beta_1 \ln \pi_{i,-1} + \beta_2 \pi_{i,-1} \\
+ \sum_{d=1}^{n_1} \delta_d \Delta \ln Tax_{i,-d} + \sum_{d=1}^{n_2} \gamma_d \Delta \ln \pi_{i,-d} + \sum_{d=1}^{n_3} \lambda_d \Delta \pi_{i,-d} + \epsilon_i
$$

(13)
where \(n \) is usually set at 2 and \(ST_{xx} \) stands for the split trend. For example, \(ST_{70} \) indicates a time trend beginning in 1970.

Table 2

<table>
<thead>
<tr>
<th>Variable</th>
<th>(\hat{\beta})</th>
<th>(t_{ADF})</th>
<th>lags</th>
<th>(\delta_{t-test})</th>
<th>(\delta_{t-prob})</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVELS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tax</td>
<td>0.73</td>
<td>-2.81</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\pi)</td>
<td>0.85</td>
<td>-1.61</td>
<td>2</td>
<td>-2.00</td>
<td>0.05</td>
</tr>
<tr>
<td>(\ln (\pi))</td>
<td>0.76</td>
<td>-2.17</td>
<td>1</td>
<td>-2.13</td>
<td>0.04</td>
</tr>
<tr>
<td>(\ln (\text{Tax}))</td>
<td>0.81</td>
<td>-2.17</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>FIRST DIFFERENCES</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \text{Tax})</td>
<td>-0.24</td>
<td>-8.9**</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Delta \pi)</td>
<td>0.14</td>
<td>-6.11**</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Delta \ln \text{(Tax)})</td>
<td>-0.41</td>
<td>-10.52**</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>(\Delta \ln (\pi))</td>
<td>-0.25</td>
<td>-8.45**</td>
<td>0</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Note that the trends are essential parts of the model, since they act, altogether, as a proxy for financial innovation. Indeed, they are likely to play a crucial role during modelling and estimation since, as Figure 5 strongly suggests, financial innovation was substantial during the period under analysis. Moreover, financial innovation is a key factor behind the link between inflation and inflation tax, given that it decreases the tax base for a given inflation rate. Therefore, it could cause a structural break in that link, and its absence from the model can be read as a sign of serious misspecification. Finally, note that (13) encompasses the possibility of a split trend with several segments. This makes sense since financial innovation could have evolved at different paces during the sample. For instance, the higher the inflation rate, the bigger the incentive for agents to come up with more money-demand-saving innovations.

Indeed, from the outset it should be called to attention that cointegration was

\[\Delta y_t = c + \alpha + (\beta - 1)y_{t-1} + \sum_{i=1}^{2} \delta_i \Delta y_{t-i} + \varepsilon_t \]

Significant levels of 5% and 10% are expressed, respectively, as * and **.

- It should be pointed out that theoretically they pick all the factors that influence the desire to hold money for a given inflation rate, whether those are due to financial innovations or not (e.g. changes in taxes). Nonetheless, for simplicity, from now on we should refer to them as a proxy for financial innovation.
found only in those specifications that included time trends, attesting their utmost relevance. However, even in those cases models showed signs of structural break quite often, revealing the importance of “getting the trend right”. In fact, one major difficulty in searching for congruent models was precisely to uncover the “the right path” for financial innovation.

Equations 14 and 15 show the two final selected specifications (called models 1 and 2 in Table 3, respectively). All diagnostic statistics are satisfactory in both cases. Moreover, recursive estimates as well as recursive Chow tests – placed in the Appendix – show that parameters are stable and no obvious structural breaks are found. Those are significant results not only due to the long sample involved, but also due to the fact that during the period under analysis the Brazilian economy underwent significant changes and was subjected to large shocks, including several stabilisation plans, most of them with heterodox features.

\[
\begin{align*}
\Delta \ln T \alpha_r &= 3.36 - 0.03 T - 0.04 ST_{71} - 0.12 ST_{90} + 0.14 ST_{85} + 0.18 ST_{95} \\
&\quad + 0.42 LD_{86} - 1.14 D_{94} + 0.78 D_{98} - 1.26 \ln T \alpha_{r-1} \\
&\quad + 1.32 \ln \pi_{r-1} - 0.361 \pi_{r-1} + 1.20 \Delta \ln \pi_r - 0.42 \Delta \pi_r
\end{align*}
\]

(14)

\[
\begin{align*}
\Delta \ln T \alpha_r &= 3.40 - 0.03 T - 0.05 ST_{72} - 0.10 ST_{80} + 0.62 ST_{86} - 0.49 ST_{87} \\
&\quad + 0.18 ST_{95} - 1.14 D_{94} + 0.80 D_{98} - 1.26 \ln T \alpha_{r-1} \\
&\quad + 1.34 \ln \pi_{r-1} - 0.371 \pi_{r-1} + 1.21 \Delta \ln \pi_r - 0.42 \Delta \pi_r
\end{align*}
\]

(15)

\[T = 52 \text{ (1952–2003)}; \quad \hat{\sigma} = 9.79\% \quad R^2 = 0.98; \quad DW = 1.99; \quad AR 1–2: \text{F}(2, 36) = 0.57 (0.75); \]
ARCH 1–1: \text{F}(1,36) = 0.57 (0.46); Hetero: \text{F}(23, 14) = 0.32 (0.99);
Normality: \chi^2(2) = 1.36 (0.51); RESET: \text{F}(1, 37) = 0.10 (0.75).

Long-run elasticities: \ln \pi = 1.05, \pi = 0.28

\[T = 52 \text{ (1952–2003)}; \quad \hat{\sigma} = 9.93\% \quad R^2 = 0.98; \quad DW = 2.04; \quad AR 1–2: \text{F}(2, 36) = 0.32 (0.73); \]
ARCH 1–1: \text{F}(1,36) = 0.65 (0.42); Hetero: \text{F}(23, 14) = 0.32 (0.99);
Normality: \chi^2(2) = 1.59 (0.45); RESET: \text{F}(1, 37) = 0.07 (0.79).

Long-run elasticities: \ln \pi = 1.06, \pi = 0.29
Overall, the two models are remarkably similar, mainly regarding the questions raised in this paper, which are related to the inflation tax/demand for money functional forms and the inelasticity of money. In both cases the functional form given by (7) seems to be the most appropriate, so that money inelasticity hypothesis is rejected. Note also that in both models not only the coefficients attached to log inflation have virtually the same magnitude, but the hypothesis of a unity elasticity (i.e. $a_1 = 1$) could not be rejected. Moreover, the value of the coefficient attached to the level of inflation (i.e. semi-elasticity) and, therefore, the implied inflation rate that maximises the inflation tax, are very close to each other.\(^5\) Finally, in both models strong cointegration between the variables is found, suggesting a genuine long run relation among them.\(^6\)

<table>
<thead>
<tr>
<th>Model</th>
<th>Semi-Elasticity (α)</th>
<th>Continuous Rate (100/α)</th>
<th>Discrete Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 1</td>
<td>0.28</td>
<td>354%</td>
<td>3,358%</td>
</tr>
<tr>
<td>Model 2</td>
<td>0.29</td>
<td>344%</td>
<td>3,030%</td>
</tr>
<tr>
<td>Model 3 (Smooth)</td>
<td>0.27</td>
<td>374%</td>
<td>4,137%</td>
</tr>
<tr>
<td>Model 4 (St. Level/Slope)</td>
<td>0.29</td>
<td>345%</td>
<td>3,055%</td>
</tr>
</tbody>
</table>

Table 3 shows the implied tax maximising inflation rates, which seem to lie around 350% on continuous terms.\(^7\) This translates into discrete rates a little bit above 3,000% on an annual basis. That level is above the maximum calendar-year inflation rate reached during the sample, which took place in 1993, when inflation reached 2708%, according to the IGP–DI price index. However, it is well below the twelve-month rates observed in several months, such as those from February 1990 to August 1990 and February 1994 to July 1994. The highest rate in those two periods occurred in

\(^5\) Note, however, that small variations in the semi-elasticity could mean large discrepancies in the associated discrete inflation rates. Therefore, inferences regarding the tax maximising inflation rate based solely on the difference between coefficients could be misleading.

\(^6\) Note that it is very unlikely the existence of simultaneity in both cases. Moreover, the strategy used here – where the long run solution and the short run dynamics are estimated at the same time – has the advantage of dealing with the large finite-sample biases found in practice when the Engle-Granger method is used, despite super-consistency. For Monte Carlo evidence on the large bias in the estimation of the static long run solution see Banerjee et al. (1986). See also Banerjee et al. (1993).

\(^7\) Note that although the semi-elasticities are expressed with two decimal places, the implied inflation rates shown in Table 3 were calculated from figures having four decimal places, since small changes in the former lead to big changes in the latter.
April 1990 (6602%) and June 1994 (5153%). The tax maximising inflation rates implied by the models are lower than those actually observed during the worst months of hyperinflation. Thus, the Government was on the decreasing part of the inflation tax curve. This fact is consistent with the weak hyperinflation hypothesis presented in Barbosa et al (2006). In either case the Government did not seem to have maximised the inflation tax during hyperinflation.

Figure 7
Financial Innovation

Although both models are very similar, it is worthwhile to point out one minor but revealing discrepancy between them, which concerns the shape of the trend (Figure 7). Note that both trends practically overlap each other – evolving virtually at the same pace – until mid-1980s, continuously trending downward, which suggests the occurrence of substantial money-demand-saving financial innovation during that period. Financial innovation was certainly intense during those years and, apparently, accelerated both after 1970 and 1980. That dynamics seems in accordance with one’s intuition. Indeed, the Brazilian open-market was created in early 1970s and could be the major factor behind the first break, since it offered a new channel through which agents could protect themselves against inflation. In its turn, in 1980 inflation exceeded 100%
for the first time, and began to increase very rapidly thereafter, increasing the incentives for further innovations.\(^8\)

However, the trends begin to diverge from each other in 1986, which is precisely the year when the first stabilisation Plan – The Cruzado Plan – took place.\(^9\) More specifically, while Model’s 1 trend continues decreasing until 1994, Model’s 2 trend jumps upwards in 1986 and then continues to fall until 1994, when both trends’ slope become positive until the end of the sample.\(^10\) Nonetheless, note that after 1986 both trends began to evolve at virtually the same pace once again, trending parallel to each other. Thus, there only is a level discrepancy between them since 1986, a difference that was built entirely in that year. That discrepancy seems to be due to the Cruzado Plan, which apparently caused a large (permanent) break in the relation between the inflation tax and the inflation rate, and this fact is being captured in two different ways by the models. While Model 1 captures it using a (level) dummy as of 1986, which adds to the constant, Model 2 captures it through a one-period jump in the trend itself. Even though both specifications are equivalent, note that in the first case one is explicitly assuming that the break had nothing to do with financial innovation itself. Also note that both models contain two (impulse) dummies in common, which are linked to clear economic events. The first refers to the year of 1994, when inflation dropped sharply due to the Real Plan. The second dummy refers to 1998, when inflation reached its lowest record level so far (1.7\%), just before the floating of the currency in 1999, which was followed by an increase in inflation.

Finally, the positive slope after 1994 coincides with the post-stabilisation period. Although at first this result is unexpected since inflation has been much lower since then, a more detailed analysis shows that there actually are two factors that could help explain this outcome. First, the so-called “cheque tax” (called CPMF later on) was created on 1\(^{st}\) January 1994 and ended in December 2007. That tax applied every time money was withdrawn from one’s bank account. The result was an increase in demand for money, since money invested for very short periods of time began to have negative yield. Secondly, after the stabilisation there was indeed some reversal in financial innovation. For example, during hyperinflation all money left in one’s bank account

\(^8\) In addition to reacting to higher inflation, financial innovation has surely an exogenous component, which reflects non-inflation related technological advances, such as the increasing use of computers along time and overall improvements in technology.

\(^9\) The Cruzado Plan tried to reduce inflation using several heterodox measures such as price freezes, interventions in contracts, etc.

\(^10\) In 1994 the Real Plan, which finally defeated inflation, was implemented.
above a certain (very low) level was automatically invested by the banks themselves in overnight funds, and was automatically withdrawn when the account balance was insufficient to face obligations (e.g. to pay a cheque). That financial innovation kept money demand at minimum levels. However, since the stabilisation of the economy such kind of mechanism has disappeared, increasing money demand.

Although the use of split trends provides a flexible framework within which financial innovation could be modelled, and the resulting models seem to be coherent with the data, it is worthwhile to ask to what extent the unexpected positive trend after 1994 and, more generally, the overall shape of the curve were determined by this particular way of measuring financial innovation. One could argue that a more flexible and appealing strategy is to use the unobserved components (UC) framework and estimate a stochastic trend. Moreover, it could provide a robustness test for earlier results. With that goal two kinds of stochastic trends were estimated using the Kalman Filter. In the first case – indicated by (16) – one assumes that financial innovation can be modelled as a smooth trend, which makes sense since it should evolve like a diffusion process over time. In the second, one assumes a more flexible specification – where both the level and the slope are allowed to evolve stochastically – according to (17).

\[
\begin{align*}
 y_t &= \mu_t + \beta'x_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2_{\varepsilon}) \\
 \mu_t &= \beta_{t-1} + \mu_{t-1} \\
 \beta_t &= \beta_{t-1} + \xi_t, \quad \xi_t \sim N(0, \sigma^2_{\xi})
\end{align*}
\]

\[
\begin{align*}
 y_t &= \mu_t + \beta'x_t + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2_{\varepsilon}) \\
 \mu_t &= \beta_{t-1} + \mu_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma^2_{\eta}) \\
 \beta_t &= \beta_{t-1} + \xi_t, \quad \xi_t \sim N(0, \sigma^2_{\xi})
\end{align*}
\]

where \(\mu_t \) stands for the stochastic trend, \(x_t \) is a vector of explanatory variables and \(E(\varepsilon_t, \eta_t) = E(\varepsilon_t, \xi_t) = E(\eta_t, \xi_t) = 0 \).

Using a general-to-specific model selection strategy two specifications, one for each case above, was selected. Equation (18) – labelled Model 3 in Table 3 – refers to specification (16), while equation (19) – labelled Model 4 – represents specification (17). In the former case the level is fixed, while in the latter it is allowed to vary...
stochastically. Before proceeding, one should note that while the stochastic trend is indeed a flexible framework, that flexibility should be put into context, since one is also assuming a particular structure for the trend.

\[
\Delta \ln Tax_t = 1.84 \mu_T - 1.11 D_{94} + 0.66 D_{98} - 1.25 \ln Tax_{t-1}
\]

\[
+ 1.21 \ln \pi_{t-1} - 0.33 \pi_{t-1} + 1.13 \Delta \ln \pi_t - 0.40 \Delta \pi_t
\]

\[(18)\]

\[
T = 52 (1952–2003); \sigma = 15.46\% ; R^2 = 0.98; DW = 1.72;
\]

\[
Q (7, 6) = 10.91 (0.09); H (16) = 0.55 (0.88); \text{Normality: } \chi^2_{DH} (2) = 1.34 (0.51)
\]

Long-run elasticities: \(\ln \pi = 0.97\), \(\pi = 0.27\)

\[
\Delta \ln Tax_t = 1.93 \mu_T - 1.08 D_{94} + 0.65 D_{98} - 1.28 \ln Tax_{t-1}
\]

\[
+ 1.26 \ln \pi_{t-1} - 0.37 \pi_{t-1} + 1.14 \Delta \ln \pi_t - 0.41 \Delta \pi_t
\]

\[(19)\]

\[
T = 52 (1952–2003); \sigma = 14.71\% ; R^2 = 0.98; DW = 1.79;
\]

\[
Q (8, 6) = 5.50 (0.48); H (16) = 0.72 (0.74); \text{Normality: } \chi^2_{DH} (2) = 0.61 (0.74)
\]

Long-run elasticities: \(\ln \pi = 0.98\), \(\pi = 0.29\)

where \(\mu_T\) stands for the value of the stochastic trend at the end of the sample. \(Q (p,q)\) is the Box-Ljung statistic for residual autocorrelation based on the first \(p\) autocorrelations. \(H (h)\) is a heteroscedasticity test and \(\chi^2_{DH} (2)\) is a normality test based on the Bowman-Shenton statistic with a correction due to Doornik and Hansen (1994). See Koopman \textit{et al.} (2000) for further details.

All diagnostic tests are satisfactory, and the final models are very similar to the ones obtained before. Likewise the OLS case, the relevant inflation tax functional form seems to be given by equation (7) and, therefore, money inelasticity is rejected as well. Moreover, the elasticity of the inflation tax w.r.t. \(\ln\) inflation is around one as before, and the value of inflation semi-elasticity is practically the same as those obtained from models 1 and 2 (although the implied discrete inflation rate of model 3 is not so close).11 Table 3 gives the associated tax maximising inflation levels.

11 See footnote 5.
Note that – akin to equation (15) – both specifications do not include explicitly the level dummy from 1986 onwards, since the stochastic trend is already capturing that break. However, the last figure in the Appendix shows how both stochastic trends look like when the level dummy is included in the models – as in equation (14). The effect is exactly the same of what was found before, that is, the (stochastic) trend continues to fall until 1994, instead of increasing temporarily in the second half of the 1980s.

Finally, note that not only both specifications produce stochastic trends with virtually the same shape – although Model’s 4 trend is more “nervous” than Model 3 – but their shape is very similar to what was obtained before, including the positive slope after 1994 (see Appendix). That evidence shows that our previous modelling effort seems to have been very successful. Indeed, the standard error of specifications (14) and (15) is much smaller than those of specifications (18) and (19), suggesting that the simpler OLS method does a better job in modelling the inflation tax than the fancier UC framework. More importantly, the results presented here seem to be robust to the choice of how to model financial innovation.

6. Conclusion

The value added of this paper can be summed up as follows: i) the hypothesis that money is inelastic is rejected, since Cagan’s demand for money specification is not rejected for Brazilian annual data covering the period 1947/2003; ii) the bubble and strict hyperinflation hypotheses are rejected; iii) the weak hyperinflation hypothesis is not rejected, and the Brazilian economy could have been in the wrong side of the Laffer curve for some period of time during hyperinflation; iv) the empirical evidence on German hyperinflation presented on Table 1 is consistent with the weak hyperinflation hypothesis; v) the statement usually made that the government could have obtained more tax revenue with lower inflation rates, during a hyperinflation, is not correct under the weak hyperinflation hypothesis. This fact is the outcome of the dynamics of the fiscal crisis that yields a hyperinflation path.
References

Appendix

Model 1 (Equation 14)
Recursive estimates, 1-Step Residuals +/- 2 S.E., 1-Step Chow Test, Break-Point Chow Test

![Graphs showing model 1 results](image1)

Model 2 (Equation 15)
Recursive estimates, 1-Step Residuals +/- 2 S.E., 1-Step Chow Test, Break-Point Chow Test

![Graphs showing model 2 results](image2)
Model 3 (Equation 18)
Smooth Trend (Fixed Level and Stochastic Slope)

Model 4 (Equation 19)
Stochastic Level + Stochastic Slope
Stochastic Trends and Structural Break

Smooth Trend

Model 3 (without Level Dummy)
Model 3 (with Level Dummy)

Stochastic Trend/Level

Model 4 (without Level Dummy)
Model 4 (with Level Dummy)
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Monetary Policy and Banking Supervision Functions on the Central Bank</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>#</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>----</td>
<td>--</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
</tbody>
</table>

28
28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais
Marco Antonio Bonomo e Ricardo D. Brito
Nov/2001

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque and Solange Gouvêa
Nov/2001

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak and Sandro Canesso de Andrade
Nov/2001

31 Algumas Considerações sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

32 Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

34 Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
Nov/2001

35 Uma Definição Operacional de Estabilidade de Preços
Tito Nícias Teixeira da Silva Filho
Dez/2001

36 Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Feb/2002

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
Mar/2002

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

39 Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002

40 Speculative Attacks on Debts, Dollarization and Optimum Currency Areas
Aloisio Araújo and Márcia Leon
Apr/2002

41 Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio
Marcelo Kfoury Muihnoes, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002

43 The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
Benjamim Miranda Tabak and Eduardo José Araújo Lima
Jun/2002
<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Autor(a)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Llacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo and Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo and Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmaní Teixeira de C. Guilhen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnildo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloisio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
</tbody>
</table>
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roommate’s Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>----------</td>
</tr>
<tr>
<td>120</td>
<td>Forecasting Interest Rates: an Application for Brazil</td>
<td>Eduardo J. A. Lima, Felipe Ludavice and Benjamin M. Tabak</td>
<td>Oct/2006</td>
</tr>
<tr>
<td>121</td>
<td>The Role of Consumer’s Risk Aversion on Price Rigidity</td>
<td>Sergio A. Lago Alves and Mirta N. S. Bugarin</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>123</td>
<td>A Neoclassical Analysis of the Brazilian “Lost-Decades”</td>
<td>Flávia Mourão Graminho</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>125</td>
<td>Herding Behavior by Equity Foreign Investors on Emerging Markets</td>
<td>Barbara Alemanni and José Renato Haas Ornelas</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>126</td>
<td>Risk Premium: Insights over the Threshold</td>
<td>José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>128</td>
<td>Term Structure Movements Implicit in Option Prices</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>129</td>
<td>Brazil: Taming Inflation Expectations</td>
<td>Afonso S. Bevilaqua, Mário Mesquita and André Minella</td>
<td>Jan/2007</td>
</tr>
</tbody>
</table>
135 Evaluation of Default Risk for the Brazilian Banking Sector
Marcelo Y. Takami and Benjamin M. Tabak
May/2007

136 Identifying Volatility Risk Premium from Fixed Income Asian Options
Caio Ibsen R. Almeida and José Valentim M. Vicente
May/2007

137 Monetary Policy Design under Competing Models of Inflation Persistence
Solange Gouvea e Abhijit Sen Gupta
May/2007

138 Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil
Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak
May/2007

139 Selection of Optimal Lag Length in Cointegrated VAR Models with Weak Form of Common Cyclical Features
Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén
Jun/2007

140 Inflation Targeting, Credibility and Confidence Crises
Rafael Santos and Aloísio Araújo
Aug/2007

141 Forecasting Bonds Yields in the Brazilian Fixed income Market
Jose Vicente and Benjamin M. Tabak
Aug/2007

142 Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall
Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski and Renato da Silva Carvalho
Ago/2007

143 Price Rigidity in Brazil: Evidence from CPI Micro Data
Solange Gouvea
Sep/2007

144 The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options
Claudio Henrique da Silveira Barbeto and Eduardo Facó Lemgruber
Oct/2007

145 The Stability-Concentration Relationship in the Brazilian Banking System
Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo Lima and Eui Jung Chang
Oct/2007

146 Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial
Caio Almeida, Romeu Gomes, André Leite e José Vicente
Out/2007

Adriana Soares Sales and Maria Eduarda Tannur-Pianto
Oct/2007

148 Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial
Felipe Pinheiro, Caio Almeida e José Vicente
Out/2007

149 Joint Validation of Credit Rating PDs under Default Correlation
Ricardo Schechtman
Oct/2007
150 A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks
Roberta Blass Staub and Geraldo da Silva e Souza

Oct/2007

151 Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability
Eduardo José Araújo Lima and Benjamin Miranda Tabak

Nov/2007

152 Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation?
Fernando N. de Oliveira and Walter Novaes

Dec/2007

153 Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro
Jaqueline Terra Moura Marins

Dez/2007

154 Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves
Adriana Soares Sales and Maria Tannuri-Pianto

Dec/2007

155 Does Curvature Enhance Forecasting?
Caio Almeida, Romeu Gomes, André Leite and José Vicente

Dec/2007

156 Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil
Sérgio Mikio Koyama e Márcio I. Nakane

Dez/2007

157 Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil
Tito Nícias Teixeira da Silva Filho

Jan/2008

158 Characterizing the Brazilian Term Structure of Interest Rates
Osmani T. Guillen and Benjamin M. Tabak

Feb/2008

159 Behavior and Effects of Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas

Feb/2008

160 The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden?
Fábia A. de Carvalho and Cyntia F. Azevedo

Feb/2008

161 Evaluating Value-at-Risk Models via Quantile Regressions
Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton

Feb/2008

162 Balance Sheet Effects in Currency Crises: Evidence from Brazil
Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes

Apr/2008

163 Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks’ Economy: the Brazilian Case
Tito Nícias Teixeira da Silva Filho

May/2008

164 Foreign Banks’ Entry and Departure: the recent Brazilian experience (1996-2006)
Pedro Fachada

Jun/2008

165 Avaliação de Opções de Troca e Opções de Spread Européias e Americanas
Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo

Jul/2008