

Working Paper Series **J**666

Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study

Fernando de Holanda Barbosa and Tito Nícias Teixeira da Silva Filho July, 2008

Working Paper Series	Brasília	n. 166	Jul	2008	p. 1–37

ISSN 1518-3548 CGC 00.038.166/0001-05

Working Paper Series

Edited by Research Department (Depep) - E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br Editorial Assistent: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br Head of Research Department: Carlos Hamilton Vasconcelos Araújo – E-mail: carlos.araujo@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 166.

Authorized by Mário Mesquita, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil Secre/Surel/Dimep SBS – Quadra 3 – Bloco B – Edifício-Sede – 1° andar Caixa Postal 8.670 70074-900 Brasília – DF – Brazil Phones: (5561) 3414-3710 and 3414-3567 Fax: (5561) 3414-3626 E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Address:	Secre/Surel/Diate
	Edifício-Sede – 2º subsolo
	SBS – Quadra 3 – Zona Central
	70074-900 Brasília – DF – Brazil
Fax:	(5561) 3414-2553
Internet:	http://www.bcb.gov.br/?english

Testing Hyperinflation Theories Using the Inflation Tax Curve: a case study^{*}

Fernando de Holanda Barbosa^{***} Tito Nícias Teixeira da Silva Filho^{***}

Abstract

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil.

This paper tests hyperinflation theories using the inflation tax curve. This curve is estimated directly instead of the usual approach which is a byproduct of demand for money empirical estimates. The inflation tax functional form encompasses several specifications as particular cases and allows to test whether or not money is inelastic. This strategy is applied to the Brazilian annual data covering almost half a century. The money inelasticity hypothesis is rejected. Thus, both the bubble and the strict hyperinflation hypotheses are rejected. The weak hyperinflation hypothesis is not rejected and the Brazilian economy could have been in the 'wrong' side of the Laffer curve for some time during hyperinflation. This outcome, contrary to conventional wisdom, is predicted by the weak hypothesis.

Keywords: inflation, inflation tax, demand for money, money essentiality, financial innovation.

JEL Classification: E31; E41; E42.

^{*} The authors would like to thank Alexandre Barros da Cunha and Fabio Araujo for their comments.

^{**} Getulio Vargas Foundation. E-mail: fholanda@fgv.br.

^{****} Research Department, Central Bank of Brazil. E-mail: tito.nicias@bcb.gov.br

1. Introduction

The inflation tax curve has been estimated as a by-product of demand for money equations estimates, which, in general, assume Cagan's (1956) functional form. In that specification the semi-elasticity (α) of the demand for money with regard to the inflation rate is constant and its inverse (times 100) equals the inflation rate that maximizes the government revenue from the inflation tax.

Monthly Inflation Rate that Maximizes the Inflation Tax			
Author Semi-Elasticity		Continuous Monthly Inflation	
	(α)	Rate	
		(100/α)	
Cagan (1956)	5.46	18.3	
Barro (1970)	3.79	26.4	
Frenkel (1977)	3.51	28.5	
Sargent (1977)	2.34	42.7	
Goodfriend (1982)	5.27	19.0	
Burmeister, Wall (1987)	1.66	60.3	
Cristiano (1987)	1.76	56.8	
Webb (1989)	3.33	30.0	
Casella (1989)	0.87	115.0	
Taylor (1991)	5.31	18.8	
Engsted (1993)	4.96	20.2	
Imrohoroglu (1993)	1.08	92.6	
Michael et al. (1994)	0.70	143.0	

Table 1Monthly Inflation Rate that Maximizes the Inflation Tax

Table 1 shows semi-elasticity estimates for the German hyperinflation made by several economists. The monthly inflation rate estimates that maximize the inflation tax range from 18.3% to 143%, with inflation being measured in continuous terms. Table 1 estimates, with the exception of those made by Casella (1989) and Michael *et al.* (1994), lead one to conclude that the German government could have obtained more tax revenue with lower inflation rates, during the hyperinflation. The estimates of Casella (1989) and Michael *et al.* (1989) and Michael *et al.* (1994) correspond to discrete monthly inflation rates of 216%

and 318%, respectively. Those rates were observed only in the last months of the German hyperinflation.

This paper tests hyperinflation theories using the inflation tax curve. This curve can be used to discriminate among hyperinflation theories because a bubble or a strict hyperinflation occurs only if money is inelastic and a weak hyperinflation occurs only if money is non-inelastic, as will be shown in Section 2. The empirical evidence presented here rejects both the bubble and the strict hyperinflation hypotheses, but does not reject the weak hyperinflation hypothesis. The weak hypothesis is consistent with the fact that the economy will be in the 'wrong' side of the Laffer curve for some time during a hyperinflation. This outcome, contrary to conventional wisdom, is predicted by the weak hypothesis and solves an old puzzle of the hyperinflation literature raised by Cagan's (1956) seminal paper.

We follow a different strategy from other papers in the literature, as those listed above and estimate the inflation tax curve directly from a functional form that encompasses several specifications as particular cases. This approach also allows one to test whether or not the demand for money specification used by Cagan is appropriate. This methodology is applied to the Brazilian data and rejects money inelasticity. The inflation tax data are annual and were calculated by Cysne and Lisboa (2004) for the 1947–2003 period. This period includes the Brazilian hyperinflation, which started in the second half of the 1980s and ended in 1994 with the Real Plan. In contrast to other empirical studies on the subject, which use small samples covering only hyperinflation periods, the sample here covers almost half a century, in which both inflation and the inflation tax showed great variability.

The paper is organised as follows: Section 2 presents an abridged survey of hyperinflation theories; Section 3 lays out two functional forms for the inflation tax, one in which money is inelastic and another in which it is non-inelastic, as well as a functional form that encompasses both forms as particular cases; Section 4 presents graphical evidence on the link between the inflation rate and the inflation tax for Brazil; Section 5 provides the empirical results and Section 6 concludes by summarizing the results.

2. Hyperinflation Theories

Hyperinflation theories explain this phenomenon either through fundamentals or bubbles. In both cases the government finances its deficit (f) issuing money (M):

$$\frac{\dot{M}}{P} = f \quad , \quad f = f(t) \tag{1}$$

where a dot represents a time derivative and *P* is the price level. The public deficit increases through time under a fiscal crisis. We define m = M/P. Its derivative with respect to time and the hypothesis that the fiscal deficit is financed issuing money yields:

$$\dot{m} = f - m \,\pi = f(t) - \tau(m) \tag{2}$$

where π is the rate of inflation and $\tau(m) = \pi m$ is the inflation tax.

Figure 1 shows the diagram of differential equation (2) where money is essential, e.g., the absolute value of the elasticity of the real quantity of money with

respect to the interest rate is less than or equal to one [$\tau'(m) \le 0$]. The horizontal arrow towards the origin shows that a bubble may exist. On the other hand, if there is a fiscal crisis, the fiscal deficit increases through time, and the arrows on the inflation tax curve depicts a hyperinflation path (*HH*), starting at the point where the real quantity of money is m(0).¹ The rate of inflation goes to infinite and the real quantity of money approaches zero ($m(t_h) = 0$). This is a strict hyperinflation [Barbosa *et al.* (2006), p. 188-192].

Figure 2 shows the case where money is non-inelastic, e.g., the absolute value of the elasticity of the real quantity of money with respect to the interest rate can be non-inelastic [τ (m) is a bell-shaped curve]. The horizontal arrow away from the origin indicates that there is no bubble when money is non-inelastic. If there is a fiscal crisis, the fiscal deficit increases, the rate of inflation increases and eventually will reach the 'wrong' side of the Laffer curve, as shown by the arrows on the inflation tax curve (*HH*), with the initial value of the real quantity of money being given by m(0) and the

¹ The fiscal deficit at the beginning of the fiscal crisis is f(0) and t_h represents the time that the hyperinflation may last. Thus $f(t_h)$ is the fiscal deficit at this moment. The initial real quantity of money, for both cases [Figures 1 and 2] satisfies the inequality; $\dot{m} = f(0) - \tau(m(0)) < 0$. For more details see Barbosa et al (2006).

final value by $m(t_h)$. This is a weak hyperinflation [Barbosa et al (2006), p.192-193], since the rate of inflation does not go to infinite and the real quantity of money does not approach zero. Thus, there is nothing wrong with being in the 'wrong' side of the Laffer curve, since this is the outcome of the dynamics of a weak hyperinflation.

The weak hyperinflation hypothesis is akin to Sargent and Wallace (1987) model with one caveat. In their model the public deficit is constant and the hyperinflation process is the transition path from the unstable steady state with low inflation to the stable one with high inflation, e.g., the path from point A to point B along the inflation tax curve in Figure 2. Sargent and Wallace do not provide a rationale for this path to come into existence. The weak hyperinflation path (*HH* in Figure 2) is generated by an increasing fiscal deficit financed by issuing money.

For the sake of completeness we shall present a standard hyperinflation model of a fiscal crisis with rigidity, either on expectations or adjustment on the money market, which can be found in textbooks such as [Romer (2001), p.514-519]. This model is based on Cagan's demand for money,

$$\log m = k - \alpha \pi^e \quad , \ \alpha > 0 \tag{3}$$

where π^{e} , the expected rate of inflation, follows the adaptive mechanism:

$$\dot{\pi}^e = \beta \left(\pi - \pi^e \right) \ , \ \beta > 0 \tag{4}$$

By combining equations (1), (3) and (4) we obtain the following differential equation:

$$\dot{m} = -\frac{\alpha\beta}{1-\alpha\beta}f(t) + \frac{\beta km}{1-\alpha\beta} - \frac{\beta}{1-\alpha\beta}m\log m, \ 1-\alpha\beta > 0$$
(5)

Figure (3) shows the phase diagram of equation (5). When the fiscal deficit is constant, there are two points of equilibrium, one stable and the other one unstable. Thus, a bubble may occur. If there is a fiscal crisis and the fiscal deficit, which is money financed, jumps to an unsustainable level (from A to B) the economy enters a hyperinflation path (HH), the rate of inflation goes to infinite and the real quantity of money approaches zero. This model yields a strict hyperinflation. However, it should be

pointed out that during this path, when the rate of inflation is skyrocketing, the inflation tax increases, e.g., money is inelastic.

Figure 3 Strict Hyperinflation with Rigidity

From this survey we may conclude that a bubble or a strict hyperinflation may occur only if money is inelastic; a weak hyperinflation may occur only if money is noninelastic. Thus, the inflation tax curve can be used as a device to discriminate among hyperinflation theories.

3. The Inflation Tax Curve

The inflation tax (τ) equals the inflation rate (π) – the tax rate – times the real quantity of money (m) – the tax base. That is: $\tau = \pi m$. Both the tax and the real quantity of money are defined in relation to real GDP, assuming a unity income elasticity of money. It is more convenient to write the inflation tax in its logarithmic form:

$$\log \tau = \log \pi + \log m \tag{6}$$

Note that the specification of equation (6) depends on the demand for money functional form. The two specifications below correspond, respectively, to the semi-

logarithmic and logarithmic cases. In the first case the semi-elasticity is constant and the absolute value of the real demand for money inflation elasticity $|\eta|$ is proportional to the inflation rate. In the second case the elasticity is constant.

$$\log m = k_1 - \alpha \pi , \qquad |\eta| = \alpha \pi , \ \alpha > 0 \tag{7}$$

$$\log m = k_2 - \beta \log \pi , \quad |\eta| = \beta < 1 \tag{8}$$

Hence the inflation tax functional forms for each case are as follows:

$$\log \tau = k_1 + \log \pi - \alpha \pi \tag{9}$$

$$\log \tau = k_2 + (1 - \beta) \log \pi \tag{10}$$

Figure 4a shows the inflation tax curve produced by equation (9), in which the semi-elasticity is constant. That curve has a maximum for a given inflation rate, that is, the inflation tax initially increases with inflation and after a certain rate it begins to decrease. Figure 4b shows the inflation tax curve yielded by equation (10), in which the demand for money curve has a logarithmic specification. The curve is a straight line, that is, the inflation tax increases as the inflation rate increases. In this case money is essential since the elasticity of the demand for money w.r.t. the inflation rate is always less than one [Barbosa and Cunha (2003) and Barbosa *et al.* (2006)].

Note that the two functional forms of the inflation tax curve are obtained as particular cases of the following function:

$$\log \tau = a_0 + a_1 \log \pi - a_2 \pi$$
 (11)

The two particular cases are as follows: a) constant semi-elasticity: $a_1 = 1$, $a_2 > 0$; constant elasticity: $a_2 = 0$. The functional form (11) also encompasses other possibilities that are not restricted to the above two cases. The inflation tax elasticity w.r.t. the inflation rate (ε) is given by:

$$\varepsilon = \frac{\partial \log \tau}{\partial \log \pi} = a_1 - a_2 \pi \tag{12}$$

This elasticity may be either negative or positive, depending upon the tax curve parameters and the inflation rate. That is, the functional form (11) is flexible enough to allow the data to show the most adequate shape of the inflation tax curve.

4. The Inflation Tax Curve in Brazil

The inflation tax was an important source of government financing in Brazil up to 1994, when the monetary policy regime changed and the Central Bank began to have inflation control as its objective. During the 1994–1999 period the Brazilian Central Bank adopted a system of administered exchange rate in order to curb inflation, and since 1999 it has been operating under an inflation targeting framework.

Figure 5 shows how the inflation tax and the (continuous) inflation rate evolved in Brazil during the 1947–2003 period. The former increased from 1947 until middle 1960s, when it began to decrease until the beginning of the 1970s. Afterwards a new growth phase began, which ended with the Real Plan in 1994. Note that while the inflation tax peaked during the 1960s, inflation actually peaked during the 1990s. Indeed, inflation was substantially higher during the latter period, when hyperinflation was underway. This evidence strongly suggests the occurrence of important financial innovations during the period under analysis, which sharply decreased the base of the inflation tax for a given inflation rate.

Figure 5 The Inflation Rate and the Inflation Tax in Brazil²

Figure 6 displays four different scatter plots between the (continuous) inflation rate (x-axis) and the associated inflation tax (y-axis), according to the way each variable is measured. Note that the two graphs in the left half side do not show any obvious relationship between both variables. However, the graphs placed in the right half side are more revealing concerning the shape of the inflation tax curve. In both cases inflation is measured in log terms and a clear positive relationship arises. The double-log specification seems to provide a slightly better fit, although it also suggests the possibility of a non linear relationship.

² The series are adjusted by their sample means for maximum fit.

Figure 6

5. Empirical Results

Table 2 shows ADF unit root tests results for the relevant variables and their transformations. Recall that inflation is measured in continuous terms. The test on the level of each variable does not reject the hypothesis of a unit root in all cases. However, the null is rejected when the variables are expressed in first differences, which means that all of them seem to be I (1). Those results open the possibility of estimating the inflation tax curve within a cointegration framework.

In order to uncover the inflation tax curve for Brazil a general-to-specific model selection strategy is used. The general unrestricted equilibrium correction model is as follows:

$$\Delta \ln Tax_{t} = \alpha_{0} + \alpha_{1}T + \alpha_{2}ST_{xx} + \dots + \alpha_{k}ST_{xx} + \beta_{0}\ln Tax_{t-1} + \beta_{1}\ln\pi_{t-1} + \beta_{2}\pi_{t-1} + \sum_{i=1}^{n}\delta_{i}\Delta \ln Tax_{t-i} + \sum_{i=0}^{n}\gamma_{i}\Delta \ln\pi_{t-i} + \sum_{i=0}^{n}\lambda_{i}\Delta\pi_{t-i} + \varepsilon_{t}$$
(13)

where *n* is usually set at 2 and ST_{xx} stands for the split trend. For example, ST_{70} indicates a time trend beginning in 1970.

Table 2						
	ADF Unit Root Tests³					
Variable	β	<i>t</i> _{ADF}	lags	$\boldsymbol{\delta}_{t\text{-test}}$	$\boldsymbol{\delta}_{t-prob}$	
	LEVELS					
Tax	0.73	-2.81	0	-	-	
π	0.85	-1.61	2	-2.00	0.05	
ln (π)	0.76	-2.17	1	-2.13	0.04	
ln (Tax)	0.81	-2.17	0	_	-	
	FI	RST DIFFER	RENCE	S		
ΔΤαχ	-0.24	-8.9**	0	-	-	
$\Delta\pi$	0.14	-6.11**	0	-	-	
Δln (Tax)	-0.41	-10.52**	0	_	-	
$\Delta \ln (\pi)$	-0.25	-8.45**	0	-	-	

Note that the trends are essential parts of the model, since they act, altogether, as a proxy for financial innovation.⁴ Indeed, they are likely to play a crucial role during modelling and estimation since, as Figure 5 strongly suggests, financial innovation was substantial during the period under analysis. Moreover, financial innovation is a key factor behind the link between inflation and inflation tax, given that it decreases the tax base for a given inflation rate. Therefore, it could cause a structural break in that link, and its absence from the model can be read as a sign of serious misspecification. Finally, note that (13) encompasses the possibility of a split trend with several segments. This makes sense since financial innovation could have evolved at different paces during the sample. For instance, the higher the inflation rate, the bigger the incentive for agents to come up with more money-demand-saving innovations.

Indeed, from the outset it should be called to attention that cointegration was

³ The test equation is given by $\Delta y_t = c + \alpha t + (\beta - 1)y_{t-1} + \sum_{i=1}^2 \delta_i \Delta y_{t-i} + \varepsilon_t$. Significant levels of 5% and 10% are expressed, respectively, as * and **.

⁴ It should be pointed out that theoretically they pick all the factors that influence the desire to hold money for a given inflation rate, whether those are due to financial innovations or not (e.g. changes in taxes). Nonetheless, for simplicity, from now on we should refer to them as a proxy for financial innovation.

found only in those specifications that included time trends, attesting their utmost relevance. However, even in those cases models showed signs of structural break quite often, revealing the importance of "getting the trend right". In fact, one major difficulty in searching for congruent models was precisely to uncover the "the right path" for financial innovation.

Equations 14 and 15 show the two final selected specifications (called models 1 and 2 in Table 3, respectively). All diagnostic statistics are satisfactory in both cases. Moreover, recursive estimates as well as recursive Chow tests – placed in the Appendix – show that parameters are stable and no obvious structural breaks are found. Those are significant results not only due to the long sample involved, but also due to the fact that during the period under analysis the Brazilian economy underwent significant changes and was subjected to large shocks, including several stabilisation plans, most of them with heterodox features.

$$\Delta \ln Tax_{t} = 3.36 - 0.03T - 0.04ST_{71} - 0.12ST_{80} + 0.14ST_{85} + 0.18ST_{95} + 0.42LD_{86} - 1.14D_{94} + 0.78D_{98} - 1.26\ln Tax_{t-1} + 1.32\ln \pi_{t-1} - 0.361\pi_{t-1} + 1.20\Delta \ln \pi_{t} - 0.42\Delta \pi_{t}$$

$$(14)$$

T = 52 (1952–2003); $\hat{\sigma}$ = 9.79%; R² = 0.98; DW = 1.99; AR 1–2: F(2,36) = 0.57 (0.75); ARCH 1–1: F(1,36) = 0.57 (0.46); Hetero: F(23, 14) = 0.32 (0.99); Normality: $\chi^2(2) = 1.36$ (0.51); RESET: F(1, 37) = 0.10 (0.75). Long-run elasticities: ln π = 1.05, π = 0.28

$$\Delta \ln Tax_{t} = 3.40 - 0.03T - 0.05 ST_{72} - 0.10 ST_{80} + 0.62 ST_{86} - 0.49 ST_{87} + 0.18 ST_{95} - 1.14 D_{94} + 0.80 D_{98} - 1.26 \ln Tax_{t-1} + 1.34 \ln \pi_{t-1} - 0.371 \pi_{t-1} + 1.21 \Delta \ln \pi_{t} - 0.42 \Delta \pi_{t}$$
(15)

T = 52 (1952–2003); $\hat{\sigma}$ = 9.93%; R² = 0.98; DW = 2.04; AR 1–2: F(2,36) = 0.32 (0.73); ARCH 1–1: F(1,36) = 0.65 (0.42); Hetero: F(23, 14) = 0.32 (0.99); Normality: $\chi^2(2) = 1.59$ (0.45); RESET: F(1, 37) = 0.07 (0.79). Long-run elasticities: ln π = 1.06, π = 0.29 Overall, the two models are remarkably similar, mainly regarding the questions raised in this paper, which are related to the inflation tax/demand for money functional forms and the inelasticity of money. In both cases the functional form given by (7) seems to be the most appropriate, so that money inelasticity hypothesis is rejected. Note also that in both models not only the coefficients attached to log inflation have virtually the same magnitude, but the hypothesis of a unity elasticity (i.e. $a_1 = 1$) could not be rejected. Moreover, the value of the coefficient attached to the level of inflation (i.e. semi-elasticity) and, therefore, the implied inflation rate that maximises the inflation tax, are very close to each other.⁵ Finally, in both models strong cointegration between the variables is found, suggesting a genuine long run relation among them.⁶

Model	Semi-	Continuous	Discrete
	Elasticity (α)	Rate (100/α)	Rate
Model 1	0.28	354%	3,358%
Model 2	0.29	344%	3,030%
Model 3 (Smooth)	0.27	374%	4,137%
Model 4 (St. Level/Slope)	0.29	345%	3,055%

 Table 3

 Annual Inflation Rate that Maximises the Inflation Tax

Table 3 shows the implied tax maximising inflation rates, which seem to lie around 350% on continuous terms.⁷ This translates into discrete rates a little bit above 3,000% on an annual basis. That level is above the maximum calendar-year inflation rate reached during the sample, which took place in 1993, when inflation reached 2708%, according to the IGP–DI price index. However, it is well below the twelve-month rates observed in several months, such as those from February 1990 to August 1990 and February 1994 to July 1994. The highest rate in those two periods occurred in

⁵ Note, however, that small variations in the semi-elasticity could mean large discrepancies in the associated discrete inflation rates. Therefore, inferences regarding the tax maximising inflation rate based solely on the difference between coefficients could be misleading.

⁶ Note that it is very unlikely the existence of simultaneity in both cases. Moreover, the strategy used here – where the long run solution and the short run dynamics are estimated at the same time – has the advantage of dealing with the large finite-sample biases found in practice when the Engle-Granger method is used, despite super-consistency. For Monte Carlo evidence on the large bias in the estimation of the static long run solution see Banerjee *et al.* (1986). See also Banerjee *et al.* (1993).

⁷ Note that although the semi-elasticities are expressed with two decimal places, the implied inflation rates shown in Table 3 were calculated from figures having four decimal places, since small changes in the former lead to big changes in the latter.

April 1990 (6602%) and June 1994 (5153%). The tax maximising inflation rates implied by the models are lower than those actually observed during the worst months of hyperinflation. Thus, the Government was on the decreasing part of the inflation tax curve. This fact is consistent with the weak hyperinflation hypothesis presented in Barbosa et al (2006)). In either case the Government did not seem to have maximised the inflation tax during hyperinflation.

Although both models are very similar, it is worthwhile to point out one minor but revealing discrepancy between them, which concerns the shape of the trend (Figure 7). Note that both trends practically overlap each other – evolving virtually at the same pace – until mid-1980s, continuously trending downward, which suggests the occurrence of substantial money-demand-saving financial innovation during that period. Financial innovation was certainly intense during those years and, apparently, accelerated both after 1970 and 1980. That dynamics seems in accordance with one's intuition. Indeed, the Brazilian open-market was created in early 1970s and could be the major factor behind the first break, since it offered a new channel through which agents could protect themselves against inflation. In its turn, in 1980 inflation exceeded 100% for the first time, and began to increase very rapidly thereafter, increasing the incentives for further innovations.⁸

However, the trends begin to diverge from each other in 1986, which is precisely the year when the first stabilisation Plan – The Cruzado Plan – took place.⁹ More specifically, while Model's 1 trend continues decreasing until 1994, Model's 2 trend jumps upwards in 1986 and then continues to fall until 1994, when both trends' slope become positive until the end of the sample.¹⁰ Nonetheless, note that after 1986 both trends began to evolve at virtually the same pace once again, trending parallel to each other. Thus, there only is a level discrepancy between them since 1986, a difference that was built entirely in that year. That discrepancy seems to be due to the Cruzado Plan, which apparently caused a large (permanent) break in the relation between the inflation tax and the inflation rate, and this fact is being captured in two different ways by the models. While Model 1 captures it using a (level) dummy as of 1986, which adds to the constant, Model 2 captures it through a one-period jump in the trend itself. Even though both specifications are equivalent, note that in the first case one is explicitly assuming that the break had nothing to do with financial innovation itself. Also note that both models contain two (impulse) dummies in common, which are linked to clear economic events. The first refers to the year of 1994, when inflation dropped sharply due to the Real Plan. The second dummy refers to 1998, when inflation reached its lowest record level so far (1.7%), just before the floating of the currency in 1999, which was followed by an increase in inflation.

Finally, the positive slope after 1994 coincides with the post-stabilisation period. Although at first this result is unexpected since inflation has been much lower since then, a more detailed analysis shows that there actually are two factors that could help explain this outcome. First, the so-called "cheque tax" (called CPMF later on) was created on 1st January 1994 and ended in December 2007. That tax applied every time money was withdrawn from one's bank account. The result was an increase in demand for money, since money invested for very short periods of time began to have negative yield. Secondly, after the stabilisation there was indeed some reversal in financial innovation. For example, during hyperinflation all money left in one's bank account

⁸ In addition to reacting to higher inflation, financial innovation has surely an exogenous component, which reflects non-inflation related technological advances, such as the increasing use of computers along time and overall improvements in technology.

⁹ The Cruzado Plan tried to reduce inflation using several heterodox measures such as price freezes, interventions in contracts, etc.

¹⁰ In 1994 the Real Plan, which finally defeated inflation, was implemented.

above a certain (very low) level was automatically invested by the banks themselves in overnight funds, and was automatically withdrawn when the account balance was insufficient to face obligations (e.g. to pay a cheque). That financial innovation kept money demand at minimum levels. However, since the stabilisation of the economy such kind of mechanism has disappeared, increasing money demand.

Although the use of split trends provides a flexible framework within which financial innovation could be modelled, and the resulting models seem to be coherent with the data, it is worthwhile to ask to what extent the unexpected positive trend after 1994 and, more generally, the overall shape of the curve were determined by this particular way of measuring financial innovation. One could argue that a more flexible and appealing strategy is to use the unobserved components (UC) framework and estimate a stochastic trend. Moreover, it could provide a robustness test for earlier results. With that goal two kinds of stochastic trends were estimated using the Kalman Filter. In the first case – indicated by (16) – one assumes that financial innovation can be modelled as a smooth trend, which makes sense since it should evolve like a diffusion process over time. In the second, one assumes a more flexible specification – where both the level and the slope are allowed to evolve stochastically – according to (17).

$$y_{t} = \mu_{t} + \boldsymbol{\beta}' \mathbf{x}_{t} + \varepsilon_{t} \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t} = \beta_{t-1} + \mu_{t-1} \qquad (16)$$

$$\beta_{t} = \beta_{t-1} + \xi_{t} \qquad \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$

$$y_{t} = \mu_{t} + \boldsymbol{\beta}' \mathbf{x}_{t} + \varepsilon_{t} \qquad \varepsilon_{t} \sim N(0, \sigma_{\varepsilon}^{2})$$

$$\mu_{t} = \beta_{t-1} + \mu_{t-1} + \eta_{t} \qquad \eta_{t} \sim N(0, \sigma_{\eta}^{2})$$

$$\beta_{t} = \beta_{t-1} + \xi_{t} \qquad \xi_{t} \sim N(0, \sigma_{\xi}^{2})$$
(17)

where μ_t stands for the stochastic trend, \mathbf{x}_t is a vector of explanatory variables and $E(\varepsilon_t \eta_t) = E(\varepsilon_t \xi_t) = E(\eta_t \xi_t) = 0$,

Using a general-to-specific model selection strategy two specifications, one for each case above, was selected. Equation (18) – labelled Model 3 in Table 3 – refers to specification (16), while equation (19) – labelled Model 4 – represents specification (17). In the former case the level is fixed, while in the latter it is allowed to vary

stochastically. Before proceeding, one should note that while the stochastic trend is indeed a flexible framework, that flexibility should be put into context, since one is also assuming a particular structure for the trend.

$$\Delta \ln Tax_{t} = \frac{1.84}{(7.03)} \mu_{T} - \frac{1.11}{(-7.56)} D_{94} + \frac{0.66}{(4.14)} D_{98} - \frac{1.25}{(-13.02)} \ln Tax_{t-1} + \frac{1.21}{(-13.02)} \ln \pi_{t-1} - \frac{0.33}{(-2.91)} \pi_{t-1} + \frac{1.13}{(17.62)} \Delta \ln \pi_{t} - \frac{0.40}{(-5.25)} \Delta \pi_{t}$$
(18)

T = 52 (1952–2003); $\hat{\sigma}$ =15.46%; R² = 0.98; DW = 1.72; Q (7, 6) = 10.91 (0.09); H (16) = 0.55 (0.88); Normality: $\chi^2_{DH}(2) = 1.34$ (0.51) Long-run elasticities: $\ln \pi = 0.97$, $\pi = 0.27$

$$\Delta \ln Tax_{t} = \underset{(7.06)}{1.93} \mu_{T} - \underset{(-7.52)}{1.08} D_{94} + \underset{(4.14)}{0.65} D_{98} - \underset{(-13.32)}{1.28} \ln Tax_{t-1} + \underset{(9.17)}{1.26} \ln \pi_{t-1} - \underset{(-3.09)}{0.37} \pi_{t-1} + \underset{(17.63)}{1.14} \Delta \ln \pi_{t} - \underset{(-5.18)}{0.41} \Delta \pi_{t}$$
(19)

T = 52 (1952–2003);
$$\hat{\sigma}$$
 = 14.71%; R² = 0.98; DW = 1.79;
Q (8, 6) = 5.50 (0.48); H (16) = 0.72 (0.74); Normality: $\chi^2_{DH}(2) = 0.61$ (0.74)
Long-run elasticities: $\ln \pi = 0.98$, $\pi = 0.29$

where μ_T stands for the value of the stochastic trend at the end of the sample. Q (p,q) is the Box-Ljung statistic for residual autocorrelation based on the first *p* autocorrelations. H (h) is a heteroscedasticity test and $\chi^2_{DH}(2)$ is a normality test based on the Bowman-Shenton statistic with a correction due to Doornik and Hansen (1994). See Koopman *at al.* (2000) for further details.

All diagnostic tests are satisfactory, and the final models are very similar to the ones obtained before. Likewise the OLS case, the relevant inflation tax functional form seems to be given by equation (7) and, therefore, money inelasticity is rejected as well. Moreover, the elasticity of the inflation tax w.r.t. log inflation is around one as before, and the value of inflation semi-elasticity is practically the same as those obtained from models 1 and 2 (although the implied discrete inflation rate of model 3 is not so close).¹¹ Table 3 gives the associated tax maximising inflation levels.

¹¹ See footnote 5.

Note that – akin to equation (15) – both specifications do not include explicitly the level dummy from 1986 onwards, since the stochastic trend is already capturing that break. However, the last figure in the Appendix shows how both stochastic trends look like when the level dummy is included in the models – as in equation (14). The effect is exactly the same of what was found before, that is, the (stochastic) trend continues to fall until 1994, instead of increasing temporarily in the second half of the 1980s.

Finally, note that not only both specifications produce stochastic trends with virtually the same shape – although Model's 4 trend is more "nervous" than Model 3 – but their shape is very similar to what was obtained before, including the positive slope after 1994 (see Appendix). That evidence shows that our previous modelling effort seems to have been very successful. Indeed, the standard error of specifications (14) and (15) is much smaller than those of specifications (18) and (19), suggesting that the simpler OLS method does a better job in modelling the inflation tax than the fancier UC framework. More importantly, the results presented here seem to be robust to the choice of how to model financial innovation.

6. Conclusion

The value added of this paper can be summed up as follows: i) the hypothesis that money is inelastic is rejected, since Cagan's demand for money specification is not rejected for Brazilian annual data covering the period 1947/2003; ii) the bubble and strict hyperinflation hypotheses are rejected; iii) the weak hyperinflation hypothesis is not rejected, and the Brazilian economy could have been in the wrong side of the Laffer curve for some period of time during hyperinflation; iv) the empirical evidence on German hyperinflation presented on Table 1 is consistent with the weak hyperinflation hypothesis; v) the statement usually made that the government could have obtained more tax revenue with lower inflation rates, during a hyperinflation, is not correct under the weak hyperinflation hypothesis. This fact is the outcome of the dynamics of the fiscal crisis that yields a hyperinflation path.

References

- Banerjee, A., J. J. Dolado, D. F. Hendry and G. W. Smith (1986). "Exploring Equilibrium Relationships in Econometrics through Static Models". Oxford Bulletin of Economics and Statistics 48, p. 253-277.
- Banerjee, A., J. Dolado, J. W. Galbraith and D. F. Hendry (1993). Cointegration, Error Correction and the Econometric Analysis of Non-Stationarity Data. Oxford: Oxford University Press.
- **Barbosa, Fernando de Holanda and Alexandre Barros da Cunha (2003)**. Inflation Tax and Money Essentiality. Economics Letters 78, p. 187-195.
- Barbosa, Fernando de Holanda, Elvia Mureb Sallum and Alexandre Barros da Cunha (2006). Competitive Equilibrium Hyperinflation under Rational Expectations. Economic Theory 29, p. 185-195.
- **Barro, Robert J. (1970)**. Inflation, the Payments Period, and the Demand for Money. Journal of Political Economy 78, p. 1228-1263.
- **Burmeister, Edwin and Kent D. Wall (1987)**. Unobserved Rational Expectations and the German Hyperinflation with Endogenous Money Supply. International Economic Review 28, p. 15-32.
- **Cagan, Phillip** (1956). The Monetary Dynamics of Hyperinflation. In Milton Friedman (org.), Studies in the Quantity Theory of Money. Chicago: University of Chicago Press.
- **Casella, Alessandra (1989)**. Testing for Rational Bubbles with Exogenous or Endogenous Fundamentals: the German Hyperinflation Once More. Journal of Monetary Economics 24, p.109-122.
- **Christiano, L. J. (1987).** Cagan's Model of Hyperinflation Under Rational Expectations. International Economic Review 28, p. 33-49.
- Cysne, Rubens P. and Paulo C. Coimbra Lisboa (2004). Imposto Inflacionário e Transferências Inflacionárias no Brasil:1947-2003. Ensaios Econômicos EPGE # 539. EPGE/FGV.
- **Cukierman, Alex (1988)**. Rapid Inflation-Deliberate Policy or Miscalculation. Carnegie-Rochester Conference Series on Public Policy 29, p.11-76.
- **Doornik, Jurgen and Henrik Hansen (1994).** "An Omnibus Test for Univariate and Multivariate Normality". Nuffield College Working Paper. Paper available at http://www.nuff.ox.ac.uk/Economics/papers/index1995.htm.
- Easterly, William R., Paolo Mauro and Klaus Schmidt-Hebbel (1995). Money Demand and Seigniorage-Maximizing Inflation. Journal of Money, Credit and Banking 27, p.583-603.
- **Engsted, Tom (1993).** Cointegration and Cagan's Model of Hyperinflation under Rational Expectations. Journal of Money, Credit and Banking 25, p. 350-360.

- **Frenkel, Jacob A. (1977)**. The Forward Exchange Rate, Expectations, and the Demand for Money: The German Hyperinflation. American Economic Review 67, p. 653-670.
- **Goodfriend, Marvin S. (1982).** An Alternate Method of Estimating the Cagan Money Deamand Function in Hyperinflation Under Rational Expectations. Journal of Monetary Economics 9, p. 43-57.
- **Imrohoroglu, Selahattin** (**1993**). Testing for Sunspot Equilibria in the German Hyperinflation. Journal of Economics Dynamics and Control 17, p. 289-317.
- Koopman, S. J., A. C. Harvey, J. A. Doornik and N. Shephard (2000). *Stamp: Structural Time Series Analyser, Modeller and Predictor*. Timberlake Consultants Ltd.
- Michael, P., A. R. Nobay and D. A Peel (1994). The German Hyperinflation and the Demand for Money Revisited. International Economic Review 35, p. 1-22.
- Romer, David (2001). Advanced Macroeconomics. 2ed. Edition.boston: McGraw Hill.
- Sargent, Thomas J. (1977). The Demand for Money Under Rational Expectations: I. International Economic Review 77, p. 279-283.
- Sargent, T. and Neil Wallace (1987). Inflation and the Government Budget Constraint. In: Razin, A., Sadka, E. (eds) Economic Policy in Theory and Practice. New York: Macmillan.
- Taylor, Mark P. (1991). The Hyperinflation Model of Money Demand. Journal of Money, Credit and Banking 23, p. 327-351.

Appendix

Recursive estimates, 1-Step Residuals +/- 2 S.E., 1-Step Chow Test, Break-Point Chow Test

Model 2 (Equation 15)

Recursive estimates, 1-Step Residuals +/- 2 S.E., 1-Step Chow Test, Break-Point Chow Test

Model 3 (Equation 18) Smooth Trend (Fixed Level and Stochastic Slope)

Model 4 (Equation 19) Stochastic Level + Stochastic Slope

Stochastic Trends and Structural Break

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1	Implementing Inflation Targeting in Brazil Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang	Jul/2000
2	Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil Eduardo Lundberg	Jul/2000
	Monetary Policy and Banking Supervision Functions on the Central Bank Eduardo Lundberg	Jul/2000
3	Private Sector Participation: a Theoretical Justification of the Brazilian Position <i>Sérgio Ribeiro da Costa Werlang</i>	Jul/2000
4	An Information Theory Approach to the Aggregation of Log-Linear Models <i>Pedro H. Albuquerque</i>	Jul/2000
5	The Pass-Through from Depreciation to Inflation: a Panel Study Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang	Jul/2000
6	Optimal Interest Rate Rules in Inflation Targeting Frameworks José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira	Jul/2000
7	Leading Indicators of Inflation for Brazil <i>Marcelle Chauvet</i>	Sep/2000
8	The Correlation Matrix of the Brazilian Central Bank's Standard Model for Interest Rate Market Risk José Alvaro Rodrigues Neto	Sep/2000
9	Estimating Exchange Market Pressure and Intervention Activity Emanuel-Werner Kohlscheen	Nov/2000
10	Análise do Financiamento Externo a uma Pequena Economia Aplicação da Teoria do Prêmio Monetário ao Caso Brasileiro: 1991–1998 Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Mar/2001
11	A Note on the Efficient Estimation of Inflation in Brazil <i>Michael F. Bryan and Stephen G. Cecchetti</i>	Mar/2001
12	A Test of Competition in Brazilian Banking Márcio I. Nakane	Mar/2001

13	Modelos de Previsão de Insolvência Bancária no Brasil Marcio Magalhães Janot	Mar/2001
14	Evaluating Core Inflation Measures for Brazil Francisco Marcos Rodrigues Figueiredo	Mar/2001
15	Is It Worth Tracking Dollar/Real Implied Volatility? Sandro Canesso de Andrade and Benjamin Miranda Tabak	Mar/2001
16	Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA Sergio Afonso Lago Alves	Mar/2001
	Evaluation of the Central Bank of Brazil Structural Model's Inflation Forecasts in an Inflation Targeting Framework <i>Sergio Afonso Lago Alves</i>	Jul/2001
17	Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção <i>Tito Nícias Teixeira da Silva Filho</i>	Abr/2001
	Estimating Brazilian Potential Output: a Production Function Approach <i>Tito Nícias Teixeira da Silva Filho</i>	Aug/2002
18	A Simple Model for Inflation Targeting in Brazil Paulo Springer de Freitas and Marcelo Kfoury Muinhos	Apr/2001
19	Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo	May/2001
20	Credit Channel without the LM Curve Victorio Y. T. Chu and Márcio I. Nakane	May/2001
21	Os Impactos Econômicos da CPMF: Teoria e Evidência <i>Pedro H. Albuquerque</i>	Jun/2001
22	Decentralized Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Jun/2001
23	Os Efeitos da CPMF sobre a Intermediação Financeira Sérgio Mikio Koyama e Márcio I. Nakane	Jul/2001
24	Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini	Aug/2001
25	Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00 Pedro Fachada	Aug/2001
26	Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil Marcelo Kfoury Muinhos	Aug/2001
27	Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior	Set/2001

28	Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais <i>Marco Antonio Bonomo e Ricardo D. Brito</i>	Nov/2001
29	Using a Money Demand Model to Evaluate Monetary Policies in Brazil <i>Pedro H. Albuquerque and Solange Gouvêa</i>	Nov/2001
30	Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates <i>Benjamin Miranda Tabak and Sandro Canesso de Andrade</i>	Nov/2001
31	Algumas Considerações sobre a Sazonalidade no IPCA Francisco Marcos R. Figueiredo e Roberta Blass Staub	Nov/2001
32	Crises Cambiais e Ataques Especulativos no Brasil <i>Mauro Costa Miranda</i>	Nov/2001
33	Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation André Minella	Nov/2001
34	Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises <i>Arminio Fraga and Daniel Luiz Gleizer</i>	Nov/2001
35	Uma Definição Operacional de Estabilidade de Preços <i>Tito Nícias Teixeira da Silva Filho</i>	Dez/2001
36	Can Emerging Markets Float? Should They Inflation Target? <i>Barry Eichengreen</i>	Feb/2002
37	Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein	Mar/2002
38	Volatilidade Implícita e Antecipação de Eventos de <i>Stress</i> : um Teste para o Mercado Brasileiro <i>Frederico Pechir Gomes</i>	Mar/2002
39	Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio <i>Paulo Castor de Castro</i>	Mar/2002
40	Speculative Attacks on Debts, Dollarization and Optimum Currency Areas <i>Aloisio Araujo and Márcia Leon</i>	Apr/2002
41	Mudanças de Regime no Câmbio Brasileiro Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho	Jun/2002
42	Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella	Jun/2002
43	The Effects of the Brazilian ADRs Program on Domestic Market Efficiency Benjamin Miranda Tabak and Eduardo José Araújo Lima	Jun/2002

44	Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén	Jun/2002
45	Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence <i>André Minella</i>	Aug/2002
46	The Determinants of Bank Interest Spread in Brazil Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane	Aug/2002
47	Indicadores Derivados de Agregados Monetários Fernando de Aquino Fonseca Neto e José Albuquerque Júnior	Set/2002
48	Should Government Smooth Exchange Rate Risk? Ilan Goldfajn and Marcos Antonio Silveira	Sep/2002
49	Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade Orlando Carneiro de Matos	Set/2002
50	Macroeconomic Coordination and Inflation Targeting in a Two-Country Model	Sep/2002
	Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira	
51	Credit Channel with Sovereign Credit Risk: an Empirical Test Victorio Yi Tson Chu	Sep/2002
52	Generalized Hyperbolic Distributions and Brazilian Data José Fajardo and Aquiles Farias	Sep/2002
53	Inflation Targeting in Brazil: Lessons and Challenges André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Nov/2002
54	Stock Returns and Volatility Benjamin Miranda Tabak and Solange Maria Guerra	Nov/2002
55	Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén	Nov/2002
56	Causality and Cointegration in Stock Markets: the Case of Latin America Benjamin Miranda Tabak and Eduardo José Araújo Lima	Dec/2002
57	As Leis de Falência: uma Abordagem Econômica Aloisio Araujo	Dez/2002
58	The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case <i>Benjamin Miranda Tabak</i>	Dec/2002
59	Os Preços Administrados e a Inflação no Brasil Francisco Marcos R. Figueiredo e Thaís Porto Ferreira	Dez/2002
60	Delegated Portfolio Management Paulo Coutinho and Benjamin Miranda Tabak	Dec/2002

61	O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa João Maurício de Souza Moreira e Eduardo Facó Lemgruber	Dez/2002
62	Taxa de Juros e Concentração Bancária no Brasil Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama	Fev/2003
63	Optimal Monetary Rules: the Case of Brazil Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak	Feb/2003
64	Medium-Size Macroeconomic Model for the Brazilian Economy Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves	Feb/2003
65	On the Information Content of Oil Future Prices <i>Benjamin Miranda Tabak</i>	Feb/2003
66	A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla Pedro Calhman de Miranda e Marcelo Kfoury Muinhos	Fev/2003
67	Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Fev/2003
68	Real Balances in the Utility Function: Evidence for Brazil Leonardo Soriano de Alencar and Márcio I. Nakane	Feb/2003
69	r-filters: a Hodrick-Prescott Filter Generalization Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto	Feb/2003
70	Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates <i>Benjamin Miranda Tabak</i>	Feb/2003
71	On Shadow-Prices of Banks in Real-Time Gross Settlement Systems <i>Rodrigo Penaloza</i>	Apr/2003
72	O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras <i>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osmani</i> <i>Teixeira de C. Guillen</i>	Maio/2003
73	Análise de Componentes Principais de Dados Funcionais – uma Aplicação às Estruturas a Termo de Taxas de Juros Getúlio Borges da Silveira e Octavio Bessada	Maio/2003
74	Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves	Maio/2003
75	Brazil's Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth <i>Ilan Goldfajn, Katherine Hennings and Helio Mori</i>	Jun/2003

76	Inflation Targeting in Emerging Market Economies Arminio Fraga, Ilan Goldfajn and André Minella	Jun/2003
77	Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos	Jul/2003
78	Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro <i>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio</i> <i>Carlos Figueiredo, Eduardo Facó Lemgruber</i>	Out/2003
79	Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber	Out/2003
80	Diferenças e Semelhanças entre Países da América Latina: uma Análise de <i>Markov Switching</i> para os Ciclos Econômicos de Brasil e Argentina Arnildo da Silva Correa	Out/2003
81	Bank Competition, Agency Costs and the Performance of the Monetary Policy <i>Leonardo Soriano de Alencar and Márcio I. Nakane</i>	Jan/2004
82	Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo	Mar/2004
83	Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries <i>Thomas Y. Wu</i>	May/2004
84	Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis Aloisio Araujo and Marcia Leon	May/2004
85	Risk Premia for Emerging Markets Bonds: Evidence from Brazilian Government Debt, 1996-2002 <i>André Soares Loureiro and Fernando de Holanda Barbosa</i>	May/2004
86	Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo Fabio Araujo e João Victor Issler	Maio/2004
87	Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil Ana Carla Abrão Costa	Dez/2004
88	Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos Arnildo da Silva Correa e Ronald Otto Hillbrecht	Dez/2004
89	O Mercado de <i>Hedge</i> Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central Fernando N. de Oliveira	Dez/2004

90	Bank Privatization and Productivity: Evidence for Brazil Márcio I. Nakane and Daniela B. Weintraub	Dec/2004
91	Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – a Corporate Analysis <i>Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and</i> <i>Guilherme Cronemberger Parente</i>	Dec/2004
92	Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil <i>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes</i> <i>Silva, Marcelo Kfoury Muinhos</i>	Apr/2005
93	Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente	Abr/2005
94	Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber	Abr/2005
95	Comment on Market Discipline and Monetary Policy by Carl Walsh <i>Maurício S. Bugarin and Fábia A. de Carvalho</i>	Apr/2005
96	O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina Anthero de Moraes Meirelles	Ago/2005
97	Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching Ryan A. Compton and Jose Ricardo da Costa e Silva	Aug/2005
98	Capital Flows Cycle: Stylized Facts and Empirical Evidences for Emerging Market Economies <i>Helio Mori e Marcelo Kfoury Muinhos</i>	Aug/2005
99	Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo,e Eduardo Facó Lemgruber	Set/2005
100	Targets and Inflation Dynamics Sergio A. L. Alves and Waldyr D. Areosa	Oct/2005
101	Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates <i>Marcelo Kfoury Muinhos and Márcio I. Nakane</i>	Mar/2006
102	Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans Ana Carla A. Costa and João M. P. de Mello	Apr/2006
103	The Effect of Adverse Supply Shocks on Monetary Policy and Output Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva	Apr/2006

104	Extração de Informação de Opções Cambiais no Brasil <i>Eui Jung Chang e Benjamin Miranda Tabak</i>	Abr/2006
105	Representing Roommate's Preferences with Symmetric Utilities José Alvaro Rodrigues Neto	Apr/2006
106	Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities <i>Cristiane R. Albuquerque and Marcelo Portugal</i>	May/2006
107	Demand for Bank Services and Market Power in Brazilian Banking Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk	Jun/2006
108	O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar e Tony Takeda	Jun/2006
109	The Recent Brazilian Disinflation Process and Costs <i>Alexandre A. Tombini and Sergio A. Lago Alves</i>	Jun/2006
110	Fatores de Risco e o Spread Bancário no Brasil Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues	Jul/2006
111	Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira e Myrian Beatriz Eiras das Neves	Jul/2006
112	Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets <i>Angelo Marsiglia Fasolo</i>	Jul/2006
113	Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro	Ago/2006
114	The Inequality Channel of Monetary Transmission Marta Areosa and Waldyr Areosa	Aug/2006
115	Myopic Loss Aversion and House-Money Effect Overseas: an Experimental Approach <i>José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak</i>	Sep/2006
116	Out-Of-The-Money Monte Carlo Simulation Option Pricing: the Join Use of Importance Sampling and Descriptive Sampling Jaqueline Terra Moura Marins, Eduardo Saliby and Joséte Florencio dos Santos	Sep/2006
117	An Analysis of Off-Site Supervision of Banks' Profitability, Risk and Capital Adequacy: a Portfolio Simulation Approach Applied to Brazilian Banks Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak	Sep/2006
118	Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint <i>Aloísio P. Araújo and José Valentim M. Vicente</i>	Oct/2006

119	A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação Ricardo Schechtman	Out/2006
120	Forecasting Interest Rates: an Application for Brazil Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak	Oct/2006
121	The Role of Consumer's Risk Aversion on Price Rigidity Sergio A. Lago Alves and Mirta N. S. Bugarin	Nov/2006
122	Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil <i>Arnildo da Silva Correa and André Minella</i>	Nov/2006
123	A Neoclassical Analysis of the Brazilian "Lost-Decades" Flávia Mourão Graminho	Nov/2006
124	The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil <i>Benjamin M. Tabak</i>	Nov/2006
125	Herding Behavior by Equity Foreign Investors on Emerging Markets Barbara Alemanni and José Renato Haas Ornelas	Dec/2006
126	Risk Premium: Insights over the Threshold José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña	Dec/2006
127	Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil Ricardo Schechtman	Dec/2006
128	Term Structure Movements Implicit in Option Prices <i>Caio Ibsen R. Almeida and José Valentim M. Vicente</i>	Dec/2006
129	Brazil: Taming Inflation Expectations Afonso S. Bevilaqua, Mário Mesquita and André Minella	Jan/2007
130	The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter? <i>Daniel O. Cajueiro and Benjamin M. Tabak</i>	Jan/2007
131	Long-Range Dependence in Exchange Rates: the Case of the European Monetary System Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro	Mar/2007
132	Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics' Model: the Joint Use of Importance Sampling and Descriptive Sampling <i>Jaqueline Terra Moura Marins and Eduardo Saliby</i>	Mar/2007
133	A New Proposal for Collection and Generation of Information on Financial Institutions' Risk: the Case of Derivatives <i>Gilneu F. A. Vivan and Benjamin M. Tabak</i>	Mar/2007
134	Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins	Abr/2007

135	Evaluation of Default Risk for the Brazilian Banking Sector <i>Marcelo Y. Takami and Benjamin M. Tabak</i>	May/2007
136	Identifying Volatility Risk Premium from Fixed Income Asian Options Caio Ibsen R. Almeida and José Valentim M. Vicente	May/2007
137	Monetary Policy Design under Competing Models of Inflation Persistence Solange Gouvea e Abhijit Sen Gupta	May/2007
138	Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil <i>Marcos M. Abe, Eui J. Chang and Benjamin M. Tabak</i>	May/2007
139	Selection of Optimal Lag Length inCointegrated VAR Models with Weak Form of Common Cyclical Features Carlos Enrique Carrasco Gutiérrez, Reinaldo Castro Souza and Osmani Teixeira de Carvalho Guillén	Jun/2007
140	Inflation Targeting, Credibility and Confidence Crises Rafael Santos and Aloísio Araújo	Aug/2007
141	Forecasting Bonds Yields in the Brazilian Fixed income Market Jose Vicente and Benjamin M. Tabak	Aug/2007
142	Crises Análise da Coerência de Medidas de Risco no Mercado Brasileiro de Ações e Desenvolvimento de uma Metodologia Híbrida para o Expected Shortfall Alan Cosme Rodrigues da Silva, Eduardo Facó Lemgruber, José Alberto Rebello Baranowski e Renato da Silva Carvalho	Ago/2007
143	Price Rigidity in Brazil: Evidence from CPI Micro Data Solange Gouvea	Sep/2007
144	The Effect of Bid-Ask Prices on Brazilian Options Implied Volatility: a Case Study of Telemar Call Options <i>Claudio Henrique da Silveira Barbedo and Eduardo Facó Lemgruber</i>	Oct/2007
145	The Stability-Concentration Relationship in the Brazilian Banking System <i>Benjamin Miranda Tabak, Solange Maria Guerra, Eduardo José Araújo</i> <i>Lima and Eui Jung Chang</i>	Oct/2007
146	Movimentos da Estrutura a Termo e Critérios de Minimização do Erro de Previsão em um Modelo Paramétrico Exponencial Caio Almeida, Romeu Gomes, André Leite e José Vicente	Out/2007
147	Explaining Bank Failures in Brazil: Micro, Macro and Contagion Effects (1994-1998) Adriana Soares Sales and Maria Eduarda Tannuri-Pianto	Oct/2007
148	Um Modelo de Fatores Latentes com Variáveis Macroeconômicas para a Curva de Cupom Cambial <i>Felipe Pinheiro, Caio Almeida e José Vicente</i>	Out/2007
149	Joint Validation of Credit Rating PDs under Default Correlation Ricardo Schechtman	Oct/2007

150	A Probabilistic Approach for Assessing the Significance of Contextual Variables in Nonparametric Frontier Models: an Application for Brazilian Banks Roberta Blass Staub and Geraldo da Silva e Souza	Oct/2007
151	Building Confidence Intervals with Block Bootstraps for the Variance Ratio Test of Predictability <i>Eduardo José Araújo Lima and Benjamin Miranda Tabak</i>	Nov/2007
152	Demand for Foreign Exchange Derivatives in Brazil: Hedge or Speculation? <i>Fernando N. de Oliveira and Walter Novaes</i>	Dec/2007
153	Aplicação da Amostragem por Importância à Simulação de Opções Asiáticas Fora do Dinheiro Jaqueline Terra Moura Marins	Dez/2007
154	Identification of Monetary Policy Shocks in the Brazilian Market for Bank Reserves <i>Adriana Soares Sales and Maria Tannuri-Pianto</i>	Dec/2007
155	Does Curvature Enhance Forecasting? <i>Caio Almeida, Romeu Gomes, André Leite and José Vicente</i>	Dec/2007
156	Escolha do Banco e Demanda por Empréstimos: um Modelo de Decisão em Duas Etapas Aplicado para o Brasil Sérgio Mikio Koyama e Márcio I. Nakane	Dez/2007
157	Is the Investment-Uncertainty Link Really Elusive? The Harmful Effects of Inflation Uncertainty in Brazil <i>Tito Nícias Teixeira da Silva Filho</i>	Jan/2008
158	Characterizing the Brazilian Term Structure of Interest Rates Osmani T. Guillen and Benjamin M. Tabak	Feb/2008
159	Behavior and Effects of Equity Foreign Investors on Emerging Markets <i>Barbara Alemanni and José Renato Haas Ornelas</i>	Feb/2008
160	The Incidence of Reserve Requirements in Brazil: Do Bank Stockholders Share the Burden? <i>Fábia A. de Carvalho and Cyntia F. Azevedo</i>	Feb/2008
161	Evaluating Value-at-Risk Models via Quantile Regressions Wagner P. Gaglianone, Luiz Renato Lima and Oliver Linton	Feb/2008
162	Balance Sheet Effects in Currency Crises: Evidence from Brazil Marcio M. Janot, Márcio G. P. Garcia and Walter Novaes	Apr/2008
163	Searching for the Natural Rate of Unemployment in a Large Relative Price Shocks' Economy: the Brazilian Case Tito Nícias Teixeira da Silva Filho	May/2008
164	Foreign Banks' Entry and Departure: the recent Brazilian experience (1996-2006) <i>Pedro Fachada</i>	Jun/2008
165	Avaliação de Opções de Troca e Opções de <i>Spread</i> Européias e Americanas	Jul/2008
	Giuliano Carrozza Uzêda Iorio de Souza, Carlos Patrício Samanez e Gustavo Santos Raposo	