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via quantile regressions
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Abstract

We propose an alternative backtest to evaluate the performance of Value-at-Risk (VaR)

models. The presented methodology allows us to directly test the performance of many com-

peting VaR models, as well as identify periods of an increased risk exposure based on a quantile

regression model (Koenker & Xiao, 2002). Quantile regressions provide us an appropriate envir-

onment to investigate VaR models, since they can naturally be viewed as a conditional quantile

function of a given return series. A Monte Carlo simulation is presented, revealing that our

proposed test might exhibit more power in comparison to other backtests presented in the liter-

ature. Finally, an empirical exercise is conducted for daily S&P500 series in order to explore the

practical relevance of our methodology by evaluating �ve competing VaRs through four di¤erent

backtests.
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1 Introduction

Several large scale crashes and �nancial losses in the previous decades, such as the "Black Monday"

in 1987 (with a 23% drop in value of U.S. stocks, equivalent to $1trillion lost in one day), or the

Asian turmoil of 1997 and Russian default (leading to a near failure of LTCM) in 1998 and, more

recently, the World Trade Center attack in 2001, freezing the �nancial market for six days, with

U.S. stock market losses of $1.7 trillion, have brought risk management of �nancial institutions

to the forefront of internal control and regulatory debate. Value-at-Risk (hereafter, VaR) models

arose as a subject for both regulators and investors concerned with large crashes and the respective

adequacy of capital to meet such risk.

In fact, VaR is a statistical risk measure of potential losses, and summarizes in a single number

the worst loss over a target horizon that will not be exceeded with a given level of con�dence. Despite

several other competing risk measures proposed in the literature, VaR has e¤ectively become a

cornerstone of internal risk management systems in �nancial institutions, following the success of

the J.P. Morgan RiskMetrics system, and nowadays form the basis of the determination of market

risk capital, since the 1996 Amendment of the Basel Accord.

A crucial question that arises in this context is how to evaluate the performance of a VaR

model? When several risk forecasts are available, it is desirable to have formal testing procedures

for comparison, which do not necessarily require knowledge of the underlying model, or, if the

model is known, which do no restrict attention to a speci�c estimation procedure. The literature

has proposed several tests (also known as "backtests"), such as Kupiec (1995), Christo¤ersen (1998)

and Engle and Manganelli (2004), mainly focused on a hit sequence from which statistical properties

are derived and further tested.

In this article, we go a step further by arguing that these backtests may provide only necessary

but not su¢ cient conditions to test whether or not a given VaR measure is properly speci�ed. In

fact, by investigating solely a violation sequence, one might ignore an important piece of information

contained in the magnitude of violations. In this sense, we propose an alternative backtest based

on a quantile regression framework that can properly account for it. It is natural to evaluate

a VaR model by a quantile regression method due to its capability of conditional distribution

exploration with distribution-free assumption, also allowing for serial correlation and conditional

heteroskedasticity. Furthermore, Value-at-Risk models are nothing else than conditional quantiles

functions, as will be further explored throughout this paper.
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There are a variety of approaches to estimate conditional quantiles in general and Value-at-

Risk in particular. A short list includes Koenker and Zhao (1996), Danielsson and de Vries (1997),

Embrechts et al. (1997, 1999), Chernozhukov and Umantsev (2001), Christo¤ersen et al. (2001).

For instance, Koenker and Zhao (1996) provide a discussion about conditional quantile estimation

and inference under Engle�s (1982) ARCH models, whereas Hafner and Linton (2006) show that a

QAR(p) process can be represented by a semi-strong ARCH(p) process, and the GARCH(1,1) can

be nested by a QAR process extended to in�nite order.

Quantile regressions can also be used to construct VaR measures without imposing a parametric

distribution or the iid assumption: Chen (2001) discusses a multiperiod VaR model based on

quantile regressions, and Wu and Xiao (2002) present an ARCH quantile regression approach to

estimate VaR and left-tail measures (see also Chen & Chen, 2002). Surprisingly, however, little

empirical work has been done by using quantile regressions to evaluate competing VaR models (e.g.,

Engle and Manganelli (2004) and Giacomini and Komunjer (2005)).

This way, the main objective of this paper is to provide a backtest based on quantile regressions

that allows us to formally evaluate (through a standard Wald statistic) the performance of a VaR

model, and also permits one to identify periods of an increased risk exposure, which we believe

to be a novelty in the literature. The test statistic is derived from a Mincer-Zarnowitz (1969)

type-regression considered in a quantile environment.

The proposed test is quite simple to be computed and can be carried out using software avail-

able for conventional quantile regression, and also presents the advantage of making "full use of

information", in the sense that takes into account the magnitudes of model violations, rather than

simply checking whether the violation series follows an iid sequence. In addition, our methodology

is applicable even when the VaR does not come from a conditional volatility model.

The practical relevance of our theoretical results are documented by a small Monte Carlo sim-

ulation, in which the quantile regression test seems to have more power in comparison to other

backtests, previously documented in the literature as exhibiting low power to detect misspeci�ed

VaRs in �nite samples (see Kupiec (1995), Pritsker (2001) and Campbell (2005)). The increased

power might be due to the quantile framework, which provides an adequate null hypothesis, in

comparison to other backtests, which is also an issue addressed in this paper.

This study is organized as follows: Section 2 de�nes Value-at-Risk, presents a quantile regression-

based hypothesis test to evaluate VaRs and describes other backtests suggested in the literat-

ure. Section 3 shows the Monte Carlo simulation comparing the size and power of the competing
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backtests. Section 4 provides an empirical exercise based on daily S&P500 series, and Section 5

summarizes our conclusions.

2 The econometric model and assumptions

Value-at-Risk models were developed in response to the �nancial disasters of the early 90s, and

have become a standard measure of market risk, which is increasingly used by �nancial and non-

�nancial �rms as well. VaR models have also been sanctioned for determining market risk capital

requirements for �nancial institutions through the 1996 Market Risk Amendment to the Basle

Accord.1

According to Jorion (2007), Mr. Till Guldimann is the creator of the term "Value-at-Risk",

while head of global research at J.P. Morgan in the late 80s. The introduction of the VaR concept

through the RiskMetrics methodology has collapsed the entire distribution of the portfolio returns

into a single number, which investors have found very useful and easily interpreted as a measure of

market risk. Generally speaking, Value-at-Risk can be interpreted as the amount lost on a portfolio,

with a given small probability, over a �xed time period.

Jorion (2007) also argues that a VaR summarizes the worst loss (or the highest gain) of a

portfolio over a target horizon that will not be exceeded with a given level of con�dence. The

author formally de�nes VaR as the quantile of the projected distribution of gains and losses over

the target horizon. If �� 2 (0; 1) is the selected tail level of the mentioned distribution, the respective
VaR is implicitly de�ned by the following expression:

Pr [Rt � VtjFt�1] = ��; (1)

where Ft�1 is the information set available at time t � 1, Rt is the return series and Vt is the
respective VaR. From this de�nition, it is clear that �nding a VaR is essentially the same as

�nding a (100 � �)% conditional quantile. Note that, for convention, the VaR is de�ned for the

right tail of the distribution, which is assumed without loss of generality, since our methodology

can easily be adapted to investigate the left tail.2 In this case, the VaR would be de�ned by
1See Appendix B for further details.
2According to Nankervis et al. (2006), it is usual that VaR is separately computed for the left and right tails of the

distribution depending on the position of the risk managers or traders. For traders with a long position (when they buy and

hold a traded asset), the risk comes from a drop in the price of the asset, while traders with a short position (who �rst borrow

the asset and subsequently sell it in the market) lose money when the price increases. Due to the existence of leverage e¤ects,

a well-known stylized fact in �nancial asset returns, models that allow positive and negative returns to have di¤erent impacts

on volatility are required to compute and distinguish the VaR for the long and short positions.
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Pr [Rt � �VtjFt�1] = ��. Note that the sign is changed to avoid a negative number in the Vt time
series, since the VaR is usually reported by risk managers as a positive number.

Following the idea of Christo¤ersen et al. (2001), one can think of generating a VaR measure

as the outcome of a quantile regression, treating volatility as a regressor. For instance, from a

regression of the form: yt = �0 (Ut) + �1 (Ut)�
2
t , where �

2
t is the conditional volatility of yt, it

follows that Qyt (� j Ft�1) = �0 (�)+�1 (�)�2t , which implies that the conditional quantile3 is some
linear function of volatility. In this sense, Engle and Patton (2001) argue that a volatility model

is typically used to forecast the absolute magnitude of returns, but it may also be used to predict

quantiles.

In this paper, we adapt the model suggested by Christo¤ersen et al. (2001) to investigate the

accuracy of a given VaR model. In other words, instead of using the conditional volatility as a

regressor, we simply use Vt in place of �2t in the above model, where Vt is the VaR measure of

interest. That is exactly the idea we next explore, where a convenient hypothesis test is formally

derived to evaluate VaR models. In sum, we consider the following model

Rt = �0(Ut) + �1(Ut)Vt (2)

= x0t�(Ut); (3)

where Ut is an iid standard uniform random variable, Ut � U(0; 1), the functions �i(Ut), i = 0; 1
are assumed to be comonotonic, �(Ut) = [�0(Ut);�1 (Ut)]0 and x0t = [1; Vt]. Notice that Eq. (2) can

be re-written as

Rt = 't + �t; (4)

where 't = �0 + �1(Ut)Vt, �t = �0(Ut) � �0 is an iid random variable and �0 = E[�0(Ut)]. An

important feature of (4) is that the conditional mean is a¤ected by the VaR, which was computed

using information available up to period t � 1. Since the value at risk Vt is nothing else than the
conditional quantile of Rt, then the above model can be seen as a quantile-in-mean model. Indeed,

if we allow Vt to be equal to the conditional variance of Rt, then the above model becomes a

particular case of the so-called ARCH-in-mean model introduced by Engle (1987).

Following Koenker and Xiao (2002), we will assume that the returns fRtg are, conditional
on Ft�1, independent with linear conditional quantile functions given by (5). Since Vt is already

3Where the quantile function of a given random variable zt is de�ned as the reciprocal of its cumulative distributive function

Fz , i.e., Qzt(�) = F
�1
z (�) = inf fz : F (z) � �g.
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available at the end of period t� 1, before the realization of Rt at time t, then we can compute the
conditional quantile of Rt as follows:

QRt (� j Ft�1) = �0(�) + �1 (�)Vt: (5)

Now, recall the de�nition of Value-at-Risk (Vt), in which the conditional probability of a return

Rt to be lower than Vt, over the target horizon, is equal to �� 2 (0; 1), i.e., Pr (Rt � Vt j Ft�1) =
��. From this de�nition, it is clear that �nding a VaR is exactly the same as �nding a condi-

tional quantile function. In fact, from our quantile regression methodology, we also have that

Pr (Rt � QRt(�� j Ft�1) j Ft�1) = ��. Thus, by considering that the VaR model�s true level of

coverage is ��, it follows that Vt must coincide with the related conditional quantile function of Rt
at the same level ��. Therefore, a natural way to test for the overall performance of a VaR model

is to test the null hypothesis

Ho :

(
�0(�

�) = 0

�1 (�
�) = 1

: (6)

This hypothesis can be presented in a classical formulation as Ho : R�(��) = r, for the �xed

quantile � = ��, where R is a 2� 2 identity matrix; �(��) = [�0(��);�1 (��)]0 and r = [0; 1]. Note
that, due to the simplicity of our restrictions, the later null hypothesis can still be reformulated as

Ho : �(��) = 0, where �(��) = [�0(��); (�1(��)� 1)]0.4

The �rst issue to implement such a hypothesis test is to construct the con�dence intervals for

the estimated coe¢ cients b�(��). Following Koenker (2005, p.74) the method used in this paper
to compute the covariance matrix of the estimated coe¢ cients takes the form of a Huber (1967)

sandwich:5 p
T (b�(��)� �(��)) d! N(0; ��(1� ��)H�1

�� JH
�1
�� ) = N(0;���); (7)

4Recall that our focus is to test a VaR on the right tail of the distribution of returns. In order to investigate a VaR for the

left tail, one must consider the modi�ed null hypothesis: e�(��) = 0; in which e�(��) � [�0(��); (�1(��) + 1)]0:
5A technical issue on the estimation process emerges from the fact that the objective function is not di¤erentiable with

respect to parameters at interested quantiles. The discontinuity in �rst order condition of the corresponding objective function

makes the derivation of asymptotics of quantile regression estimators quite di¢ cult, since conventional techniques (based on

Taylor expansion) are no more applicable. The argument of stochastic uniform continuity, called stochastic equicontinuity, is

one of the solutions for deriving the asymptotics from the non-di¤erentiable objective function, revalidating the conventional

techniques under nonstandard conditions. This idea was pioneering illustrated by Huber (1967) in discussion of deriving the

asymptotics of maximum likelihood estimators with iid random variables under nonstandard conditions. The main idea is to

make the discontinuous �rst order conditions asymptotically and uniformly continuous by stochastic equicontinuity argument,

i.e., by approximating it through a uniformly continuous function. After justifying stochastic equicontinuity, all conventional

techniques for deriving asymptotics are again applicable. See Chen (2001) for further details.
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where J = lim
T!1

1
T

TP
t=1
xtx

0
t and H�� = lim

T!1
1
T

TP
t=1
xtx

0
t[ft(QRt(�

�jxt)] under the quantile regression

model QRt(� j xt) = x0t�(�). The term ft(QRt(�
�jxt) represents the conditional density of Rt

evaluated at the quantile ��. Given that we are able to compute the covariance matrix of the

estimated b�(�) coe¢ cients, we can now construct our hypothesis test to verify the performance of
the Value-at-Risk model based on quantile regressions (hereafter, VQR test).

De�nition 1: Let our test statistic be de�ned under the null by �V QR = T [b�(��)0(��(1���)H�1
� JH�1

� )�1b�(��)].
In addition, consider the following assumptions:

Assumption 1: Let xt � 0 be measurable with respect to Ft�1 and zt � fRt;xtg be a strictly
stationary process;

Assumption 2: (Density) Let fRtg have distribution functions Ft, with continuous Lebesgue dens-
ities ft uniformly bounded away from 0 and 1 at the points QRt(� j xt) = F�1Rt (� j xt);

Assumption 3: (Design) There exist positive de�nite matrices J andH� , such that J = lim
T!1

1
T

TP
t=1
xtx

0
t

and H� = lim
T!1

1
T

TP
t=1
xtx

0
t[ft(QRt(� j xt))];

Assumption 4: maxi=1;:::;T kxik =
p
T ! 0.

The following Proposition, which is merely an application of Hendricks and Koenker (1992)

and Koenker (2005, Theorem 4.1), by considering a �xed quantile ��, summarizes our VQR test,

designed to check whether the Value-at-Risk model (Vt) equals the respective conditional quantile

function of Rt (at quantile ��), obtained from (2), i.e., Ho : Vt = QRt (�
� j Ft�1) :

Proposition 1 (VQR test) Consider the quantile regression (2). Under the null hypothesis (6),

if assumptions (1)-(4) hold, then, the test statistic �V QR is asymptotically chi-squared distributed

with two degrees of freedom.

Proof. See Appendix.

Remark 1: The Wald statistic is often adopted in joint tests for quantile regressions, such

as Machado and Mata (2004), and Proposition 1 is a special case of a general linear hypothesis

test, which was properly adapted to our setup. According to Schulze (2004), a more general Wald

statistic is given by W = T (Rb'� r)0(Rb
R0)�1(Rb'� r), where b' = [b�(�1); :::; b�(�m)]0 and b
 is the
9



estimated asymptotic joint matrix of the estimated coe¢ cients considering a full range of quantiles

� 2 [�1; :::; �m].6 Note that this formulation includes a wide variety of testing situations. However,
since we are only focused on testing the estimated coe¢ cients b�(�) for the speci�c quantile � = ��,
we adopted the simpli�ed version of the Wald statistic presented in Proposition 1.

Remark 2: Assumption (1) together with comonotonicity of �i(Ut), i = 0; 1 guarantee the

monotonic property of the conditional quantiles. We recall the comment of Robinson (2006), in

which the author argues that comonotonicity may not be su¢ cient to ensure monotonic conditional

quantiles, in cases where xt can assume negative values. Assumption (2) relaxes iid in the sense

that allows for non-identical distributions. Bounding the quantile function estimator away from 0

and1 is necessary to avoid technical complications. Assumptions (2)-(4) are quite standard in the

quantile regression literature (e.g., Koenker and Machado (1999) and Koenker and Xiao (2002))

and familiar throughout the literature on M-estimators for regression models, and are crucial to

claim the CLT of Koenker (2005, Theorem 4.1).

Remark 3: Under the null hypothesis it follows that Vt = QRt (�
� j Ft�1), but under the altern-

ative hypothesis the randomness nature of Vt, captured in our model by the estimated coe¢ cientsb�(��) 6= 0, can be represented by Vt = QRt (�� j Ft�1)+�t, where �t represents the measurement er-
ror of the VaR on estimating the latent variable QRt (�

� j Ft�1). Note that assumptions (1)-(4) are
easily satis�ed under the null and the alternative hypotheses. In particular, note that assumption

(4) under H1 implies that also �t is bounded.

Remark 4: According to Giacomini and Komunjer (2005), when several forecasts of the same

variable are available, it is desirable to have formal testing procedures, which do not necessarily

require knowledge of the underlying model, or, if the model is known, which do no restrict attention

to a speci�c estimation procedure. Note that assumptions (1)-(4) do not restrict our methodology

to those cases in which Vt is constructed from a conditional volatility model, but instead allow for

several cases, such as a Pareto or a Cauchy distribution of returns (in which the mean and variance

do not even exist), frequently used in the EVT literature (see McNeil & Frey (2000) and Huisman

et al. (2001)). In fact, our proposed methodology can be applied to a broad number of situations,

such as:

(i) The model used to construct Vt is known. For instance, a risk manager trying to construct

a reliable VaR measure. In such a case, it is possible that: (ia) Vt is generated from a conditional

volatility model, e.g., Vt = g(b�2t ), where g() is some function of the estimated conditional variance
6See Koenker & Basset (1978, 1982 a, b); Koenker & Portnoy (1999) and Koenker (2005, p. 76) for further details.
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b�2t , say from a GARCH model; or (ib) Vt is directly generated, for instance, from a CAViaR model7
or an ARCH-quantile method;8

(ii) Vt is generated from an unknown model, and the only information available is fRt;Vtg. In
this case, we are still able to apply Proposition 1 as long as assumptions (1)-(4) hold. This might

be the case described in Berkowitz and O�Brien (2002), in which a regulator investigates the VaR

measure reported by a supervised �nancial institution (see appendix B for further details);

(iii) Vt is generated from an unknown model, but besides fRt;Vtg a con�dence interval of Vt is
also reported. Suppose that a sequence fRt;Vt;V t;V tg is known, in which Pr

�
V t < Vt < V t j Ft�1

�
=

�, where [V t;V t] are respectively lower and upper bounds of Vt, generated (for instance) from a

bootstrap procedure, with a con�dence level �. One could use this additional information to in-

vestigate the considered VaR by making a connection between the con�dence interval of Vt and the

previously mentioned measurement error �t. The details of this route remain an issue to be further

explored.

In next section, we provide an additional framework that might be useful for those interested in

improving the performance of a rejected VaR as well as choosing the best model among competing

measures.

2.1 Periods of risk exposure

The conditional coverage literature (e.g., Christo¤ersen (1998)) is concerned with the adequacy

of the VaR model, in respect to the existence of clustered violations. In this section, we will

take a di¤erent route to analyze the conditional behavior of a VaR measure. According to Engle

and Manganelli (2004), a good Value-at-Risk model should produce a sequence of unbiased and

uncorrelated hits Ht, and any noise introduced into the Value-at-Risk measure would change the

conditional probability of a hit, vis-à-vis the related VaR. Given that our study is entirely based on

a quantile framework, besides the VQR test, we are also able to identify the exact periods in which

the VaR produces an increased risk exposure in respect to its nominal level ��, which is quite a

novelty in the literature. To do so, let us �rst introduce some notation:

De�nition 2: Wt � fe� 2 [0; 1] j Vt = bQRt (e� j Ft�1)g, representing the "�tted quantile" of the
VaR measure at period t given the regression model (2).

7See section 2.2 for more details regarding the CAViaR model.
8A quantile regression model that allows for ARCH e¤ect. See Koenker & Zhao (1996) and Wu & Xiao (2002) for further

details.
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In other words, Wt is obtained by comparing Vt with a full range of estimated conditional

quantiles evaluated at � 2 [0; 1]. Note that Wt enables us to conduct a local analysis, whereas

the proposed VQR test is designed for a global evaluation based on the whole sample. It is worth

mentioning that, based on our assumptions, QRt (� j Ft�1) is monotone increasing in � , and Wt by

de�nition is equivalent to a quantile level, i.e., Wt > �
� , QRt (Wt j Ft�1) > QRt (�� j Ft�1). Also

note that Wt should (ideally) be as close as possible to �� for all t given that the VaR is computed

for the �xed level ��. However, due to modeling procedures (i.e., in practice), it might be di¤erent

from ��, suggesting that Vt could not belong to the proper conditional quantile of interest.

Now consider the set of all observations 
 = 1; :::; T , in which T is the sample size, and de�ne

the following partitions of 
:

De�nition 3: 
H � ft 2 
 j Wt > ��g, representing the periods in which the VaR belongs to a
quantile above the level of interest �� (indicating a conservative model);

De�nition 4: 
L � ft 2 
 j Wt < ��g, representing the periods in which the VaR is below the
nominal �� level and, thus, underestimate the risk in comparison to ��.

Since we partitioned the set of periods into two categories, i.e. 
 = 
H + 
L, we can now

properly identify the so-called periods of "risk exposure" 
L. Let us summarize the previous

concepts through the following schematic graph:

Figure 1 - Periods of risk exposure

It should be mentioned that a VaR model that exhibits a good performance in the VQR test

(i.e., in which Ho is not rejected) is expected to exhibit Wt as close as possible to ��, �uctuating

around ��, in which periods of Wt below �� are balanced by periods above this threshold. On the

other hand, a VaR model rejected by the VQR test should present a Wt series detached from ��,

revealing the periods in which the model is conservative or underestimate risk. This additional

information can be extremely useful to improve the performance of the underlying Value-at-Risk

model, since the periods of risk exposure are now easily revealed.
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Another important issue regarding model analysis is the choice of competing VaRs. Instead

of only checking the performance of a single model, one might be interested in ranking several

VaR measures (see Giacomini and Komunjer, 2005). Although this is not the main objective of

this paper, we outline a simple nonparametric procedure, inspired by Lopez (1999), in which a

loss function is used to measure the "conditional coverage distance" of a VaR from its nominal

benchmark ��. According to the author, a numerical score could re�ect regulatory concerns and

provide a measure of relative performance to compare competing VaR models across time and

institutions.

The generic loss function suggested by Lopez (1999) is given by C(Rt;Vt) =
TP
t=1
Ct(Rt;Vt),

where Ct(:) =

(
f(Rt;Vt) ; if Rt > Vt
g(Rt;Vt) ; if Rt � Vt

. Accurate VaR estimates are expected to generate lower

numerical scores. Once the f and g functions are de�ned, the loss function can be constructed and

used to evaluate the performance of a set of VaR models. Among several di¤erent speci�cations,

Lopez (1999) suggests adopting f(Rt;Vt) = 1 + (Rt � Vt)2 and g(Rt;Vt) = 0. An interesting

advantage of this speci�cation is to consider the magnitude of violations, since the magnitude as

well as the number of violations is a serious matter of concern to regulators and risk managers. In

addition, loss functions may be more suited to discriminate among competing VaR models than

deciding for the accuracy of a single VaR model.

In this paper, we adapt the previous approach to our setup in order to rank competing VaRs.

Let�s �rst de�ne Ct as the "empirical distance" of Vt in respect to the conditional quantile function

QRt (�
� j Ft�1), based on the Wt series:

Ct � jWt � ��j : (8)

Now, de�ne the loss function L(Vt) that summarizes the distances Ct, and assigns weights

[
1; 
2] to each distance, according to the indicator function It =

(
1 ; if Wt > �

�

0 ; if Wt � ��
:

L(Vt) �
1

T

TP
t=1
Ct � (
1It + 
2(1� It)): (9)

This loss function is very convenient, since it is very easy to be computed and non-parametrically

provides us an empirical way to rank a set of VaRs. Thus, the choice among i = 1; :::; n competing

models could be based on the minimization of the proposed loss function, by simply choosing

i = argmin
i=1;:::;n

[L(V it )]. In addition, note that by setting 
1 < 
2 one could penalize more the periods
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of risk exposure than those periods in which the "�tted quantile" Wt is above ��. Therefore,

an asymmetric evaluation is allowed by this framework, in which the choice of weights [
1; 
2]

could also be driven by the risk aversion degree of the regulator (or the risk manager).9 Despite

its simplicity, the descriptive statistic L(:) might be useful to illustrate model comparison in our

empirical exercise. It is worth mentioning that the backtest literature is mainly focused just on

the signal It (as detailed in next section), whereas in this paper we try to go a step further by also

considering the valuable information contained in the magnitude of the VaR violations.

2.2 Other Backtests

Generally speaking, backtesting a VaR model means checking whether the realized daily returns

are consistent with the corresponding VaR produced by an internal model of a �nancial institution,

over an extended period of time. Crouhy et al. (2001) argue that backtests provide a key check of

how accurate and robust models are, by considering ex-ante risk measure forecasts and comparing

it to ex-post realized returns. The authors also state: "Backtesting is a powerful process with which

to validate the predictive power of a VaR model ... and in e¤ect, a self-assessment mechanism that

o¤ers a framework for continuously improving and re�ning risk modeling techniques".

According to Hull (2005), it represents a way to test how well VaR estimates would have

performed in the past, i.e., how often was the actual 1-day (or 10-day) loss greater than the 95%

(or 99%) VaR measure. Before presenting some commonly discussed backtests, let�s initially recall

that Rt is the observed returns and that Vt is the respective 1-day VaR de�ned for a quantile level

��. Now de�ne a violation sequence10 by the following indicator function:

Ht =

(
1 ; if Rt > Vt
0 ; if Rt � Vt

; (10)

and compute the number of violations N =
TP
t=1
Ht. Based on these de�nitions, we now present some

backtests usually mentioned in the literature to identify misspeci�ed VaR models (see Dowd (2005)

and Jorion (2007) for a detailed description):

(i) Kupiec (1995): Some of the earliest proposed VaR backtests is due to Kupiec (1995),

which proposes a nonparametric test based on the proportion of exceptions. Assume a sample size

of T observations and a number of violations of N . The objective of the test is to know whether

or not bp � N=T is statistically equal to �� (the VaR con�dence level).
Ho : p = E(Ht) = �

�: (11)
9A more general setup could consider the weights as functions of the distance Ct, i.e., 
i = 
i(Ct).
10Also called in the literature by "exception" or "hit sequence".
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The probability of observing N violations over a sample size of T is driven by a Binomial

distribution and the null hypothesis Ho: p = �� can be veri�ed through a LR test of the form (also

known as the unconditional coverage test):

LRuc = 2 ln

� bpN (1� bp)T�N
��N (1� ��)T�N

�
; (12)

which follows (under the null) a chi-squared distribution with one degree of freedom. It also should

be mentioned that this test is uniformly most powerful (UMP) test for a given T . However, Kupiec

(1995) �nds that the power of his test is generally poor in �nite samples, and the test becomes

more powerful only when the number of observations is very large.11

(ii) Christo¤ersen (1998): The unconditional coverage property does not give any informa-

tion about the temporal dependence of violations, and the Kupiec (1995) test ignores conditioning

coverage, since violations could cluster over time, which should also invalidate a VaR model. In

this sense, Christo¤ersen (1998) extends the previous LR statistic to specify that the hit sequence

should also be independent over time. The author argues that we should not be able to predict

whether the VaR will be violated, since if we could predict it, then, that information could be used

to construct a better risk model. The proposed test statistic is based on the mentioned hit sequence

Ht, and on Tij that is de�ned as the number of days in which a state j occurred in one day, while

it was at state i the previous day. The test statistic also depends on �i, which is de�ned as the

probability of observing a violation, conditional on state i the previous day. It is also assumed that

the hit sequence follows a �rst order Markov sequence with transition matrix given by

� =

Previous day"
1� �0 1� �1
�0 �1

#
current day (violation)

no violation
(13)

Note that under the null hypothesis of independence, we have that � = �0 = �1 = (T01+T11)=T ,

and the following LR statistic can, thus, be constructed:

LRind: = 2 ln

 
(1� �0)T00�T010 (1� �1)T10�T111
(1� �)(T00+T10)�(T01+T11)

!
: (14)

The joint test, also known as "conditional coverage test", includes unconditional coverage and

independence properties, and is simply given by LRcc = LRuc + LRind:; where each component

follows a chi-squared distribution with one degree of freedom, and the joint statistic LRcc is asymp-

totically distributed as �2(2). An interesting feature of this test is that a rejection of the conditional

11According to Kupiec (1995), it would require more than six violations during a one-year period (250 trading days) to

conclude that the model is misspeci�ed. See Crouhy et al. (2001) for further details.
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coverage may suggest the need for improvements on the VaR model, in order to eliminate the clus-

tering behavior. On the other hand, the proposed test has a restrictive feature, since it only takes

into account the autocorrelation of order 1 in the hit sequence.

(iii) Engle and Manganelli (2004): The Conditional Autoregressive Value-at-Risk by

Regression Quantiles (CAViaR) model is proposed by the authors, which de�ne Vt(�) as the

solution to Pr[Rt < �Vt(�) j Ft�1) = � ; and describe the (generic) speci�cation: Vt(�) =

�0+
qP
i=1
�iVt�i(�)+

rP
j=1

jxt�j ; where [�i; 
j ] are unknown parameters to be estimated and xt is a gen-

eric vector of time t observable variables. The CAViaR approach directly models the return quantile

rather than specifying a complete data generating process. The authors de�ne various dynamic

models for Vt itself, including the adaptative model: Vt(�) = Vt�1(�) + � [1(Rt�1 � �Vt�1)� � ];
symmetric absolute value: Vt(�) = �0 + �1Vt�1(�) + �2 jRt�1j; asymmetric slope: Vt(�) = �0 +

�1Vt�1(�) + �2R
+
t�1 + �3R

�
t�1; in which Rt is the return series. The estimation of the CAViaR

model uses standard quantile regression techniques, but the model is only possible in GARCH

special cases. How to proper simulate the model is another issue to be further explored.

Besides proposing the CAViaR class of models to directly estimate the conditional quantile

process, Engle and Manganelli (2004) also suggested a speci�cation test, also known as the dynamic

conditional quantile (DQ) test, which involves running the following regression

DQoos = (Hit
0
tXt[X

0
tXt]

�1X 0
tHitt)=(�(1� �)); (15)

whereXt = [c; Vt(�); Zt]; Zt denotes laggedHitt; Hitt = It(�)�� ; and It(�) =
(
1 ; if Rt < Vt(�)

0 ; if Rt � Vt(�)
.

The null hypothesis is the independence between Hitt and Xt. Under the null, the proposed metric

to evaluate one-step-ahead forecasts (DQout) follows a �2q , in which q = rank(Xt). Note that the

DQ test can be used to evaluate the performance of any type of VaR methodology (and not only

the CAViaR family).

(iv) Berkowitz et al. (2006): These authors recently proposed a uni�ed approach to a

VaR assessment, based on the fact that the unconditional coverage and independence hypotheses

are nothing but consequences of the martingale di¤erence hypothesis of the Hitt process, i.e.,

E(It(�) � � j Ft�1) = 0, where I(�) is de�ned as above. Based on a Ljung-Box type-test, they

consider the nullity of the �rst K autocorrelations of the Hitt process, instead of only considering

the autocorrelation of order one, as done by Christo¤ersen (1998).
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Several other related procedures are also well documented in the literature, such as the non-

parametric test of Crnkovic and Drachman (1997),12 the duration approach of Christo¤ersen and

Pelletier (2004),13 and the encompassing test of Giacomini and Komunjer (2005).14 However, as

shown in several simulation exercises (e.g., Kupiec (1995), Pritsker (2001) and Campbell (2005)),

backtests generally have low power and are, thus, prone to misclassifying inaccurate VaR estim-

ates as �acceptably accurate�. The standard backtests often lack power, especially when the VaR

con�dence level is high and the number of observations is low, which has lead to a search for

improved tests. Since the original Kupiec (1995) test is the most powerful among its class, more

e¤ective backtests would have to focus on di¤erent hypothesis or use more information, according

to Jorion (2007). In next section, we exactly address this topic by comparing our proposed quantile

regression-based backtest with some previously mentioned procedures.

2.3 Nested null hypotheses

In this section, we construct a parallel of our setup with some backtests. Since the main concern of

the backtest literature is to evaluate the VaR accuracy, we pose a relevant question in this context:

What do we really want to test? Given that a VaR measure is implicitly de�ned by Property

1 (hereafter, P1, reproduced below), the core issue of a backtest should be to verify whether it

(in fact) is true. As we next show, the quantile regression framework provides a natural way to

investigate the performance of a VaR model, and the proposed VQR test consists on a su¢ cient

condition for P1. We also show that our considered null hypothesis implies some null hypotheses

used in the literature to construct backtests, which are only necessary conditions for P1. To do so,

�rstly recall that a "violation" sequence is here de�ned by the following indicator (hit) function:

Ht =

(
1 ; if Rt > Vt
0 ; if Rt � Vt

, and secondly consider ��� = (1 � ��), in order to properly compare

our VQR test, originally constructed for the right tail of the returns distribution, with the other

considered backtests based on the left tail.
12The authors use a Kuiper�s statistic, based not only on a selected quantile but focused on the entire forecasted distribution.
13The key idea is that if the VaR model is correctly speci�ed for a given coverage rate p, then, the conditional expected

duration between violations should be a constant 1=p days. The independence test based on duration allows one to consider

wider dependences than those chosen under the Markov chain hypothesis. However, the core idea remains unchanged, and

consists in putting the conditional coverage hypothesis to the test, still ignoring the magnitude of violations.
14A conditional quantile encompassing test is provided based on GMM estimation, with the focus on relative model evalu-

ation, which involves comparing the performance of competing VaR models, and choosing the one that performs the best. The

encompassing approach also gives a theoretical basis for quantile forecast combination, in cases when neither forecast encom-

passes its competitor. As a by-product, their framework also provides a link to the conditional coverage test of Christo¤ersen

(1998).
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Property 1: Pr [Rt � VtjFt�1] = ��;

Statement 1: (Null hypothesis of the VQR test) Vt = QRt (�
� j Ft�1) ;

Statement 2: Berkowitz et al. (2006): E(Ht � ��� j Ft�1) = 0;

Statement 3: Christo¤ersen (1998): E[(Ht � ���)(Ht�1 � ���)] = 0;

Statement 4: Kupiec (1995): E(Ht) = ���:

Proposition 2 (Nested Hypotheses) Consider Property 1 and statements S1-S4. If assumptions

(1)�(4) hold for the regression (2), then, it follows that:

(i) P1, S1

(ii) S1) S2; S3; S4

(iii) S2; S3; S4; S1

Proof. See Appendix.

Our proposed test aims to break down the paradigm of the hit sequence in the backtest literature,

which investigates the accuracy of a VaR measure basically through the behavior of its hit sequence.

Proposition 2 states an important result that the VQR test is a necessary and su¢ cient condition to

verify Property 1. In addition, it also shows that our null hypothesis implies some null hypothesis of

the backtest literature, but the reverse does not hold. In other words, assumption S1 is a su¢ cient

condition for Property 1, whereas statements S2-S4 are only necessary conditions.

A small Monte Carlo simulation is conducted in next section, in order to verify the size and

power of the VQR test in �nite samples. Overall, the quantile regression test seems to have relatively

more power in comparison to other backtests, previously documented in the literature as exhibiting

low power to detect poor VaR models. These results are consistent with previous �ndings in Kupiec

(1995), Pritsker (2001) and Campbell (2005). The increased power might be due to the quantile

framework, which can provide an adequate null hypothesis as stated in Proposition 2.
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3 Monte Carlo simulation

A small simulation experiment is conducted in order to investigate the �nite sample properties of

the VQR test, in comparison to other tests presented in the literature, such as the unconditional

coverage test of Kupiec (1995), the conditional coverage test of Christo¤ersen (1998), and the out-of-

sample DQ test of Engle and Manganelli (2004). To do so, we use two Data-Generating Processes:

DGP1 is the RiskMetrics15, and DGP2 is the GARCH(1,1) model �2t = 0:02+0:05y
2
t�1+0:93�

2
t�1.

In addition, we assume (in both DGPs) that yt = �t"t, in which "t s N(0; 1). For each DGP, we
generate T + 2; 000 observations, discarding the �rst 2; 000 observations. Then, a total amount of

i = 5; 000 replications of the fytgTt=1 process is considered for each DGP.

We follow here the same computational strategy of Lima & Neri (2006), in which a hybrid

solution using R and Ox environments is adopted, since the proposed simulation is extremely

computational intensive. Ox is much faster than R in large computations, and also makes use of

the package G@RCH 4.2 (see Laurent & Peters, 2006), which easily allows us to generate GARCH

speci�cations. On the other hand, the R language is more interactive and user-friendly than Ox and

the VQR test must in fact be conducted in R, since its package for quantile regressions (quantreg)

is more complete and updated than the Ox package. Therefore, we proceed as follows: an Ox code

initially generates the time series yt for each DGP, and save all the replications in the hard disk.

Next, an R code computes the four considered backtests for all replications and saves the �nal

results in a text �le.

For the size investigation, in order to generate data that supports the null hypothesis, we

compute the respective VaR at the (standard normal) quantile ��. In other words, the VaR for

�� = 95% is given by Vt = 1:64 � �t, and for �� = 99% is computed by Vt = 2:33��t. The empirical
sizes for T = f250; 500; 1; 000g and the quantile levels �� = 95% or 99% are presented in next table

(for a nominal size of 5%):

15Recall that RiskMetrics is just an integrated GARCH(1,1) model with the autoregressive parameter set to 0.94, i.e.,

�2t= c+ 0:06y
2
t�1+0:94�

2
t�1. In our simulation, we set c = 0:02:
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Table 1 - Size investigation (T=250)

�� = 95% �� = 99%

DGP1 DGP2 DGP1 DGP2

�VQR 0.0705 0.0591 0.1801 0.1851

�Kupiec 0.0101 0.0069 0.0079 0.0007

�Christ. 0.1073 0.1053 0.0215 0.0175

�DQ 0.0739 0.0429 0.0806 0.0931

T=500

�VQR 0.0632 0.0545 0.1114 0.1299

�Kupiec 0.0088 0.0084 0.0242 0.0198

�Christ. 0.0960 0.1089 0.0325 0.0267

�DQ 0.0592 0.0577 0.0762 0.0781

T=1,000

�VQR 0.0541 0.0513 0.0950 0.0991

�Kupiec 0.0247 0.0192 0.0368 0.0254

�Christ. 0.0986 0.0920 0.0374 0.0332

�DQ 0.0562 0.0517 0.0801 0.0855

Note: The values above represent the percentage of

p-values below the nominal level of signi�cance � = 5%:

Firstly, note that for T = 250, the VQR and DQ backtests exhibit relatively good sizes for

�� = 95%. On the other hand, for �� = 99% the results are slightly distorted: the DQ and VQR

tests tend to over-reject the VaR model, whereas the Kupiec and Christo¤ersen backtests tend

to under-reject it. The main reason is that, for T = 250 only a small number of observations is

expected at the extreme quantiles, which is a serious problem for all backtests, and might also

a¤ect the QR estimation.

The increase of the sample size T can give us some �avor of the asymptotic behavior in the

size investigation. Recall that each backtest is constructed to investigate di¤erent null hypotheses,

which might partially explain the results presented in Table 1. In addition, note that an increase

of the sample size produces the following e¤ect in our simulation: As long as T increases, the

estimation of the extreme quantiles becomes more precise, leading to a better estimation of the

quantile density function evaluated at those quantiles. As a result, the empirical size of the proposed

test tends to approach its nominal size (5%) as T goes to in�nity.
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Despite the relatively large sample size when T = 1; 000, note that for �� = 99% one should

expect only 10 observations of yt above the VaR measure, which could seriously in�uence the

performance of any backtest. However, the small sample size should not be viewed anymore as

a restriction, given that nowadays it is common to deal with intra-day data, and even for daily

frequency, a sample size of T = 1; 000 only requires four years of database.

Moreover, backtesting involves balancing two types of errors and dealing with the tradeo¤

between rejecting a correct model versus accepting a misspeci�ed one. According to Christo¤ersen

(2003, p.186), in risk management, may be very costly if the test fail to reject an incorrect model.

Jorion (2007), in the same line, says that one would want a framework that has high power of

rejecting an incorrect model. Therefore, if one is more concerned with discarding a poor VaR

model (and, thus, the power of the tests), instead of validating a good VaR speci�cation, the

numerical results might be favorable to the VQR approach, as we shall next see.

In the power analysis, we conduct the investigation along three main directions: the sample

size T = f250; 500; 1; 000g, the quantile level �� = 95% or 99%; and �nally the set of alternative

hypothesis. The �rst set of H1 (here, so-called method 1) considers a sequence of DGPs based

on a GARCH(1,1), with coe¢ cients: c = 0:02; � = 0:06 � �=20; � = 0:94 � �=2, and a Gamma
(a; b) distribution with parameters a = 200e�5�; b = 5. We control the "degree of misspeci�cation"

through the parameter � 2 [0; 1], which ranges from 0 to 1 with increments of 0:1. Then, in order

to replicate a realistic situation, a VaR is estimated for each DGP via a RiskMetrics model with

normal distribution. Note that when � = 0 we are under the null hypothesis,16 but as long as we

increase � the alternative hypothesis is simulated.

The second approach for H1 (method 2) is constructed as a complementary exercise, in which

we now �x the DGP and then generate a sequence of VaRs. The idea is based on Engle and

Manganelli (2004), which argue that: "any noise introduced into the quantile estimate will change

the conditional probability of a hit given the estimate itself". To do so, we initially generate yt and

�2t according to DGP2. Then, we construct a sequence of VaRs in the following way: Vt(�) �
QRt (�

� j Ft�1) + ��t, where QRt (�� j Ft�1) comes from the DGP2; �t � iid N(0; 1); � 2 [0; 1]
ranges from 0 to 1. Note that the "degree of misspeci�cation" is (again) given by �, in which

Vt(� = 0) satis�es H0, but as long as the � parameter is augmented we expect to generate quite

poor VaR measures due to the additional white noise �t.

A �nal simulation for the power analysis is given by method 3, in which the DGP2 is used to

generate yt and �2t , but the sequence of VaRs is now constructed from a normal-GARCH (1,1)
16Recall that a Gamma (a; b) distribution tends to a normal distribution as long as a!1.
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speci�cation with the following coe¢ cients: c = 0:02; � = 0:05 + �=5; � = 0:93 � �=5. This way,
when � = 0, we are under the null hypothesis, and the model used for the VaR is compatible with

the adopted DGP. However, as long as the � parameter increases, the constructed VaR measure

will come from an increasingly misspeci�ed volatility model. We next present the results for the

power investigation, which are already corrected17 for the size distortions shown in Table 1, i.e.,

size-adjusted power results (for a nominal size of 5%).

Figure 2a - Size-corrected Power Curves - Method 1 (�� = 95%)
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Notes: Nominal level of signi�cance is � = 5%. The results for methods 2 and 3 are presented in appendix.

Figure 2b - Size-corrected Power Curves - Method 1 (�� = 99%)

T = 250 T = 500 T = 1; 000
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Notes: Nominal level of signi�cance is � = 5%. The results for methods 2 and 3 are presented in appendix.

The previous plots reveal meaningful di¤erences among the considered tests. A very nice result

is that in the smallest sample size case (T = 250, with �� = 99%), our test is indeed the most

powerful among the considered backtests. Note that as long as T increases, all curves becomes

closer to the origin, increasing the chance of detecting a misspeci�ed model, which is a natural

response since greater sample sizes lead to smaller variances. An important remark is that, in the

same line of Engle and Manganelli (2004), one could include other (exogenous or lagged) variables

in Ft�1 and, thus, in the quantile regression (2), in order to still further increase the power of the
VQR test in di¤erent directions.

The results for methods 2 and 3 are presented in appendix. The DQ curve exhibits the best

shape in method 2, whereas the Christo¤ersen (1998) and Kupiec (1995) tests are relatively better

17"Size-corrected power" is just power using the critical values that would have yielded correct size under the null hypothesis.
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than the VQR test for �� = 99%, but the VQR shows again a superior behavior for �� = 95%.

Regarding method 3, the VQR test exhibits a good performance, beating the other backtests in

almost all situations.

Previously results in the literature have already suggested that the Kupiec (1995) test might

exhibit low power against poor VaR methodologies: Kupiec (1995) itself describes how his test has

a limited ability to distinguish among alternative hypotheses and thus has low power in samples

of size T = 250. See also Pritsker (2001), Campbell (2005) and Giacomini & Komunjer (2005).18

In fact, our results recon�rm these earlier �ndings, and also suggest that the VQR test might be

more powerful under some directions of the alternative hypothesis.

Besides the sample size, another reason to support the simulation results is given by Propos-

ition 2, in which the null hypothesis of the VQR test seems to be a su¢ cient condition for the

validity of Property 1, whereas the Kupiec (1995) test is only a necessary condition. Note that

the unconditional coverage test of Kupiec (1995) is a LR test, which is uniformly most powerful

for a given sample size. However, the related low power of this test in small samples is due to its

inappropriate null hypothesis regarding Property 1. What we really want to test? Recall that an

ideal VaR model should be well represented by Property 1. Yet another reason for the reported

lack of power is the choice of a high con�dence level (99%) that generates too few exceptions for a

reliable backtest. Thus, simply changing the VaR quantile level from 99% to 95% sharply reduces

the probability of accepting a misspeci�ed model.19

4 Empirical exercise

4.1 Data

In this section, we explore the empirical relevance of the theoretical results previously derived. This

is done by evaluating and comparing �ve di¤erent VaR models, based on the VQR test and other

competing procedures commonly presented in the backtest literature. To do so, we investigate

the daily returns of S&P500 over the last 4 years,20 with an amount of T = 1; 000 observations,

depicted in the following �gure:21

18According to the authors, the unconditional coverage test of Kupiec (1995) assumes away parameter estimation uncertainty

and, as we already discussed, only investigates the hit sequence instead of the magnitude of the violations.
19This could explain why some banks prefer to choose ��= 0:95, in order to be able to observe su¢ cient number of obser-

vations to validate the internal model. See Jorion (2007, p. 147) for further details.
20 In appendix D, we conduct the empirical exercise for two additional datasets: (i) The FTSE100 index from the United

Kingdom; and (ii) the IBOVESPA index from Brazil.
21We take the log-di¤erence of the value of the S&P500 index in order to convert the data into returns.

23



Figure 3 - S&P500 daily returns (%)
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Notes: a) The sample covers the period from 23/10/2003 until 12/10/2007;

b) Source: Yahoo!Finance.

Note from the graph and the summary statistics the presence of common stylized facts about

�nancial data (e.g., volatility clustering; mean reverting; skewed distribution; kurtosis > 3; and

non-normality. See Engle and Patton (2001) for further details). In addition, an analysis of

the correlogram of the returns (not reported) indicates only weak dependence in the mean. In

this sense, a detailed analysis over a full range of quantiles could still be conducted based on

the "quantilograms" of Linton and Whang (2007), which propose a diagnostic tool for directional

predictability, by measuring nonlinear dependence based on the correlogram of the quantile hits.

The authors provide a method to compute the correlogram of the quantile hits, so-called the

"quantilogram", and to display this along with pointwise con�dence bands, resulting in additional

information in respect to the standard correlogram.

It is worth mentioning that Linton and Whang (2007) apply their methods to S&P500 stock

index return data, from 1955 to 2002, and the empirical results suggest some directional predict-

ability in daily returns, especially at the extreme lower quantiles. In addition, there is not much

individual evidence of predictability in the median, which is similar to evidence at the mean using

standard correlogram. In other words, extreme losses in one period are likely to be succeeded by

large losses in the next period. This way, a good VaR measure should be able to capture this kind

of dynamics. Note that our proposed framework is related to the quantilogram approach, in the

sense that we also make use of additional information by investigating the magnitude of hits, and

not only the hit sequence, but here we solely focus on model evaluation.

The �ve Value-at-Risk models adopted in our evaluation procedure are the following: Rolling

Window (1 and 3 months), GARCH (1,1), RiskMetrics (hereafter, RM) and CAViaR. In the �rst

two approaches, the last 30 (and 90) days of data are used to calculate the conditional variance

(�2t ), based on a moving average of past observations. The third and fourth approaches are nothing
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else than conditional volatility models based on a GARCH (1,1) model,22 since RiskMetrics is just

an integrated GARCH(1,1) model with the autoregressive parameter set to 0.94. The respective

VaR measures of these �rst four volatility models are, then, constructed by a linear function of

�t (assuming normality). For instance, the Value-at-Risk for �� = 99% is given by Vt = 2:33��t.
Regarding the CAViaR model, we considered the asymmetric slope model: Vt(�) = �0+�1Vt�1(�)+

�2R
+
t�1 + �3R

�
t�1; in which Rt is the return series.

Practice generally shows that these various models lead to widely di¤erent VaR levels for the

same considered return series, leading us to the crucial issue of model comparison and hypothesis

testing. The Rolling Window method (also called Historical Simulation, hereafter, HS) has serious

drawbacks and is expected to generate poor VaR measures, since it ignores the dynamic ordering

of observations, and volatility measures look like "plateaus", due to the so-called "ghost e¤ect".

On the other hand, as shown by Christo¤ersen et al. (2001), apud Giacomini and Komunjer

(2005), the GARCH-VaR model is the only VaR measure, among several alternatives considered by

the authors, which passes the Christo¤ersen�s (1998) conditional coverage test. The JP Morgan�s

RiskMetrics-VaR model is chosen as a benchmark model commonly used by practitioners. Finally,

Engle and Manganelli (2004) show that the "asymmetric absolute value" and "asymmetric slope"

models are the best CAViaR speci�cations for the S&P500 data.

Figure 4 - S&P500 daily returns (Rt) and VaR (99%) Vt
GARCH(1,1), CAViaR and Rolling Window (1 month)

22The following GARCH (1,1) model was estimated through EViews: �2t= 2:44E � 06 + 0:049535y2t�1+0:901294�2t�1:
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4.2 Results

Based on the quantile regression framework, we are now able to construct the VQR test for the �ve

considered VaRs. The main results are summarized in the following table:

Table 2 - Results of the VQR test (�� = 99%)

Ho : Vt = QRt (�
� j Ft�1)

CAViaR GARCH RM HS1m HS3mb�0(��) 0.00205
(0.00232)

-0.00594
(0.00976)

-0.00267
(0.00202)

0.00677
(0.00252)

0.00298
(0.00255)b�1(��) 0.83323

(0.19955)
1.39269
(0.63097)

1.16941
(0.08170)

0.80103
(0.22783)

0.91397
(0.19632)

�V QR 0.81351 0.39766 15.23240 31.94366 11.87233

p-value 0.66581 0.81968 0.00049 1.15e-07 0.00264

Note: a) Standard error in parentheses.

As already expected, the rolling window models are all rejected, whereas the GARCH(1,1)

and CAViaR models do not fail at the VQR test, which is a result perfectly in line with the

literature (e.g., Christo¤ersen et al. (2001) and Giacomini and Komunjer (2005)). In addition, the

RiskMetrics-VaR is rejected for �� = 99%. It should be mentioned that violations that are clustered

in time are more likely to occur in a VaR model obtained from a rolling window procedure, which

increases the number of scenarios for our backtest evaluation. We now present the results of other

backtests often used in the literature for VaR evaluation:

Table 3 - Backtests comparison (�� = 99%)

CAViaR GARCH RM HS1m HS3m

% of hits 0.9 1.2 1.1 5.6 2.5

�Kupiec 0.74884 0.53556 0.75198 0.00000 (**) 0.00000 (**)

�Christ. 0.87539 0.71333 0.84163 0.00000 (**) 0.00017 (**)

�DQ 0.97173 0.94656 0.13848 0.00000 (**) 0.00000 (**)

�VQR 0.66581 0.81968 0.00049 (**) 0.00000 (**) 0.00264 (**)

Notes: P-values are shown in the ��s rows; (**) means rejection at 1%.

Note that the GARCH(1,1)-VaR model provides a quite good VaR measure, according to all

considered backtests, despite its simplicity and the assumption of normality. Overall, the results

are similar to those obtained from the VQR test, excepting the RiskMetrics model. The results
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of Table 3 indicate that RiskMetrics is only rejected by the VQR test, which is compatible23 with

the previous results of the Monte Carlo simulation (see Figure 2b, T = 1; 000). In other words,

our methodology is able to reject more VaR models in comparison to other backtests, which might

be a major advantage of our approach. In fact, recall that the VQR test has more power in some

directions of the alternative hypothesis, as described in the power investigation of section 3. The

main reason could be that the other backtests are all based on a hit sequence, ignoring the respective

magnitude of violations, which is properly considered in the quantile regression setup.

As a result of our proposed methodology, we are also able to construct the Wt series, described

in section 2.1, in order to reveal the periods of risk exposure. Recall that whenever Wt is below

the benchmark level ��, the VaR model increases the risk exposure by underestimating the related

conditional quantile of returns, since (ideally) Wt should be as close as possible to ��. To illustrate

the methodology, the estimatedWt series as well as the periods of risk exposure for the RiskMetrics-

VaR(99%) model are depicted in Figures 5 and 6, where the gray bars indicate periods in which

Wt < �
�.

Figure 5 - Wt (RiskMetrics-VaR 99%)

Notes: a) The black series is the computed Wt;

Wt � fe� 2 [0; 1] j Vt = bQRt (e� j Ft�1)g

Figure 6 - Rt and Vt (RiskMetrics-VaR 99%)

Note: Gray bars indicateWt< �
�;

In other words, gray bars suggest periods in which the VaR measure underestimates the risk

exposure. Since the RiskMetrics-VaR(99%) model is rejected by the VQR test, the risk exposure

periods could be very useful for risk managers interested in improving the accuracy of the underlying

model. For instance, a visual inspection on �gure 6 indicates that the RiskMetrics model usually

23Also note that the rank of the DQ test in the power curves of Figure 2b (T = 1; 000) is not exactly the same as the rank

of p-values in Table 3 (RM column). One possible explanation is that the power curves are size-adjusted, and the DQ test (see

Table 1, ��= 99%, T = 1; 000) is oversized whereas the Kupiec and Christo¤ersen backtests are undersized.
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underestimates (gray bars) the degree of risk for high volatility periods. Therefore, we are able

to unmask the bad performance of the RiskMetrics model in our empirical exercise based on a

local behavior analysis, which brings some additional (and important) information to the backtest

investigation by exposing some �reasons of rejection�. Note that this local behavior investigation

could only be conducted through our proposed quantile regression methodology, which we believe

to be a novelty in the backtest literature.

Other relevant issue regarding VaR evaluation is the comparison among several competing

models. Although it is not the main objective of this paper, we outline (for the sake of completion

of our empirical exercise) a simple nonparametric decision rule for model selection and apply it

to our empirical exercise (see Giacomini and Komunjer (2005) for a detailed discussion of model

comparison). We are, thus, concerned with relative evaluation, which involves comparing the

performance of competing models and choosing the one that performs the best according to our

suggested criterion of section 2.1. The main results are next summarized:

Table 4 - Loss Function L(Vt) for �� = 99%

CAViaR GARCH RM HS1m HS3m

0.00320 0.00497 0.00560 0.06843 0.02099

Notes: a) Recall that Ct� jWt � ��j ; It=
(
1 ; ifWt> �

�

0 ; ifWt� ��
;

and L(Vt) � 1
T

TP
t=1
Ct � (
1It + 
2(1� It));

b) We adopted 
1 = 1:0 and 
2 = 1:5:

Based on this procedure, one should choose the model in which Wt best tracks the desired ��

level, according to the asymmetric weights 
1 and 
2.In our exercise, the CAViaR model exhibits

the best performance (i.e., lowest value of L(Vt)), which is a natural result, given that it is exactly

designed to produce Value-at-Risk measures, whereas the other discussed VaRs are only obtained

from conditional volatility models together with the assumption of normality. Therefore, the pro-

posed methodology to identify periods of risk exposure could be used to increase the performance

of a poor VaR model, whereas, the suggested L(Vt) distance could be applied to rank and select

among competing models.
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5 Conclusions

Backtesting could prove very helpful in assessing Value-at-Risk models and is nowadays a key

component for both regulators and risk managers. Since the �rst procedures suggested by Kupiec

(1995) and Christo¤ersen (1998), a lot of research has been done in the search for adequate meth-

odologies to assess and help improve the performance of VaRs, which (preferable) do not require

the knowledge of the underlying model.

As noted by the Basle Committee (1996), the magnitude as well as the number of exceptions of a

VaR model is a matter of concern. The so-called "conditional coverage" tests indirectly investigate

the VaR accuracy, based on a "�ltering" of a serially correlated and heteroskedastic time series (Vt)

into a serially independent sequence of indicator functions (hit sequence Ht). Thus, the standard

procedure in the literature is to verify whether the hit sequence is iid. However, an important piece

of information might be lost in that process: not only is the sequence of past hits that matters,

but also the magnitude of Ht is of vital importance, since the conditional distribution of returns

is dynamically updated. This issue is also discussed by Campbell (2005), which states that the

reported quantile provides a quantitative and continuous measure of the magnitude of realized

pro�ts and losses, while the hit indicator only signals whether a particular threshold was exceeded.

In this sense, the author suggests that quantile tests can provide additional power to detect an

inaccurate risk model.

That is exactly the objective of this paper: to provide a VaR-backtest fully based on a quantile

regression framework. Our proposed methodology enables us to: (i) formally conduct a Wald-

type hypothesis test to evaluate the performance of VaR; and (ii) identify periods of an increased

risk exposure. We illustrate the usefulness of our setup through an empirical exercise with daily

S&P500 returns, in which we constructed �ve competing VaR models and evaluate them through

our proposed test (and through other three backtests). In addition, we also suggest a simple

nonparametric procedure to rank the competing models.

Since a Value-at-Risk model is implicitly de�ned as a conditional quantile function, the quantile

approach provides a natural environment to study and investigate VaRs. One of the advantages

of our approach is the increased power of the suggested quantile regression-backtest in comparison

to some established backtests in the literature, as suggested by a small Monte Carlo simulation.

Perhaps most importantly, our backtest is applicable under a wide variety of structures, since it

does not depend on the underlying VaR model, covering either cases where the VaR comes from a

conditional volatility model, or it is directly constructed (e.g., CAViaR or ARCH-quantile methods)
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without relying on a conditional volatility model. We also introduce a main innovation: based on

the quantile estimation, one can also identify periods in which the VaR model might increase the risk

exposure, which is a key issue to improve the risk model, and probably a novelty in the literature.

A �nal advantage is that our approach can easily be computed through standard quantile regression

softwares.

Although the proposed methodology have several appealing properties, it should be viewed as

complementary rather than competing with the existing approaches, due to the limitations of the

quantile regression technique discussed along this paper. Furthermore, several important topics

remain for future research, such as: (i) time aggregation: how to compute and properly evaluate a

10-day regulatory VaR? Risk models constructed through QAR (Quantile Autoregressive) technique

can be quite promising due to the possibility of recursively generation of multiperiod density forecast

(see Koenker and Xiao (2006b)); (ii) Our randomness approach of VaR also deserves an extended

treatment and leaves room for weaker conditions; (iii) multivariate VaR: although the extension of

the analysis for the multivariate quantile regression is not straightforward, several proposals have

already been suggested in the literature (e.g., Chaudhuri (1996) and Laine (2001)); (iv) inclusion

of other variables to increase the power of VQR test in other directions; (v) improvement of the

BIS formula for market required capital; among many others.

According to the Basel Committee (2006), new approaches to backtesting are still being de-

veloped and discussed within the broader risk management community. At present, di¤erent banks

perform di¤erent types of backtesting comparisons, and the standards of interpretation also di¤er

somewhat across banks. Active e¤orts to improve and re�ne the methods currently in use are un-

derway, with the goal of distinguishing more sharply between accurate and inaccurate risk models.

We aim to contribute to the current debate by providing a quantile technique that can be useful

as a valuable diagnostic tool, as well as a mean to search for possible model improvements.
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Appendix A. Proofs of Propositions

Proof of Proposition 1. By Assumption (1), �i (Ut) are increasing functions of the iid standard

uniform random variable Ut and, thus, Q�i(Ut) = �i(QUt) = �i(�), since for any monotone increas-

ing function g and a standard uniform random variable, U , we have Qg(U) (�) = g (QU (�)) = g (�),

where QU (�) = � is the quantile function of Ut. By comonotonicity, we have that QPp

i=1
�i(Ut)

=Pp
i=1Q�i(Ut). This way, by also considering assumption (1), we guarantee that the conditional

quantile function is monotone increasing in � , which is a crucial property of Value-at-Risk models.

In other words, we have that QRt (�1 j Ft�1) < QRt (�2 j Ft�1) for all �1 < �2 2 (0; 1). Assump-
tions (2)-(4) are regularity conditions necessary to de�ne the asymptotic covariance matrix, and a

continuous conditional quantile function, needed for the CLT (7) of Koenker (2005, Theorem 4.1).

A sketch of the proof of this CLT, via a Bahadur representation, is also presented in Hendricks and

Koenker (1992, Appendix). Given that we established the conditions for the CLT (7), our proof is

concluded by using standard results on quadratic forms: For a given random variable z � N(�;�)
it follows that (z � �)0��1(z � �) � �2r where r = rank(�). See Johnson and Kotz (1970, p. 150)
and White (1984, Theorem 4.31) for further details.

Lemma 1 Consider two independent random variables X and Y . If X has a continuous pdf and

Y � N(0; 1), then, Pr(X > y \ Y = y) = Pr(X > 0).

Proof. Initially de�ne the following events (A) : X > 0; (B) : Y > 0; (C) : X > Y . Thus, our

objective is to show that Pr(C) = Pr(A). Firstly, note that Pr(C) = Pr(A \ C) + Pr(Ac \ C) and
Pr(A) = Pr(A\B)+Pr(A\Bc). Moreover, Pr(C) = [Pr(A\B\C)+Pr(A\Bc\C)]+[Pr(Ac\B\
C)+Pr(Ac\Bc\C)] and Pr(A) = [Pr(A\B\C)+Pr(A\B\Cc)]+[Pr(A\Bc\C)+Pr(A\Bc\Cc)].
This way, Pr(C)�Pr(A) = Pr(Ac \B \C)+Pr(Ac \Bc \C)�Pr(A\B \Cc)�Pr(A\Bc \Cc).
Since Pr(Ac \ B \ C) = Pr(A \ Bc \ Cc) = 0, by construction, it follows that Pr(C) � Pr(A) =
Pr(Ac\Bc\C)�Pr(A\B\Cc). However, since Y has zero mean with a symmetric pdf, it follows
that Pr(Y > x) = Pr(Y < �x), where x 2 R+. In other words, for any X = x 2 R we have that
Pr(Y > X \X;Y > 0) = Pr(Y < X \X;Y < 0). Therefore, Pr(C)� Pr(A) = 0:

Proof of Proposition 2. (i) P1 , S1 Assume that the nominal quantile level of the

VaR model is ��, i.e., Pr [Rt � VtjFt�1] = ��. If assumptions (1)-(4) hold, then, it follows that
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QRt (� j Ft�1) = inffRt : F (Rt j Ft�1) � �g and, thus, Pr(Rt � QRt (� j Ft�1) j Ft�1) = � . In

particular, for � = ��, we have that Pr(Rt � QRt (�
� j Ft�1) j Ft�1) = ��. Therefore, it follows

that �� = Pr(Rt � Vt j Ft�1) = Pr(Rt � QRt (�� j Ft�1) j Ft�1) , Vt = QRt (�
� j Ft�1).

(iia) S1) S2 From the de�nition of Ht, it follows that E(Ht j Ft�1) = 1�Pr(Rt > Vt j Ft�1)+
0 � Pr(Rt � Vt j Ft�1) = Pr(Rt > Vt j Ft�1) = Pr(Rt > QRt (�

� j Ft�1) j Ft�1), where the last
equality is due to S1. This way, E(Ht j Ft�1) = 1�Pr(Rt � QRt (�� j Ft�1) j Ft�1) = 1� �� = ���

based on the de�nition of the conditional quantile function. Therefore, E(Ht � ��� j Ft�1) = 0.
(iib) S1 ) S3 From the previous item, it follows that S1 ) S2. Following Berkowitz et al.

(2006), the martingale di¤erence hypothesis (S2) naturally implies that the demeaned violation

sequence is uncorrelated at all leads and lags. More speci�cally, the violation sequence has a �rst-

order autocorrelation of zero, which is exploited by the Markov test of Christo¤ersen (1998). In

other words, S2 ) S3 and, therefore, S1 ) S3. In addition, note that E(H2
t j Ft�1) = Pr(Rt >

Vt j Ft�1) = ��� and V ar(Ht j Ft�1) = E(H2
t j Ft�1)�[E(Ht j Ft�1)]2 = ����(���)2 = ���(1����).

Therefore, the random variable Ht follows a Bernoulli (���) distribution.

(iic) S1) S4 From item (iia), it follows that S1) S2. Applying the law of iterated expecta-

tions on S2, it follows that E(Ht) = ���.

(iiia) S2 ; S1 Consider the following VaR model Vt = QRt (�
� j Ft�1) + �t, where �t � iid

N(0; 1), inspired by Engle & Manganelli (2004), which argue that: "any noise introduced into the

quantile estimate will change the conditional probability of a hit given the estimate itself". Firstly,

note that E(Ht j Ft�1) = 1 � Pr(Rt > Vt j Ft�1) +0 � Pr(Rt � Vt j Ft�1) = Pr(Rt > Vt j Ft�1) =
Pr(Rt > (QRt (�

� j Ft�1) + �t) j Ft�1). Now, apply Lemma 1 by de�ning X = Rt�QRt (�� j Ft�1)
and Y = �t. Thus, Pr(Rt > Vt j Ft�1) = Pr(Rt > QRt (�

� j Ft�1) j Ft�1) = 1 � �� = ���,

based on the de�nition of the conditional quantile function. This way, E(Ht j Ft�1) = ��� and

V ar(Ht j Ft�1) = ���(1� ���). Therefore, the considered VaR model Vt satis�es S2. On the other
hand, by de�nition, Vt clearly does not satisfy S1, since Vt 6= QRt (�� j Ft�1).

(iiib) S3; S1 Based on the same example of item (iiia), it follows that E(Ht� ��� j Ft�1) = 0
and, thus, E(Ht � ���)(Ht�1 � ���) = 0, i.e., S3 holds, whereas, S1 does not hold by construction.

(iiic) S4 ; S1 From S4, we have that E(Ht) = ���, which is not su¢ cient to guarantee

that E(Ht j Ft�1) = ��� neither Pr(Rt > Vt j Ft�1) = ���, i.e. Pr(Rt � Vt j Ft�1) = ��, or

Vt = QRt (�
� j Ft�1).
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Appendix B. Regulatory Framework

The Basle Accord, also known as the 1988 Bank of International Settlements (BIS) Accord, es-

tablished international guidelines that linked bank�s capital requirements to their credit exposures.

The "1996 Amendment" extended the initial Accord to include risk-based capital requirements for

the market risks that banks incur in their trading accounts, o¢ cially consecrating the use of internal

models based on Value-at-Risk methodologies to assess market risk exposure. The fact that banks

were required to hold capital to face market risk associated with their trading positions intends

to create incentives for them to develop their own internal VaR models. The advantage for the

banks using an internal model should be a substantial reduction in regulatory capital. The current

regulatory framework uses a so-called "tra¢ c-light" approach for the daily market required capital

(MRCt), which is calculated in the following way:

MRCt = max(Vt;
k

60

59P
i=0
Vt�i) + SRCt; (16)

where Vt is the daily global VaR calculated for the 99% one sided signi�cance level, over a 10-

day forecast horizon, SRCt is a speci�c risk charge (for the portfolio�s idiosyncratic risk), and

k represents a multiplicative factor applied to the average VaR and depends on the backtesting

results, as it follows:

Table 5 - Multiplier (k) based on the number of exceptions (N)

"Tra¢ c-light" N k

Green Zone 4 or fewer 3.00

Yellow Zone 5 3.40

Yellow Zone 6 3.50

Yellow Zone 7 3.65

Yellow Zone 8 3.75

Yellow Zone 9 3.85

Red Zone 10 or more 4.00

where N is the number of violations of Vt in the previous one year of historical data (250

trading days).24 The k factor can be set by individual supervisory authorities on the basis of

24According to Crouhy et al. (2001), when being employed in relation to regulatory requirements, backtests must compare

daily VaR forecasts against two measures of the pro�t & loss (P&L) results: (i) The actual net trading P&L for the next day;

(ii) The theoretical P&L, also called "static P&L", that would have occurred if the position at the close of the previous day

had been carried forward to the next day, i.e., the revenue that would have been realized had the bank�s positions remained the

same throughout the next day. The main reason is that VaR measures should not be compared against actual trading outcomes,
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their assessment of the quality of the bank�s risk management system, directly related to the ex-

post performance of the model, thereby introducing a built-in positive incentive to maintain the

predictive quality of the model.

According to the Basle Committee (2006), it is with the statistical limitations of "backtesting"

in mind that the Basle Committee introduced a framework for the supervisory interpretation of

backtesting results that encompasses a range of possible responses, depending on the strength of the

signal generated from the backtest. These responses are classi�ed into three zones, distinguished

by colours into a hierarchy of responses. The green zone corresponds to backtesting results that

do not themselves suggest a problem with the quality or accuracy of a bank�s model. The yellow

zone encompasses results that do raise questions in this regard, but where such a conclusion is

not de�nitive. In this case, the penalty is up to the supervisor, depending to the reason for the

violation. The red zone indicates a backtesting result that almost certainly indicates a problem

with a bank�s risk model. Mr. Tommaso Padoa-Schioppa, former chairman of the Basle Committee

(apud Jorion, 2007), argues that this system is "designed to reward truthful internal monitoring,

as well as developing sound risk management systems."

Furthermore, regulators accept that it is the nature of the modern banking world that insti-

tutions will use di¤erent assumptions and modeling techniques (see Crouhy et al. (2001)). The

regulators take account of this for their own purposes by requiring institutions to scale up the

VaR number derived from the internal model by a k factor, which can be viewed as "insurance"

against model misspeci�cation or can also be regarded as a safety factor against "non-normal

market moves". In the same line, Jorion (2007) argues that k also accounts for additional risks not

modeled by the usual applications of VaR. According to the author, studies of portfolios based on

historical data, reporting the performance of the MRCt during the turbulence of 1998, have shown

that while 99% VaR is often exceeded, a multiplier of 3 provides adequate protection against ex-

treme losses. Jorion (2007) also provides a very interesting (possible) rationale for the multiplicative

since the actual outcomes would inevitably be �contaminated�by changes in portfolio composition during the holding period.

In addition, the inclusion of fee income together with trading gains and losses resulting from changes in the composition of the

portfolio should also not be included in the de�nition of the trading outcome because they do not relate to the risk inherent in

the static portfolio that was assumed in constructing the value-at-risk measure. Since this fee income is not typically included

in the calculation of the risk measure, problems with the risk measurement model could be masked by including fee income in

the de�nition of the trading outcome used for backtesting purposes. For these reasons, Supervisors will have national discretion

to require banks to perform backtesting on either hypothetical (i.e. using changes in portfolio value that would occur were end-

of-day positions to remain unchanged), or actual trading (i.e. excluding fees, commissions, and net interest income) outcomes,

or both.
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k factor, due to Stahl (1997), based on the Chebyshev�s inequality.25

However, there are several critiques to the k multiplier in the literature. For instance, Danielsson

et al. (1998) argue that current VaR regulation may, perversely, provide incentives for banks to

underestimate VaR as much as possible. The ISDA/LIBA 1996 Joint Models task force (apud

Crouhy et al., 2001) considers that a multiplier of any size is an unfair penalty on banks that

are already sophisticated in the design of their own risk management system. In addition, ISDA

also argues that an arbitrarily high scaling factor may even provide perverse incentives to abandon

initiatives to implement prudent modi�cations of the internal model.

In this sense, Berkowitz and O�Brien (2002) report too few violations of actual VaRs in the

U.S., indicating overly conservative models for six large commercial banks. These results are quite

surprising because they imply that the market risk charges are too high. Recall that a poor VaR

speci�cation might lead to a higher capital requirement, which provides an incentive for the banks

to improve their internal risk models. However, the capital requirement might not be a binding

condition, since the capital that U.S. banks currently hold is above the regulatory capital. Another

potential explanation is the existence of incentives for no violations: banks could prefer to report

higher VaR numbers to avoid the possibility of regulatory intrusion.

Another important issue regarding the regulatory framework is the "square-root-of-time rule".

The current regulatory framework requires that �nancial institutions use their own internal risk

models to calculate and report their 99% VaR over a 10-day horizon.26 In practice, however,

banks are allowed (during an initial phase of the implementation of the internal model) to compute

their 10-day ahead VaR by scaling up their 1-day VaR by
p
10, i.e., banks may use VaR numbers

calculated according to shorter holding periods scaled up to ten days by the square root of time.

If we assume that returns are iid � N(�; �2), then, the 10-day return is also normally distributed
with mean 10� and variance 10�2. Thus, it follows that V (10�day)t =

p
10V

(1�day)
t . It is well known

25The main idea is to generate a robust upper limit to the VaR when the model is misspeci�ed. Let x be a random variable

with expected value � and �nite variance �2. Then for any real number r > 0 it follows that Pr( jx� �j> r�) � 1
r2
. By

assuming a symmetric distribution, we have that Pr((x� �) < �r�) � 1
2r2

. Now, set the desired con�dence level ��= 1% on

the right side of the previous expression in order to obtain the respective value of r, i.e., provided that 1=2r2= 0:01 ) r = 7:071.
Thus, last expression becomes Pr((x� �) < �7:071�) � 0:01, where the maximum VaR measure is V max

t = 7:071�. Say that

the bank report its VaR model using a normal distribution, we have that Vt= 2:326�. If the true distribution is misspeci�ed,

the correction factor is then k =
Vmax
t
Vt

= 7:071�
2:326�

= 3:03, which is an attempt to justify the correction factor adopted by the Basel

Committee.
26The 10-day holding period means that regulators are asking banks to consider that they might not be able to liquidate

their positions for a 2-week period.
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that the self-additivity of normal distributions implies the
p
T scaling factor for multiperiod VaR.

However, for heavy-tailed distributions this factor can be di¤erent for the largest risks. Danielsson

and de Vries (2000) argue that the appropriate method for scaling up a single day VaR to a

multiperiod VaR is the "alpha-root rule", where alpha is the number of �nite bounded moments,

also known as the tail index. According to the authors, heavy tailed distributions are self�additive

in the tails, implying a scaling factor T 1=�. Danielsson and Zigrand (2005) argue that the "square-

root-of-time rule" could lead to a systematic underestimation of risk. See also Taylor (1999), which

proposed a procedure to estimate a conditional quantile model over the next n periods, and Chen

(2001) for a forecasting multiperiod VaR based on a quantile regressions.

A �nal remark is about the backtest implicitly incorporated into the BIS formulation. Campbell

(2005) notes that the k multiplier is solely determined by the number of hits in the past 250 trading

days in the same manner as the Kupiec (1995) test. This way, the market capital requirement can

be interpreted as an unconditional coverage test that mandates a larger market risk capital set-aside

as the evidence that the VaR model under consideration is misspeci�ed. Jorion (2007) argues that

regulators operate under di¤erent constraints from �nancial institutions and, since they do not have

access to every component of the models, the approach is at a broader level. However, a serious

caveat of the Kupiec (1995) test is the di¢ culty to detect VaR models that systematically under

report risk (low power) in sample sizes consistent with the regulatory framework (i.e., T = 250).

According to Jorion (2007), the lack of power of this framework is due to the choice of the high

VaR con�dence level (99%) that generates too few exceptions for a reliable test.27

A second drawback is that unconditional coverage tests may fail to detect VaR models with ad-

equate unconditional coverage, but with dependent VaR violations, in which case the independence

test is recommended. According to Campbell (2005), the unconditional coverage and independence

(no clustering) properties are separate and distinct, and must (both) be satis�ed by an accurate

VaR model. In this paper, we also showed that these two conditions are necessary but not su¢ cient

conditions for a desirable VaR measure (Proposition 2), due to the limited information contained in

the hit sequence that ignores the respective magnitude of violations. This issued is also discussed

by Campbell (2005), which states that the reported quantile provides a quantitative and continuous

measure of the magnitude of realized pro�ts and losses while the hit indicator only signals whether

a particular threshold was exceeded. In this sense, the author suggests that quantile tests can

27Note that there are many combinations of con�dence level, the horizon and the multiplicative factor that would yield the

same capital charge MRCt. This way, some suggestions to increase the power of the backtest, already pointed out by Jorion

(2007, p.150-151), are to increase the number of observations T from 250 to 1,000 or decrease the con�dence level from 99% to

95%.
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provide additional power to detect an inaccurate risk model, which is exactly the idea we discussed

throughout this paper.

Jorion (2007) says that capital requirements will evolve automatically at the same speed as risk

measurement techniques. According to the Basle Committee (2006), the essence of all backtesting

e¤orts is the comparison of actual trading results with model-generated risk measures. If this com-

parison is close enough, the backtest raises no issues regarding the quality of the risk measurement

model. In some cases, however, the comparison uncovers su¢ cient di¤erences that problems almost

certainly must exist, either with the model or with the assumptions of the backtest. In between

these two cases there is a gray area where the test results are, on their own, inconclusive. Based

on a quantile regression framework, we try to contribute to the debate inside the "gray area".

Appendix C. Monte Carlo simulation

Figure 7 - Size-corrected Power Curves - Method 2
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Note: Nominal level of signi�cance is � = 5%.
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Figure 8 - Size-corrected Power Curves - Method 3
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Note: Nominal level of signi�cance is � = 5%.

Appendix D. Empirical exercise - other datasets

In this section, we present further results of our empirical exercise for two additional datasets: (i)

The FTSE100 index from the United Kingdom; and (ii) the IBOVESPA index from Brazil. We

investigate daily returns over the last 4 years, with an amount of T = 1; 000 observations, following

the same procedure28 presented in section 4.

Figure 9 - FTSE 100 (UK) daily returns (%)
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Series: FTSE100
Sample 1 1000
Observations 1000

Mean  0.000456
Median  0.000841
Maximum  0.034441
Minimum ­0.041850
Std. Dev.  0.007587
Skewness ­0.442815
Kurtosis  6.116434

Jarque­Bera  437.3542
Probability  0.000000

Notes: a) The sample covers the period from 30/10/2003 until 12/10/2007;

b) Source: Yahoo!Finance.

28The following GARCH (1,1) models were estimated (EViews) for the FTSE index: �2t= 2:72E � 06 + 0:100860y2t�1
+0:846919�2t�1, and for the Ibovespa index: �

2
t= 1:21E � 05 + 0:051264y2t�1 +0:902895�2t�1:
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Figure 10 - Ibovespa (Brazil) daily returns (%)

­6,00%

­4,00%

­2,00%

0,00%

2,00%

4,00%

6,00%

Oct­03 Aug­04 May­05 Mar­06 Dec­06 Oct­07
0

20

40

60

80

100

120

140

160

­0.050 ­0.025 0.000 0.025 0.050

Series: IBOVESPA
Sample 1 1000
Observations 1000

Mean  0.001326
Median  0.001864
Maximum  0.051643
Minimum ­0.068565
Std. Dev.  0.016230
Skewness ­0.286871
Kurtosis  3.827042

Jarque­Bera  42.21577
Probability  0.000000

Notes: a) The sample covers the period from 02/10/2003 until 11/10/2007;

b) Source: Yahoo!Finance.

Table 6 - Backtests comparison - FTSE - UK (�� = 99%)

CAViaR GARCH RM HS1m HS3m

% of hits 1.2 0.8 0.9 5.6 2.0

�Kupiec 0.53557 0.51213 0.74883 0.00000 (**) 0.00509 (**)

�Christ. 0.71332 0.75621 0.87539 0.00000 (**) 0.01415 (*)

�DQ 0.96288 0.96306 0.77637 0.00000 (**) 7.67e-06 (**)

�VQR 0.90754 0.03584 (*) 0.22325 1.72e-06 (**) 0.02276 (*)

Notes: P-values are shown in the ��s rows; (**) means rejection at 1%;

and (*) means rejection at 5%.

Table 7 - Backtests comparison - Ibovespa - Brazil (�� = 99%)

CAViaR GARCH RM HS1m HS3m

% of hits 0.9 0.9 1.1 6.9 2.5

�Kupiec 0.74883 0.74883 0.75198 0.00000 (**) 0.00006 (**)

�Christ. 0.87540 0.87538 0.84163 0.00000 (**) 0.00012 (**)

�DQ 0.99867 0.99852 0.49423 0.00000 (**) 0.00000 (**)

�VQR 0.98365 0.94018 0.10785 0.00095 (**) 0.00132 (**)

Notes: P-values are shown in the ��s rows; (**) means rejection at 1%.
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Table 8 - Loss Function L(Vt) for �� = 99%

CAViaR GARCH RM HS1m HS3m

FTSE (UK) 0.00236 0.00241 0.00413 0.06491 0.01285

Ibovespa (Brazil) 0.00210 0.00174 0.00492 0.09220 0.02059

Notes: a) Recall that Ct� jWt � ��j ; It=
(
1 ; ifWt> �

�

0 ; ifWt� ��
;

and L(Vt) � 1
T

TP
t=1
Ct � (
1It + 
2(1� It));

b) We adopted 
1 = 1:0 and 
2 = 1:5:
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