Working Paper Series

Edited by Research Department (Depep) – E-mail: workingpaper@bcb.gov.br

Editor: Benjamin Miranda Tabak – E-mail: benjamin.tabak@bcb.gov.br
Editorial Assistant: Jane Sofia Moita – E-mail: jane.sofia@bcb.gov.br
Head of Research Department: Carlos Hamilton Vasconcelos Araújo – E-mail: carlos.araujo@bcb.gov.br

The Banco Central do Brasil Working Papers are all evaluated in double blind referee process.

Reproduction is permitted only if source is stated as follows: Working Paper n. 138.

Authorized by Mário Mesquita, Deputy Governor for Economic Policy.

General Control of Publications

Banco Central do Brasil
Secre/Surel/Dimep
SBS – Quadra 3 – Bloco B – Edifício-Sede – M1
Caixa Postal 8.670
70074-900 Brasília – DF – Brazil
Phones: (5561) 3414-3710 and 3414-3567
Fax: (5561) 3414-3626
E-mail: editor@bcb.gov.br

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.

Consumer Complaints and Public Enquiries Center

Address: Secre/Surel/Diate
Edifício-Sede – 2ª subsolo
SBS – Quadra 3 – Zona Central
70074-900 Brasília – DF – Brazil
Fax: (5561) 3414-2553
Internet: http://www.bcb.gov.br/?english
Forecasting Exchange Rate Density Using Parametric Models: the Case of Brazil

Marcos M. Abe
Eui J. Chang
Benjamin M. Tabak**

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

This paper employs a recently developed parametric technique to obtain density forecasts for the Brazilian exchange rate, using the exchange rate options market. Empirical results suggest that the option market contains useful information about future exchange rate density. These results suggest that density forecasts using options markets may add value for portfolio and risk management, and may be useful for financial regulators to assess financial stability.

Keywords: density forecasting; emerging market; exchange rate; options market
JEL Classification: G15

* The authors wish to thank two anonymous referees and Ricardo P. Leal for useful comments, which have helped improve the paper. The paper has also benefited from extensive discussion with Conrado Costa Campos, which has made many important suggestions. The opinions expressed in the paper do not necessarily reflect those of the Banco Central do Brasil. Benjamin M. Tabak gratefully acknowledges financial support from CNPQ foundation.

** Banco Central do Brasil. Corresponding author’s e-mail: benjamin.tabak@bcb.gov.br
1. Introduction

Recent research in the financial literature has investigated whether option-implied distributions are useful in providing information regarding the future distribution of underlying asset prices (see Clews (2000) and Melick and Thomas (1997)). Many methods have been proposed in the literature to recover risk neutral density of financial assets (see Savickas (2002, 2004), Rebonato (1999), Corrado (2001), Markose and Alentorn (2005), Dutta and Babbel (2002a, 2002b), Gemmil and Saflekos (2000) and Melick and Thomas (1997))\(^1\).

The evaluation of density forecasts is also a topic of great importance for both portfolio and risk managers, financial regulators and in the insurance market. Recent literature has used several methods to evaluate density forecasts including Diebold \textit{et al.} (1998), Clements and Smith (2000) and Elerian \textit{et al.} (2001).

One of the most used distributions to extract density forecasts is the mixture of lognormals (see Ritchey (1990) and Melick and Thomas (1997)). These authors argue that the risk-neutral density of the asset price when options expire can be defined as a mixture of lognormal densities. The problem with these densities is that the number of parameters is large and overfitting problems may arise.

De Jong and Huisman (2000) study skewed student-t and compare their performance with non parametric methods, presenting evidence supporting parametric methods for extracting densities. Liu et al. (2003) study the FTSE-100 index and argue that parametric densities provide the most accurate predictive densities for real-world observed index levels. The authors compara GB2 densities with spline densities and find that GB2 densities have more explanatory power than historical densities. Dutta and Babbel (2002b) compare the performance of the g-and-h distribution with the GB2 for options on interest rates (LIBOR) and provide evidence in favor of the g-and-h distribution\(^2\).

Tunaru and Albota (2005) compare the performance of risk-neutral densities assuming a variety of methods: Weibull distribution, Generalized Gamma, GB2, Burr-3

\(^{1}\) See also Campos (2005).
and g-and h distributions. The authors focus on interest rates and find that GB2 perform quite well if compared to other distributions.

It is important to note that preliminary research suggests a variety of methods to extract risk-neutral densities. Some methods are more cumbersome than others and there is a trade-off between parsimony and accuracy. In general, models with more parameters yield more accurate estimates. However, these methods are in general more cumbersome and in some cases it is hard to calibrate the models. Therefore, models with a few parameters should be preferred whenever possible.

Many studies have been performed to assess the quality of density estimation for equity and exchange rate markets. However, the main focus of these studies has been on developed countries and very little research has studied emerging markets. The limited availability of data for emerging markets combined with underdeveloped derivatives markets is one of the main impediments for the development of research on these markets. This tries to reduce this gap by studying an emerging market, namely Brazil, which has a liquid and a well-developed derivatives market for the BRL/USD rate.

Using data that covers the period from 2000 to 2005, the results of the study suggest that a parametric method, using the generalized beta density of second kind, is useful for density forecasting.

This paper argues for the use of the generalized beta density of second kind (GB2) for exchange rate returns in call option pricing models for the following reasons:

1) we have to estimate a small number of parameters, avoiding problems such as overfitting the data;

2) the parameters of the GB2 permit general combinations of the mean, variance, skewness and kurtosis, enabling the shape of the density to be flexible;

3) the real-world density has a closed form when one assumes the GB2 density, and

4) recent literature suggests that the GB2 density forecasting accuracy performs quite well (see Tunaru and Albota (2005))

3 Some papers present the evolution of the parameters for different maturities. We are not able to follow the evolution of the parameters of the GB2 over time because this paper focuses only on one-month maturity options, due to liquidity restrictions.
The remainder of the paper is organized as follows. Section 2 briefly presents the methodology. Section 3 describes the data and show empirical results. Section 4 concludes the paper.

2. Methodology

2.1. Risk Neutral Density

Breeden and Litzenberger (1978) show that a unique risk-neutral density \(f \) for a subsequent asset price \(S_T \) can be inferred from European call prices \(C(X) \) when contracts are priced for all strikes \(X \) and there are no arbitrage opportunities. The risk-neutral density (RND) is then given by

\[
f(X) = e^{\alpha X^2} \frac{\partial^2 C}{\partial X^2}, \tag{1}
\]

and the price of the call option is

\[
C(X) = e^{-rT} \int_{X}^{\infty} (S - X) \cdot f(S) dS, \tag{2}
\]

where \(r \) stands for the risk-free interest rate and \(T \) the time to maturity. These relationships between the RND and derivative prices are the basis for empirical derivations of implied RND.

We employ a parametric approach to derive the RND. Assume that we have a parametric density function \(f(X|\theta) \) where \(\theta \) is a parameter vector. Let \(C_{market}(X_i) \) be the observed market price of call option at strike \(X_i \). We obtain the RND by minimizing in \(\theta \) the sum of squared difference between observed market prices and theoretical option prices

\[
G(\theta) = \sum_{i=1}^{N} (C_{market}(X_i) - C(X_i|\theta))^2, \tag{3}
\]

with

\[
C(X_i|\theta) = e^{-rT} \int_{X_i}^{\infty} (x - X_i) \cdot f(x|\theta) dx, \tag{4}
\]
where N is the number of prices obtained from option quotes or trades during a particular day for different strike prices X_i.

We use the generalized beta density of second kind (GB2) in equation (4). Bookstaber and McDonald (1987) presented the GB2 density. This distribution has four parameters $\theta = (a, b, p, q)$, allowing general combinations of the mean, variance, skewness and kurtosis of a variable. Hence, it is able to derive densities with flexible shape. The four parameters are positive, the parameter b is a scale parameter, and the product of the parameters a and q provides the maximum number of finite moments.

The GB2 density function is defined as

$$f_{gb2}(x|a,b,p,q) = \frac{a x^{a-1}}{b^a \text{B}(p,q) \left[1 + \left(\frac{x}{b}\right)^p\right]^{p+q}}, \quad x > 0,$$ \hspace{1cm} (5)$$

with $B(p,q) = \frac{\Gamma(p) \cdot \Gamma(q)}{\Gamma(p+q)}$ and the Gamma function is

$$\Gamma(w) = \int_0^\infty e^{-u} \cdot u^{w-1} du.$$ \hspace{1cm} (6)$$

The density is risk-neutral when

$$F = \frac{b \cdot B(p + 1/a, q - 1/a)}{B(p, q)},$$ \hspace{1cm} (6)$$

and its moments are

$$E[S_T^n] = \frac{b^n \cdot B(p + n/a, q - n/a)}{B(p, q)} \quad \text{for } n < aq,$$ \hspace{1cm} (7a)$$

where the parameter b is determined by (6).

The theoretical option pricing formula depends on the cumulative distribution function (c.d.f.) of the GB2 density, denoted F_{gb2}, which is a function of the c.d.f. of the beta distribution, denoted F_β. We have

$$F_{gb2}(x|a,b,p,q) = F_{gb2}((x/b)^a| 1,1, p, q) = F_\beta(h(x,a,b)| p, q), \quad (7b)$$

with $h(x,a,b) = (x/b)^a / \left[1 + (x/b)^p\right].$

If the density is risk-neutral, so that the constraint in equation (6) applies, then European call option prices are given by
\[C(X \mid \theta) = e^{-rT} \int_{X}^{\infty} (x - X) \cdot f_{GB2}(x \mid a, b, p, q)dx \]

\[= F \cdot e^{-rT} \left[1 - F_{GB2}(X \mid a, b, p + 1/a, q - 1/a) \right] - X \cdot e^{-rT} \left[1 - F_{GB2}(X \mid a, b, p, q) \right] \]

\[= F \cdot e^{-rT} \left[1 - F_\beta(h(X, a, b) \mid p + 1/a, q - 1/a) \right] - X \cdot e^{-rT} \left[1 - F_\beta(h(X, a, b) \mid p, q) \right] \]

The parameter vector \(\theta \) is estimated through the minimization of the option pricing error given by equation (3).

2.2. Evaluation of the performance of the forecasting ability of risk neutral densities

Let \(\hat{F}(y_t) \) and \(\hat{f}(y_t) \) denote the cumulative and probability density function forecasts made on day \(t-1 \) for the exchange rate \((y) \) on day \(t \). Define the probability transform variable as

\[U(y_t) \equiv \int_{-\infty}^{y_t} f(u)du \equiv F(y_t) \]

This variable captures the probability of obtaining a spot exchange rate lower than the realization, where the probability is calculated using the density forecast\(^4\). If the density forecast is correctly calibrated, then we should not be able to predict the probability of getting a value smaller than the realization. Therefore, a good density forecast implies that the transform variable is an independent and uniform variable on the \([0,1]\) interval.

Let \(\Phi^{-1}(\cdot) \) be the inverse of the standard normal distribution function. Then we have the following result for any sequence of forecasts, regardless of the underlying distribution of portfolio returns. Berkowitz (2000) has shown that if the time series

\[\text{See Rosenblatt (1952).} \]
\[x_t = \hat{F}(y_t) = \int_{-\infty}^{y_t} f(u)du \] is distributed as an independent and identically distributed (iid) \[U(0,1), \] then \[z_t = \Phi^{-1}\left(\int_{-\infty}^{y_t} \hat{f}(u)du\right) \] is an iid N(0,1).

Suppose we have generated the sequence \[z_t = \Phi^{-1}(\hat{F}(y_t)) \] for a given model. Since \[Z_t \] should be independent across observations and standard normal, a wide variety of tests can be constructed. In particular, the null can for example be tested against a first-order autoregressive alternative with mean and variance possibly different than (0,1). We can write,

\[z_t - \mu = \rho(z_{t-1} - \mu) + \epsilon_t, \quad (10) \]

where the null hypothesis \(\rho = 0, \mu = 0 \) and \(\text{var}(\epsilon_t) = 1 \).

A likelihood-ratio test of independence across observations can be formulated as

\[LR_{\text{ind}} = -2 \cdot \left(L(\hat{\mu}, \hat{\sigma}^2, 0) - L(\hat{\mu}, \hat{\sigma}^2, \hat{\rho}) \right), \quad (11) \]

where the hats denote estimated values. This test statistic is a measure of the degree to which the data support a nonzero persistence parameter. Under the null hypothesis, the test statistic is distributed \(\chi^2(1) \), chi-square with 1 degree of freedom, so that inference can be conducted in the usual way.

Of course, the null hypothesis is not just that the observations are independent but that they have mean and variance equal to (0,1). In order to jointly test these hypotheses, define the combined statistic as

\[LR = -2 \cdot \left(L(0, 1, 0) - L(\hat{\mu}, \hat{\sigma}^2, \hat{\rho}) \right). \quad (12) \]

Under the null hypothesis, the test statistic is distributed \(\chi^2(3) \). Since the LR test explicitly accounts for the mean, variance and autocorrelation of the transformed data, it should have power against very general alternatives.
3. **Data Sampling and empirical results**

In this study we use a set of prices of European call options written on Brazilian Real exchange rate (real/US dollar) from January 2000 to December 2005. Both options and futures prices were obtained from the Bolsa de Mercadoria de Futuros (BM&F). Due to liquidity restrictions we focus on 1-month maturity options.

The underlying asset in the Brazilian exchange rate options is the spot exchange rate. However, using closing prices for spot prices exchange rates may lead to problems with non-synchrionicity. Spot closing prices at the end of the day are likely to be non-synchrhonous with the options markets. Therefore, in order to avoid such problems we employ exchange rate futures prices, which are also traded in BM&F, which have the same closing time.

Our dataset contains 72 observations (months) and 216 options contracts. For each month at least three options (closest to the money) were selected. Therefore, we only consider the most liquid options to build our density forecasts.

Figure 1 presents the density forecast for January 2003. It is important to notice that the elections in 2002 were quite turbulent in the exchange rate market, due to market concerns regarding economic policy that would be implemented by the newly elected leftist party. By mid 2003 these concerns proved wrong and market volatility was substantially reduced.

5 We calculate spot prices using the methodology described in Andrade and Tabak (2001) and Chang and Tabak (2007).
In order to test whether the density forecast is correctly calibrated, using the GB2 option pricing model, we model the z_t as a first order autoregressive process (AR(1)). The Berkowitz (2000) test yields a LR equal to 11.45, and the null hypothesis that the density provides a good forecast is rejected at the 5% significance level. However, if we exclude an outlier from the analysis (April 2003) the LR reduces to 8.23 and we cannot reject the null hypothesis. In April 2003 the BRL/USD rate has had the highest one-month appreciation (12.5% against the US dollar). Therefore, it can be considered an outlier.

Figure 2 presents the density for December 2005, which is a more tranquil period for the exchange rate market (period of low volatility). As we can see the density is basically constrained in the $[2,2.6]$ interval, which seems reasonable.

As a further check of robustness of this methodology we also evaluate the interval forecast for the exchange rate. We check whether realized exchange rate has fallen within the forecast interval, at the 95% confidence level, and computed the number of failures. Only 5 observations fall outside the 95% confidence interval in 72
observations, a failure rate of 6.94%. The Kupiec (1995) test is 1.29 with a p-value of 0.25, suggesting that the failure is close to the expected 5%. This result suggests that this methodology provides reasonable interval forecasts.

4. Conclusions

Density forecasting is essential for risk and portfolio management. Therefore, the development of models that are able to assess and provide good quality density forecasts has been in the research agenda for recent years.

This paper finds that density forecasts employing the generalized beta density of second kind (GB2) may be useful. This result is important as the exchange rate is one of the most important prices for many emerging markets and suggests that this methodology may add value in density forecasting. This study could be extended for different emerging markets and a variety of assets.

The empirical results suggest that allowing for flexible distributions, that incorporate skewness and kurtosis, yields satisfactory results, which imply that higher moments have to be considered in asset pricing models. This does not come as a surprise as it is well known that the traditional Black-Scholes model suffers from very restrictive assumptions on the dynamics of the underlying asset being priced.

Further research could compare different models that may be used to forecast asset price densities, and study more in depth the effects of incorporating skewness and kurtosis considerations into the analysis. Besides, asset price models have to be developed taking into account such considerations.
References

Working Paper Series

<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s)</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Níciias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
</tbody>
</table>
28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais
Marcos Antonio Bonomo e Ricardo D. Brito
Nov/2001

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque and Solange Gouvêa
Nov/2001

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak and Sandro Canesso de Andrade
Nov/2001

31 Algumas Considerações sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

32 Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

34 Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
Nov/2001

35 Uma Definição Operacional de Estabilidade de Preços
Tito Nicias Teixeira da Silva Filho
Dez/2001

36 Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Feb/2002

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
Mar/2002

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

39 Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002

40 Speculative Attacks on Debts, Dollarization and Optimum Currency Areas
Aloisio Araújo and Márcea Leon
Apr/2002

41 Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002

43 The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Jun/2002
<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Autor(s)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo and Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Ostmani Teixeira de C. Guillen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnaldo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloisio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econômétrica dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
</tbody>
</table>
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – A Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roommate's Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td></td>
<td>Cupom Cambial</td>
<td>Beatriz Eiras das Neves</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transmission in Latin America's Stock Markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cajueiro</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
<tr>
<td></td>
<td>Approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Use of Importance Sampling and Descriptive Sampling</td>
<td>Santos</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>An Analysis of Off-Site Supervision of Banks’ Profitability, Risk</td>
<td>Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak</td>
<td>Sep/2006</td>
</tr>
<tr>
<td></td>
<td>and Capital Adequacy: a Portfolio Simulation Approach Applied to</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brazilian Banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economy with Risk Regulation Constraint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
119 A Central de Risco de Crédito no Brasil: uma Análise de Utilidade de Informação
 Ricardo Schechtman
Out/2006

120 Forecasting Interest Rates: an Application for Brazil
 Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak
Oct/2006

121 The Role of Consumer’s Risk Aversion on Price Rigidity
 Sergio A. Lago Alves and Mirta N. S. Bugarin
Nov/2006

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: a Phillips Curve Model With Threshold for Brazil
 Arnildo da Silva Correa and André Minella
Nov/2006

123 A Neoclassical Analysis of the Brazilian “Lost-Decades”
 Flávia Mourão Graminho
Nov/2006

124 The Dynamic Relations between Stock Prices and Exchange Rates: Evidence for Brazil
 Benjamin M. Tabak
Nov/2006

125 Herding Behavior by Equity Foreign Investors on Emerging Markets
 Barbara Alemanì and José Renato Haas Ornelas
Dec/2006

126 Risk Premium: Insights over the Threshold
 José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
Dec/2006

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil
 Ricardo Schechtman
Dec/2006

128 Term Structure Movements Implicit in Option Prices
 Caio Ibsen R. Almeida and José Valentim M. Vicente
Dec/2006

129 Brazil: Taming Inflation Expectations
 Afonso S. Bevilaqua, Mário Mesquita and André Minella
Jan/2007

130 The Role of Banks in the Brazilian Interbank Market: Does Bank Type Matter?
 Daniel O. Cajueiro and Benjamin M. Tabak
Jan/2007

131 Long-Range Dependence in Exchange Rates: the Case of the European Monetary System
 Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
Mar/2007

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the Joint Use of Importance Sampling and Descriptive Sampling
 Jaqueline Terra Moura Marins and Eduardo Saliby
Mar/2007

133 A New Proposal for Collection and Generation of Information on Financial Institutions’ Risk: the Case of Derivatives
 Gilneu F. A. Vivan and Benjamin M. Tabak
Mar/2007

134 Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão
 Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa e Jaqueline Terra Moura Marins
Abr/2007
135 Evaluation of Default Risk for the Brazilian Banking Sector
 Marcelo Y. Takami and Benjamin M. Tabak
 May/2007

136 Identifying Volatility Risk Premium from Fixed Income Asian Options
 Caio Ibsen R. Almeida and José Valentim M. Vicente
 May/2007

137 Monetary Policy Design under Competing Models of Inflation Persistence
 Solange Gouvea e Abhijit Sen Gupta
 May/2007