The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.
Identifying Volatility Risk Premium from Fixed Income Asian Options *

Caio Almeida
Graduate School of Economics
Getulio Vargas Foundation
calmeida@fgv.br

José Vicente
Research Department
Central Bank of Brazil
jose.valentim@bcb.gov.br

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and not necessarily reflect those of the Banco Central do Brasil.

Abstract

Fixed income asian options are frequently adopted by companies to hedge interest rate risk. Having a payoff structure depending on the cumulative short-term rate makes them particularly informative about interest rate volatility risk. Based on a joint dataset of bonds and asian interest rate options, we study the inter-relations between bond and volatility risk premiums in a major emerging fixed income market. We propose and implement a dynamic term structure model that generates an incomplete market, compatible with a preliminary empirical analysis of the dataset. Approximation formulas for at-the-money asian option prices avoid the use of computationally intensive Fourier transform methods, allowing for an efficient implementation of the model. The model generates bond risk premium strongly correlated (89%) with a widely accepted emerging market benchmark index (EMBI-Global), and a negative volatility risk premium, consistent with the use of asian options as insurance in this market. Volatility premium explains a significant portion (33%) of bond premium, indicating that the asian options market considerably affects the prices of risk of its neighbor bond market.

Keywords: Asian Options, Risk Premium, Dynamic Term Structure Models, Quasi-Maximum Likelihood.

JEL Codes: C13, G12, G13.

*We are grateful to Marco Bonomo, Luis Braido, Carlos da Costa, Marcelo Fernandes, René Garcia, Scott Joslin, and Walter Novaes for their comments and suggestions of improvement on earlier versions of the paper. The first author gratefully acknowledge support given by CNPq-Brazil. Any remaining errors are our responsibility alone.
1 Introduction

Interest rate asian options\(^1\) are frequently quoted by financial houses and largely adopted by banks and corporations to hedge financial costs (Chacko and Das (2002), Bakshi and Madan (2002)). They are attractive as cheaper alternatives to regular options such as caps, floors and collars, and their potential use as hedging instruments makes them particularly informative about risk premium. In fact, with a payoff structure directly depending on the integral of the short-term rate, they contain useful information on how investors perceive and price volatility risks. But, how can we use such options to learn more about interest rate risks?

In this work, we try to answer this question, by analyzing the risk premium structure of bonds and asian interest rate options through the lens of a dynamic term structure model. Risk premium is estimated from joint data on interest-rate asian options and bond prices, and its behavior is analyzed through the implied stochastic discount factor that connects the two markets in the dynamic model\(^2\).

Although the pricing of asian options has tremendously developed with the recent Fourier inversion techniques proposed in Ju (1997), Bakshi and Madan (2000), and Chacko and Das (2002), the insertion of such options in the estimation process of a dynamic model remains unexplored. This is the first work that studies risk premium properties of asian options, and we do so by providing efficient approximation formulas for at-the-money asian option prices. Those analytical formulas prove useful in identifying volatility premium when the model is estimated. Their main advantage is to avoid an inversion of a Fourier or Laplace transform to obtain option prices, what is fundamental when extracting the state vector within the dynamic term structure model\(^3\).

Note that correctly identifying volatility risk premium should be crucial to

\(^1\)Options that have payoffs depending on the average (or integral) of the short-term rate. Previous papers pricing fixed income asian options include Geman and Yor (1993), Longstaff (1995), Leblanc and Scaillet (1998), Cheuk and Vorst (1999), Chacko and Das (2002), and Dassios and Nagaradjasarma (2003).

\(^2\)Other papers that estimated dynamic term structure models based on joint datasets of underlying assets and option prices include Longstaff et al. (2001), Bikbov and Chernov (2005), Almeida et al. (2006), Graveline (2006), Joslin (2007), and Han (2007).

\(^3\)For other studies using option price approximations in a fixed income context, see Collin Dufresne and Goldstein (2002a), Singleton and Umantsev (2003), and Schrager and Pelsser (2005), who all approximate coupon bond options and swaptions prices.
reconcile option implied volatilities with observed volatilities in spot markets (Pan (2002)). Thus, our efficient approach should be of direct use to risk managers in search of correctly marking to market interest rate risk factors appearing in integrated fixed income markets. In addition, adopting equities data, Chernov (2006) recently showed that correctly capturing volatility risk premium allows for an efficient use of option implied volatilities in predicting future volatility. Predicting future volatility is of direct interest to portfolio managers and policy makers, what reinforces even more the importance of efficiently estimating volatility risk premium.

A preliminary empirical analysis of the joint dataset of bonds and at-the-money asian options suggests that those options are not redundant and that volatility is an important source of incompleteness of the bond market. Based on this information, we propose an affine term structure model (Duffie and Kan (1996)) with unspanned stochastic volatility (USV; Collin Dufresne and Goldstein (2002b)) to analyze the risk premium structure of this joint dataset. In the proposed model, volatility of the short-rate is stochastic represented by a Cox et al. (1985) process (CIR process). The price of volatility risk is a time-varying process which implies that the term structure of volatility premiums is a joint function of the average cross section of bond yields and of the time series of at-the-money option prices. Volatility of the stochastic discount factor is represented by multiple sources of risk related to term structure movements and to the volatility of the short-term rate.

The incomplete market structure generated by unspanned stochastic volatility is strongly supported by innumerous studies, including Collin Dufresne and Goldstein (2002b), Heidari and Wu (2003), Li and Zhao (2006), Andersen and Benzoni (2005), Collin Dufresne et al. (2005), and Han (2007), among others. However, recently Joslin (2006) observed that a certain subset of USV affine models is not able to reproduce simultaneously the term structure of U.S. yield volatilities and implied volatilities of bond options. This inability is due to restrictions in the mean reversion rates of term structure latent factors that appear in those models. Fortunately, those restrictions are attenuated under term structures with shorter maturities, which is the case of our dataset\(^4\). This allows our model to succeed in reproducing both bond

\(^4\)The dataset is composed by bonds and asian interest rate options traded in a major emerging market: the Brazilian fixed income market. We explore the fact that in this market asian options are regularly traded and officially offered by one of the biggest exchanges for futures and options in the world, the Brazilian Mercantile Futures Exchange (BM&F).
volatilities and option implied volatilities observed in real data. Moreover, in order to further analyze the adequacy of the proposed model, we perform simulations of the economy implied by its dynamics. Our simulations generate bond and asian option prices consistently reproducing the preliminary empirical results that motivated the adoption of an incomplete market model.

Empirical results indicate that bond risk premium is positive during most of the sample period, and strongly correlated with an important benchmark for emerging markets debt premium, the EMBI-Global J.P. Morgan index. Model implied volatility perfectly captures the level of an EGARCH benchmark (see Figure 5), indicating that volatility risk premium is correctly estimated. Volatility risk premium is a negative and volatile time-varying process, consistent with results observed in equity and currency markets. The positive covariation of volatility and the stochastic discount factor suggests that the asian options work like insurance instruments, as previously suggested by Longstaff (1995), Bakshi and Madan (2002), and Chacko and Das (2002). In addition, volatility risk premium explains a significant portion of bond risk premium (negative correlation of 32.5%), a result related to Bollerslev and Zhou (2006) who find a variance risk premium explaining more than 15% of equity market portfolios excess returns.

Although many authors have studied volatility risk premium in the context of equity and currency markets, the same is not true for fixed income markets. Only two other papers also address this question in the context of interest rates. Fornari (2007) estimates the price of volatility risks from interest rate swaptions on Dollar, Euro, and Pound rates. Based on an asymmetric GARCH model, for all studied markets he finds a negative (and time-varying) volatility risk premium. Despite the similarity of results between his work and ours, the two methodologies adopted are quite distinct.

5 The results presented are related to an arbitrarily fixed maturity of one year. Providing results to any other maturity would be immediate.

While he extracts volatility premium directly from swaptions data only, we extract volatility premium from simultaneously bond and options data, under a continuous time dynamic term structure model that integrates the two markets. Closer in spirit to our paper, Joslin (2007) estimates different affine models based on joint data on U.S. bonds and swaptions, finding support for a negative volatility risk premium, also in line with our results. However, his empirical results support a class of weakly spanned volatility models as opposed to unspanned stochastic volatility models. In contrast, our results indicate that the USV model is able to fit well stylized facts of the joint bond / asian option markets. Here, it should be clear that our distinguishing contribution relies in offering a parsimonious and computationally efficient arbitrage-free model to price the volatility risk of asian options, together with a thorough empirical analysis of such model.

The rest of the paper is organized as follows. Section 2 describes the data adopted in the empirical analysis. Section 3 presents the dynamic model, and the pricing of zero-coupon bonds and asian options. On Section 4, the model is estimated adopting a joint dataset on bonds and options, its ability to correctly price options is tested, and an analysis of model implied risk premia is provided. Section 5 concludes with some remarks and topics for future research. The Appendices contain technical information including proofs of lemmas, and calculations of bond conditional variances.

2 Data and Market Description

2.1 ID-Futures

The One-Day Inter Bank Deposit Future Contract (ID-Future) with maturity T is a future contract whose underlying asset is the accumulated daily ID rate7 capitalized between the trading time t ($t \leq T$) and T. The contract size corresponds to R$ 100,000.00 (one hundred thousand Brazilian Reals) discounted by the accumulated rate negotiated between the buyer and the seller of the contract.

This contract is very similar to a zero coupon bond, except that it pays margin adjustments every day. Each daily cash flow is the difference between

7The ID rate is the average one-day inter bank borrowing/lending rate, calculated by CETIP (Central of Custody and Financial Settlement of Securities) every workday. The ID rate is expressed in effective rate per annum, based on 252 business-days.
the settlement price\(^8\) on the current day and the settlement price on the day
before corrected by the ID rate of the day before.

The Brazilian Mercantile and Futures Exchange (BM&F) is the entity
that offers the ID-Future. The number of authorized contract-maturity
months is fixed by BM&F (on average, there are about twenty authorized
contract-maturity months for each day but only around ten are liquid).
Contract-maturity months are the first four months subsequent to the month
in which a trade has been made and, after that, the months that initiate each
following quarter. Expiration date is the first business day of the contract-
maturity month.

2.2 ID Index and its Option Market

The ID index (IDI) is defined as the accumulated ID rate. If we associate
the continuously-compounded ID rate to the short term rate \(r_t\) then

\[
IDI_t = IDI_0 \cdot e^{\int_0^t r_u \, du}.
\]

(1)

This index, computed on every workday by BM&F, has been fixed to the
value of 100000 points in January 2, 1997, and has actually been resettled to
its initial value a couple of times, most recently in January 2, 2003.

An IDI option with time of maturity \(T\) is an European option where the
underlying asset is the \(IDI\) and whose payoff depends on \(IDI_T\). When the
strike is \(K\), the payoff of an IDI option is \(L_c(T) = (IDI_T - K)^+\) for a call
and \(L_p(T) = (K - IDI_T)^+\) for a put.

As can be noticed, IDI options have a peculiar characteristic which is
not shared by usual fixed income international options: They are asian op-
tions. Their payoff depends on the integral of the short-term rate through
the path between the trading date \(t\) and the option maturity date \(T\). As
previously noticed, we will explore this payoff structure to extract volatility
risk premium from the integrated bond/option fixed income market.

BM&F is also the entity that provides the IDI call options. Strike prices
(expressed in index points) and the number of authorized contract-maturity
months are established by BM&F. Contract-maturity months can happen
to be any month, and the expiration date is the first business day of the
maturity month. Usually, there are 30 authorized series within each day,
from which about a third are liquid.

\(^8\)The settlement price at time \(t\) of an ID-Future with maturity \(T\) is equal to R$100,000.00 discounted by its closing price quotation.
2.3 Data

Data consists on time series of yields of ID-Futures for all different liquid maturities, and values of IDI options for different strikes and maturities. The data covers the period from January 02, 2003 to December 30, 2005.

BM&F maintains a daily historical database with the price and number of trades of every ID-Future and IDI option that have been traded in any day. With the ID-Future database and a time series of ID interest rates, it is straightforward to estimate, by cubic interpolation, the interest rates for fixed maturities for all trading days. For each fixed time to maturity, a reference bond is a zero coupon bond with that corresponding time to maturity. We adopt the reference bond yields with fixed times to maturity of 1, 21, 42, 63, 126, 189, 252, 378 and 504 days. We also adopt at-the-money fixed-maturity IDI call options, whose prices were obtained via an interpolation based on black’s implied volatilities\(^9\).

After excluding weekends, holidays, and no-trade workdays, there is a total of 748 yields for each bond, and prices for at-the-money IDI call options\(^{10}\).

3 The Model

3.1 Evidence of Unspanned Stochastic Volatility in the Brazilian Market

Motivated by empirical results in Collin Dufresne and Goldstein (2002b), and Li and Zhao (2006), we investigate how well interest rates are able to explain call option prices, within the Brazilian fixed income market. As will be noted bellow, this relationship is useful when defining the probabilistic structure of the dynamic model.

\(^9\)We fixed the option maturity to 95 days, the average maturity for available IDI call options. Our procedure is similar to that adopted to calculate VIX implied volatilities from S&P 500 index options for hypothetical at-the-money short-maturity (21 days) options.

\(^{10}\)This sample size is compatible with that found in other recent academic studies containing derivatives data from emerging economies (see for instance, Pan and Singleton (2007)). In addition, as our study contains high frequency data, the number of observations (748) adopted to estimate the dynamic term structure model is large enough to avoid small-sample biases.
We run regressions where the dependent variable is the price of the fixed-maturity at-the-money IDI call, while the independent variables are the yields of the reference bonds for the fixed maturities 21, 63, 126 and 252 days11. Let c_s_t represent the time t price of the fixed-maturity at-the-money IDI call, and $r b_t(\tau)$ represent the time t yield of the reference bond with time to maturity τ, expressed in years. We basically run two types of regressions. The first, a standard multiple linear regression:

$$c_s_t = a_0 + a_1 r b_t(\frac{21}{252}) + a_2 r b_t(\frac{63}{252}) + a_3 r b_t(\frac{126}{252}) + a_4 r b_t(1) + \epsilon_{t,1},$$ \hspace{1cm} (2)

The second, a non-linear regression, on a truncated power series of the vector $r b_t$, with the four maturities chosen:

$$c_s_t = a \cdot r b_t + b \cdot r b_t^2 + c \cdot r b_t^3 + \epsilon_{t,2},$$ \hspace{1cm} (3)

where a, b and c are four-dimensional vectors, and powers of $r b_t$’s are calculated with operations simultaneously performed on each element of the vector.

R^2s, which represent the variability of call prices explained by bond yields, are respectively given by 18.43% and 34.83% for linear and non-linear regressions12. Similarly in spirit to the work of Collin Dufresne and Goldstein (2002b), results of these regressions suggest the existence of factors driving option dynamics with sources of uncertainty independent of the underlying market. In fact, since Vegas13 of at-the-money options are extremely high, the calls used on the regressions above are mainly subject to volatility-risk14. It looks fair then to conclude that at least a substantial part of the variability of call prices unexplained by interest rates is due to the existence of extra

11To avoid multicolinearity problems we do not use the maturities 42, 189 and 378 days. We experimented with different combinations of yields not reported here but that produced similar final results on the regression analysis.

12The non-linear regression, is non-linear on the yields but can be transformed with changes of variables into a linear regression. In this sense, the R^2 of this non-linear regression is that of a corresponding transformed linear multiple regression.

13The Vega of an option represents the first derivative of an option price with respect to the volatility state variable. See Hull (1990) for an explanation of the Greek variables.

14By the put-call parity, we know that an at-the-money straddle is equivalent to an at-the-money call, and the former is a portfolio mainly exposed to volatility-risk.
factors driving volatility of interest rates15. In fact, after performing a simulation exercise based on parameters estimated using real data, we confirm that the proposed dynamic term structure model, whose incompleteness is due to the existence of USV, generates R^2’s distributions with mean values very close to the values reported above (see Section 4.3).

After observing that volatility risk cannot be completely hedged with bond portfolios in the Brazilian fixed income market, we adopt the framework presented in Casassus et al. (2005) to propose a four-factor dynamic term structure model where three factors are responsible for the cross section of bond prices and the fourth factor captures volatility of bond prices16.

3.2 Model Specification and Bond Prices

The uncertainty in the economy is characterized by a filtered probability space $(\Omega, (\mathcal{F}_t)_{t \geq 0}, \mathcal{F}, \mathbb{P})$ where $(\mathcal{F}_t)_{t \geq 0}$ is the standard filtration generated by a four-dimensional Brownian motion $W^\mathbb{P} = (W^\mathbb{P}_1, \ldots, W^\mathbb{P}_4)$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$17. We assume the existence of a pricing measure \mathbb{Q} under which discounted security prices are martingales with respect to $(\mathcal{F}_t)_{t \geq 0}$.

The model is within the class of affine models analyzed by Duffie and Kan (1996). It presents three stochastic factors, X_t, Y_t and Z_t that directly drive movements of the short term rate r_t, one stochastic factor v_t which represents the instantaneous volatility of factor X_t, and a conditionally deterministic factor θ_t which represents the time varying long-term mean of factor X_t:

$$ r_t = \phi_0 + X_t + Y_t + Z_t, \quad (4) $$

with:

$$ dX_t = \kappa(\theta_t - X_t)dt + \sqrt{v_t}dW_Q^X(t), \quad (5) $$

15Note that part of the unexplained variability of call prices might be due to other factors, like illiquidity (see Li and Zhao (2006) for a discussion).

16There is a fifth conditionally deterministic factor driving the short-rate long-term mean but not linked to any cross section instrument. Its role is to be a process auxiliary in generating USV constraints.

17See Duffie (2001) for details and formal definitions.
\[
\frac{dY_t}{dZ_t} = -\begin{bmatrix} \eta_Y & 0 \\ 0 & \eta_Z \end{bmatrix} \begin{bmatrix} Y_t \\ Z_t \end{bmatrix} dt + \begin{bmatrix} \sigma_Y & \rho_{YZ} \\ \rho_{YZ} & \sigma_Z \end{bmatrix} \begin{bmatrix} dW^Q_Y(t) \\ dW^Q_Z(t) \end{bmatrix}
\]

\[
= \eta Y_t dt + \sigma dW^Q_{Y,Z}(t)
\]

(6)

\[
d\theta_t = (\gamma - 2\kappa\theta_t + \frac{v_t}{\kappa})dt
\]

and

(7)

\[
dv_t = (\alpha - \beta v_t)dt + \delta \sqrt{v_t}dW^Q_v(t);
\]

(8)

where \(W^Q_X, W^Q_Y, W^Q_Z\) and \(W^Q_v\) are independent brownian motions,

\[
dYZ_t = \begin{bmatrix} dY_t \\ dZ_t \end{bmatrix} \quad \text{and} \quad dW^Q_{Y,Z}(t) = \begin{bmatrix} dW^Q_Y(t) \\ dW^Q_Z(t) \end{bmatrix}.
\]

Volatility \(v_t\) follows a CIR process. By the independence assumption, if we condition on the path of volatility we have \(\theta_t\) a deterministic function and the short rate would follow a three-factor extended Gaussian process with time-varying long term mean \(\theta_t\).

The assumption of independence among the sources of uncertainty represented by the brownian motions at first glance seems restrictive. Nevertheless, some empirical studies (Ball and Torous (1999) and Heidari and Wu (2003)) find that innovations in interest rate levels are almost uncorrelated with innovations in the volatility of interest rates. We verify the validity of this assumption on the Brazilian fixed income market, by calculating the correlation between variations on the ID short-term rate and the volatility of the ID short-term rate variations estimated via a GARCH(1,1) scheme. The small absolute value of 1.5% for this correlation suggests that the independence assumption is acceptable in this context. In any case, it should be clear that the model could be extended to deal with correlation among the brownian motions \(W^Q_Y, W^Q_Z\) and \(W^Q_v\) or between \(W^Q_X\) and \(W^Q_v\) with no additional computational costs for bond pricing (see Casassus et al. (2005))\footnote{When there is correlation between \(r\) and \(v\), there is an increase in the cost of inverting state variables from option prices, because the conditioning argument of Hull and White (1987) is invalid. However, we could still adopt Laplace/Fourier transform methods (Chacko and Das (2002)) combined with fast inversion of the Laplace Transform (Abate and Whitt (1995)) to efficiently invert the state variable \(v\).}.
Specification of a single factor driving the short-term rate volatility is another questionable feature. Although Andersen and Andreasen (2001) argue that only one factor can effectively capture the price dynamics of Bermudan swaptions, both Joslin (2006) and Andersen and Benzoni (2005) suggest the use of multiple factors driving volatility. In addition, Heidari and Wu (2003) show that three additional factors beyond level, slope and curvature are necessary to completely characterize swaption implied volatility surfaces. However, apart from their controversies, all these works agree on the existence of a main volatility factor describing about 80% of the dynamics of interest rates volatilities in U.S. fixed income markets. Favoring efficiency in the estimation process, since one volatility factor will capture most of the volatility dynamics and that it significantly simplifies the calculation of option prices, we adopt one volatility factor in our model. Our model is very similar to the one proposed by Collin Dufresne et al. (2005), which has been successfully applied to price U.S. swaps. Their four-factor USV term structure model simultaneously captures the cross section and short-rate volatility dynamics of the U.S swaps market.

It directly follows from Duffie and Kan (1996) and Casassus et al. (2005), that the time t price of a zero coupon bond maturing at time T is given by ($\tau = T - t$):

$$ P(t, T) = e^{A(t,T)+B_X(\tau)X_t+B_Y(\tau)Y_t+B_Z(\tau)Z_t+B_\theta(\tau)\theta_t}, \quad (9) $$

where

$$ B_X(\tau) = -\frac{1 - e^{-\kappa \tau}}{\kappa}, \quad (10) $$

$$ B_Y(\tau) = -\frac{1 - e^{-\eta \tau}}{\eta}, \quad (11) $$

$$ B_Z(\tau) = -\frac{1 - e^{-\etaz \tau}}{\eta}, \quad (12) $$

$$ B_\theta(\tau) = -\frac{(1 - e^{-\kappa \tau})^2}{2\kappa}, \quad (13) $$

$$ A(t, T) = -\phi_0 \tau + A_X(t, T) + A_YZ(t, T), \quad (14) $$

$$ A_X(t, T) = -\frac{\gamma}{2\kappa} \left[\tau + \frac{1}{\kappa} \left(-\frac{3}{2} + 2e^{-\kappa \tau} - \frac{e^{-2\kappa \tau}}{2} \right) \right], \quad (15) $$
and
\[
A_{YZ}(t,T) = \frac{\sigma_Y^2}{2\eta_Y^2} (B_Y(\tau) + \tau) - \frac{\sigma_Y^2}{4\eta_Y} B_Y(\tau)^2 + \rho_{YZ}^2 + \frac{\sigma_Z^2}{2\eta_Z^2} (B_Z(\tau) + \tau) - \frac{\rho_{YZ}^2 + \sigma_Z^2}{4\eta_Z} B_Z(\tau)^2. \tag{16}
\]

Note that the price of the bond does not depend directly on the volatility variable \(v\), creating an incomplete market where options are actually needed to hedge against the uncertainty of the volatility, not covered by the cross section of bond prices.

In order to relate the brownian motions under the risk neutral measure to the brownian motions under the objective measure, we have to define a parametric form for the risk premiums charged by investors. We work with a very general extended affine market price of risk (Cheridito et al. (2007)):
\[
dW^Q_X(t) = dW^P_X(t) + \frac{1}{\sqrt{v_t}} (\lambda_0^X + \lambda_1^X X_t) \, dt \tag{19}
\]
\[
dW^Q_{YZ}(t) = dW^P_{YZ}(t) + \sigma^{-1} (\lambda_0^{YZ} + \lambda_1^{YZ} Y Z_t) \, dt, \tag{20}
\]
and
\[
dW^Q_v(t) = dW^P_v(t) + \frac{1}{\delta \sqrt{v_t}} (\lambda_0^v + \lambda_1^v v_t) \, dt, \tag{21}
\]
where in Equation (20) we use the short notation:
\[
\lambda_0^{YZ} = \begin{bmatrix} \lambda_0^Y \\ \lambda_0^Z \end{bmatrix} \quad \text{and} \quad \lambda_1^{YZ} = \begin{bmatrix} \lambda_1^Y \\ \lambda_1^{YZ} \\ \lambda_1^Z \end{bmatrix}.
\]

Then, under the objective probability measure the dynamics of \((X_t, Y_t, Z_t, v_t)\) are
\[
dX_t = \tilde{\kappa} \left(\tilde{\theta}_t - X_t \right) \, dt + \sqrt{v_t} dW^P_X(t) \tag{22}
\]
\[
dY Z_t = \tilde{\eta} (\tilde{\mu} - Y Z_t) \, dt + \sigma dW^P_{YZ}(t) \tag{23}
\]
\[
dv_t = (\tilde{\alpha} - \tilde{\beta} v_t) \, dt + \delta \sqrt{v_t} dZ^P_v, \tag{24}
\]
where \(\tilde{\eta} = \eta - \lambda_1^{YZ}, \tilde{\mu} = \tilde{\eta}^{-1} \lambda_0^{YZ}, \tilde{\kappa} = \kappa - \lambda_1^X, \tilde{\theta}_t = \frac{\kappa \theta_t + \lambda_0^X}{\tilde{\kappa}}, \tilde{\alpha} = \alpha + \lambda_0^v, \tilde{\beta} = \beta - \lambda_1^v.\)
The risk neutral bond price dynamics is

\[
\frac{dP(t, T)}{P(t, T)} = r_t dt + B_X(\tau) \sqrt{v_t} dW^Q_X + [B_Y(\tau) B_Z(\tau)] \sigma dW^Q_{YZ},
\]

(25)

Once more we can see that bond prices, on a short-term metric, are insensitive to volatility-risk and hence cannot be used to hedge it. Under the objective measure, the bond price dynamics is

\[
\frac{dP(t, T)}{P(t, T)} = (r_t + z^i(t, T)) dt + B_X(\tau) \sqrt{v_t} dW^P_X + [B_Y(\tau) B_Z(\tau)] \sigma dW^P_{YZ},
\]

(26)

where the instantaneous expected excess return is given by

\[
z^i(t, T) = B_X(\tau)(\lambda^X_0 + \lambda^X_1 X_t) + [B_Y(\tau) B_Z(\tau)] (\lambda^YZ_0 + \lambda^YZ_1 Y_t Z_t).
\]

(27)

3.3 Model Implied Conditional Volatility, and Volatility Risk Premium

From Equation (9) we know that the model implied yield at \(t\) for a time to maturity \(\tau\) is given by

\[
R(t, \tau) = -\frac{A(\tau)}{\tau} - \frac{B_X(\tau)}{\tau} X_t - \frac{B_Y(\tau)}{\tau} Y_t - \frac{B_Z(\tau)}{\tau} Z_t - \frac{B_{\theta}(\tau)}{\tau} \theta_t.
\]

(28)

Note that it is an interesting empirical exercise to compare model-implied volatilities (or variances) to volatilities (variances) estimated via GARCH or EGARCH procedures, considered benchmark volatilities on previous empirical studies (see Dai and Singleton (2003) or Collin Dufresne et al. (2005)). The model implied variance for a \(\tau\)-maturity yield at \(t + s\), conditioned on the information available until \(t\) is

\[
\text{var}_t(R(t + s, \tau)) = \bar{B}(\tau)' \text{var}_t(E_{t+s}) \bar{B}(\tau),
\]

(29)

where \(E_t = (X_t, Y_t, Z_t, \theta_t, v_t)\) is the vector of state variables at time \(t\),

\[
\bar{B}(\tau) = - \begin{bmatrix}
\frac{B_X(\tau)}{\tau} & \frac{B_Y(\tau)}{\tau} & \frac{B_Z(\tau)}{\tau} & \frac{B_{\theta}(\tau)}{\tau} & 0
\end{bmatrix}.'
and the variance of the state variables is taken under the objective probability measure \(P \). Appendix B presents a simple algorithm to calculate the covariance matrix \(\text{var}_t(E_{t+s}) \).

We know that within the class of affine models, the conditional yield variance is an affine function of the state variables, \(\text{var}_t(R(t+s,\tau)) = b_0 + b_1 E_t \), where \(b_0 \) and \(b_1 \) are functions of \(\overline{B}(\tau) \). In our model, vector \(b_1 \) has the first four elements equal to zero, which leads the dynamics of \(\text{var}_t(R(t+s,\tau)) \) to be \(\text{dvar}_t(R(t+s,\tau)) = b_{1,5} \text{dv}_t \). As \(\overline{B}(\tau) \) brings direct information about the average behavior of the cross section of bond yields, volatility, and consequently volatility risk premium, are mixed functions of the average behavior of the cross section of yields and the time series of \(v_t \), which presents a direct correspondence to the time series of option prices in our model. In order to better illustrate this point, we consider the limiting case where \(s \) is close to zero, informally equivalent to an infinitesimal time \(dt \). In this case, conditional volatility is given by

\[
\frac{\text{var}_t(R(t+dt,\tau))}{dt} = \left(\frac{B_Y(\tau)}{\tau} \right)^2 (\sigma_y^2 + \rhoYZ) + \left(\frac{B_Z(\tau)}{\tau} \right)^2 (\sigma_z^2 + \rhoYZ) + \left(\frac{B_X(\tau)}{\tau} \right)^2 v_t = \tilde{b}_0(\overline{B}(\tau)) + \tilde{b}_1(\overline{B}(\tau))v_t
\]

(30)

Volatility risk premium, the difference between objective and risk-neutral conditional expectations of volatility, in this case would be given by:

\[
\text{Vol premium}_t(\tau) = -\frac{\tilde{b}_1(\overline{B}(\tau))}{2\sqrt{\text{var}_t(R(t+dt,\tau))}}(\lambda_0^v + \lambda_1^v v_t)
\]

(31)

precisely a mixed function of \(\overline{B}(\tau) \) and \(v_t \) as previously stated. Note from Equation (30) that as \(\tilde{b}_1(\overline{B}(\tau)) > 0 \), the signs of \(\lambda_0^v \) and \(\lambda_1^v \) determine the sign and behavior of volatility risk premium for all maturities. If both \(\lambda^v \)'s are positive (negative), then volatility risk premium is negative (positive) for the whole sample. If \(\lambda^v \)'s present different signs, volatility risk premium can switch signs across sample. In any case, volatility risk premium has the important characteristic of being a time-varying process, unless both \(\lambda^v \)'s are null, in case it also becomes null.

3.4 Pricing IDI Options

At time \(t \), an IDI call with time of maturity \(T \), and strike \(K \) can be priced by the same technique applied by Hull and White (1987): By the independence
of the brownian motions W^Q_X, W^Q_Y, W^Q_Z and W^Q_v, conditioning on the volatility path does not affect the distribution of W^Q_X, W^Q_Y and W^Q_Z. Then we can use the law of iterated expectations to obtain the price as a double expectation. The inner expectation is going to present a Black and Scholes type of analytical formula, while the external expectation integrates the volatility distribution, essentially a non-central χ^2 distribution in our model.

In what follows, we present a series of lemmas helpful when obtaining the price of an IDI option as a function of the state variables in our model.

Let $\mathcal{F}_{t,T}^v$ be the σ-field that represents the information on the volatility process between times t and T, i.e., $\mathcal{F}_{t,T}^v = \sigma \{v_u : u \in [t,T]\}$. Denote by $\mathcal{G}_{t,T}$ the σ-field generated by the union of the σ-fields $\mathcal{F}_{t,T}^v$ and \mathcal{F}_t, i.e., $\mathcal{G}_{t,T} = \sigma \{\mathcal{F}_t \cup \mathcal{F}_{t,T}^v\}$. The following lemma provides information about the distribution of the integral of the short-term rate, a fundamental variable when pricing interest rates asian options.

Lemma 1 Let $H(t,T) = \int_t^T r_u du$, where r_t dynamics appears in Equation (4). Then conditional on $\mathcal{G}_{t,T}$, $H(t,T)$ is normally distributed with mean $M(t,T)$ and variance $V(t,T)$ given by:

$$M(t,T) = \phi_0 \tau + M_X(t,T) + MYZ(t,T)$$

and

$$V(t,T) = V_X(t,T) + VYZ(t,T),$$

with

$$M_X(t,T) = -B_X(\tau)X_t + \int_t^T \left(1 - e^{-\kappa(T-u)}\right) \theta_u du,$$ \hspace{1cm} (32)

$$V_X(t,T) = \frac{1}{\kappa^2} \int_t^T \left(1 - e^{-\kappa(T-u)}\right)^2 v_u du,$$ \hspace{1cm} (33)

$$MYZ(t,T) = -B_Y(\tau)Y_t - B_Z(\tau)Z_t \quad \text{and}$$ \hspace{1cm} (34)

$$VYZ(t,T) = 2AYZ(t,T),$$ \hspace{1cm} (35)

where $AYZ(t,T)$ is given by Equation (16), $v_u : u \in [t,T]$ is the path of the volatility conditional on $\mathcal{G}_{t,T}$ and

$$\theta_u = e^{-2\kappa(u-t)} \left(\theta_t + \int_t^u e^{-2\kappa(t-s)} \left(\gamma + \frac{v_s}{\kappa}\right) ds\right), \quad t \leq u \leq T.$$ \hspace{1cm} (36)
Lemma 2 The time t price of a zero coupon bond maturing a time T can be written as
\[P(t, T) = e^{-\phi_0 T - M(t, T) + \frac{V(t, T)}{2}}, \]
that is,
\[
\int_t^T (1 - e^{-\kappa(T-u)}) \theta_u du = \frac{V_X(t, T)}{2} - \frac{A_X(\tau)}{2} + B_\theta(\tau) \theta_t. \tag{37}
\]

Lemma 3 The time t price of a call option on the IDI with time to maturity T and strike price K is
\[c(t, T) = E^Q [f(IDI_t, K, t, T, V(t, T)) | \mathcal{F}_t], \tag{38} \]
where
\[
f(IDI_t, K, t, T, V(t, T)) = IDI_t \Phi(d) - KP(t, T) \Phi\left(d - \sqrt{V(t, T)}\right),
\]
\[
d = \frac{\log \frac{IDI_t}{K} - \log P(t, T) + V(t, T)/2}{\sqrt{V(t, T)}}, \tag{39}
\]
and $\Phi(\cdot)$ is the standard normal cumulative distribution function.

If the call option is at-the-money (i.e., $IDI_t = KP(t, T)$) Equation (38) simplifies to
\[c(t, T) = E^Q \left[IDI_t \left(2\Phi\left(\frac{\sqrt{V(t, T)}}{2} \right) - 1 \right) \bigg| \mathcal{F}_t \right]. \tag{40} \]

Using the fact that an at-the-money option is almost a linear function of Black’s volatility (see Han (2007))\footnote{In fact, with the parameters estimated in Section 4, the error due to this approximation is smaller than 1% of the average at-the-money option price.}, we obtain
\[c(t, T) = IDI_t \left[2\Phi\left(\frac{\sqrt{E^Q (V(t, T)| \mathcal{F}_t)}}{2} \right) - 1 \right]. \tag{41} \]
Lemma 4

\[E^Q(V(t, T)|\mathcal{F}_t) = V_{YZ}(t, T) + \frac{v_t}{\kappa^2} c_1(t, T) + \frac{\alpha}{\beta \kappa^2} c_2(t, T), \]

where:

- \(c_1(t, T) = \frac{1}{\beta} e^{-\beta \tau} - \frac{2 e^{-\beta \tau} - e^{-\kappa \tau}}{\kappa - \beta} + \frac{e^{-\beta \tau} - e^{-2 \kappa \tau}}{2 \kappa - \beta} \) and

- \(c_2(t, T) = \frac{1}{\kappa} \left(-\frac{3}{2} + 2 e^{-\kappa \tau} - \frac{e^{-2 \kappa \tau}}{2} \right) + \tau - c_1(t, T) \).

- \(V_{YZ}(t, T) \) is given by Equation (35).

Note that Lemma 3 completely characterizes the price of an IDI option as a function of the state variables \((X_t, Y_t, Z_t, \theta_t, v_t)\) while Lemma 4 combined with Equation (41) gives an approximation to the option price which depends only on the stochastic volatility variable \(v_t\), as long as the option is at-the-money.

On empirical applications, the approximation proves to be very useful because stochastic volatility can be explicitly extracted from option prices, and the dynamic model can be optimized via a Quasi-Maximum Likelihood (QML) procedure, allowing the identification and posterior analysis of volatility risk premium. On the other hand, if we were interested in inversion of variable \(v_t\) from in- or out-of-the-money option prices, we could adopt a Taylor series expansion of the option price in Equation (38) combined to analytical results obtained for moments of the integrated volatility in affine models (see Garcia et al. (2006) and Bollerslev and Zhou (2002)) to again obtain approximations for the option prices as analytical functions of the state variables.

One last interesting point regards the validity of this approximation under an affine model not imposing the USV restriction. In this case, the approximation would still be valid whenever the stochastic volatility variable \(v\) is driven by one independent brownian motion \((W_v^Q)\). The bond price would be the product of the price provided on lemma 2 with the price of a bond under a CIR model where the short-term rate follows the dynamics of \(v\). The at-the-money approximated option price would be unaltered.

Note that if the issue is only pricing options as opposed to inverting state variables from option prices, the method proposed in Chacko and Das (2002) is appropriate for general affine models.
3.5 Quasi-Maximum Likelihood Estimation

Let \(rb_t(\tau) \) represent the time \(t \) yield of an ID reference bond with time to maturity \(\tau \) years, and \(cs_t \) be the time \(t \) price of the at-the-money call option with time to maturity \(\frac{95}{252} \) years. We observe \(rb_t(\frac{21}{252}), rb_t(\frac{42}{252}), rb_t(\frac{63}{252}), rb_t(\frac{126}{252}), rb_t(\frac{189}{252}), rb_t(1), \text{ and } rb_t(\frac{378}{252}), \) for \(t = 1, \ldots, N \). Denote by \(\text{IDI}^{\text{spot}} \in \mathbb{R}^N \) the vector of spot IDI. The parameter vector is given by \(\phi = (\phi_0, \kappa, \gamma, \alpha, \beta, \eta_Y, \eta_Z, \sigma_Y, \sigma_Z, \rho_{YZ}, \lambda_0^X, \lambda_1^X, \lambda_0^Y, \lambda_1^Y, \lambda_0^Z, \lambda_1^Z, \lambda_1^{YZ}, \lambda_1^v, \lambda_1^v) \).

The state vector is inverted from observed data (yields and option prices) by following a procedure similar to Chen and Scott (1993). Four instruments are chosen to be priced without error: The at-the-money IDI call option with maturity of \(\frac{95}{252} \) years, and the yields of reference ID bonds with maturities \(\frac{21}{252}, \frac{63}{252} \) and \(1 \) year.

Reference ID bonds with maturities \(\frac{42}{252}, \frac{126}{252}, \frac{189}{252}, \text{ and } \frac{378}{252} \) years are assumed to be priced with Gaussian errors \(u_t = [u_t(\frac{42}{252}), \ldots, u_t(\frac{378}{252})]^\prime \) uncorrelated on the time scale.

The log-likelihood function is written by

\[
L(\phi, \text{rb, cs, IDI}^{\text{spot}}) = \sum_{t=2}^N \log p ((X_t, Y_t, Z_t, \theta_t, v_t) | (X_{t-1}, Y_{t-1}, Z_{t-1}, \theta_{t-1}, v_{t-1}); \phi) - \\
- \sum_{t=2}^N \log |Jac_t| - \frac{N-1}{2} \log |\Omega| - \frac{1}{2} \sum_{t=2}^N u_t^\prime \Omega^{-1} u_t,
\]

where:

1. \(Jac_t \) is the Jacobian matrix of the transformation defined by Equations (28) and (41), i.e.

\[
Jac_t = \begin{bmatrix}
-B_X(0.083, \phi) & -B_Y(0.083, \phi) & -B_Z(0.083, \phi) & 0 \\
-B_X(0.25, \phi) & -B_Y(0.25, \phi) & -B_Z(0.25, \phi) & 0 \\
-B_X(1, \phi) & -B_Y(1, \phi) & -B_Z(1, \phi) & 0 \\
0 & 0 & 0 & g\Psi \left(\frac{\sqrt{v}}{2}, 0, 1 \right)
\end{bmatrix},
\]

20
with

- \(g = \frac{c_1(95/252, \phi) \text{IDI}_{\text{spot}}}{2 \kappa^2 \sqrt{\nu}}, \)
- \(\nu = V_X(t, T) + \frac{\nu c_1(95/252, \phi)}{\kappa^2} + \frac{\alpha c_2(95/252, \phi)}{\beta \kappa^2}, \)
- \(c_1 \) and \(c_2 \) are given by Lemma 4, and
- \(\Psi \) is the normal probability density function.

2. \(p((X_t, Y_t, Z_t, \theta_t, v_t)| (X_{t-1}, Y_{t-1}, Z_{t-1}, \theta_{t-1}, v_{t-1}); \phi) \) is the transition probability from \((X_{t-1}, Y_{t-1}, Z_{t-1}, \theta_{t-1}, v_{t-1}) \) to \((X_t, Y_t, Z_t, \theta_t, v_t) \), under the objective measure \(\mathbb{P} \). Under the QML procedure it is approximated by a Gaussian distribution with known closed-form conditional mean and variance because the model is affine (see Appendices A and B in Duffee (2002)).

3. \(\Omega \) is the covariance matrix for \(u_t \), estimated using the sample covariance matrix of the \(u_t \)’s implied by the extracted state vector for each point in time.

Our final objective is to estimate the vector of parameters \(\phi \) maximizing function \(L(\phi, rb, cs, \text{IDI}_{\text{spot}}) \). To avoid possible local minima we use several different starting values and search for the optimal point by making use of Nelder-Mead Simplex / Gradient-based optimization methods.

4 Empirical Results

4.1 Parameters and Cross Section Pricing

The model was estimated using Quasi Maximum Likelihood, inverting the state vector from bond yields with maturities 21, 63, and 252 days, and one at-the-money IDI option, with time to maturity of 95 days. Table 1 presents parameter values and asymptotic standard errors\(^{21}\).

The small value of \(\kappa \) indicates that \(X \), the only factor with stochastic volatility, is the term structure level factor\(^{22}\). The large value of \(\eta_Y \) shows

\(^{21}\) Obtained by the BHHH method (Davidson and MacKinnon (1993)). Parameters in bold text are significant at 95\% confidence level, and parameters not shown in the table are zero valued.

that Y, the most volatile Gaussian factor, is a fast mean reverting factor. Figure 1 presents the time series of v, where we can observe different spikes, a pattern compatible with a fast mean reverting variable (high β). In addition, note the similar shape of v and black implied volatilities of the option used in the estimation process (compare Figures 1 and 2)23.

Figure 3 presents the evolution of the Brazilian term structure of interest rates from January, 2003 to December, 2005. It presents a descending trajectory coming from interest rates higher than 25\% in 2003 to lower values around 15\% later in the sample. Figure 4 displays the observed and model implied term structures averaged across the sample. Note that the model approximately captures the average term structure, with a worse performance for the longest-maturity (1.5 years), whose average error is of 0.25\%. Mean absolute errors for maturities (42, 126, 189, 378 days) priced with error are respectively 0.04\%, 0.11\%, 0.10\%, and 0.33\%. Standard deviations directly obtained from the time series of the errors are 0.06\%, 0.12\%, 0.11\% and 0.35\%. Those errors are comparable to results previously obtained in papers presenting dynamic term structure models estimated based on only bonds data24. Despite presenting a USV variable (v) not present in bond pricing formulas, the model is successful when pricing bonds because three factors (X,Y,Z) capturing the fundamental movements of the term structure (Litterman and Scheinkman (1991)) still appear within the cross section of bond prices25.

4.2 Bond Risk Premium and Volatility Risk Premium

Figure 5 presents the one-year bond yield model implied historical volatility under the objective measure (dotted line), model implied risk neutral volatility (dashed line) and an EGARCH(1,1) volatility (solid line) estimated on daily variations of the same yield26. EGARCH volatility and model implied historical volatility appear on the same level, with a positive correlation coef-

23This is due to the approximation of an at-the-money option price as a linear function of Black’s implied volatility.

24See Duffie and Singleton (1997) for an implementation with U.S. data, and Almeida (2004) for an implementation with Brazilian data.

25\(\theta\) is extracted in a way to match USV constraints and is not inverted from the cross section of bonds, nor from option prices.

26We arbitrarily fixed the maturity at one year but the analysis could have been pursued for any other maturity.
icient of 45%27. Pan (2002) argues that volatility risk premium is crucial to relate option implied volatilities to observed volatilities in the spot market. Taking this observation into account, the fact that model implied volatility perfectly captures the level of historical volatilities would be a good indication that volatility risk premium is correctly estimated and is important here to reconcile bonds and options dynamics.

Observing Figure 5 we note that the risk neutral volatility is much higher than the historical volatility, compatible with a negative volatility risk premium. Indeed, λ_v^0 and λ_v^1 are positive and statistically significant, what according to Section 3.3, indicates that volatility risk is negatively priced, consistent with the idea that volatility changes would be negatively correlated with aggregate consumption growth, in an equivalent economy generated with consumption data (see Guo (1998)). Figure 7 presents 1-year bond and volatility risk premiums. For the bond, risk premium can be interpreted as minus the covariance between its return and the Stochastic Discount Factor (SDF) generated in our economy. For the volatility, risk premium has a similar interpretation but the covariance that should be considered is the one between volatility and the SDF. We directly observe that the covariance between volatility and the SDF is positive in the whole sample, while the covariance between bond returns and the SDF alternates between negative (mostly in the beginning and center of the sample) and positive periods. In periods where bond risk premium is negative, volatility premiums have values closer to zero. One possible interpretation for these results is that investors might be using options as insurance instruments, useful to protect against periods of low aggregate consumption (or consumption growth). As previously stated in Section 1, similar negative volatility risk premium was observed in many studies applied to equities and currency markets, where joint datasets of underlying/option data were adopted. One last interesting variable to observe is the correlation between volatility risk premium and the EGARCH historical volatility (-36.63%). This significant correlation is aligned, from a qualitative viewpoint, to Chernov’s (2006) suggestions that correctly capturing volatility risk premium allows for an efficient use of option implied volatilities in predicting future volatility.

Figure 6 presents the 1-year model implied bond risk premium and the

27This result is comparable to that in Jacob and Karoui (2006) for short-term maturities, who obtained positive correlations of the order of 60% between EGARCH and model implied volatilities, for three-factor affine non-USV models.
Global Emerging Markets Bond Index (EMBI-G) a J.P. Morgan index which included 27 emerging market countries in 1999 (see Cavanagh and Long (1999)), and is a established benchmark for emerging markets debt. Note that although this index was not adopted in the estimation process, and that it is related to global debt rather than to local debt, the Brazilian local term structure/options data used to estimate the dynamic model were enough to produce a risk premium strongly correlated to the EMBI-G, with a positive correlation coefficient of 89%. In addition, the correlation between the 1-year bond risk premium and the 1-year bond volatility risk premium is of -32.5%, indicating that volatility premium is an important portion of bond premium. This result is in line with the findings of Bollerslev and Zhou (2006) for the U.S. equity market, who extract for the S&P 500 index, variance premium from the difference between implied and realized variance, and show that it explains more than 15% of excess returns on the market portfolio over the 1990-2005 period.

4.3 Does the Model Reproduce the Regression Results that Motivated USV?

In this section, we want to identify if simulated data from the estimated model would generate results compatible with those obtained when we ran the regressions of Section 3.1, of at-the-money call option prices on a truncated power series of the underlying term structure of bonds.

The simulation exercise consisted in generating 1000 paths for the economy described by our model (with parameters appearing in Table 1) and running the regressions of Section 3.1 to obtain a distribution for the R^2's. Figure 5 presents histograms of the R^2's obtained for the linear and non-linear regressions. The R^2 mean value for the linear regression is 27.66%, while for the non-linear regression it is 40.73%. 95% confidence intervals for those R^2's coming from the simulation paths are [3.25%, 61.13%] and [16.69%, 68.80%]. The R^2 values obtained with real data in Section 3.1, were respectively 18.43% and 34.83%, indicating that the dynamics generated by our model produces bond yields and asian option call prices compatible with the original data, and with the regressions that motivated the adoption of an USV model.
5 Conclusion

Asian options are known to be useful cheaper alternatives (to vanilla derivatives) to hedge interest rate risk. Exploring this fact, and interested in the risk premium structure of interest rate volatility, we study how informative a joint dataset of bonds and fixed income asian options is with respect to the way investors perceive and price risk. We provide closed-form formulas for at-the-money asian option prices, which allow for a pioneering implementation of a dynamic term structure model using joint bond and asian options data. Our formulas allows us to avoid the more computationally intensive Fourier/Laplace transform inversion methods (see Duffie at all (2000), Bakshi and Madan (2000), or Chacko and Das (2002)), bringing efficiency to the optimization problem. Our model generates an incomplete market were bonds solely can not hedge volatility risk (Unspanned Stochastic Volatility, Collin Dufresne and Goldstein (2002b)). Volatility, and volatility risk premium are flexible time-varying processes identified through a combination of the average cross section of bonds and the time series behavior of option prices.

Based on a unique dataset of at-the-money Brazilian interest rate asian options, in our model, bond implied risk premiums strongly correlate (89%) with an internationally accepted measure of Emerging markets risk premium (EMBI-G). Model implied volatility perfectly captures the level of an EGARCH historical volatility benchmark, and positively correlates (45%) with this measure. A negative value for the bond volatility risk premium is obtained implying that risk-averse investors are accepting to receive low (possibly negative) returns to hold the options (see Figure 5), and that options indeed work as insurance instruments to hedge bond risk. This result is in line with previous work on equity and currency markets (Chernov and Ghysels (2000); Guo (1998)), and also with more recent analysis of volatility risk premium in swaptions markets (Fornari (2007); Joslin (2007)). In addition, volatility risk premium explains 32.5% of bond premium, indicating that fixed income options should indeed be adopted (jointly with bonds) to identify how investors price risk in bond markets. A simulation exercise further confirms that the model implied dynamics correctly captures the portion of information carried in option prices that is spanned by bond prices, observed in real data.

It should be noticed that the whole estimation process was performed assuming that there were no additional factors (like illiquidity factors) seg-
menting the underlying and option markets, and also noticed that only at-the-money options were used to extract the latent factors time series. A possible alternative more robust model could consider incorporating jumps such as in Chacko and Das (2002) or Jiang and Yan (2006), with a richer set of options in the estimation, or incorporating illiquidity shocks in the spirit of Liu and Yong (2005).
Appendix A - Proofs of Lemmas

Proof of Lemma 1

By definition of r_t we have

$$H(t, T) = \phi_0 T + \int_t^T X_u du + \int_t^T (Y_u + Z_u) du.$$

From Brigo and Mercurio (2001) we know that $\int_t^T (Y_u + Z_u) du$ conditioned on \mathcal{F}_t is normal with mean and variance given by Equations 34 and 35 respectively.

Conditioning on the volatility path or equivalently, making v_t a deterministic function of time, it is not hard to verify by Ito’s rule that for each $t < T$ the unique (strong) solution of (5) is

$$X_T = \Xi(T) \cdot \left[X_t + \kappa \int_t^T \Xi^{-1}(s) \theta_s ds + \int_t^T \Xi^{-1}(s) \sqrt{v_s} ds \right],$$

where $\Xi(x) = e^{-\kappa(x-t)}$. Stochastic integration by parts implies that

$$\int_t^T X_u du = \int_t^T (T - u) dX_u + (T - t) X_t. \quad (42)$$

By definition of process X_t, the integral in the right-hand side can be written as

$$\int_t^T (T - u) dX_u = \kappa \int_t^T (T - u) (\theta_u - X_u) du + \int_t^T (T - u) \sqrt{v_u} dW_X(u).$$

But

$$\int_t^T (T - u) X_u du =$$

$$= \kappa \int_t^T (T - u) \Xi(u) \int_t^u \Xi^{-1}(s) \theta_s ds du + X_t \int_t^T (T - u) \Xi(u) du +$$

$$+ \int_t^T (T - u) \Xi(u) \int_t^u \Xi^{-1}(s) \sqrt{v_s} dW_X(s) du.$$

28 We refer to Karatzas and Shreve (1991) for more details about solutions of stochastic differential equations.

29 In this appendix we drop the superscript \mathcal{Q} and denote the brownian motion $W^\mathcal{Q}$ simply by W.

27
Calculating separately the last two integrals, we have
\[\int_t^T (T - u) \Xi(u) du = \frac{T - t}{\kappa} + \frac{e^{-\kappa(T-t)}}{\kappa^2} - 1 \]
and, again by integration by parts,
\[\int_t^T (T - u) \Xi(u) \int_t^u \Xi^{-1}(s) \sqrt{v_s} dW_X(s) du = \]
\[= \int_t^T \left(\int_t^u \Xi^{-1}(s) \sqrt{v_s} dW_X(s) \right) du \left(\int_t^u (T - s) \Xi(s) ds \right) = \]
\[= \left(\int_t^T \Xi^{-1}(s) \sqrt{v_s} dW_X(s) \right) \left(\int_t^T (T - s) \Xi(s) ds \right) - \]
\[- \int_t^T \left(\int_t^u (T - s) \Xi(s) ds \right) \Xi^{-1}(u) \sqrt{v_u} dW_X(u) = \]
\[= \int_t^T \left(\int_t^T (T - s) \Xi(s) ds \right) \Xi^{-1}(u) \sqrt{v_u} dW_X(u) \]

Substituting the previous terms in Equation 42 and after some algebraic manipulation, we obtain
\[\int_t^T X_u du = \kappa \int_t^T (T - u) \theta_u du - \kappa^2 I(t, T) + \frac{1 - e^{-\kappa(T-t)}}{\kappa} X_t + \]
\[+ \int_t^T \left(T - u - \kappa \int_t^T (T - s) e^{-\kappa(s-u)} ds \right) \sqrt{v_u} dW_X(u), \]
where \(I(t, T) = \int_t^T (T - u) \int_t^u e^{-\kappa(u-s)} d\theta_s du. \) Then
\[M_X(t, T) = \kappa \int_t^T (T - u) \theta_u du - \kappa^2 I(t, T) + \frac{1 - e^{-\kappa(T-t)}}{\kappa} X_t, \] (43)

Using Ito’s isometry we have
\[V_X(t, T) = \frac{1}{\kappa^2} \int_t^T \left(1 - e^{-\kappa(T-u)} \right)^2 v_u du. \]
Now, changing the order of integration in $I(t, T)$ we obtain

$$ I(t, T) = \int_t^T \frac{T - u}{\kappa} \theta_u du + \int_t^T \frac{e^{-\kappa(T-u)} - 1}{\kappa^2} \theta_u du. $$

Substituting this expression in Equation 43 we conclude the proof. \qed

Proof of Lemma 2

By Equation 36 we have

$$ \int_t^T \left(1 - e^{-\kappa(T-u)}\right) \theta_u du = $$

$$ \int_t^T e^{-2\kappa(u-t)} \left(\theta_t + \int_t^u e^{-2\kappa(t-s)} \left(\gamma + \frac{v_s}{\kappa}\right) ds\right) \left(1 - e^{-\kappa(T-u)}\right) du = $$

$$ \theta_t e^{2\kappa t} \int_t^T e^{-2\kappa u} \left(1 - e^{-\kappa(T-u)}\right) du + $$

$$ \int_t^T \int_t^T e^{-2\kappa u} \left(1 - e^{-\kappa(T-u)}\right) e^{2\kappa s} \left(\gamma + \frac{v_s}{\kappa}\right) du ds = $$

$$ \frac{\theta_t}{2\kappa} \left(1 - e^{-\kappa(T-t)}\right)^2 + \frac{1}{2\kappa} \int_t^T \left(\gamma + \frac{v_u}{\kappa}\right) \left(1 - e^{-\kappa(T-u)}\right)^2 du = $$

$$ B_{\theta}(\tau) \theta_t - A_X(t, T) + \frac{V_X(t, T)}{2}, $$

which concludes the proof. \qed

Proof of Lemma 3

Using the law of iterated expectations we have

$$ c(t, T) = E^Q \left[\max \left(IDI_t - Ke^{-H(t,T)}, 0 \right) \bigg| \mathcal{F}_t \right] = $$

$$ E^Q \left[E^Q \left[\max \left(IDI_t - Ke^{-H(t,T)}, 0 \right) \bigg| \mathcal{G}_{t:T} \right] \bigg| \mathcal{F}_t \right]. $$
Then, the proof consists of a simple calculation of the ordinary integral

\[E^Q \left[\max \left(IDI_t - Ke^{-H}, 0 \right) \big| \mathcal{G}_t,T \right] = \]

\[c(t, T) = E^Q \left[\max \left(IDI_t - Ke^{-H}, 0 \right) \big| \mathcal{G}_t,T \right] = \]

\[= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi V(t, T)}} \max \left(IDI_t - Ke^{-h}, 0 \right) e^{-\frac{(h - M(t,T))^2}{2V(t, T)}} \text{d}h = \]

\[= \int_{\log(K/IDI_t)}^{\infty} \frac{1}{\sqrt{2\pi V(t, T)}} \left(IDI_t - Ke^{-h} \right) e^{-\frac{(h - M(t,T))^2}{2V(t, T)}} \text{d}h. \]

Making the substitution \(z = \frac{h - M(t,T)}{\sqrt{V(t, T)}} \) we have:

\[c(t, T) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} \left(IDI_t - Ke^{-z\sqrt{V(t, T)} - M(t,T)} \right) e^{-\frac{z^2}{2}} \text{d}z = \]

\[= IDT_t \int_{-\infty}^{d} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} \text{d}z - K \int_{-d}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-z\sqrt{V(t, T)} - M(t,T) - \frac{1}{2}z^2} \text{d}z = \]

\[= IDT_t \Phi(d) - Ke^{-M(t,T) + \frac{V(t, T)}{2}} \int_{-d}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2} \left(z + \sqrt{V(t, T)} \right)^2} \text{d}z. \]

where \(d \) is given by Equation 39. Making a new substitution \(w = z + \sqrt{V(t, T)} \) and using Lemma 2 results in Equation 38.

Proof of Lemma 4

\[E^Q \left(V(t, T) \big| \mathcal{F}_t \right) = \]

\[V_Y Z(t, T) + \frac{1}{\kappa^2} \int_t^T \left(1 - e^{-\kappa(T-u)} \right)^2 E^Q \left(v_u \big| \mathcal{F}_t \right) \text{d}u = \]

\[V_Y Z(t, T) + \frac{1}{\kappa^2} \int_t^T \left(1 - e^{-\kappa(T-u)} \right)^2 \left(v_t e^{-\beta(u-t)} + \frac{\alpha}{\beta} \left(1 - e^{-\beta(u-t)} \right) \right) \text{d}u, \]

where in last step we have used the property of the mean of a CIR process (see Brigo and Mercurio (2001)). Expanding the terms in the right side and calculating the ordinary integrals give the desired result. \(\square \)
Appendix B - Conditional Variance in Affine Models

Bond yields conditional variances under general affine models were provided in Almeida et al. (2006), and Jacobs and Karoui (2006). We specialize their results to the model proposed here.

The covariance matrix $\text{var}_t (E_{t+s})$ can be calculated by the following algorithm:\footnote{For more details on this computation see Fackler (2000).}

1. Let $D \in \mathbb{R}^{25 \times 5}$ be the matrix such that $D_{ij} = 1$ if $i = 5(j - 1) + j$ and 0 otherwise.

2. Consider the matrices

\[
\kappa = \begin{bmatrix}
\kappa & 0 & 0 & -\kappa & 0 \\
0 & \eta_y & 0 & 0 & 0 \\
0 & 0 & \eta_z & 0 & 0 \\
0 & 0 & 0 & 2\kappa & -1/\kappa \\
0 & 0 & 0 & 0 & \beta \\
\end{bmatrix},
\]

\[
\theta = \begin{bmatrix}
\gamma + \frac{\alpha}{2\kappa} & 0 & 0 & \gamma + \frac{\alpha}{2\kappa} & \frac{\alpha}{\beta} \\
\end{bmatrix},
\]

\[
\Sigma = \begin{bmatrix}
1 & 0 & 0 & 0 & 0 \\
0 & \sigma_y & 0 & 0 & 0 \\
0 & \rho_{YZ} & \sigma_z & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{bmatrix},
\]

\[
\alpha = \begin{bmatrix}
0 & 1 & 1 & 0 & 0 \\
\end{bmatrix},
\]
and

\[\beta_e = \begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \delta^2 \end{bmatrix} . \]

3. Next, compute the 30×30 matrix

\[
K = \begin{bmatrix}
\kappa_e & 0 \\
-(\Sigma \otimes \Sigma) D\beta_e & \kappa_e \otimes I_5 + I_5 \otimes \kappa_e
\end{bmatrix},
\]

and the vector $\Theta \in \mathbb{R}^{30}$ defined by

\[
\Theta = \begin{bmatrix}
\kappa_e \theta_e \\
(\Sigma \otimes \Sigma) D\alpha_e
\end{bmatrix},
\]

where \otimes stands for the Kronecker product operator and I_n is the $n \times n$ identity matrix.

4. For a fixed time to maturity s, compute the vector $Q_0 \in \mathbb{R}^{30}$ and the matrix $Q_1 \in \mathbb{R}^{30 \times 5}$ defined as

\[
Q_0 = (I_{30} - e^{-Ks}) K^{-1} \Theta
\]

and

\[
Q_1 = e^{-Ks} \begin{bmatrix} I_5 \\ 0 \end{bmatrix}
\]

5. Then

\[
vec(\text{var}_t (E_{t+s})) = V_0 + V_1 E_t
\]

where vec denotes the vectorized representation of a matrix, $V_0 \in \mathbb{R}^{25}$ is the vector composed by the last 25 elements of Q_0 and $V_1 \in \mathbb{R}^{25 \times 5}$ is the matrix formed by the last 25 lines of Q_1.

32
References

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Standard Error</th>
<th>ratio</th>
<th>abs(Value) / Std Err.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\kappa)</td>
<td>5.35e-6</td>
<td>1.23e-7</td>
<td></td>
<td>43.61</td>
</tr>
<tr>
<td>(\gamma)</td>
<td>17.41</td>
<td>0.6665</td>
<td></td>
<td>26.11</td>
</tr>
<tr>
<td>(\alpha)</td>
<td>0.0112</td>
<td>0.0007</td>
<td></td>
<td>16.80</td>
</tr>
<tr>
<td>(\beta)</td>
<td>52.68</td>
<td>2.89</td>
<td></td>
<td>18.17</td>
</tr>
<tr>
<td>(\delta)</td>
<td>0.1495</td>
<td>0.0037</td>
<td></td>
<td>40.41</td>
</tr>
<tr>
<td>(\eta_Y)</td>
<td>83.48</td>
<td>42.73</td>
<td></td>
<td>1.95</td>
</tr>
<tr>
<td>(\eta_Z)</td>
<td>3.1242</td>
<td>0.0936</td>
<td></td>
<td>33.36</td>
</tr>
<tr>
<td>(\sigma_Y)</td>
<td>0.0817</td>
<td>0.0406</td>
<td></td>
<td>2.03</td>
</tr>
<tr>
<td>(\rho_YZ)</td>
<td>-0.0010</td>
<td>0.0003</td>
<td></td>
<td>3.36</td>
</tr>
<tr>
<td>(\sigma_Z)</td>
<td>0.0200</td>
<td>0.0007</td>
<td></td>
<td>27.87</td>
</tr>
<tr>
<td>(\lambda^X_0)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda^X_1)</td>
<td>-5.0005</td>
<td>2.3819</td>
<td></td>
<td>2.10</td>
</tr>
<tr>
<td>(\lambda^Y_0)</td>
<td>-0.2371</td>
<td>0.1312</td>
<td></td>
<td>1.805</td>
</tr>
<tr>
<td>(\lambda^Y_1)</td>
<td>72.99</td>
<td>42.71</td>
<td></td>
<td>1.708</td>
</tr>
<tr>
<td>(\lambda^Z_0)</td>
<td>0.1011</td>
<td>0.0066</td>
<td></td>
<td>14.69</td>
</tr>
<tr>
<td>(\lambda^Z_1)</td>
<td>1.0001</td>
<td>0.2112</td>
<td></td>
<td>4.73</td>
</tr>
<tr>
<td>(\lambda^{YZ}_0)</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\lambda^{YZ}_1)</td>
<td>0.0182</td>
<td>0.0022</td>
<td></td>
<td>8.08</td>
</tr>
<tr>
<td>(\lambda^v_0)</td>
<td>50.0046</td>
<td>2.91</td>
<td></td>
<td>17.19</td>
</tr>
<tr>
<td>(\phi_0)</td>
<td>0.15</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Parameters and Standard Errors.
Figure 1: Instantaneous Variance of the Term Structure Level Factor.

Figure 2: Black Implied Volatility of the Fixed-Maturity At-the-money Option.
Figure 3: Historical Term Structure Evolution.

Figure 4: Observed and Model Implied Cross Section of Yields Averaged Across Sample.
Figure 5: Volatility of the one-year Bond Yield: EGARCH Benchmark and Model Implied (Historical and Risk Neutral)

Figure 6: Bond Risk Premium and the EMBI-Global Index.
Figure 7: Bond and Volatility Risk Premiums.
Figure 8: Testing the Transmission of Information in a Simulated Economy Under the USV Model.
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
</tbody>
</table>
13 Modelos de Previsão de Insolvência Bancária no Brasil
Marcio Magalhães Janot
Mar/2001

14 Evaluating Core Inflation Measures for Brazil
Francisco Marcos Rodrigues Figueiredo
Mar/2001

15 Is It Worth Tracking Dollar/Real Implied Volatility?
Sandro Canesso de Andrade and Benjamin Miranda Tabak
Mar/2001

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA
Sergio Afonso Lago Alves
Mar/2001

Evaluation of the Central Bank of Brazil Structural Model’s Inflation Forecasts in an Inflation Targeting Framework
Sergio Afonso Lago Alves
Jul/2001

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção
Tito Nícius Teixeira da Silva Filho
Abr/2001

Estimating Brazilian Potential Output: a Production Function Approach
Tito Nícius Teixeira da Silva Filho
Aug/2002

18 A Simple Model for Inflation Targeting in Brazil
Paulo Springer de Freitas and Marcelo Kfoury Muinhos
Apr/2001

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
May/2001

20 Credit Channel without the LM Curve
Victorio Y. T. Chu and Márcio I. Nakane
May/2001

21 Os Impactos Econômicos da CPMF: Teoria e Evidência
Pedro H. Albuquerque
Jun/2001

22 Decentralized Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Jun/2001

23 Os Efeitos da CPMF sobre a Intermediação Financeira
Sérgio Mikio Koyama e Márcio I. Nakane
Jul/2001

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
Aug/2001

25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
Aug/2001

26 Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil
Marcelo Kfoury Muinhos
Aug/2001

27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
Set/2001
Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma Abordagem de Expectativas Racionais
Marco Antonio Bonomo e Ricardo D. Brito
Nov/2001

Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque and Solange Gouvêa
Nov/2001

Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak and Sandro Canesso de Andrade
Nov/2001

Algumas Considerações sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

Constrained Discretion and Collective Action Problems: Reflections on the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
Nov/2001

Uma Definição Operacional de Estabilidade de Preços
Tito Nícias Teixeira da Silva Filho
Dez/2001

Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Feb/2002

Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime, Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
Mar/2002

Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

Opções sobre Dólar Comercial e Expectativas a Respeito do Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002

Speculative Attacks on Debts, Dollarization and Optimum Currency Areas
Aloisio Araújo and Márcia Leon
Apr/2002

Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002

The Effects of the Brazilian ADRs Program on Domestic Market Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Jun/2002
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanilho Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo and Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guilén</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Calhman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osman Tiexreira de C. Guillen
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
76 Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Munhos
Jul/2003

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbudo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbudo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnaldo da Silva Correa
Out/2003

81 Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbudo e Gustavo Silva Araújo
Mar/2004

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbudo
May/2004

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
Maio/2004

87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – A Corporate Analysis
Ricardo Schechtman, Valéria Salomão Garcia, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, e Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006
<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Autor(es)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roomate’s Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues-Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td></td>
<td>Cupom Cambial</td>
<td>Beatriz Eiras das Neves</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Interdependence and Contagion: an Analysis of Information</td>
<td>Angelo Marsiglia Fasolo</td>
<td>Jul/2006</td>
</tr>
<tr>
<td></td>
<td>Transmission in Latin America's Stock Markets</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cajueiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
<tr>
<td></td>
<td>experimental approach</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>of Importance Sampling and Descriptive Sampling</td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and</td>
<td>Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak</td>
<td>Sep/2006</td>
</tr>
<tr>
<td></td>
<td>Capital Adequacy: a portfolio simulation approach applied to brazilian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>banks</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Economy with Risk Regulation Constraint</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
119 A Central de Risco de Crédito no Brasil: uma análise de utilidade de informação
Ricardo Schechtman
Out/2006

120 Forecasting Interest Rates: an application for Brazil
Eduardo J. A. Lima, Felipe Ludavice and Benjamin M. Tabak
Oct/2006

121 The Role of Consumer’s Risk Aversion on Price Rigidity
Sergio A. Lago Alves and Mirta N. S. Bugarin
Nov/2006

122 Nonlinear Mechanisms of the Exchange Rate Pass-Through: A Phillips curve model with threshold for Brazil
Arnildo da Silva Correa and André Minella
Nov/2006

123 A Neoclassical Analysis of the Brazilian “Lost-Decades”
Flávia Mourão Graminho
Nov/2006

124 The Dynamic Relations between Stock Prices and Exchange Rates: evidence for Brazil
Benjamin M. Tabak
Nov/2006

125 Herding Behavior by Equity Foreign Investors on Emerging Markets
Barbara Alemanni and José Renato Haas Ornelas
Dec/2006

126 Risk Premium: insights over the threshold
José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña
Dec/2006

127 Uma Investigação Baseada em Reamostragem sobre Requerimentos de Capital para Risco de Crédito no Brasil
Ricardo Schechtman
Dec/2006

128 Term Structure Movements Implicit in Option Prices
Caio Ibsen R. Almeida and José Valentim M. Vicente
Dec/2006

129 Brazil: taming inflation expectations
Afonso S. Bevilaqua, Mário Mesquita and André Minella
Jan/2007

130 The role of banks in the Brazilian Interbank Market: Does bank type matter?
Daniel O. Cajueiro and Benjamin M. Tabak
Jan/2007

131 Long-Range Dependence in Exchange Rates: the case of the European Monetary System
Sergio Rubens Stancato de Souza, Benjamin M. Tabak and Daniel O. Cajueiro
Mar/2007

132 Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the joint use of importance sampling and descriptive sampling
Jaqueline Terra Moura Marins and Eduardo Saliby
Mar/2007

133 A New Proposal for Collection and Generation of Information on Financial Institutions’ Risk: the case of derivatives
Gilneu F. A. Vivian and Benjamin M. Tabak
Mar/2007

134 Amostragem Descritiva no Apreçamento de Opções Européias através de Simulação Monte Carlo: o Efeito da Dimensionalidade e da Probabilidade de Exercício no Ganho de Precisão
Eduardo Saliby, Sergio Luiz Medeiros Proença de Gouvêa and Jaqueline Terra Moura Marins
Abr/2007