Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the joint use of importance sampling and descriptive sampling

Jaqueline Terra Moura Marins and Eduardo Saliby

March, 2007
Credit Risk Monte Carlo Simulation Using Simplified Creditmetrics’ Model: the joint use of importance sampling and descriptive sampling

Jaqueline Terra Moura Marins *
Eduardo Saliby **

Abstract

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central.

Monte Carlo simulation is implemented in some of the main models for estimating portfolio credit risk, such as CreditMetrics, developed by Gupton, Finger and Bhatia (1997). As in any Monte Carlo application, credit risk simulation according to this model produces imprecise estimates. In order to improve precision, simulation sampling techniques other than traditional Simple Random Sampling become indispensable. Importance Sampling (IS) has already been successfully implemented by Glasserman and Li (2005) on a simplified version of CreditMetrics, in which only default risk is considered. This paper tries to improve even more the precision gains obtained by IS over the same simplified CreditMetrics’ model. For this purpose, IS is here combined with Descriptive Sampling (DS), another simulation technique which has proved to be a powerful variance reduction procedure. IS combined with DS was successful in obtaining more precise results for credit risk estimates than its standard form.

Keywords: Monte Carlo simulation, credit risk, Importance Sampling and Descriptive Sampling.

JEL Classification: C15.

* Research Department, Banco Central do Brasil. E-mail: jaqueline.terra@bcb.gov.br
** Coppead/UFRJ and Brunel University, UK.
1 Introduction

In this paper it is developed a simulation experiment related to credit risk. International financial literature devoted great part of its attention in the last decade to creating methodologies to evaluate portfolio credit risk of financial institutions, in response to the effects of the new Basel Accord over banks capital requirements, known as Basel II. According to Basel II, banks must have enough capital to cover not only market risk but also credit risk of their portfolios. KMV’s approach from KMV Corporation, CreditRisk+ from Credit Suisse First Boston Institution, CreditPortfolio View from McKinsey Consulting and CreditMetrics from JPMorgan Bank are portfolio credit VaR (Value at Risk) methodologies developed by financial industry in the last years. Some of these models give analytical solutions while others elaborate simulation-based solutions. The present paper does not intend to judge the presented credit risk models, instead, it elects CreditMetrics as the simulation methodology to be implemented here. Variance reduction techniques will be applied over CreditMetrics’ simulation model and a comparative analysis among their performances will be made.

A simplified version of CreditMetrics, as presented in Glasserman (2004) and Glasserman and Li (2005), is used in this paper, where only the default risk is considered. As in Glasserman and Li (2005), the instrument under analysis is a theoretical portfolio of bonds and loans issued by different firms. This portfolio is only subject to default risk, so that no other kind of credit deterioration but default generates portfolio losses. Importance Sampling is the variance reduction technique applied here, once its use is indicated in rare events simulation, such as the events of default. Importance Sampling is also used in association with other variance reduction technique named Descriptive Sampling. This last technique has already generated interesting results in previous papers. Efficiency of the techniques is measured by the ratio between the standard error of the estimates obtained when a technique is used and the standard error of the estimates obtained when the standard

1 Crouhy (2000) and Gordy (2000) make a comparative analysis of these methodologies.
simulation method (Simple Random Sampling) is used. The lesser this ratio, the
greater the precision gain obtained by the technique over the standard method.

In section 2, the credit risk simulation model used here is described, which
is based on a simplified version of CreditMetrics’ model. Importance Sampling
methodology, in its pure version and in association with Descriptive Sampling, is
also presented in this section. Main simulation results and conclusions are
described in sections 3 and 4, respectively.

2 Methodology

2.1 Monte Carlo Simulation Credit Risk Model

The simulation model implemented in this paper is a simplified version of
CreditMetrics and is described in Glasserman (2004) and Glasserman and Li (2005).
The goal of the original CreditMetrics’ version is to simulate the probability distribution
of changes in portfolio future value from changes in the credit rating of their issuers. In
its simplified version, the focus is the distribution of future losses arising from default
of the issuers. In other words, in the original CreditMetrics, default is one of the many
possible credit ratings, while, in its simplified approach, the only possible events are
default and non-default.

Besides, the simplified approach admits full loss in case of default, equivalently to
100% of the exposure, while the percentage of loss in the original model depends on the
recovery rate of the exposure in the occurrence of default.

Finally, according to the original CreditMetrics, the rating scenarios for each
issuer are sampled from a Normal distribution, while, in the simplified model, the
scenarios for each issuer are sampled from Bernoulli distributions, each one with one
specific probability of default.

The Monte Carlo model studied here intends to simulate the sampling distribution
of future portfolio losses arising from default of their issuers over a fixed time horizon
(one year) and, then, to estimate tail probabilities of this simulated distribution. Figure 1
below illustrates this idea.
Figure 1: Distribution of losses from default of a theoretical portfolio composed by bonds and loans issued by m different firms.

Where:

$m =$ total of issuers to which the portfolio is exposed;

$Y_k =$ default indicator for the k^{th} issuer over the time horizon ($k = 1, \ldots, m$);

$c_k =$ loss resulting from default of the k^{th} issuer;

$p_k =$ $\text{Prob}(Y_k=1)$ = individual probability that the k^{th} issuer defaults;

$L =$ total loss from defaults $= \sum_{k=1}^{m} c_k Y_k$;

$x =$ loss threshold;

$Y_k \sim \text{Bernoulli}(p_k)$.

As suggested in Glasserman and Li (2005), c_k and p_k will be considered constants to simplify the model’s implementation. They will be deterministically given by:

\begin{align*}
 c_k &= \left(\frac{5k}{m}\right)^2, \quad (1)^4 \\
 p_k &= 0.01 \ast \left(1 + \sin \left(\frac{16 \pi k}{m}\right)\right), \quad (2)^5
\end{align*}

\begin{itemize}
 \item [4] This formula splits the total number of issuers in groups of the same size and value.
 \item [5] According to this formula, the (small) default probabilities vary between 0% and 2%, no matter is the number of issuers.
\end{itemize}
The dependence among the issuers in this simulation model is introduced by the Normal Copula model, which is widely used in association with CreditMetrics6.

In Normal Copula, the events of default ($Y_k = 1$) are associated to latent variables X_k as indicated below:

$$Y_k = 1 \{ X_k > x_k \} , \ (3)$$

where each x_k is chosen to match the individual default probabilities p_k.

The latent variables X_k have standard Normal distribution and they are related to systematic risk factors (Z) common to all the issuers, as indicated below:

$$X_k = a_{k1} * Z_1 + ... + a_{kd} * Z_d + b_k * \epsilon_k , \ (4)$$

where:

- a_{ki} = factor loadings for the kth issuer, with $i = 1,\ldots,d$ and $k = 1,\ldots,m$;
- Z_i (ith common systematic risk factor) ~ $N(0,1)$;
- ϵ_k (idiosyncratic risk factor associated with the kth issuer) ~ $N(0,1)$;

$$0 \leq a_{k1}^2 + ... + a_{kd}^2 \leq 1;$$

$$b_k = \sqrt{1 - (a_{k1}^2 + ... + a_{kd}^2)} , \ so \ that \ X_k \ is \ N(0,1).$$

The systematic risk factors, as they are common to all the issuers, introduce a correlation among the latent variables X_k, which create the dependence among Y_k and, consequently, among the default of the issuers. These risk factors may represent specific risks of an industry or a geographic region.

The simulation routines of this paper are developed in MatLab 6.1. The executed experiment has 40 simulation runs, with 1000 observations of losses in each run. The portfolio analyzed is composed by theoretical bonds and loans issued by 20 different firms ($m=20$). Each issuer is subject to 10 different risk factors ($d=10$), common to all the 20 issuers. The threshold loss (x) is 35, corresponding to 20\% of possible total loss, resulting in a very low probability of the event $L>x$.

6 Kang and Shahabuddin (2005) uses a t-copula model to apply Importance Sampling to the simulation of $\text{Prob}(L>x)$. In the t-copula model, the latent variables X_k have multivariate t-student distribution instead of having Normal distribution.
2.2 Variance Reduction Techniques

According to the methodology described above, \(\text{Prob}(L>x) \) is the output variable of the simulation model. It is not an easy task to obtain a precise measure of this probability, when dealing with low probabilities of default of the issuers and with high levels of threshold loss. It happens because the problem becomes a rare-event simulation. In this context, Importance Sampling (IS), which basically turns rare events into less rare ones, fits well into the simulation problem studied here.

The use of IS in the simulation model considered would require an increase in the original probabilities of default (\(p_k \)) in a way to make the events \(L>x \) more frequent. The return to the original simulation problem would require the use of the likelihood ratio on every new generated observation of the event \(L>x \). In general, the idea behind IS on Monte Carlo simulation and its likelihood ratio can be presented as:

\[
E(h(x)) = \int h(x)f(x)dx = \int h(x)\frac{f(x)}{g(x)}g(x)dx = E\left(h(y)\frac{f(y)}{g(y)}\right),
\]

where: \(E(.) = \) Expected Value, to be obtained through Monte Carlo simulation; \(h(.) = \) any function of the random variable \(x \); \(f(.) = \) original density probability function of \(x \); and \(g(.) = \) shifted density probability function of \(x \).

Beside the standard form of IS, it is also analyzed here its combined form with Descriptive Sampling (DS), in order to try to obtain more precise estimates. The use of IS also depends on the level of default correlation among the issuers. In this sense, two cases were considered here: independent issuers and strongly dependent issuers. The two forms of IS were implemented in both cases of dependence.

2.2.1 Importance Sampling in the case of Independent Issuers

In this case, the standard IS approach is well known. The risk factor loadings, \(a_{k,i} \), are zero because the issuers are independent in terms of the events of default. Standard IS idea consists on exchanging the individual default probabilities, \(p_k \), for higher probabilities, \(q_k \), and randomly sampling default events from these new probabilities. Because these new default events will be randomly sampled, standard IS will be named here IS+SRS (Importance Sampling plus Simple Random Sampling) from now on. Then the events \(L>x \) would be easier obtained from these new higher default probabilities. In order to return to the original problem, these \(L>x \) events would have to be corrected by the likelihood ratio, which relates the original distribution of the
default events (Bernoulli(p_k)) to the new distribution (Bernoulli(q_k)). The IS estimation of \(\text{Prob}(L>x) \) would then be obtained from two expressions:

\[
E(L > x) = 1^* \text{Prob}(L > x) + 0^* \text{Prob}(L < x) \Rightarrow \text{Prob}(L > x) = E(L > x),
\]

(6)

\[
E(L > x) = \mathbb{E} \left[1[L > x] \prod_{k=1}^{m} \left(\frac{p_k}{q_k} \right)^{Y_k} \left(\frac{1-p_k}{1-q_k} \right)^{1-Y_k} \right].
\]

(7)

Where:

\(\{...\} = \) indicator of the event in braces;

\(\tilde{E} (...) = \) expected value under the new default probabilities \(q_k; \)

\[
\prod_{k=1}^{m}(...) = \text{likelihood ratio.}
\]

The idea behind Equation 6 is that \(L>x \) is also a Bernoulli-type random variable. Equation 7 results from IS main idea, expressed in Equation 5.

Therefore,

\[
\text{Prob}(L > x) = \mathbb{E} \left[1[L > x] \prod_{k=1}^{m} \left(\frac{p_k}{q_k} \right)^{Y_k} \left(\frac{1-p_k}{1-q_k} \right)^{1-Y_k} \right],
\]

(8)

As a result of this construction and if the default indicators are to be sampled from the new default probabilities \(q_k, \) it can be said that:

Unbiased IS Estimator of \(\text{Prob}(L>x) = \mathbb{E} \left[1[L > x] \prod_{k=1}^{m} \left(\frac{p_k}{q_k} \right)^{Y_k} \left(\frac{1-p_k}{1-q_k} \right)^{1-Y_k} \right]. \)

(9)

Glasserman and Li (2005) do not choose the new probabilities \(q_k \) in an arbitrarily way; instead, they use the named \textit{exponential twisting} mechanism to optimize the choice of these new probabilities. According to this mechanism, a non-negative value for \(\theta \) parameter is chosen and the new probabilities are evaluated from:

\[
p_k(\theta) = \frac{p_k e^{\theta Y_k}}{1 + p_k (e^{\theta Y_k} - 1)},
\]

(10)

The value of \(\theta \) must be such that minimizes the variance of the unbiased estimator of \(\text{Prob}(L>x). \) Glasserman and Li (2005) evaluate the optimum level of \(\theta \)
analytically. They prove that this optimum-θ makes the IS estimator of Equation 9 asymptotically optimal, and therefore it is more efficient than the traditional estimator using SRS. Optimum-θ value is7:

Unique solution of $\varphi'(\theta) = x, x > \varphi'(0)$;

$$\text{Optimum-}\theta = \begin{cases}
0, x \leq \varphi'(0);
\end{cases}$$

where:

$$\varphi(\theta) = \sum_{k=1}^{m} \log \left(1 + p_k \left(\exp(\theta c_k) - 1\right)\right).$$

The incorporation of DS to IS procedure presented above results in a combined technique, named from now on IS+DS. This incorporation basically involves choosing deterministically instead of randomly the values of Y_k. This same set of values for Y_k is used in all simulation runs, but of course its elements are randomly permutated in each run to generate different samples8.

2.2.2 Importance Sampling in the case of Strongly Dependent Issuers

As proposed in Glasserman and Li (2005), the IS approach in this case is a two-step procedure: 1) apply conditional IS, where Y_k variables will be conditional on a z set of values for the Z common risk factors, and 2) apply standard IS on the Z factors themselves.

On the first step, IS procedure is conditioned to a set of values for the common risk factors ($Z=z$), randomly chosen from standard Normal distribution. When this is done, variables Y_k are obtained from the same set of z values for the risk factors, no matter who the issuer is, and then the default indicators become independent again. Therefore, it is possible to proceed exactly as in the case of independent issuers presented in the last section. The only difference is that it will be necessary to evaluate conditional default probabilities, $p_k/Z=z$, for each issuer, instead of considering given default probabilities p_k. This conditional probability is:

7 See Glasserman (2004), pgs. 498 and 530.

8 A full description of Descriptive Sampling is found in Saliby (1990) and Saliby (1997).
\[p_k \mid (Z = z) = \Pr \{ob(Y_k = 1 \mid Z) = \Pr \{ob(X_k > x_k \mid Z) =
\]

\[= \Pr \{ob(a_k Z + b_k \varepsilon_k > \Phi^{-1}(1 - p_k) / Z) = \Phi \left(\frac{a_k Z + \Phi^{-1}(p_k)}{b_k} \right) \}. \quad (12) \]

According to Glasserman and Li (2005), the second step becomes necessary when there is strong default correlation among the issuers. In order to obtain this strong correlation, the factor loadings \(a_{k,i} \) are generated independently and uniformly from the interval \((0,1/\sqrt{d})\). This second step is justified because when the correlation is strong, greats losses arises firstly from great values of \(Z \), which indicates that IS must be applied to the distribution of \(Z \) as well.\(^9\)

Therefore, in this second step, instead of dealing with a \(z \)-set of values sampled from a standard Normal distribution, it is used a new set sampled from the Normal shifted distribution \(N(\mu,1) \). From there on, it is only required to implement conditional IS already described. The only thing new is the likelihood ratio formula presented in Equation 7, which will have an additional term, \(\exp((-\mu'Z+\mu'/2), \) relating \(N(0,1) \) density to \(N(\mu,1) \) density.

Glasserman and Li (2005) determines analytically the optimum value for \(\mu \), the shift parameter, that will minimize the variance for the estimator of \(\Pr(L>x) \). In this paper, the optimum value for \(\mu \) was empirically chosen to simplify the IS procedure.

The incorporation of DS to IS procedure in this case involves not only the deterministic selection of the \(Y_k \) values, but also of the \(Z \) values. These two sets of values deterministically chosen are used in all simulation runs, but off course their elements are randomly permuted in each run to generate different samples.

3 Results

Figure 2 below presents the main simulation results of the experiment executed in this paper. There are estimates of \(\Pr(L>x) \) for the three different simulation methods here applied: the traditional one (SRS), the standard IS (IS+SRS) and the combined IS (IS+DS). The performance of each method was analyzed for independent issuers and for strongly dependent issuers. Estimates’ precision, measured by its standard errors, is presented as well.

\(^9\) The analytical proof is found in Glasserman and Li (2005), pg. 8.
The chosen loss threshold \((x = 35) \) defines a convenient region to implement IS, as the probability of superior losses is really low for two of the cases of dependence considered. To get an idea of the magnitude of this probability, a simulation of 10000 runs was executed, using the traditional sampling method (SRS). The resulting estimates of \(\text{Prob}(L > x) \) were 0.13% for independent issuers case and 0.34% for dependent issuers case. These low percentages characterize a rare event situation in both cases of dependence.

The relevance of IS for the experiment in study can also be understood when probabilities of losses even superior than \(x \) are estimated. There is a threshold level \(x' \) (equal to $52 in the studied model, or equivalently to 30% of possible total loss) from which the simple occurrence of the event \(L > x' \) is no longer observed, no matter the number of observations generated by the traditional method. It simply makes impossible to evaluate estimates for \(\text{Prob}(L > x') \).

Both variance reduction techniques here used (IS+SRS and IS+DS) generated similar and unbiased estimates in relation to the ones obtained within the huge simulation.

As expected, under the two cases of dependence considered, IS improved well the estimates precision in relation to SRS estimates. The precision gain of IS+SRS, or equivalently its standard error reduction, is about 88% for independent issuers and 40% for dependent issuers.

The combined technique IS+DS was also efficient in obtaining precision gains in relation to traditional SRS method, resulting in a gain of 88% for both cases of dependence. However, DS contribution was more relevant in the dependent issuers’ case, generating a precision improvement of 81% in relation to IS+SRS, against only 3% in the case of independent issuers. The greater DS’ contribution to IS in the dependent case is associated to the fact that DS needs to be applied twice when there are dependence among the issuers, as mentioned in section 2.2.2.
Figure 2: Estimates for Prob(L>x) according to different simulation methods (SRS, IS+SRS, IS+DS). Two cases of default dependence among the issuers were considered. The mean and the standard error of the estimates were calculated for 40 simulation runs, each one containing 1000 observations of losses.

<table>
<thead>
<tr>
<th>Independent Issuers</th>
<th>SRS</th>
<th>Mean</th>
<th>0.1125</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.0791</td>
<td></td>
</tr>
<tr>
<td>IS+SRS</td>
<td>Mean</td>
<td>0.1279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.0091</td>
<td></td>
</tr>
<tr>
<td>IS+DS</td>
<td>Mean</td>
<td>0.1256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.0088</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dependent Issuers</th>
<th>SRS</th>
<th>Mean</th>
<th>0.3250</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.9388</td>
<td></td>
</tr>
<tr>
<td>IS+SRS</td>
<td>Mean</td>
<td>0.3363</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.5649</td>
<td></td>
</tr>
<tr>
<td>IS+DS</td>
<td>Mean</td>
<td>0.3364</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Standard Error</td>
<td>0.1099</td>
<td></td>
</tr>
</tbody>
</table>

4 Conclusion

Importance Sampling is a variance reduction technique well suited to rare event simulation problems, because its main idea is to make the rare events less rare. This is done when the original probability distribution of the input variable is shifted to the right. Therefore, Importance Sampling technique is useful when dealing with portfolio credit risk simulation, once this kind of risk is associated to the occurrence of rare events of default by the issuers in a period of time.

This paper applied Importance Sampling as a variance reduction technique to improve Monte Carlo simulation of the loss distribution of a theoretical portfolio of bonds and loans subject to default risk of their issuers. Importance Sampling has proved to be an indispensable simulation tool to generate observations for the experiment under study, as the events of default considered here were rare. Besides, Importance Sampling,
in its standard shape or in association with Descriptive Sampling, has proved to be useful in obtaining more precise estimates than the ones that would be obtained in the traditional way.

Importance Sampling precision gains has extend themselves to the more complex case of strong default correlation among the issuers of the portfolio under analysis.
References

Banco Central do Brasil

Trabalhos para Discussão
Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series
Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

1 Implementing Inflation Targeting in Brazil
 Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
 Jul/2000

2 Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
 Eduardo Lundberg
 Monetary Policy and Banking Supervision Functions on the Central Bank
 Eduardo Lundberg
 Jul/2000

3 Private Sector Participation: a Theoretical Justification of the Brazilian Position
 Sérgio Ribeiro da Costa Werlang
 Jul/2000

4 An Information Theory Approach to the Aggregation of Log-Linear Models
 Pedro H. Albuquerque
 Jul/2000

5 The Pass-Through from Depreciation to Inflation: a Panel Study
 Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
 Jul/2000

6 Optimal Interest Rate Rules in Inflation Targeting Frameworks
 José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira
 Jul/2000

7 Leading Indicators of Inflation for Brazil
 Marcelle Chauvet
 Sep/2000

8 The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
 José Alvaro Rodrigues Neto
 Sep/2000

9 Estimating Exchange Market Pressure and Intervention Activity
 Emanuel-Werner Kohlscheen
 Nov/2000

10 Análise do Financiamento Externo a uma Pequena Economia
 Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flóres Júnior
 Mar/2001

11 A Note on the Efficient Estimation of Inflation in Brazil
 Michael F. Bryan and Stephen G. Cecchetti
 Mar/2001

12 A Test of Competition in Brazilian Banking
 Márcio I. Nakane
 Mar/2001
<table>
<thead>
<tr>
<th></th>
<th>Título</th>
<th>Autor</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
</tbody>
</table>
28 Regras Monetárias e Dinâmica Macroeconômica no Brasil: uma
Abordagem de Expectativas Racionais
Marco Antonio Bonomo e Ricardo D. Brito
Nov/2001

29 Using a Money Demand Model to Evaluate Monetary Policies in Brazil
Pedro H. Albuquerque and Solange Gouvêa
Nov/2001

30 Testing the Expectations Hypothesis in the Brazilian Term Structure of
Interest Rates
Benjamin Miranda Tabak and Sandro Canesso de Andrade
Nov/2001

31 Algumas Considerações sobre a Sazonalidade no IPCA
Francisco Marcos R. Figueiredo e Roberta Blass Staub
Nov/2001

32 Crises Cambiais e Ataques Especulativos no Brasil
Mauro Costa Miranda
Nov/2001

33 Monetary Policy and Inflation in Brazil (1975-2000): a VAR Estimation
André Minella
Nov/2001

34 Constrained Discretion and Collective Action Problems: Reflections on
the Resolution of International Financial Crises
Arminio Fraga and Daniel Luiz Gleizer
Nov/2001

35 Uma Definição Operacional de Estabilidade de Preços
Tito Nícius Teixeira da Silva Filho
Dez/2001

36 Can Emerging Markets Float? Should They Inflation Target?
Barry Eichengreen
Feb/2002

37 Monetary Policy in Brazil: Remarks on the Inflation Targeting Regime,
Public Debt Management and Open Market Operations
Luiz Fernando Figueiredo, Pedro Fachada and Sérgio Goldenstein
Mar/2002

38 Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para
o Mercado Brasileiro
Frederico Pechir Gomes
Mar/2002

39 Opções sobre Dólar Comercial e Expectativas a Respeito do
Comportamento da Taxa de Câmbio
Paulo Castor de Castro
Mar/2002

40 Speculative Attacks on Debts, Dollarization and Optimum Currency
Areas
Aloísio Araújo and Márcia Leon
Apr/2002

41 Mudanças de Regime no Câmbio Brasileiro
Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho
Jun/2002

42 Modelo Estrutural com Setor Externo: Endogenização do Prêmio de
Risco e do Câmbio
Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella
Jun/2002

43 The Effects of the Brazilian ADRs Program on Domestic Market
Efficiency
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Jun/2002
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil</td>
<td>Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence</td>
<td>André Minella</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>46</td>
<td>The Determinants of Bank Interest Spread in Brazil</td>
<td>Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane</td>
<td>Aug/2002</td>
</tr>
<tr>
<td>47</td>
<td>Indicadores Derivados de Agregados Monetários</td>
<td>Fernando de Aquino Fonseca Neto e José Albuquerque Júnior</td>
<td>Set/2002</td>
</tr>
<tr>
<td>49</td>
<td>Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade</td>
<td>Orlando Carneiro de Matos</td>
<td>Set/2002</td>
</tr>
<tr>
<td>50</td>
<td>Macroeconomic Coordination and Inflation Targeting in a Two-Country Model</td>
<td>Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>51</td>
<td>Credit Channel with Sovereign Credit Risk: an Empirical Test</td>
<td>Victorio Yi Tson Chu</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>52</td>
<td>Generalized Hyperbolic Distributions and Brazilian Data</td>
<td>José Fajardo e Aquiles Farias</td>
<td>Sep/2002</td>
</tr>
<tr>
<td>54</td>
<td>Stock Returns and Volatility</td>
<td>Benjamin Miranda Tabak and Solange Maria Guerra</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>55</td>
<td>Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil</td>
<td>Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guilién</td>
<td>Nov/2002</td>
</tr>
<tr>
<td>56</td>
<td>Causality and Cointegration in Stock Markets: the Case of Latin America</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Dec/2002</td>
</tr>
<tr>
<td>57</td>
<td>As Leis de Falência: uma Abordagem Econômica</td>
<td>Aloisio Araújo</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>59</td>
<td>Os Preços Administrados e a Inflação no Brasil</td>
<td>Francisco Marcos R. Figueiredo e Thaís Porto Ferreira</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>60</td>
<td>Delegated Portfolio Management</td>
<td>Paulo Coutinho e Benjamin Miranda Tabak</td>
<td>Dec/2002</td>
</tr>
</tbody>
</table>
61 O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa
João Maurício de Souza Moreira e Eduardo Facó Lemgruber
Dez/2002

62 Taxa de Juros e Concentração Bancária no Brasil
Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama
Fev/2003

63 Optimal Monetary Rules: the Case of Brazil
Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak
Feb/2003

64 Medium-Size Macroeconomic Model for the Brazilian Economy
Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves
Feb/2003

65 On the Information Content of Oil Future Prices
Benjamin Miranda Tabak
Feb/2003

66 A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla
Pedro Callman de Miranda e Marcelo Kfoury Muinhos
Fev/2003

67 Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de Mercado de Carteiras de Ações no Brasil
Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Fev/2003

68 Real Balances in the Utility Function: Evidence for Brazil
Leonardo Soriano de Alencar and Márcio I. Nakane
Feb/2003

69 r-filters: a Hodrick-Prescott Filter Generalization
Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto
Feb/2003

70 Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates
Benjamin Miranda Tabak
Feb/2003

71 On Shadow-Prices of Banks in Real-Time Gross Settlement Systems
Rodrigo Penaloza
Apr/2003

72 O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras
Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmaní Teixeira de C. Guilten
Maio/2003

73 Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros
Getúlio Borges da Silveira e Octavio Bessada
Maio/2003

74 Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa
Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves
Maio/2003

75 Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth
Ilan Goldfajn, Katherine Hennings and Helio Mori
Jun/2003
<table>
<thead>
<tr>
<th>Page</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnildo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloisio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>--------</td>
</tr>
<tr>
<td>90</td>
<td>Bank Privatization and Productivity: Evidence for Brazil</td>
<td>Márcio I. Nakane and Daniela B. Weintraub</td>
<td>Dec/2004</td>
</tr>
<tr>
<td>92</td>
<td>Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil</td>
<td>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>93</td>
<td>Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial</td>
<td>Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Abr/2005</td>
</tr>
<tr>
<td>95</td>
<td>Comment on Market Discipline and Monetary Policy by Carl Walsh</td>
<td>Maurício S. Bugarin and Fábia A. de Carvalho</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>96</td>
<td>O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina</td>
<td>Anthero de Moraes Meirelles</td>
<td>Ago/2005</td>
</tr>
<tr>
<td>100</td>
<td>Targets and Inflation Dynamics</td>
<td>Sérgio A. L. Alves and Waldyr D. Areosa</td>
<td>Oct/2005</td>
</tr>
<tr>
<td>101</td>
<td>Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates</td>
<td>Marcelo Kfoury Muinhos and Márcio I. Nakane</td>
<td>Mar/2006</td>
</tr>
<tr>
<td>102</td>
<td>Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans</td>
<td>Ana Carla A. Costa and João M. P. de Mello</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>103</td>
<td>The Effect of Adverse Supply Shocks on Monetary Policy and Output</td>
<td>Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td>Abr/2006</td>
</tr>
<tr>
<td>105</td>
<td>Representing Roomate’s Preferences with Symmetric Utilities</td>
<td>José Alvaro Rodrigues-Neto</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities</td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td>May/2006</td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td>Jun/2006</td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td>Jul/2006</td>
</tr>
<tr>
<td>114</td>
<td>The Inequality Channel of Monetary Transmission</td>
<td>Marta Areosa and Waldyr Areosa</td>
<td>Aug/2006</td>
</tr>
<tr>
<td>116</td>
<td>Out-Of-The-Money Monte Carlo Simulation Option Pricing: the join use of Importance Sampling and Descriptive Sampling</td>
<td>Jaqueline Terra Moura Marins, Eduardo Saliby and JoséFlorencio do Santos</td>
<td>Sep/2006</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>119</td>
<td>A Central de Risco de Crédito no Brasil: uma análise de utilidade de informação</td>
<td>Ricardo Schechtman</td>
<td>Out/2006</td>
</tr>
<tr>
<td>120</td>
<td>Forecasting Interest Rates: an application for Brazil</td>
<td>Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak</td>
<td>Oct/2006</td>
</tr>
<tr>
<td>121</td>
<td>The Role of Consumer’s Risk Aversion on Price Rigidity</td>
<td>Sergio A. Lago Alves and Mirta N. S. Bugarin</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>123</td>
<td>A Neoclassical Analysis of the Brazilian “Lost-Decades”</td>
<td>Flávia Mourão Graminho</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>124</td>
<td>The Dynamic Relations between Stock Prices and Exchange Rates: evidence for Brazil</td>
<td>Benjamin M. Tabak</td>
<td>Nov/2006</td>
</tr>
<tr>
<td>125</td>
<td>Herding Behavior by Equity Foreign Investors on Emerging Markets</td>
<td>Barbara Alemanni and José Renato Haas Ornelas</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>126</td>
<td>Risk Premium: insights over the threshold</td>
<td>José L. B. Fernandes, Augusto Hasman and Juan Ignacio Peña</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>128</td>
<td>Term Structure Movements Implicit in Option Prices</td>
<td>Caio Ibsen R. Almeida and José Valentim M. Vicente</td>
<td>Dec/2006</td>
</tr>
<tr>
<td>129</td>
<td>Brazil: taming inflation expectations</td>
<td>Afonso S. Bevilaqua, Mário Mesquita and André Minella</td>
<td>Jan/2007</td>
</tr>
</tbody>
</table>