Forecasting Interest Rates: an application for Brazil

Eduardo J. A. Lima, Felipe Luduvice and Benjamin M. Tabak

October, 2006
Forecasting Interest Rates: an application for Brazil

Eduardo J. A. Lima*
Felipe Luduvice**
Benjamin M. Tabak*

The Working Papers should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the papers are those of the author(s) and do not necessarily reflect those of the Banco Central do Brasil.

Abstract

Understanding the links between long and short-term interest rates is crucial for monetary policy makers, since Central Banks decide and set short-term interest rates in order to affect indirectly long-term interest rates, which affects aggregate spending. This paper studies whether VAR/VEC models are useful in predicting long-term interest rates for Brazil. The empirical results suggest that these models are useful in building qualitative scenarios for the Term structure of interest rates, but do not provide good forecasts in terms of accuracy. Furthermore, models that assume that the future path of short-term interest rates (target interest rates) is known by forecasters do not perform better in terms of both directional and forecasting accuracy.

JEL Classification: E42; E43.
Keywords: monetary policy; short and long-term interest rates; expectations theory of interest rates; transmission mechanism.

* Research Department, Banco Central do Brasil. E-mails: eduardo.lima@bcb.gov.br and benjamin.tabak@bcb.gov.br

** Universidade de Brasília (UnB).
1. Introduction

The development of forecasting models for short and long-term interest rates has been in the research agenda for the past years and is crucial for policy modeling, portfolio and risk management and for macroeconomists (See Fletcher and Gulley, 1996). The dynamics of interest rates have important implications for the economy and its forecasts are necessary for almost all economic activities. Furthermore, long-term interest rate forecasts are useful as economic agents consider them to make decisions regarding investment and savings levels.

It is consensus in the economics literature that monetary policy matters for explaining movements in real output (short run) and inflation (long run). However, the transmission mechanism through which monetary policy affects the economy is more controversial.

Central banks define short-term interest rates in the conduct of monetary policy, but it is generally accepted that aggregate-spending decisions are more closely related to long-term interest rate behavior. In other words, central banks set up short-term interest rates, which affect longer-term interest rates, which by its turn influences aggregate-spending decisions affecting real output and inflation. For this reason, understanding the relationship between short and long-term interest rates is crucial for macroeconomic modeling and the conduct of monetary policy.

In this paper we study the relationship between short and long-term interest rates for Brazil. To accomplish this purpose we estimated a vector autoregression (VAR) and a vector error correction (VEC) between the short-term interest rate SELIC, which is determined by the Monetary Policy Committee (COPOM), and the medium-term interest rate, performing out-of-sample forecasts of these variables. We then compared the forecasts from these models with the results presented by a random walk to evaluate their accuracy.

1 See Tabak and Andrade (2003), Tabak (2004), and Garcia and Didier (2001) for a discussion on the behavior of interest rates in Brazil.

2 SELIC is a system for custody of Public bonds issued by the Brazilian Treasury and the Central Bank. The SELIC interest rate is determined in the secondary market and calculated by the Central Bank of Brazil.

3 A similar methodology has been adopted by Lo et al. (1995) for Euroyen and domestic yen interest rates, and the evaluation of different forecasting models of real interest rate has been previously done by Bidarkota (1998). Recent examples of interest rate forecasting also include Byers and Nowman (1998), Fletcher and Gulley (1996) and Ferreira (2005).
The main contribution of the paper is to evaluate whether simple VAR and VEC models can be helpful in forecasting medium-term interest rates. Besides, differently from previous literature, we test whether knowledge of the future path of short-term interest rates is useful in forecasting medium-term interest rates. It is widely perceived that central banks wish to smooth interest rates and therefore determine paths for short-term interest rates. We test whether knowledge of this future path may improve forecasting. Additionally, we test for both predictive and directional accuracy. Our main results suggest that such models perform poorly in terms of predictive accuracy but are helpful in terms of directional accuracy. Therefore, they are helpful in building qualitative scenarios for policy modeling.

The rest of the paper will be structured as follows: In section 2 we present a brief review of the literature, section 3 describes the data we used in our estimations, section 4 is the methodology, in 5 we present the empirical results and, finally, section 6 concludes the paper.

2. Brief literature review

The link between short and medium-term interest rates is given by the Expectations Hypothesis (EH) which suggests that monetary policy affects medium-term interest rates by directly influencing short-term rates and by altering market expectations of future short-term rates. This hypothesis is important since the term structure is one of the most relevant channel of the transmission of the monetary policy.

The equation for the EH is presented below:

\[
R_t^n = \frac{1}{k} \sum_{i=0}^{k-1} E[R_{t+i+m}^n] + \varphi_{n,m}
\]

where \(n > m \), \(n \) and \(m \) stand for long and short-term, \(k = n/m \) is an integer, \(R_t^n \) is the \(n \)-period interest rate and \(\varphi_{n,m} \) is a term premium.

The EH implies that the expected return on different maturity bonds, over any holding period, should be equalized. Therefore, the equation can be rearranged into:
\[R^n_t = E_t \left[\frac{1}{n} \sum_{i=1}^{n-1} r_{t+i} \right] + E_t \phi^n_t \]

where \(\phi^n_t \) is an average risk premium. Hence, the \(n \)-period medium rate equals a weighted average of expected future short rates \(r_{t+i} \) plus the average risk premium on the \(n \)-period bond, \(\phi^n_t \).

Given that medium rates \(R_t \) and short rates \(r_t \) are found to be I(1), \(\Delta R \) and \(\Delta r \) are I(0) by construction. A weak test of the Pure Expectations Hypothesis\(^4\) and Rational Expectations implied by the ‘future-short-rate’ or ‘long-rate’ equations is that \(R_t \) and \(r_t \) are cointegrated with a cointegration parameter of unity. Alternatively, the EH implies that the spreads \((R_t - r_t) \) should be I(0).

A natural way to test the EH is to perform a VEC analysis on short and medium term interest rates and test for the parameters restrictions implied by the EH.

In the international literature, Cuthbertson (1996) using Johansen cointegration analysis found that data for the UK interbank market is consistent with the EH at shorter maturities but when 6 and 12-months interest rates were used the EH was rejected.

Engsted and Tanggaard (1994) also used Johansen cointegration techniques to test for the cointegration implications of the EH on a sample of US discount yields and found evidence suggesting that cointegration implications of the EH generally seem to hold. Dominguez and Novalez (2000) analyze the EH on Euro-Rates using cointegration analysis and found that the restrictions of the EH on the cointegrating relationships are not rejected. However, it is not clear if the EH holds for emerging markets.

Gamber and Hakes (2005) created a model to evaluate the importance of monetary policy for forecasting real growth and inflation. They also incorporated

\(^4\) The Pure Expectations Hypothesis (PEH) assumes that the expected excess return is zero and that the term premium is zero for all maturities.
information into their model and found that smaller monetary policy forecast errors do not imply significantly smaller growth and inflation forecast errors. However, they do imply smaller variance of growth and inflation forecast errors.

Roley and Sellon (1995) used a model that captures the tendency of market rates to anticipate policy actions and found evidence of strong and persistent response of long-term rates to policy actions. Their main conclusions were that the average effect of monetary policy on long-term rates is positive and that much of the impact of policy actions on market rates appears to come from the reaction of forward rates.

Byers and Nowman (1998) used continuous time term structure models and compared the forecasting performance of different one-factor interest rate models for the UK and US. Ferreira (2005) found that the VEC model of Bollerslev et al. (1988) was the best model to forecast the comovements of spot interest rates. Also, Fletcher and Gulley (1996) extended the in-sample forecasting technique of Mishkin (1984) by calculating out-of-sample one-period ahead forecasts of real interest rates using an updated regression, a rolling regression and an ARMA model.

Here we try to evaluate if short-term rates help predict medium-term rates and if the assumption that forecasters have information of the future path of short-term interest rates is of any assistance in the accuracy of the forecasts.

3. Description of the data

The variables regressed in our model were the time series of the SELIC and the 6-months interest rate\(^5\). In this contract a party pays a fixed rate over an agreed principal and receives a floating rate over the same principal, the reverse occurring with his counterpart. There are no intermediate cash flows, and the contract settles on maturity. The floating rate is the overnight interbank deposits rate, which tracks very closely the average rate in the market for overnight reserves at the Central Bank. The fixed rate, negotiated by the parties, is the one used on this paper\(^6\).

\(^5\) We used the 6-month interest rate because a longer-term rate, with a large time span, does not exist and also, it is the most liquid maturity.

\(^6\) It is important to notice that the 6-month interest rate is used in the current macroeconomic modeling of the Banco Central do Brasil. The 6-months interest rate swap enters the IS specification (see Bogdanski et al., 2000).
Our data consists on the period from January 1995 to November 2005. Both series were taken from Bloomberg and consisted of daily observations. In this study we employ monthly observations. We obtained the average monthly value of the time series, which reduced our input sample to 131 observations.

4. Methodology

We obtained our forecasts by estimating an Unrestricted VAR, based on OLS estimates, where the short and medium-term interest rates are the endogenous variables. As an important disadvantage of this model is the possible over-parameterization it was essential to choose a proper lag length, which in our case was done using the Akaike (AIC) and Schwartz Information Criterion (SIC). In addition, it is important to mention that we have selected models that are free of autocorrelation between the residuals.

The forecasting benchmark for comparisons between our models will be the random walk. The random walk hypothesis asserts that the random natures of the variables in question do not reveal trends and therefore current values are no guide to future values. The short-term unpredictability of factors means that they appear to walk randomly on a chart, and the best guide to the value of a variable in time \(t+1 \) is it’s value in time \(t \). Therefore, according to this theory, every new change is explained by new information.

We consider that in order to perform a real forecast, it is necessary that the model be designed to predict out-of-sample values and, therefore, we tag along Fletcher and Gulley’s (1996) extension of the methodology adopted by Mishkin (1984). This way, the parameters are estimated inside the sample and, based on these results, a forecast of the value a step forward from the last value of the sample is made. Considering this, our three and six month forecasts were made out-of-sample and using a rolling window so we could correctly evaluate the performance of the models.

The EH of interest rates implies a medium-run relationship between medium and short-term rates. This relationship was estimated by means of cointegration tests. In our case, we performed these tests using the approaches of Engle-Granger (1987), Johansen (1988,1991) and a vector error correction model.

The estimated VAR model was the following:
\[
\Delta r(t) = \alpha_1 + \sum_{i=1}^{4} \alpha_{12}(i) \Delta r_{t-i} + \sum_{i=1}^{4} \alpha_{12}(i) \Delta R_{t-i} + \epsilon_{r(t)} \tag{1a}
\]

\[
\Delta R(t) = \alpha_2 + \sum_{i=1}^{4} \alpha_{21}(i) \Delta r_{t-i} + \sum_{i=1}^{4} \alpha_{22}(i) \Delta R_{t-i} + \epsilon_{R(t)} \tag{1b}
\]

where \(r(t)\) and \(R(t)\) are the short- and long-term interest rates, respectively.

The vector error correction model was:

\[
\Delta r_{nt} = a_{10} + \alpha_r (r_{Rt-1} - \beta r_{nt-1}) + \sum a_{11}(i) \Delta r_{nt-i} + \sum a_{12}(i) \Delta r_{nt-i} + \epsilon_{r_n} \tag{2a}
\]

\[
\Delta r_{Rt} = a_{20} - \alpha_R (r_{Rt-1} - \beta r_{nt-1}) + \sum a_{21}(i) \Delta r_{nt-i} + \sum a_{22}(i) \Delta R_{nt-i} + \epsilon_{R_t} \tag{2b}
\]

where \((r_{Rt-1} - \beta r_{nt-1})\) is the linear combination of interest rates, meaning, the cointegration element.

The forecasts were made using rolling windows of fifty elements, this approach implicates calculating the parameters inside a window, being the number of lags equal to 4, and then making a three step ahead out-of-sample forecast. After the forecast was made, it would be included in the sample, adjusting the following window. This was done iteratively until we reached the end of the sample.

Our first estimates involved a three step forward forecast of the series, later we also estimated six step forward forecasts. The second battery of estimates included the hypothesis that the Central Bank smoothes interest rates, meaning, forecasters have some knowledge of the future path of short-term interest rates. We consider this hypothesis the privileged information in our model. Therefore, VAR-naive will be the first model and VAR-information the model estimated assuming that forecasters know the future path of short-term interest rates. Also, since a VEC was performed for each model, they will also be identified as VEC-naive and VEC-information.

The forecasts made using the informed model were performed assuming that the forecasters know the true realized path of short-term interest rates. Therefore, we plug the realized path of short-term interest rates in the forecasting equations and forecast medium-term interest rates.

To compare the results of the estimated models and identify the most efficient we calculated the Mean Squared Error, and also the Mean Absolute Error, and compared the results of the first and second VAR and VEC and the random walk. Our
evaluation of the results consisted in applying two statistical tests, that of Diebold and Mariano (1995) to compare the differences among the MSE results and a second test, Pesaran and Timmermann (1992), was implemented in order to obtain directional accuracy.

5. Empirical Results

This section presents the results from the estimation of VAR and VEC models with and without the assumption of privileged information in which forecasters are assumed to know the future path of short-term interest rates and therefore the only variable that should be estimated is the medium-term interest rates. Results the parameters of the VAR and VEC and cointegration vectors are not shown to conserve space and to focus on the forecasting properties of these models. However, it is worth mentioning that the short and medium-term interest rates cointegrate.

In order to compare forecasts made from these models we implement the directional accuracy (DA) statistic, which is given by:

$$DA = \frac{SR - SRI}{\sqrt{\text{var}(SR) - \text{var}(SRI)}} \sim N(0,1),$$ \hspace{1cm} (3)

where SR (Success Ratio) = \(\frac{1}{m} \sum_{j=1}^{m} I_j \), \(m \) = number of periods, \(I_j \) is an indicator for correct sign and SRI (Success Ratio under Independence) = \(\hat{P} \hat{P} - (1 - \hat{P})(1 - \hat{P}) \) given that \(\hat{P} = \frac{1}{m} \sum_{j=1}^{m} I_j^{\text{me}} \) and \(\hat{P} = \frac{1}{m} \sum_{j=1}^{m} I_j^{\text{pred}} \) represent the realized and predicted means.

Table 1 presents results for DA for all the estimated models. It is worth noting that incorporating information regarding the future path of short-term interest rates has an insignificant impact on the directional accuracy and success ratio. Furthermore, the VAR model performs very similarly to the VEC model, therefore, the error correction term does not help much in terms of forecasting medium-term interest rates one and two quarters ahead, although it is statistically significant in the VEC formulation.
Table 1

<table>
<thead>
<tr>
<th></th>
<th>MSE</th>
<th>MAE</th>
<th>SR(%)</th>
<th>DA</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR-naive</td>
<td>0.004355</td>
<td>0.046366</td>
<td>0.69863</td>
<td>33,065*</td>
<td>(0.000472)</td>
</tr>
<tr>
<td>VAR-information</td>
<td>0.004451</td>
<td>0.046027</td>
<td>0.69863</td>
<td>33,065*</td>
<td>(0.000472)</td>
</tr>
<tr>
<td>VEC-naive</td>
<td>0.004878</td>
<td>0.050768</td>
<td>0.69863</td>
<td>34,522*</td>
<td>(0.000278)</td>
</tr>
<tr>
<td>VEC-information</td>
<td>0.005059</td>
<td>0.05024</td>
<td>0.64384</td>
<td>24,141*</td>
<td>(0.007887)</td>
</tr>
<tr>
<td>Random Walk</td>
<td>0.003322</td>
<td>0.043058</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Panel B:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR-naive</td>
<td>0.009338</td>
<td>0.075769</td>
<td>0.67143</td>
<td>2.7985*</td>
<td>(0.0025668)</td>
</tr>
<tr>
<td>VAR-information</td>
<td>0.008545</td>
<td>0.075227</td>
<td>0.64286</td>
<td>2.367*</td>
<td>(0.0089657)</td>
</tr>
<tr>
<td>VEC-naive</td>
<td>0.010056</td>
<td>0.079088</td>
<td>0.67143</td>
<td>2.8544*</td>
<td>(0.0021562)</td>
</tr>
<tr>
<td>VEC-information</td>
<td>0.010511</td>
<td>0.081898</td>
<td>0.67143</td>
<td>2.8544*</td>
<td>(0.0021562)</td>
</tr>
<tr>
<td>Random Walk</td>
<td>0.008818</td>
<td>0.07368</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Table 1, Panel A presents the Mean Squared (MSE) and Absolute (MAE) Error, Success Ratio (SR), Directional Accuracy statistic and the p-value for the three steps ahead forecasts. Panel B refers to the six steps ahead forecasts. We performed a Pesaran-Timmerman test to obtain these results and it is possible to observe that we can reject the null hypothesis that the Success Ration is statistically non-significant for all models. In this case, the higher the value of the DA statistic the larger is the rejection of the H_0.

* Significant at 1%.

We compare the forecasting performance of these models using the modified Diebold-Mariano statistic, which is given by:

$$DM = \frac{\bar{d}^a}{\sigma_d} \sim N(0,1), \quad (4)$$

where \bar{d} is the sample mean loss differential and σ_d is the variance of the loss differential, with a correction for serial correlation (Newey-West, 1987 covariance estimator).

Table 2 presents the results of a Diebold-Mariano test to evaluate the performance of the models two-by-two. We found that in the three steps ahead forecasts both VEC models performed better than the random walk, in the six steps ahead forecasts only the VEC with information presented better results. Therefore, in terms of forecasting accuracy a VAR/VEC framework performs poorly.
<table>
<thead>
<tr>
<th></th>
<th>VAR-naive</th>
<th>VAR-information</th>
<th>VEC-naive</th>
<th>VEC-information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR-information</td>
<td>0.16066</td>
<td>(0.43618)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-naive</td>
<td>-1.3009</td>
<td>(0.90336)</td>
<td>-1.2373</td>
<td>(0.89202)</td>
</tr>
<tr>
<td>VEC-information</td>
<td>-1.2028</td>
<td>(0.88546)</td>
<td>-1.2942</td>
<td>(0.9022)</td>
</tr>
<tr>
<td>RW</td>
<td>1.0001</td>
<td>(0.15864)</td>
<td>0.7681</td>
<td>(0.22121)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.6175**</td>
<td>(0.052884)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.4716**</td>
<td>(0.07057)</td>
</tr>
<tr>
<td>RW</td>
<td>1.0001</td>
<td>(0.15864)</td>
<td>0.7681</td>
<td>(0.22121)</td>
</tr>
<tr>
<td></td>
<td>1.6175**</td>
<td>(0.052884)</td>
<td>1.4716**</td>
<td>(0.07057)</td>
</tr>
<tr>
<td>Panel B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAR-information</td>
<td>2.1666</td>
<td>(0.015133)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEC-naive</td>
<td>0.32978</td>
<td>(0.37078)</td>
<td>-0.2934</td>
<td>(0.61537)</td>
</tr>
<tr>
<td>VEC-information</td>
<td>-1.5094</td>
<td>(0.93441)</td>
<td>-2.4641</td>
<td>(0.99313)</td>
</tr>
<tr>
<td>RW</td>
<td>1.1629</td>
<td>(0.12244)</td>
<td>-0.227</td>
<td>(0.58977)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2708</td>
<td>(0.39326)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.4175**</td>
<td>(0.00031605)</td>
</tr>
</tbody>
</table>

This table presents the results of a Diebold-Mariano test of the forecast errors of each model and provides p-values in parenthesis. In Panel A are the results for the three steps ahead forecasts while in Panel B are those for the six steps ahead forecasts.

** Significant at 10%.
6. Final Considerations

This paper studies a VAR/VEC model to forecast medium-term interest rates for the Brazilian economy. We focus on two variants of the model: one in which forecasters do not have information regarding short-term interest rates, and another, in which we assume that forecasters know the future path of short-term interest rates. This assumption seems reasonable since the Central Bank has short-term interest rates as the main instrument to conduct monetary policy, leading to some degree of predictability of short-term interest rates.

The empirical results obtained suggest that VAR/VEC models perform poorly in forecasting movements in interest rates in terms of forecasting accuracy. However, these models prove to be valuable as they help predict the direction of movements in medium-term interest rates.

The use of VAR/VEC models in monetary policy modeling seems to be useful as it can help policymakers to create scenarios for the term structure of interest rates in the future, and assess what would be the impact on macroeconomic variables in these scenarios. Additional research could study models that allow for changes in regimes.
References

Banco Central do Brasil

Trabalhos para Discussão

Os Trabalhos para Discussão podem ser acessados na internet, no formato PDF, no endereço: http://www.bc.gov.br

Working Paper Series

Working Papers in PDF format can be downloaded from: http://www.bc.gov.br

<table>
<thead>
<tr>
<th></th>
<th>Title</th>
<th>Author(s)</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Marta Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>10</td>
<td>Análise do Financiamento Externo a uma Pequena Economia</td>
<td>Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flóres Júnior</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
</tbody>
</table>
13 Modelos de Previsão de Insolvência Bancária no Brasil
Marcio Magalhães Janot
Mar/2001

14 Evaluating Core Inflation Measures for Brazil
Francisco Marcos Rodrigues Figueiredo
Mar/2001

15 Is It Worth Tracking Dollar/Real Implied Volatility?
Sandro Canesso de Andrade and Benjamin Miranda Tabak
Mar/2001

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA
Sergio Afonso Lago Alves
Mar/2001

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção
Tito Nícias Teixeira da Silva Filho
Abr/2001

18 A Simple Model for Inflation Targeting in Brazil
Paulo Springer de Freitas and Marcelo Kfoury Muinhos
Apr/2001

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
May/2001

20 Credit Channel without the LM Curve
Victorio Y. T. Chu and Márcio I. Nakane
May/2001

21 Os Impactos Econômicos da CPMF: Teoria e Evidência
Pedro H. Albuquerque
Jun/2001

22 Decentralized Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Jun/2001

23 Os Efeitos da CPMF sobre a Intermediação Financeira
Sérgio Mikio Koyama e Márcio I. Nakane
Jul/2001

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
Aug/2001

25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
Aug/2001

26 Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil
Marcelo Kfoury Muinhos
Aug/2001

27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
Set/2001
<table>
<thead>
<tr>
<th>Número</th>
<th>Título</th>
<th>Autor(es)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>33</td>
<td>Monetary Policy and Inflation in Brazil (1975-2000); a VAR Estimation</td>
<td>André Minella</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Níciás Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisio Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
Orlando Carneiro de Matos

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén

56 Causality and Cointegration in Stock Markets: the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima

57 As Leis de Falência: uma Abordagem Econômica
Aloisio Araújo

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
Benjamin Miranda Tabak

59 Os Preços Administrados e a Inflação no Brasil
Francisco Marcos R. Figueiredo e Thaís Porto Ferreira

60 Delegated Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
<table>
<thead>
<tr>
<th></th>
<th>Título</th>
<th>Autor</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>O Uso de Dados de Alta Freqüência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>62</td>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
<tr>
<td>63</td>
<td>Optimal Monetary Rules: the Case of Brazil</td>
<td>Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>64</td>
<td>Medium-Size Macroeconomic Model for the Brazilian Economy</td>
<td>Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>65</td>
<td>On the Information Content of Oil Future Prices</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>68</td>
<td>Real Balances in the Utility Function: Evidence for Brazil</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>69</td>
<td>r-filters: a Hodrick-Prescott Filter Generalization</td>
<td>Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>70</td>
<td>Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>71</td>
<td>On Shadow-Prices of Banks in Real-Time Gross Settlement Systems</td>
<td>Rodrigo Penaloza</td>
<td>Apr/2003</td>
</tr>
<tr>
<td>72</td>
<td>O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras</td>
<td>Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmani Teixeira de C. Guillen</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>73</td>
<td>Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros</td>
<td>Getúlio Borges da Silveira e Octavio Bessada</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>74</td>
<td>Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa</td>
<td>Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das Neves</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>75</td>
<td>Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth</td>
<td>Ilan Goldfajn, Katherine Hennings and Helio Mori</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--------</td>
</tr>
<tr>
<td>76</td>
<td>Inflation Targeting in Emerging Market Economies</td>
<td>Arminio Fraga, Ilan Goldfajn and André Minella</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>77</td>
<td>Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility</td>
<td>André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muiños</td>
<td>Jul/2003</td>
</tr>
<tr>
<td>78</td>
<td>Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>79</td>
<td>Inclusão do Decaimento Temporal na Metodologia de Precificação do VaR de Carteiras Compradas em Opções no Brasil</td>
<td>Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber</td>
<td>Out/2003</td>
</tr>
<tr>
<td>80</td>
<td>Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina</td>
<td>Arnildo da Silva Correa</td>
<td>Out/2003</td>
</tr>
<tr>
<td>81</td>
<td>Bank Competition, Agency Costs and the Performance of the Monetary Policy</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Jan/2004</td>
</tr>
<tr>
<td>83</td>
<td>Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries</td>
<td>Thomas Y. Wu</td>
<td>May/2004</td>
</tr>
<tr>
<td>84</td>
<td>Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis</td>
<td>Aloisio Araujo and Marcia Leon</td>
<td>May/2004</td>
</tr>
<tr>
<td>86</td>
<td>Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo</td>
<td>Fabio Araujo e João Victor Issler</td>
<td>Maio/2004</td>
</tr>
<tr>
<td>87</td>
<td>Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil</td>
<td>Ana Carla Abrão Costa</td>
<td>Dez/2004</td>
</tr>
<tr>
<td>89</td>
<td>O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central</td>
<td>Fernando N. de Oliveira</td>
<td>Dez/2004</td>
</tr>
</tbody>
</table>
104 Extração de Informação de Opções Cambiais no Brasil
Eui Jung Chang e Benjamin Miranda Tabak
Abr/2006

105 Representing Roomate’s Preferences with Symmetric Utilities
José Alvaro Rodrigues-Neto
Apr/2006

106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
May/2006

107 Demand for Bank Services and Market Power in Brazilian Banking
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
Jun/2006

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar and Tony Takeda
Jun/2006

109 The Recent Brazilian Disinflation Process and Costs
Alexandre A. Tombini and Sergio A. Lago Alves
Jun/2006

110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
Jul/2006

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira and Myrian Beatriz Eiras das Neves
Jul/2006

112 Interdependence and Contagion: an Analysis of Information Transmission in Latin America's Stock Markets
Angelo Marsiglia Fasolo
Jul/2006

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil
Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro
Ago/2006

114 The Inequality Channel of Monetary Transmission
Marta Areosa and Waldyr Areosa
Aug/2006

115 Myopic Loss Aversion and House-Money Effect Overseas: an experimental approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
Sep/2006

116 Out-Of-The-Money Monte Carlo Simulation Option Pricing: the join use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Josète Florencio do Santos
Sep/2006

117 An Analysis of Off-Site Supervision of Banks’ Profitability, Risk and Capital Adequacy: a portfolio simulation approach applied to brazilian banks
Theodore M. Barnhill, Marcos R. Souto and Benjamin M. Tabak
Sep/2006

118 Contagion, Bankruptcy and Social Welfare Analysis in a Financial Economy with Risk Regulation Constraint
Aloísio P. Araújo and José Valentim M. Vicente
Oct/2006
A Central de Risco de Crédito no Brasil: uma análise de utilidade de informação

Ricardo Schechtman

Out/2006