Out-Of-The-Money Monte Carlo Simulation Option Pricing: the join use of Importance Sampling and Descriptive Sampling
Jaqueline Terra Moura Marins, Eduardo Saliby and Josete Florencio do Santos
September, 2006
Working Paper Series

The views expressed in this work are those of the authors and do not necessarily reflect those of the Banco Central or its members.

Although these Working Papers often represent preliminary work, citation of source is required when used or reproduced.

As opiniões expressas neste trabalho são exclusivamente do(s) autor(es) e não refletem, necessariamente, a visão do Banco Central do Brasil.

Ainda que este artigo represente trabalho preliminar, citação da fonte é requerida mesmo quando reproduzido parcialmente.
Out-Of-The-Money Monte Carlo Simulation Option Pricing: the joint use of Importance Sampling and Descriptive Sampling

Jaqueline Terra Moura Marins*
Eduardo Saliby**
Joséte Florencio do Santos***

Abstract

As in any Monte Carlo application, simulation option valuation produces imprecise estimates. In such an application, Descriptive Sampling (DS) has proven to be a powerful Variance Reduction Technique. However, this performance deteriorates as the probability of exercising an option decreases. In the case of out-of-the-money options, the solution is to use Importance Sampling (IS). Following this track, the joint use of IS and DS is deserving of attention. Here, we evaluate and compare the benefits of using standard IS method with the joint use of IS and DS. We also investigate the influence of the problem dimensionality in the variance reduction achieved. Although the combination IS+DS showed gains over the standard IS implementation, the benefits in the case of out-of-the-money options were mainly due to the IS effect. On the other hand, the problem dimensionality did not affect the gains. Possible reasons for such results are discussed.

Keywords: Monte Carlo simulation; european calls; Importance Sampling; Descriptive Sampling.
JEL Classification: C15

* Research Department, Central Bank of Brazil. E-mail: jaqueline.terra@bcb.gov.br
** Professor at the Coppead/UFRJ.
*** Professor at the Propad/UFPE.
1 Introduction

A well-known weakness of Monte Carlo simulation is the lack of precision in the estimates. Naturally, this is also true in Monte Carlo Simulation option valuation. Variance Reduction Techniques (VRT) are generally recommended to minimize this problem, as suggested by Bratley, Fox, and Schrage (1987), and Charnes (2000). One of these techniques, Descriptive Sampling, proposed in Saliby (1990), has proven to be very efficient when compared with other direct sampling techniques. By direct sampling, we mean the usual approach where samples are directly drawn from model distributions, unlike the less common case where samples are drawn from transformed distributions, as in Importance Sampling (IS). DS is a rather new and not very well-known Variance Reduction Technique based on a fully deterministic selection of the sample values and their random permutation. In general, DS produces more precise estimates than the standard Monte Carlo and other improved direct sampling schemes such as Latin Hypercube Sampling (LHS), as reported in Saliby (1997). Therefore, DS is a good choice in option pricing simulation. However, in the case of out-of-the-money options, where the exercise probability is quite low, all direct sampling methods, including DS, deteriorate. In such cases, the solution is to use Importance Sampling (IS). Following this track, the joint use of IS and DS is likely to be fruitful. This work evaluates and compares the benefits from using the standard IS method, based on a Simple Random Sampling (SRS) implementation, with the joint use of IS and DS. We also investigate the influence of the problem dimensionality in the variance reduction achieved.

European calls can be analytically priced through the well known Black and Scholes (1973) model. Nevertheless, Monte Carlo simulation can also be used to price European options, mainly by serving as a reference when the simulation procedure is extended to other kinds of options without any known analytical solution. Another advantage in the simulation valuation of European options, specifically for purposes of this study, is the possibility of varying the problem dimensionality, e.g. the number of simulated time steps, without changing the responses and estimates being studied.

Although there is no great appeal in simulating European options, since a closed solution is available, it is expected that most simulation features in this standard case are
likely to be extendable to other cases such as Path-Dependent and other kinds of exotic options.

A particular case of interest concerns out-of-the-money options, like European calls with strike prices far higher than the current asset price. As already mentioned, the estimate’s precision deteriorates when using any direct sampling method; this applies to basic sampling methods such as Simple Random Sampling (SRS), as well as to more controlled sample schemes; for example, LHS, DS and Quasi Monte Carlo (QMC). Such is the case because, when the probability of exercise is too low and direct sampling methods are used, the problem becomes a rare event simulation case with most simulated payoff values being zero, and, consequently, very few positive payoff values will result. Since the payoff distribution is a mixed type distribution, i.e. discrete for zero values and continuous and tailed for positive values, the option’s fair price will be poorly estimated when the two kinds of results are unbalanced present in the simulated payoffs. To improve the quality of simulation estimates when rare events are relevant, the use of Importance Sampling is, in principle, a good choice.

Importance Sampling (IS) is a variance reduction technique that changes the parameters of the original problem in a case where original rare events are no longer rare and, with proper adjustments, it provides unbiased and more precise estimates. In the present case, the parameters are changed in order to substantially increase the probability of exercising the option, so that the transformed option is no longer out-of-the-money. In principle, the gains with IS over SRS and other VRTs are higher as rare events become less likely. In fact, the use of IS in such cases is suggested by Charnes (2000) and Staum (2003), among others.

Another Variance Reduction Technique used herein, Descriptive Sampling, can be seen as an improvement over Latin Hypercube Sampling as described in Saliby (1997). The only practical difference between both methods is the deterministic selection of the sample values inside each stratum in the DS case, instead of a still random draw in each stratum in the LHS case. One key issue related to DS efficiency is problem dimensionality, i.e. the number of random variables in the simulation model. In the trivial one dimension case (dim = 1), DS produces deterministic results, usually a good numerical approximation to the theoretical solution. This follows because, in such a case, the random permutation of the input values is irrelevant for the final simulation estimates. An example of this case is European call or put option pricing, where the final asset price is generated in just one time step. However, when dim >1, the random
permutation of the input vector of values will vary the simulation estimates between different runs, even with a fixed set of input values. Therefore, apart from the trivial dim = 1 case, where the DS improvement is 100%, a question to be answered is how the problem dimensionality may affect the DS performance when dim >1.

In order to investigate the influence of the exercise probability in the IS efficiency, with and without DS, three different deep out-of-the-money European calls were simulated. The problem dimensionality also varied for the three cases by using different numbers of time steps to generate the final asset price. The quality of the estimates was evaluated by the standard error reduction over the standard Monte Carlo sampling method together with the Root Mean Squared Error (RMSE) reduction based on the Black and Scholes solution.

The remainder of this paper is organized as follows: Section 2 describes the methodology, briefly presenting the Variance Reduction Techniques in use; Section 3 shows the main results from the simulation experiments; finally, Section 4 concludes with a short discussion of the main findings.

2 Methodology

2.1 European Calls and The Black and Scholes Solution

A European call presents a simple payoff function, given as

\[Payoff = \max(0; S_T - K), \]

where:

- \(S_T \) = the underlying asset price at the maturity of the option,
- \(K \) = the exercise price of the option.

A call option is out-of-the-money when the current underlying asset price is below the strike price. The higher the exercise price, the lower the probability that the option will be exercised. When this probability is too low, the option is said to be deep out-of-the-money.
The price of a European call is defined by the present value of its expected payoff. The Black and Scholes (B&S) model presents a closed-form solution for this price:

\[c = S_0 N(d_1) - Ke^{-R_f T/252} N(d_2), \] (2)

where:

- \[d_1 = \frac{\ln \left(\frac{S_0}{K} \right) + \left(R_f + \frac{\sigma^2}{2} \right) \frac{T}{252}}{\sigma \sqrt{\frac{T}{252}}}, \]
- \[d_2 = \frac{\ln \left(\frac{S_0}{K} \right) + \left(R_f - \frac{\sigma^2}{2} \right) \frac{T}{252}}{\sigma \sqrt{\frac{T}{252}}} = d_1 - \sigma \sqrt{\frac{T}{252}}, \]
- \(c \) = European call price according to the Black and Scholes solution,
- \(S_0 \) = initial underlying asset price,
- \(R_f \) = annual risk-free interest rate,
- \(\sigma \) = annual asset volatility,
- \(T \) = option’s maturity in working days (1 year equals 252 working days),
- \(K \) = exercise price of the option,
- \(N(d_i) \) = value of the standard normal cumulative distribution function at point \(d_i \), where \(i = 1 \) and \(2 \),

2.2 The Monte Carlo Simulation Model

A Monte Carlo simulation model is implemented to generate paths for the underlying asset price, and then to obtain estimates for the payoff of a European call. The average of the estimated payoffs is then calculated and brought to the present date value using the risk-free interest rate as the discount rate. In this study, the simulation prices along each path were generated in steps, defined by the number of dimensions used. As in the Black and Scholes model, we assumed that the underlying asset path of
prices follows a Brownian geometric motion, defined by the differential stochastic equation:

\[
\frac{dS}{S} = \mu dt + \sigma dW,
\]

(3)

where:

- \(dS\) = underlying asset price change during time interval \(dt\),
- \(\mu\) = asset return,
- \(\sigma\) = asset volatility,
- \(dW\) = Wiener process.

Rewriting Equation (3) in discrete time and adopting the risk neutrality assumption (asset return equals risk-free interest rate) and using Ito’s Lemma, one obtains the following equation for the underlying asset price at time \(t\) (Hull 1999):

\[
S_t = S_{t-1} e^{\left(\sigma^2/2\right)dt + \sigma \sqrt{dt} \cdot Z_t},
\]

(4)

where:

- \(S_t\) = underlying asset price in instant \(t\),
- \(S_{t-1}\) = underlying asset price in instant \(t-1\),
- \(dt\) = option’s maturity \((T)\) / number of dimensions \((\text{dim})\),
- \(Z_t\) = standard normal random variable in instant \(t\).

In the empirical studies, each path was simulated up to the option’s maturity date \(T\) at the 252\(^{\text{nd}}\) day, based on Equation (4) and according to the number of dimensions \((\text{dim})\) chosen. The number of dimensions varied from 5 to 100. For example, when 15 dimensions were chosen, each path was simulated in 15 time steps. In each simulation run, \(n = 1000\) paths were generated for the underlying asset price. The simulation experiment for each parameter combination comprised \(m = 40\) simulation runs. In matrix representation, the experiment is described as follows:
For $j = 1$ to m runs:

\[
{j}^{th} \text{ Random Matrix } (Z^{j}) = \begin{bmatrix}
Z_{1,1} & \cdots & Z_{1,\text{dim}} \\
\vdots & \ddots & \vdots \\
Z_{n,1} & \cdots & Z_{n,\text{dim}}
\end{bmatrix},
\]

\[
{j}^{th} \text{ Asset Price Matrix } (S^{j}) = \begin{bmatrix}
S_{1,1} & \cdots & S_{1,\text{dim}} \\
\vdots & \ddots & \vdots \\
S_{n,1} & \cdots & S_{n,\text{dim}}
\end{bmatrix},
\]

\[
{j}^{th} \text{ Payoffs Vector } = \begin{bmatrix}
\max\left[0, (S_{1,\text{dim}} - K)\right] \\
\vdots \\
\max\left[0, (S_{n,\text{dim}} - K)\right]
\end{bmatrix},
\]

\[
{j}^{th} \text{ Payoffs PV Vector } = \begin{bmatrix}
\text{Payoff}_1 \exp(-R_f \times T/252) \\
\vdots \\
\text{Payoff}_n \exp(-R_f \times T/252)
\end{bmatrix}.
\]

The j^{th} call price estimate is the mean of the 1000 components of j^{th} Payoffs’ PV (Present Value) Vector. The call price’s final estimate is the mean of the 40 call price estimates. The standard error is given by the standard deviation of the 40 call price estimates.

Other simulation parameters, as used in the experiments, are presented in Table 1:
Table 1: Simulation Parameters Used in the Experiments.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_0</td>
<td>Initial underlying asset price (at $t=0$)</td>
<td>100</td>
</tr>
<tr>
<td>R_f</td>
<td>Annual risk-free interest rate</td>
<td>$5%$</td>
</tr>
<tr>
<td>K</td>
<td>Exercise price</td>
<td>$160, 180, 200$</td>
</tr>
<tr>
<td>σ</td>
<td>Annual asset volatility</td>
<td>$20%$</td>
</tr>
<tr>
<td>dim</td>
<td>Number of dimensions</td>
<td>From 5 to 100 (increment of 5)</td>
</tr>
<tr>
<td>T</td>
<td>Option’s maturity date</td>
<td>252nd</td>
</tr>
<tr>
<td>N</td>
<td>Number of observations per run (number of generated paths per run)</td>
<td>1000</td>
</tr>
<tr>
<td>m</td>
<td>Number of runs</td>
<td>40</td>
</tr>
</tbody>
</table>

Each different K value above defined an out-of-the-money European call to be priced, with a theoretical exercise probability of 1.390% ($K=160$), 0.264% ($K=180$) and 0.046% ($K=200$).

2.3 Simple Random Sampling (SRS)

The SRS simulation was a straight implementation, based on the Inverse Transform Technique, generating random values for Z_t in Equation (4).

Variance Reduction Techniques as used in this paper are based on different sampling schemes.

2.4 Variance Reduction Techniques

2.4.1 Importance Sampling (IS)

When simulation observations are directly generated, as in the SRS case, many observations may fall into regions of no or little interest as, for example, a zero payoff. In the presence of relevant rare events, this may disrupt the estimate’s precision.

When dealing with out-of-the-money options, few price paths with positive payoffs will be simulated, although such an option’s price will be evaluated by combining both kinds of results: zero and nonzero payoffs. This unbalanced set of results leads to imprecise estimates. The IS’s purpose is to restore this balance using a proper modification of the problem.

As such, IS usually changes the simulation problem parameters, but not the model, so that the option is not out-of-the-money anymore. This idea, as applied to option pricing, is described in Boyle, Broadie and Glasserman (1997). After the change, the usual IS approach is to continue using the standard SRS Monte Carlo simulation for
the modified problem. In this work, a drift increase was applied by increasing the asset
return rate, thus shifting the asset price distribution to the right. Therefore, instead of
using random Z_i values from the standard normal distribution, Z'_i values were randomly
drawn from a shifted normal distribution with mean μ and unitary standard deviation.
At the end of the process, the simulated payoff was then adjusted to give proper answers
to the original problem. This was achieved by multiplying each simulated result by the
likelihood ratio, given by:

$$
Ratio = e^{-0.5 \left[\sum_{i=1}^{\text{dim}} \frac{Z'_i - \mu}{\sigma} \sum_{j=1}^{\text{dim}} \frac{Z'_j - \mu}{\sigma} \right]^2},
$$

where:

- $Z'_i \sim N(\mu, 1)$,
- $\text{dim} =$ problem dimensionality or time steps in price path.

2.4.2 Importance Sampling with Descriptive Sampling (IS + DS)

Instead of randomly drawing Z_i values, this technique incorporates DS in the IS
analysis, so that the $Z_{d'i}$ values are deterministically chosen from the shifted normal
distribution. Due to the selection procedure, input sample moments were fixed and very
close to the respective theoretical values, thereby presenting no more variability
between different runs.

The deterministic selection procedure consisted of stratifying the cumulative
shifted normal distribution $N(\mu, 1)$ into n parts of equal probability and using the median
of each stratum. The selected n elements will compose the set of descriptive values,
which will be randomly shuffled to produce a univariate descriptive sample. This
method assures that all strata of the normal distribution $N(\mu, 1)$ will be represented in
the sample. In the multi-dimensional case, the set of descriptive values will be the same
for each dimension or time step in the price path, but in a different random permutation.

Thus, the set of descriptive values (here identified as Z_{di} instead of Z_i), before
shuffling, is given by:
where:

- \(n \) = descriptive sample size,
- \(i = 1, 2, 3, \ldots, n \),
- \(Zd_i = i^{th} \) descriptive sample set value,
- \(F^{-1} \) = inverse transform of the input variable cumulative distribution; Inverse cumulative Normal in this study.

It is worth noticing that Descriptive Sampling and Quasi-Monte Carlo Methods are both based on a deterministic sample selection. However, unlike Quasi-Monte Carlo where sample sequences are also fixed, DS is based on a random permutation of the set values, thus resulting into different estimates for each simulation run.

3 Results

Table 2 presents the simulated prices of the three out-of-the-money European calls considered in this paper, using IS in Monte Carlo simulation. Table 3 incorporates DS into the IS analysis. Various shift values (\(\mu \)) were considered and four dimension levels (dim) were presented (5, 10, 20 and 100). The standard errors of the simulated prices are also presented. In Table 2, column \(\mu = 0 \) corresponds to Monte Carlo simulation using SRS, without any shift; in Table 3, it corresponds to the standard DS use, also without any shift. The tables also present the analytical prices of the three European calls according to the Black and Scholes solution.
Table 2: Estimated European Call Prices Using Standard Importance Sampling (IS+SRS), Standard Errors of the Estimates and the Black and Scholes’ Solution.

<table>
<thead>
<tr>
<th>Dim</th>
<th>K</th>
<th>μ</th>
<th>IS+SRS</th>
<th>0</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
<th>1.10</th>
<th>1.20</th>
<th>1.30</th>
<th>1.40</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>160</td>
<td>0.1590</td>
<td>0.1640</td>
<td>0.1674</td>
<td>0.1696</td>
<td>0.1502</td>
<td>0.1552</td>
<td>0.1792</td>
<td>0.1788</td>
<td>0.1902</td>
<td>0.1936</td>
<td>0.1584</td>
<td>0.1530</td>
<td>0.1626</td>
<td>0.1535</td>
<td>0.1148</td>
<td>0.1217</td>
<td>0.0952</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.0389</td>
<td>0.0324</td>
<td>0.0313</td>
<td>0.0306</td>
<td>0.0295</td>
<td>0.0292</td>
<td>0.0297</td>
<td>0.0280</td>
<td>0.0286</td>
<td>0.0287</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0280</td>
<td>0.0277</td>
<td>0.0282</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>160</td>
<td>-</td>
<td>0.0373</td>
<td>0.0306</td>
<td>0.0215</td>
<td>0.0309</td>
<td>0.0413</td>
<td>0.0135</td>
<td>0.0192</td>
<td>0.0215</td>
<td>0.0272</td>
<td>0.0287</td>
<td>0.0256</td>
<td>0.0286</td>
<td>0.0277</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.0345</td>
<td>0.0317</td>
<td>0.0105</td>
<td>0.0209</td>
<td>0.0313</td>
<td>0.0133</td>
<td>0.0180</td>
<td>0.0215</td>
<td>0.0272</td>
<td>0.0287</td>
<td>0.0256</td>
<td>0.0286</td>
<td>0.0277</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
<td></td>
</tr>
</tbody>
</table>

Dim = Dimension; K = exercise price; Mean = Estimated Call Prices; S.E. = Standard Errors of the Estimates; B&S = Black and Scholes’ Solution; μ = shift-value of the Importance Sampling procedure.

Table 3: Estimated European Call Prices Using Importance Sampling with Descriptive Sampling (IS+DS), Standard Errors of the Estimates and the Black and Scholes’ Solution.

<table>
<thead>
<tr>
<th>Dim</th>
<th>K</th>
<th>μ</th>
<th>IS+DS</th>
<th>0</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>0.60</th>
<th>0.70</th>
<th>0.80</th>
<th>0.90</th>
<th>1.00</th>
<th>1.10</th>
<th>1.20</th>
<th>1.30</th>
<th>1.40</th>
<th>1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>160</td>
<td>0.1590</td>
<td>0.1640</td>
<td>0.1674</td>
<td>0.1696</td>
<td>0.1502</td>
<td>0.1552</td>
<td>0.1792</td>
<td>0.1788</td>
<td>0.1902</td>
<td>0.1936</td>
<td>0.1584</td>
<td>0.1530</td>
<td>0.1626</td>
<td>0.1535</td>
<td>0.1148</td>
<td>0.1217</td>
<td>0.0952</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>0.0389</td>
<td>0.0324</td>
<td>0.0313</td>
<td>0.0306</td>
<td>0.0295</td>
<td>0.0292</td>
<td>0.0297</td>
<td>0.0280</td>
<td>0.0286</td>
<td>0.0287</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0280</td>
<td>0.0277</td>
<td>0.0282</td>
<td></td>
</tr>
<tr>
<td>SE</td>
<td>160</td>
<td>-</td>
<td>0.0373</td>
<td>0.0306</td>
<td>0.0215</td>
<td>0.0309</td>
<td>0.0413</td>
<td>0.0135</td>
<td>0.0192</td>
<td>0.0215</td>
<td>0.0272</td>
<td>0.0287</td>
<td>0.0256</td>
<td>0.0286</td>
<td>0.0277</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
</tr>
<tr>
<td>200</td>
<td>-</td>
<td>0.0345</td>
<td>0.0317</td>
<td>0.0105</td>
<td>0.0209</td>
<td>0.0313</td>
<td>0.0133</td>
<td>0.0180</td>
<td>0.0215</td>
<td>0.0272</td>
<td>0.0287</td>
<td>0.0256</td>
<td>0.0286</td>
<td>0.0277</td>
<td>0.0281</td>
<td>0.0283</td>
<td>0.0281</td>
<td>0.0283</td>
<td></td>
</tr>
</tbody>
</table>

Dim = Dimension; K = exercise price; Mean = Estimated Call Prices; S.E. = Standard Errors of the Estimates; B&S = Black and Scholes’ Solution; μ = shift-value of the Importance Sampling procedure.
One can observe that, as expected and required, the simulated call prices were in close agreement with their corresponding analytical prices, no matter the shift μ value. Both Importance Sampling variations (IS+SRS and IS+DS), with an adequate choice for the shift μ value, were also very efficient Variance Reduction Techniques. The more the call was out-of-the-money (or equivalently, the higher its exercise price, K), the higher was the standard error reduction.

For both IS variations, the calibration issue regarding the best shift value is present; an empirical approach is suggested. Figures 1 to 4 show the RMSE relative variation to the standard SRS, based on different μ values, here ranging up to $\mu = 1.20$. Each figure refers to a particular dimensionality (5, 10, 20 and 100) and displays the RMSE relative variation for the three calls being studied ($K=160$, 180 and 200).

Figure 1: Importance Sampling RMSE Relative Variation with the Shift μ for the 3 European Calls (Dimension = 5).

![Figure 1](image1)

Figure 2: Importance Sampling RMSE Relative Variation with the Shift μ for the 3 European Calls (Dimension = 10).

![Figure 2](image2)
As shown, one may observe that, no matter the particular K value (160, 180 or 200), there are substantial gains from the use of Importance Sampling instead of Simple Random Sampling. It may also be observed that such gains are higher as the option becomes deeper out-of-the-money as K increases. Finally, as K increases, the optimum shift μ-value also increases, which can be explained by the need to keep the exercise probability of the transformed shifted option at a much higher level, usually somewhere around 70%. Concerning problem dimensionality, it seems that the number of points in the path price did not affect the above findings.

Although the IS benefit is noteworthy, DS improvements over the standard IS implementation were only marginal. Further results are needed to better evaluate the gains from the IS+DS combination and to better understand the case, but with foreknowledge that such gains are likely to be irrelevant in practical terms.
4 Conclusions

Although the use of variance reduction techniques in Monte Carlo option pricing is a common practice, the benefits from the joint use of such techniques is not well explored, in particular of IS and DS. In such a context, this paper presents some innovative results:

- as expected, it was advantageous to use IS as a variance reduction technique to price out-of-the-money European calls;
- the higher the exercise price considered, i.e. the lower the probability that the call would be exercised, the higher the gain provided by IS;
- the dimensionality of the simulation problem did not affect the gains achieved with IS;
- on the other hand, the combined use of IS + DS only produced marginal gains over the standard IS implementation. One possible reason for such a result, yet to be confirmed, is that IS also imposes a control over the input sample values, which is the purpose of DS.

These conclusions are likely to be extendable to other options, especially the ones that are difficult to price. Forthcoming steps from this research could be towards this generalization, in particular, the study of exotic options, such as Asian and barrier options.
5 References

Working Paper Series

Implementing Inflation Targeting in Brazil
Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang
Jul/2000

Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil
Eduardo Lundberg
Jul/2000

Private Sector Participation: a Theoretical Justification of the Brazilian Position
Sérgio Ribeiro da Costa Werlang
Jul/2000

An Information Theory Approach to the Aggregation of Log-Linear Models
Pedro H. Albuquerque
Jul/2000

The Pass-Through from Depreciation to Inflation: a Panel Study
Ilan Goldfajn and Sérgio Ribeiro da Costa Werlang
Jul/2000

Optimal Interest Rate Rules in Inflation Targeting Frameworks
José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira
Jul/2000

Leading Indicators of Inflation for Brazil
Marcelle Chauvet
Sep/2000

The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk
José Alvaro Rodrigues Neto
Sep/2000

Estimating Exchange Market Pressure and Intervention Activity
Emanuel-Werner Kohlscheen
Nov/2000

Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flóres Júnior
Mar/2001

A Note on the Efficient Estimation of Inflation in Brazil
Michael F. Bryan and Stephen G. Cecchetti
Mar/2001

A Test of Competition in Brazilian Banking
Márcio I. Nakane
Mar/2001
13 Modelos de Previsão de Insolvência Bancária no Brasil
Marcio Magalhães Janot
Mar/2001

14 Evaluating Core Inflation Measures for Brazil
Francisco Marcos Rodrigues Figueiredo
Mar/2001

15 Is It Worth Tracking Dollar/Real Implied Volatility?
Sandro Canesso de Andrade and Benjamin Miranda Tabak
Mar/2001

16 Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA
Sergio Afonso Lago Alves
Mar/2001

17 Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção
Tito Nícias Teixeira da Silva Filho
Abr/2001

18 A Simple Model for Inflation Targeting in Brazil
Paulo Springer de Freitas and Marcelo Kfoury Muinhos
Apr/2001

19 Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model
Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo
May/2001

20 Credit Channel without the LM Curve
Victorio Y. T. Chu and Márcio I. Nakane
May/2001

21 Os Impactos Econômicos da CPMF: Teoria e Evidência
Pedro H. Albuquerque
Jun/2001

22 Decentralized Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Jun/2001

23 Os Efeitos da CPMF sobre a Intermediação Financeira
Sérgio Mikio Koyama e Márcio I. Nakane
Jul/2001

24 Inflation Targeting in Brazil: Shocks, Backward-Looking Prices, and IMF Conditionality
Joel Bogdanski, Paulo Springer de Freitas, Ilan Goldfajn and Alexandre Antonio Tombini
Aug/2001

25 Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00
Pedro Fachada
Aug/2001

26 Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil
Marcelo Kfoury Muinhos
Aug/2001

27 Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais
Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior
Set/2001
<table>
<thead>
<tr>
<th>No.</th>
<th>Título</th>
<th>Autor(es)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisio Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo and Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
 Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
 Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
 André Minella
 Aug/2002

46 The Determinants of Bank Interest Spread in Brazil
 Tarsila Segalla Afanasieff, Priscilla Maria Villa Lhacer and Márcio I. Nakane
 Aug/2002

47 Indicadores Derivados de Agregados Monetários
 Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
 Set/2002

48 Should Government Smooth Exchange Rate Risk?
 Ilan Goldfajn and Marcos Antonio Silveira
 Sep/2002

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil: Evidências de Causalidade
 Orlando Carneiro de Matos
 Set/2002

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
 Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira
 Sep/2002

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
 Victorio Yi Tson Chu
 Sep/2002

52 Generalized Hyperbolic Distributions and Brazilian Data
 José Fajardo and Aquiles Farias
 Sep/2002

53 Inflation Targeting in Brazil: Lessons and Challenges
 André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
 Nov/2002

54 Stock Returns and Volatility
 Benjamin Miranda Tabak and Solange Maria Guerra
 Nov/2002

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
 Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guillén
 Nov/2002

56 Causality and Cointegration in Stock Markets: the Case of Latin America
 Benjamin Miranda Tabak and Eduardo José Araújo Lima
 Dec/2002

57 As Leis de Falência: uma Abordagem Econômica
 Aloisio Araújo
 Dez/2002

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
 Benjamin Miranda Tabak
 Dec/2002

59 Os Preços Administrados e a Inflação no Brasil
 Francisco Marcos R. Figueiredo e Thaís Porto Ferreira
 Dez/2002

60 Delegated Portfolio Management
 Paulo Coutinho and Benjamin Miranda Tabak
 Dec/2002
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>61</td>
<td>O Uso de Dados de Alta Frequência na Estimação da Volatilidade e do Valor em Risco para o Ibovespa</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>62</td>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tomooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
<tr>
<td>63</td>
<td>Optimal Monetary Rules: the Case of Brazil</td>
<td>Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza and Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>64</td>
<td>Medium-Size Macroeconomic Model for the Brazilian Economy</td>
<td>Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>65</td>
<td>On the Information Content of Oil Future Prices</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>68</td>
<td>Real Balances in the Utility Function: Evidence for Brazil</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>69</td>
<td>r-filters: a Hodrick-Prescott Filter Generalization</td>
<td>Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>70</td>
<td>Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>71</td>
<td>On Shadow-Prices of Banks in Real-Time Gross Settlement Systems</td>
<td>Rodrigo Penaloza</td>
<td>Apr/2003</td>
</tr>
<tr>
<td>72</td>
<td>O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros Brasileiras</td>
<td>Ricardo Dias de Oliveira Brito, Angelo J. Mont’Alverne Duarte e Osmaní Teixeira de C. Guillen</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>73</td>
<td>Análise de Componentes Principais de Dados Funcionais – Uma Aplicação às Estruturas a Termo de Taxas de Juros</td>
<td>Getúlio Borges da Silveira e Octavio Bessada</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>74</td>
<td>Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções Sobre Títulos de Renda Fixa</td>
<td>Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza and César das Neves</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>75</td>
<td>Brazil’s Financial System: Resilience to Shocks, no Currency Substitution, but Struggling to Promote Growth</td>
<td>Ilan Goldfajn, Katherine Hennings and Helio Mori</td>
<td>Jun/2003</td>
</tr>
</tbody>
</table>
Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfouri Muinhos
Jul/2003

Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
Out/2003

Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbeto e Gustavo Silva Araújo
Mar/2004

Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro e Fernando de Holanda Barbosa
May/2004

Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
Maio/2004

Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
90 Bank Privatization and Productivity: Evidence for Brazil
Márcio I. Nakane and Daniela B. Weintraub
Dec/2004

91 Credit Risk Measurement and the Regulation of Bank Capital and Provision Requirements in Brazil – A Corporate Analysis
Ricardo Schechtman, Valéria Salomão García, Sergio Mikio Koyama and Guilherme Cronemberger Parente
Dec/2004

92 Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil
Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos
Apr/2005

93 Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial
Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente
Abr/2005

94 Simulação Histórica Filtrada: Incorporação da Volatilidade ao Modelo Histórico de Cálculo de Risco para Ativos Não-Lineares
Claudio Henrique da Silveira Barbado, Gustavo Silva Araújo e Eduardo Facó Lemgruber
Abr/2005

95 Comment on Market Discipline and Monetary Policy by Carl Walsh
Maurício S. Bugarin and Fábia A. de Carvalho
Apr/2005

96 O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina
Anthero de Moraes Meirelles
Ago/2005

97 Finance and the Business Cycle: a Kalman Filter Approach with Markov Switching
Ryan A. Compton and Jose Ricardo da Costa e Silva
Aug/2005

Helio Mori e Marcelo Kfoury Muinhos
Aug/2005

99 Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbado, Eduardo Facó Lemgruber
Set/2005

100 Targets and Inflation Dynamics
Sergio A. L. Alves and Waldyr D. Areosa
Oct/2005

101 Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates
Marcelo Kfoury Muinhos and Márcio I. Nakane
Mar/2006

102 Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans
Ana Carla A. Costa and João M. P. de Mello
Apr/2006

103 The Effect of Adverse Supply Shocks on Monetary Policy and Output
Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva
Apr/2006
104 Extração de Informação de Opções Cambiais no Brasil
Eui Jung Chang e Benjamin Miranda Tabak
Abr/2006

105 Representing Roomate’s Preferences with Symmetric Utilities
José Alvaro Rodrigues-Neto
Apr/2006

106 Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities
Cristiane R. Albuquerque and Marcelo Portugal
May/2006

107 Demand for Bank Services and Market Power in Brazilian Banking
Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk
Jun/2006

108 O Efeito da Consignação em Folha nas Taxas de Juros dos Empréstimos Pessoais
Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar and Tony Takeda
Jun/2006

109 The Recent Brazilian Disinflation Process and Costs
Alexandre A. Tombini and Sergio A. Lago Alves
Jun/2006

110 Fatores de Risco e o Spread Bancário no Brasil
Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues
Jul/2006

111 Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial
Alan Cosme Rodrigues da Silva, João Maurício de Souza Moreira and Myrian Beatriz Eiras das Neves
Jul/2006

112 Interdependence and Contagion: an Analysis of Information Transmission in Latin America’s Stock Markets
Angelo Marsiglia Fasolo
Jul/2006

113 Investigação da Memória de Longo Prazo da Taxa de Câmbio no Brasil
Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak and Daniel O. Cajueiro
Ago/2006

114 The Inequality Channel of Monetary Transmission
Marta Areosa and Waldyr Areosa
Aug/2006

115 Myopic Loss Aversion and House-Money Effect Overseas: an experimental approach
José L. B. Fernandes, Juan Ignacio Peña and Benjamin M. Tabak
Sep/2006