Working Paper Series 114

The Inequality Channel of Monetary Transmission
Marta Areosa and Waldyr Areosa
August, 2006
The Inequality Channel of Monetary Transmission*

Marta Areosa† Waldyr Areosa‡

Abstract

This Working Paper should not be reported as representing the views of the Banco Central do Brasil. The views expressed in the paper are those of the authors and do not necessarily reflect those of the Banco Central do Brasil.

We study optimal monetary policy when inequality is present by introducing agents with different productivities, wages, and financial market accesses into a general equilibrium model with sticky prices. Our main results are: (i) There is a channel from interest rate to inflation throughout inequality; (ii) The welfare-based objective of monetary policy includes inequality stabilization; (iii) Higher levels of financial exclusion are associated to bigger welfare losses and to smaller interest rate variability, providing an alternative explanation to why observed interest rate paths are much less volatile than optimal policies implied by most theoretical models of the monetary transmission mechanism.

JEL Classification: E31; E32; E52
Keywords: Inequality; Optimal monetary policy; Interest rate variability

*We are grateful to José Alvaro Rodrigues Neto, Afonso Bevilaqua, and seminar participants at the Central Bank of Brazil for their helpful comments. All remaining errors are our own responsibility.

†Banco Central do Brasil and Department of Economics, PUC-Rio, Brazil. E-mail: marta@econ.puc-rio.br.

‡Corresponding author. Banco Central do Brasil and Department of Economics, PUC-Rio, Brazil. E-mail: w Dutra@econ.puc-rio.br.
1 Introduction

Does inequality cause inflation? Is inflation bad for inequality? What are the links between inflation, inequality, and monetary policy? This paper offers a model for the joint determination of output, interest rate, inflation, and inequality that weaves together these classical questions studied by the empirical literature.¹

We incorporate inequality by introducing two types of agents with different productivities, wages, and financial market accesses. While some households can hold assets and smooth consumption over time, others cannot hold assets and thus cannot react to interest rate changes. In this context, inequality, evaluated through an index built on the consumption of the two types of agents, becomes a straightforward channel between monetary policy and inflation. In choosing a consumption based inequality index, we move beyond income as an indicator of well-being, in line with Krueger and Perri (2006).²

Our model contrasts with the current theoretical literature for explicitly incorporating inequality in the structural equations of an otherwise standard New Keynesian framework. Besides a slope-modified intertemporal IS curve we derive both an intertemporal inequality curve and an "inequality augmented" Phillips curve. Inequality is also present in the welfare-based loss function of the monetary authority. Under this "inequality expanded" objective, an optimal monetary policy can no longer simultaneously stabilize the output gap and inflation since it has to take the effects of inequality into consideration, even when inequality has no impact on inflation.

We also calibrate the model with standard parameters values to show that the optimal policy implies that the variance of interest rate decreases with financial exclusion, although the welfare loss increases. This is a new explanation to why observed interest rate paths are much less volatile than optimal policies implied by most existing macroeconomic frameworks, as pointed out by Clarida et al. (1999).

Finally, we explore the effects of policy shocks on the economy under an optimal

¹Next section briefly presents the empirical literature.
²The authors argue that current income may not be the appropriate measure of lifetime resources available to agents since a significant fraction of variations of income are due to variations in its transitory component.
commitment policy for different degrees of financial exclusion. After a monetary shock, higher levels of financial exclusion are associated to higher inequality and lower output gap, inflation, and the interest rate. After a fiscal shock, inflation and inequality drop with financial exclusion, while the output gap and interest rate increase.

The next section briefly describes the literature that links monetary policy, inflation and inequality. Section 3 introduces the model while section 4 presents its log-linear version. Section 5 deals with analyzes of the optimal monetary policy. Section 6 provides concluding remarks.

2 Brief literature review

2.1 Empirical evidence

On the one hand, there is extensive empirical literature about the influence of inflation and monetary policy on inequality. For example, both Romer and Romer (1999) and Easterly and Fischer (2001) point out that inflation hurts the poor. While the former finds a strong positive relation between inflation and inequality, the latter finds that direct measures of improvement in the well-being of the poor and inflation are negatively correlated in pooled cross-country regressions. They also present, using household level polling data for 38 countries, that the poor rather than the rich are more likely to mention inflation as a top national concern.

On the other hand, few empirical studies focus on the influence of inequality on inflation. For instance, Al-Marhubi (1997) performs OLS regressions of mean inflation on income inequality and finds that countries with greater inequality have higher mean inflation, even after accounting for the level of openness, political instability, and central bank independence. Dolmas et al. (2000) also run OLS regressions and document a positive correlation between income inequality and inflation in democracies, in contrast to what occurs in non-democracies.

2.2 New Keynesian literature

On the theoretical side, most of the work on monetary policy is based on a framework that assumes the existence of a representative household, which is clearly
inadequate to evaluate inequality.\(^3\) Some authors incorporate heterogeneous agents in this framework. Galí et al. (2004) introduce rule-of-thumb consumers in a conventional New Keynesian model with investment to show how their presence can dramatically change the properties of widely used interest rate rules. Bilbiie (2005) uses a similar framework, but in contrast to Galí et al. (2004) he abstracts from capital accumulation and focuses on a different set of questions, specifically how the presence of non-asset holders alters the slope of the IS curve, the determinacy properties of interest rate rules, optimal monetary policy and the response of the model to shocks. Muscatelli et al. (2005) and Landon-Lane and Occhino (2005) use US data to estimate models with liquidity constrained consumers and find a significant role for rule-of-thumb consumer behavior.

In the next section we explicitly incorporate inequality in the structural equations of the New Keynesian textbook model in order to provide unified treatment for the mutual influence between inflation and inequality presented by the empirical literature. Our model contrasts with the current theoretical literature for incorporating different productivities and wages as two other sources of inequality between consumers apart from financial market access. This modification affects the structural equations of the model, the monetary policy objective and introduces a dynamic inequality curve.

3 The model

The economy consists of households, firms, and the government. We use a modified version of the model presented in Galí et al. (2004) to analyze the effects of inequality on monetary policy. We read their rule-of-thumb consumers as agents excluded from the financial market. On the one hand, we simplify their model by ignoring investment, as in Bilbiie (2005). On the other hand, we incorporate different productivities and wages as two other sources of inequality between consumers apart from financial market access. We intend to account for inequality effects while keeping the model as close as possible to the standard New Keynesian framework.

We explicitly assume that money only plays the role of a unit of account. Money does not appear in either the budget constraint or utility function. Throughout, we

\(^3\)See Clarida et al. (1999), Goodfriend and King (1997), and Woodford (2003b).
specify monetary policy in terms of an interest rate rule; hence, we do not need to introduce money explicitly in the model.

3.1 Households

We assume a continuum of infinitely-lived households indexed in the unit interval. An exogenous fraction \(\lambda \in (0, 1) \) of households - so forth called financial excluded (FE) agents - do not own any assets. The remaining fraction \(1 - \lambda \) of households - the financial included (FI) agents - has access to financial markets. We use letters “\(e \)” and “\(i \)” to index variables associated to FE and FI consumers.

The preference at period 0 of the type \(k \) representative household is represented by:

\[
U_0^k = E_0 \left\{ \sum_{t=0}^{\infty} \beta^t \left[\frac{(C_t^k)^{1-\sigma}}{1-\sigma} - \frac{(H_t^k)^{1+\omega}}{1+\omega} \right] \right\}, \quad k \in \{e, i\},
\]

where \(0 < \beta < 1 \) denotes the discount factor, \(C_t^k \) is an index of consumption goods and \(H_t^k \) is the number of hours worked at period \(t \).

Type \(k \) households offer labor in a perfectly competitive market with fully flexible wages. They also purchase differentiated goods in a retail market and combine them into a composite good using a Dixit and Stiglitz (1977) aggregator:

\[
C_t^k = \left[\int_0^1 C_t^k (z) \frac{dz}{\sigma} \right]^{\frac{\sigma}{\sigma-1}}, \quad \theta > 1,
\]

where \(C_t^k (z) \) is the demand for differentiated goods of type \(z \). Type \(k \) household minimizes the total cost of obtaining differentiated goods indexed by a unit interval \([0, 1]\), taking as given their nominal prices \(P_t (z) \). Cost-minimization then gives a demand curve of the form:

\[
C_t^k (z) = C_t^k \left(\frac{P_t (z)}{P_t} \right)^{-\theta},
\]

where the aggregate price level \(P_t \) is defined to be

\[4\] For ease of reference, we group all primitive parameter definitions and baseline values in table 1.
\[P_t \equiv \left[\int_0^1 P_t(z)^{1-\theta} \, dz \right]^{\frac{1}{1-\theta}}. \]

3.1.1 Financially included consumer

In each period \(t = 0, 1, 2, \ldots \), the FI household chooses decision rules for consumption \(C_t^i \), labor \(H_t^i \), and nominal bonds portfolio \(B_{t+1} \) to maximize (1) subject to a sequence of period budget constraints that must hold with equality in equilibrium:

\[E_t \{ Q_{t,t+1} B_{t+1} \} \leq B_t + W_{t}^i H_{t}^i + \Pi_t^i - P_t C_t^i - T_t^i, \]

where \(Q_{t,t+1} \) is the stochastic discount factor for computing the nominal value at period \(t \) of one unit of consumption goods at period \(t+1 \), \(W_t^i \) is the nominal wage rate for FI households, \(\Pi_t^i \) denotes nominal dividend income, and \(T_t^i \) represents the nominal value of (net) lump-sum taxes.

The following first order conditions must hold in equilibrium with a positive risk-free nominal rate of interest at period \(t \), \(i_t \):

\[1 + i_t = \beta \mathbb{E}_t \left\{ \left(\frac{C_{t+1}^i}{C_{t}^i} \right)^{-\sigma} \frac{P_t}{P_{t+1}} \right\}^{-1}, \] \hspace{1cm} (4)

\[(C_t^i)^{\sigma} (H_t^i)^{\omega} = \frac{W_t^i}{P_t}, \] \hspace{1cm} (5)

regarding the fact that \(\mathbb{E}_t \{ Q_{t,t+1} \} = (1 + i_t)^{-1} \).

3.1.2 Financially excluded consumer

Households from this group are excluded from financial markets and consequently cannot hold assets. Thereafter, FE consumer maximizes (1) subject to the budget constraint:

\[P_t C_t^e \leq W_t^e H_t^e, \] \hspace{1cm} (6)

where \(W_t^e \) is the nominal wage rate for FE households. People excluded from the financial system are also unable to buy stocks and receive differentiated treatment
from the government. As a result, only FI consumers receive dividends and pay lump-sum taxes.

As equation (6) holds with equality in equilibrium, FE agents just consume their current labor income. The associated first order condition is analogous to (5):

\[(C_t^e)^\sigma (H_t^e)^\omega = \frac{W_t^e}{P_t},\]

which combined with (6) yields

\[(C_t^e)^{1-\sigma} = (H_t^e)^{1+\omega}.\]

3.2 Firms

Monopolistically competitive firms indexed in the unit interval characterize the goods market. Each firm \(z\) produces a differentiated good \(z\) using Cobb-Douglas technology:

\[Y_t(z) = A_t [H_t^e(z)]^q [H_t^i(z)]^{1-q},\]

where \(Y_t(z)\) denotes the level of output at period \(t\) of firm \(z\) while \(H_t^e(z)\) and \(H_t^i(z)\) are the total number of working hours hired from each type of agent by this firm. The variable \(A_t > 0\) is an exogenous technology factor while \(q \in (0, 1)\) and \(1 - q\) are the productivity factors associated with each type of agent.

Market clearing imposes \(Y_t(z) = \lambda C_t^e(z) + (1 - \lambda) C_t^i(z) + G_t(z)\), where \(G_t(z)\) represents governmental demand for the good produced by firm \(z\). We assume that government purchases an aggregate \(G_t\) of form (2) of all goods in the economy, and thus the government’s demand for each good \(z\) is given by a demand curve analogous to (3). Thereafter, we obtain the following demand curve for each good \(z\):

\[Y_t(z) = Y_t \left(\frac{P_t(z)}{P_t} \right)^{-\theta},\]

where \(Y_t \equiv C_t + G_t \equiv \lambda C_t^e + (1 - \lambda) C_t^i + G_t\) is a composite index analogous to those specified in (2) that denotes aggregate demand.

Since the minimum cost criterion is given by \(W_t^e H_t^e(z) / q = W_t^i H_t^i(z) / (1 - q)\), we use equations (9) and (10) to derive the number of working hours for each type
of agent:

\[H^k_t = \frac{1}{\lambda_k} \int_0^1 H^k_t(z) \, dz = \frac{1}{\lambda_k} \left(\frac{1 - q}{q} \right)^{q_k} \left(\frac{W^e_t}{W^e_t} \right)^{q_k} \frac{Y_t Z_t}{A_t}, \quad k \in \{i, e\}, \]

(11)

where \((\lambda_i, q_i) = (1 - \lambda, q), (\lambda_e, q_e) = (\lambda, q - 1)\), and \(Z_t = \int_0^1 \left(\frac{P(z)}{P_t} \right)^{-\theta} \, dz\) is a dispersion measure for prices.

Under these assumptions, all firms face the same nominal marginal costs \(MC^n_t\) given by

\[MC^n_t = \frac{1}{A_t} \left(\frac{W^e_t}{q} \right)^q \left(\frac{W^e_t}{1 - q} \right)^{1-q}. \]

(12)

The marginal cost does not depend on the output level of an individual firm, as long as its production function exhibits constant returns to scale and input prices are fully flexible in perfectly competitive markets.

3.2.1 Flexible-price equilibrium

Under flexible prices, the optimal pricing decision for any firm \(z\) takes the traditional form

\[P_t(z) = \frac{\mu}{1 + \tau} MC^n_t, \]

(13)

where \(\mu = \frac{\theta}{\theta - 1} > 1\) is the desired markup of the firm. The subsidy for output \(0 \leq \tau < 1\) offsets the effect on imperfect competition in the goods markets on the steady state level of output.\(^5\) We combine (12) with (5) and (7) to write the following expression for the real marginal cost:

\[MC_t \equiv \frac{MC^n_t}{P_t} = \frac{1}{A_t} \left(\frac{Y_t Z_t}{A_t} \right)^\omega (Y_t - G_t)^\gamma \Delta(\delta_t), \]

(14)

where factor

\[\Delta(\delta_t) \equiv \left(\frac{\delta_t^\sigma}{(q(\lambda)^{\sigma + \omega})} \right)^q \left(\frac{(1 - \delta_t)^\sigma}{(1 - q)(1 - \lambda)^{\sigma + \omega}} \right)^{1-q} \]

\(^5\)See Woodford (2003b) for details.
is a function of \(\delta_t \), defined as the FE agents’ share of total consumption

\[
\delta_t \equiv \frac{\lambda C^e_t}{C_t}. \tag{15}
\]

Finally, we combine equations (13) and (14) to show that relative prices depend on the distribution of consumption characterized by \(\delta_t \):

\[
\frac{P_t(z)}{P_t} = \frac{\mu}{1 + \tau A_t} \left(\frac{Y_t Z_t}{A_t} \right)^\omega (Y_t - G_t)^\sigma \Delta(\delta_t).
\]

We use an alternative definition of potential output in order to make our work more directly comparable with the existing literature. Thereafter, potential output, \(Y^f_t \), defined as the output that would prevail under flexible wages and prices and under equal consumption, i.e. \(C^e_t = C^i_t \), given current real factors (tastes, technology, government purchases), must satisfy:

\[
1 = \frac{\mu}{1 + \tau A_t} \left(\frac{Y^f_t}{A_t} \right)^\omega \left(Y^f_t - G_t \right)^\sigma \Delta(\lambda). \tag{16}
\]

Inequality decreases the potential output \(Y^f_t \) since \(\Delta(\lambda) > 1 \). Furthermore, if there is an excess of unqualified people (hereafter \(\lambda > q \)), \(Y^f_t \) decreases with \(\lambda \).

Condition \(\lambda > q \) reflects that there are more unqualified people than firms are willing to hire, increasing their costs. In our model, it is not possible to change the percentage of FE consumers without changing the percentage of less qualified people. This explains why condition \(\lambda > q \) links these two apparently distinct characteristics.

Denoting steady state values with an over bar, equation (16) reduces to

\[
1 = \frac{\mu}{1 + \tau A_t} \left(\bar{Y} \right)^{\omega + \sigma} \Delta(\lambda),
\]

where \(\bar{A} = 1 \) and \(\bar{C} = \bar{Y} \).\(^6\) Expressed in terms of percentage deviations around the steady state, the equal consumption flexible-price equilibrium output level is given by

\[
\hat{Y}^f_t = \frac{\sigma \hat{G}_t + (1 + \omega) \hat{A}_t}{\omega + \sigma}, \tag{17}
\]

\(^6\)The choice of \(G = 0 \) has been made just to simplify calculations. We would obtain similar dynamics for fiscal and monetary shocks if we had assumed \(G \neq 0 \).
which is the same expression for the natural rate of output in the standard New
Keynesian framework, being \(\bar{z}_t \equiv (z_t - \bar{z})/\bar{z} \) for all variables \(z_t \), except for \(\bar{G}_t \equiv G_t/\bar{Y} \).

4 Dynamic equilibrium

We derive the log-linear version of the model around a steady state with zero in‡ ation, equal consumption for all agents, and without government spending \(\bar{C}^e = \bar{C}^i = \bar{C} = \bar{Y} \) to analyze the transition dynamics. In order to allow for real effects of monetary policy, firms set prices as in the sticky price model of Calvo (1983). Specifically, during each period a fraction \(\alpha \) of firms are not allowed to change prices, whereas the other fraction, \(1 - \alpha \), do change.

4.1 IS curve

The demand side of the model is represented by an intertemporal IS equation. The log-linear version of (4) is

\[
\dot{C}_t^i = E_t \left\{ \dot{C}_{t+1}^i \right\} - \sigma^{-1} \left[\dot{h}_t - E_t \left\{ \pi_{t+1} \right\} \right],
\]

where \(\pi_t \) is the inflation rate. Analogously, we use equations (8) and (11) to obtain:

\[
\dot{C}_t^e = \left(\frac{1 + \omega}{1 - \sigma} \right) \left[\dot{Y}_t - \dot{A}_t - \left(\frac{1 - q}{1 - \lambda} \right) \left(\frac{\sigma}{1 + \omega} \right) \delta_t \right],
\]

where we write \(W_t^e/W_t^i \) in terms of \(\delta_t \).

Finally, the log-linearization of (15) yields:

\[
\delta_t = \dot{C}_t^e - \dot{C}_t.
\]

Defining \(x_t \equiv \dot{Y}_t - \dot{Y}_t^f \) as our output gap measure and using equations (18) to (20), we obtain the following IS curve:

\[
x_t = E_t \left\{ x_{t+1} \right\} - \varphi \left[\dot{h}_t - E_t \left\{ \pi_{t+1} \right\} - r_t^f \right],
\]

\[
\delta_t = \dot{C}_t^e - \dot{C}_t.
\]

\[
\text{From equations (5) and (7), we have} \ (C_t^e/C_t^i)^\omega (H_t^e/H_t^i)^\varphi = W_t^e/W_t^i. \text{ We can obtain} \ W_t^e/W_t^i = \left(\frac{1 - \lambda}{\lambda} \right)^{\frac{\omega}{1 + \omega}} \left(\frac{q^{\varphi}}{1 - \sigma} \right)^{\frac{\varphi}{1 + \varphi}} \left(\frac{\delta_t}{1 - \varphi} \right)^{\frac{\varphi}{1 + \varphi}} \text{ by using equations (15) and (11) to replace} \ C_t^e/C_t^i \text{ and} \ H_t^e/H_t^i.
\]
where $\varphi \equiv \eta \sigma^{-1}$ and $\eta \equiv 1 + \frac{\lambda(\omega + \sigma)}{1 - \sigma - \lambda(1 + \omega)}$. The real interest rate that stabilizes the output gap, r_f^t, called the natural rate of interest, evolves according to:

$$r_f^t \equiv \varphi^{-1} \left[\left(\frac{1 + \omega}{\omega + \sigma} \right) \eta E_t \left\{ \hat{A}_{t+1} - \hat{A}_t \right\} + \left(\frac{1 - (1 + \omega)\eta}{\omega + \sigma} \right) E_t \left\{ \hat{G}_{t+1} - \hat{G}_t \right\} \right].$$

As in Bilbiie (2005), our model predicts that when financial exclusion change from high to low the slope of the IS curve changes from positive ("non-Keynesian") to negative. Note, however, that η also varies with q. If $\eta > 1$, the impact of the interest rate on the output gap is more intense than in the standard New Keynesian model. We show in panel (A) of figure 1 that, considering only Keynesian values, η increases with λ.

4.2 Inequality evolution

We combine equations (19) and (20) to write $\hat{\delta}_t$ as a function of x_t:

$$\hat{\delta}_t = \left(\frac{1}{1 + \gamma} \right) \left[(\sigma + \omega) x_t + \hat{G}_t \right],$$

(22)

where $\gamma = \sigma \left(\frac{\lambda - \eta}{1 + \lambda} \right)$. We choose the Gini index for consumption, given by $g_t = -\lambda \hat{\delta}_t$, as the inequality variable of our economy.\(^{8}\)

The evolution of the Gini index, obtained from the substitution of (22) in the IS curve and the replacement of $\hat{\delta}_t$ for g_t, gives us an intuitive way of seeing how monetary policy affects inequality:

$$g_t = E_t \left\{ g_{t+1} \right\} + \varphi^\delta \left[\hat{\pi}_{t+1} - E_t \left\{ \pi_{t+1} \right\} - r_f^t \right],$$

(23)

where $\varphi^\delta \equiv \eta^\delta \sigma^{-1}$, $\eta^\delta \equiv (1 - \lambda)(\eta - 1)$ and r_f^δ, the real interest rate that stabilizes g_t, is defined as

$$r_f^\delta \equiv r_f^t - \frac{\varphi^{-1}}{\omega + \sigma} E_t \left\{ \hat{G}_{t+1} - \hat{G}_t \right\}.$$

\(^{8}\)Normalizing C_t to unity (or 100 percent of consumption) and imposing that $C_t^r < C_t^i$, we obtain $g_t = -\lambda \hat{\delta}_t$. If $C_t^r > C_t^i$, we find that $g_t = \lambda \hat{\delta}_t$. Thereafter, the Gini index is given by $\left| \lambda \hat{\delta}_t \right|$, which assumes only positive values as a measure. In this context, it does not matter for the Gini index that agent consumes more, but only how different their consumption is. In the present work, we will define $g_t = -\lambda \hat{\delta}_t$. Although this variable is not a measure, the sign helps to identify which agents are increasing their consumption. "Inequality increases\(^{8}\) means that FE agents are reducing their consumption.
If $\eta > 1$, inequality rises with the interest rate. The difference between the real interest rates that stabilize the output gap and the Gini index is solely based on the evolution of government spending. Panel (A) of figure 1 shows that η^δ increases with λ, being always smaller than η.

4.3 New Keynesian Phillips curve

The Calvo (1983) model leads to an aggregate supply relation of the form:

$$\pi_t = \xi \bar{MC}_t + \beta E_t \{\pi_{t+1}\},$$

(24)

where $\xi \equiv (1 - \alpha)(1 - \alpha \beta)/\alpha > 0$ and \bar{MC}_t is the percent variation of real marginal costs.

Considering (17), a log-linearization of the real marginal costs expressed in (14) yields:

$$\bar{MC}_t = (\omega + \sigma)x_t + \frac{\gamma}{\lambda} g_t.$$

The first component is standard but now with a different interpretation. Marginal costs are proportional to the output gap that would occur if consumption of both agents were equal. The second term corrects this measure by the inequality effect. We can use this equation and (24) to obtain our New Keynesian Phillips curve (NKPC)

$$\pi_t = \kappa x_t + \beta E_t \{\pi_{t+1}\} + \kappa^\delta g_t,$$

(25)

where $\kappa \equiv \xi (\omega + \sigma)$ and $\kappa^\delta \equiv \xi \gamma/\lambda$.

From (22) and (25) the NKPC can be written in a more familiar format

$$\pi_t = \kappa^* x_t + \beta E_t \{\pi_{t+1}\} + u_t,$$

(26)

where $\kappa^* \equiv \kappa \left(\frac{1}{1+\gamma}\right)$ and the shock u_t is given by

$$u_t \equiv -\xi \left(\frac{\gamma}{1+\gamma}\right) \hat{G}_t.$$

Equation (23), which shows how monetary policy affects inequality, together
with equation (25), the inequality augmented NKPC, lead to our first result:

Conclusion 1 (Inequality channel) There is a channel from interest rate to inflation throughout inequality when \(\lambda \neq q \). If there is an excess of unqualified people (\(\lambda > q \)), inflation rises with inequality (\(\kappa^\delta > 0 \)). Besides, the inequality-inflation trade-off (\(\kappa^\delta \)) decreases with financial exclusion (\(\lambda \)). Alternatively, if \(\lambda > q \), the output-inflation trade-off is higher than in the standard New Keynesian model (\(\kappa^* < \kappa \)). In addition, a shock \(u_t \) arises as a function of the share of government spending that impacts the real interest rate that stabilizes inequality (\(r^\delta_t \)) but not the natural rate of interest (\(r^f_t \)).

5 **Optimal monetary policy**

The policymaker maximizes the average expected utility of households. Following Erceg et al. (2000) and Woodford (2003b), we obtain our policy objective function by taking a second-order approximation to the aggregate utility of all agents given by:

\[
W_0 = \lambda U_0^e + (1 - \lambda) U_0^i,
\]

where \(U_0^e \) and \(U_0^i \) are defined in (1).

This procedure yields

\[
W_0 = -\Omega E_0 \left\{ \sum_{t=0}^{\infty} \beta^t L_t \right\} + \text{tip},
\]

where \(\text{tip} \) denotes terms independent of the actual policy such as constants and terms involving only exogenous variables while \(L_t \) is given by:

\[
L_t = \lambda_x x^2_t + \lambda_x \hat{\pi}^2_t + \lambda_\delta g^2_t,
\]

where \(\lambda_x \), \(\lambda_\pi \) and \(\lambda_\delta \) are functions of the structural parameters of the model and \(\lambda_x + \lambda_\pi + \lambda_\delta = 1 \).\(^9\) Thereafter, we have:

\(^9\)Specifically, \(\lambda_x \equiv \frac{\Gamma}{\gamma} \); \(\lambda_\pi \equiv \frac{\theta}{\Gamma} \); \(\lambda_\delta \equiv \frac{\Psi}{\Gamma} \); with \(\Gamma \equiv \kappa + \theta + \Psi \) and \(\Psi \equiv \xi \left[\frac{(1+\omega)(1-\lambda)+\sigma(1-q)}{\lambda_x^2(1-\lambda)^2} \right] \frac{\sigma}{\Gamma \gamma \omega} > 0 \). Also \(\Omega \equiv \frac{(\gamma)1-\sigma}{2} \left[\frac{\Gamma}{\xi} \right] \).
Conclusion 2 (Inequality objective) The objective of a monetary policy consistent with welfare maximization includes inequality stabilization \((g_t^2) \), as well as inflation and output gap stabilization \((\tilde{\pi}_t^2 \text{ and } x_t^2) \). Furthermore, the relative importance of \(g_t^2 \) on loss function \(L_t \) decreases as \(\lambda \rightarrow 1/2 \), meaning that when the two groups are equally represented, central banks should pay relatively less attention to inequality variations and direct their policy concerns to the evolution of inflation and output gap.

This result is in line with Fowler (2005) that finds empirical evidence that a Gini based monetary feedback rule is compatible with several features of the US economy.

The maximization of \((27) \) subject to the constraints represented by the NKPC in \((25) \) and the equation that governs the dynamics of \(g_t \) in \((22) \) generates the following criterion under commitment:

\[
\hat{\pi}_t = -\frac{1}{\kappa^* \theta} \left[\kappa (x_t - x_{t-1}) - \Psi \left(\frac{\eta^S}{\eta} \right) (g_t - g_{t-1}) \right].
\] (29)

This so-called optimal target criterion represents a policy rule that is optimal from a timeless perspective following Giannoni and Woodford (2005). Inflation should be accepted as long as it is negatively proportional to output gap variations corrected by inequality variations over the same period.

It is not optimal to maintain zero inflation and a zero output gap in the face of inequality variations. If \(\lambda > q \), the coefficient on \(x_t \) in first order condition \(\kappa (\kappa^* \theta)^{-1} = (1 + \gamma) \theta^{-1} \) is greater than standard value \(\theta^{-1} \). In this context, optimal policy results in greater inflation variability for a given level of output gap variability when inequality is present.

Intuitively, stabilizing inflation has become more costly when \(\lambda > q \). As \(i_t \) increases, \(x_t \) decreases, and this serves to reduce inflation, but the direct effect in \(g_t \) of the rise in the nominal interest rate partly offsets the deflationary impact of a tighter monetary policy. Because it is more costly (in terms of the output gap) to control inflation, equilibrium inflation variability will be higher.

In order to implement the target rule, we obtain an optimal instrument rule by substituting equations \((21), (23), \) and \((25) \) in the optimal criterion \((29) \):
\[i_t = \phi_{\pi} E_t \{ \pi_{t+1} \} + \phi_{x} E_t \{ x_{t+1} \} + \phi_{\delta} E_t \{ g_{t+1} \} + \phi_{x-1} x_{t-1} + \phi_{\delta-1} g_{t-1} + \epsilon_t, \quad (30) \]

where the \(\phi_j \)'s are functions of the structural parameters of the model while composite shock \(\epsilon_t \) is defined according to

\[\epsilon_t \equiv \varphi_x r_t^f - \varphi_\delta r_t^\delta, \]

which is the weight average between the natural rate of interest and the real interest rate that stabilizes \(g_t \).\(^{10}\)

We call equation (30) our expectations-based reaction function following Evans and Honkapohja (2006). If the monetary authority commits itself to set interest rates in accordance with this reaction function at all times, then the rational-expectations equilibrium is necessarily determinate.\(^{11}\)

6 Implications for welfare and transition dynamics

To illustrate not only the impact on welfare but also the response to monetary and fiscal shocks under optimal commitment, we calibrate the model represented by equations (21), (23), (25), and (30) and solve it numerically.

6.1 Calibration

The model’s structural parameters are \(\alpha, \beta, \theta, \sigma, \omega, q \) and \(\lambda \). The baseline values we use, shown in table 1, are standard and based on Giannoni and Woodford (2005). Since we intend to keep the model as close as possible to the standard New Keynesian framework, we will not consider calibrations that generates "non-Keynesian" effects, e.g. a IS curve with a positive slope or an inverted Taylor principle.

We set \(\sigma = 0.9 \) in order to obtain in our baseline case \(\lambda = q \) the value of

\(^{10}\)The coefficients are \(\phi_{\pi} \equiv 1 + \frac{\sigma \varphi}{\bar{\sigma}}, \quad \phi_x \equiv \frac{\bar{x}}{\bar{x}^*}, \quad \phi_{x-1} \equiv -\frac{\bar{x}}{\bar{x}^*}, \quad \phi_{\delta} \equiv -\frac{\bar{\delta}}{\bar{\delta}^*}, \quad \text{and} \quad \phi_{\delta-1} \equiv \frac{\Psi}{\bar{\delta}^*}, \)

being \(\bar{\delta} \equiv \varphi Y_1 + \varphi^* Y_2, \quad Y_1 \equiv \kappa (1 + \kappa^* \sigma), \quad \text{and} \quad Y_2 \equiv \Psi \left(\frac{\varphi}{\bar{\sigma}} \right) - \kappa^* \kappa^* \theta. \) Once again \(\Psi \equiv \xi \left[\frac{1 + \sigma}{(1 + \lambda) + \sigma \nu (1 - q)} \right] \frac{\sigma}{\bar{\sigma}^*} > 0. \)

\(^{11}\)Note that we can substitute (22) in (30) to obtain a model similar to Woodford (2003b). When \(\lambda > q \) and \(\eta > 1 \), the relevant signals of our model are analogous to the ones presented in Woodford (2003b, page 530), and so the result immediately applies.
\(\varphi = 1.60 \), which is very similar to the value obtained for Giannoni and Woodford (2005) for their equivalent parameter \(\varphi^{-1} \). The discount factor \(\beta \) is set equal to 0.99, appropriate for interpreting the time interval as one quarter. The value of 0.66 for \(\alpha \) is consistent with an average lifetime of price contracts of three quarters. A value of 11 for \(\theta \) implies a steady state markup of 1.1. Because the focus of this article is on exploring the effects of inequality, results are reported for several values of \(\lambda \). Based on surveyed evidence around the world, we restrict attention to the values of financial inclusion below 0.4.\(^{12}\) The value of \(q \) just matter in comparison with \(\lambda \) (\(q \gtrsim \lambda \)) but does not affect the results quantitatively. We set \(q \) to 0.1 in order to obtain \(\lambda \geq q \) and, in turn, \(W^c \leq W^i \) and \(\kappa^d \geq 0 \) (or equivalently, \(\kappa^* < \kappa \)).

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha)</td>
<td>Fraction of firms that leave their prices unchanged</td>
<td>0.66</td>
</tr>
<tr>
<td>(\beta)</td>
<td>Time discount factor</td>
<td>0.99</td>
</tr>
<tr>
<td>(\theta)</td>
<td>Elasticity of substitution among differentiated goods</td>
<td>11</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>Level of financial exclusion</td>
<td>(0, 0.4]</td>
</tr>
<tr>
<td>(\sigma)</td>
<td>Risk aversion parameter</td>
<td>0.90</td>
</tr>
<tr>
<td>(\omega)</td>
<td>Inverse of elasticity of labor supply</td>
<td>0.33</td>
</tr>
<tr>
<td>(q)</td>
<td>FE productivity</td>
<td>0.10</td>
</tr>
<tr>
<td>(\phi_q)</td>
<td>Fiscal shock inertia</td>
<td>0.90</td>
</tr>
</tbody>
</table>

Table 1: Baseline calibration

Figure 1 presents the evolution of the main composite parameters of the model.

6.2 Welfare analysis

Taking the unconditional expectation of (27) to abstract from initial conditions, we obtain the welfare as a function of weighted variances:

\[
\hat{E} \left[L^0 \right] \equiv \Lambda_x V \left[x_i \right] + \Lambda_{\hat{r}} V \left[\hat{r}_i \right] + \Lambda_{g} V \left[g_i \right],
\]

where, for any variable \(z_t \), we have the weight \(\Lambda_z \equiv \Gamma \lambda_z \), and where the measure of variability is defined by

\(^{12}\)Aizcorbe et al. (2003) pointed out that 90.9 percent of US families had some type of transaction account in 2001. Accordingly to FSA (2000), 7 percent of households in Britain lack any financial products at all.
Figure 1: Financial exclusion and inequality effects under baseline calibration of table 1.

\[V[z_t] \equiv (1 - \beta) \sum_{t=0}^{\infty} \beta^t E_0 [z_t^2] , \]

which, except for discounting, corresponds to the unconditional variance of \(z_t \). We include \(\Gamma \) in the calculation of \(E [z_t^0] \) to analyze how welfare evolves with \(\lambda \). It is important to remember that \(\lambda_x, \lambda_\pi \) and \(\lambda_\delta \) have been normalized to sum one. Therefore, the graph in panel (D) of figure 1 describes how inflation becomes relatively more important as \(\lambda \) grows. Without this normalization, \(\Lambda_\pi \), and \(\Lambda_\pi \) do not vary with \(\lambda \), in contrast to \(\Lambda_\delta \) that decreases.\(^{13}\)

Under the optimal plan, higher levels of financial exclusion are associated to bigger welfare losses. The impact of the interest rate on inequality, \(\eta \), and output gap, \(\eta^\delta \), increases with \(\lambda \). See panel (A) of figure 1. At the same time, inflation stabilization becomes more costly, since nominal interest rate generates opposite impacts on \(g_t \) and \(x_t \). As a result, the equilibrium variability of \(\pi_t \), \(x_t \), and \(g_t \) is

\(^{13}\)Under our baseline calibration, \(\Lambda_\pi = 11 \) and \(\Lambda_x = 0.2963 \). The value of \(\Lambda_\delta \sim 1 \) when \(\lambda = 0.4 \) and \(\Lambda_\delta \to \infty \) when \(\lambda \to 0 \).
Figure 2: Welfare loss and interest rate variability.

higher.

Note, however, that interest rate variability decreases with financial exclusion. This leads to our final result:

Conclusion 3 (Efficient frontier) *An efficient frontier emerges from the fact that welfare loss and interest rate variability evolve in opposite ways with financial exclusion under the optimal plan.*

Figure 2 presents the efficient frontier.

In our model, interest rate volatility is avoided because of its direct impact on inequality, which increases with λ. This is a new explanation to why observed interest rate paths are much less volatile than optimal policies implied by most existing macroeconomic frameworks, as pointed out by Clarida et al. (1999). Some of the arguments that have been proposed to explain this behavior include uncertainty about the data (Orphanides (2001)), model uncertainty (Brainard (1967)), the zero bound on nominal interest rates non-binding (Woodford (2003a)), and the fear of disruption of financial markets.
6.3 Optimal response to policy disturbances

6.3.1 Monetary shocks

Figure 3 shows the impulse responses of the four endogenous variables to a monetary shock under an optimal commitment policy. The different lines are indexed by λ.

The introduction of an inequality channel does not affect the basic response pattern. For all values of λ, a monetary shock contracts the output gap and increases inequality, as measured by the Gini index $\left(-\lambda \delta_t \right)$, since interest rates rise above both their natural rate r^f_t and the natural rate of inequality r^δ_t. These movements generate opposite impacts on inflation. Nevertheless, since persistently negative future output gaps compensate for inflationary pressure generated by the increase in inequality, inflation falls. As λ increases, all these dynamics are amplified, the initial responses of the output gap and inflation are lower, and the Gini response is higher. Since the optimal interest rule considers inequality, the nominal interest rate rises less under this policy.

From the point of view of the agents’ decisions, FI agents postpone their con-
Figure 4: Impulse responses to a fiscal shock under optimal commitment under alternative levels of financial exclusion - main variables.

Consumption in response to an interest rate increase induced by the monetary shock. Market clearing forces firms to reduce their production and, consequently, the demand for labor and wages paid for both agents. Since FE agents direct all their current labor income to consumption, any reduction in wages and working hours will drive them to reduce their consumption as well.

When \(\eta > 1 \), FE consumption and wages, expressed in terms of percentage deviations around the steady state, are more volatile than FI consumption and wages, while the opposite is true regarding hours. It happens because FE consumers are less susceptible to cuts in their wages since they only consume if they work.

6.3.2 Fiscal shocks

Figure 4 shows the impulse responses of the four endogenous variables to a fiscal shock under an optimal commitment policy. The different lines are indexed by \(\lambda \).

Under a fiscal shock, \(r^f_t \neq r^\delta_t \). As a result, the central bank becomes unable to stabilize inequality and output gap with just one instrument – the interest rate.
Since both variables impact inflation, maintaining a zero output gap is not enough to keep inflation at zero. Even when inequality has no influence on inflation \((\lambda = q)\), the optimal policy that reduces fluctuations in welfare allows both inflation and the output gap to deviate from zero. When \(\lambda > q\) the presence of the Gini index on the Phillips curve affects inflation similarly to the introduction of a cost channel as in Ravenna and Walsh (2006).

This dynamics contrasts with the one presented by the standard textbook New Keynesian model, when monetary authorities face no trade-off between stabilizing inflation and output gap, being able to perfectly offset the impact of a fiscal shock.

As figure 4 shows, the monetary authority responds to a fiscal shock with an increase in the interest rate. As the interest rate rises less than \(r_D^f\), inequality drops. The impact on the output gap depends on the value of \(\lambda\). For bigger values of \(\lambda\), the rise in \(r_D^f\) more than compensates for monetary tightening, increasing the output gap, while the opposite occurs for small values of \(\lambda\). The inflation dynamics is initially dominated by the Gini index, while the influence of the output gap is noticeable on the overshooting that occurs.

After the fiscal shock, the resulting interest rate increase induces FI agents to postpone their consumption. However, government spending more than compensates for this decline in consumption, forcing firms to increase their production and, consequently, the demand for labor. Nevertheless, as FI agents are not so anxious for consumption, they are willing to accept smaller wages for the same amount of work. Thereafter, their real wages fall, even with an increase in working hours. On the other hand, FE agents do not respond to the resulting interest rate increase and thereby require higher real wages to work more. Since FE agents direct all their current labor income to consumption, any increase in wages and working hours will drive them to increase their consumption as well.

7 Conclusions

We have incorporated inequality into the standard New Keynesian framework by introducing two types of agents with different productivities, wages, and financial market accesses. In our model, inequality, evaluated through an index built on the consumption of the two types of agents, affects both structural equations and the
monetary policy objective.

We show that monetary policy influences both output gap and inequality, which in turn affect inflation. Furthermore, we derive a welfare-based loss function for the monetary authority that encompasses not only inflation and output gap but also inequality variations.

We also show that welfare losses and interest rate variability under the optimal plan evolve in opposite directions with financial exclusion. Finally, we show how different levels of financial exclusion affect both welfare and the dynamic responses of the model after fiscal and monetary shocks.

As part of future research associated with the present paper, we plan to conduct a quantitative analysis of the joint evolution of nominal interest rates and inequality in several countries. Finally, it would also be relevant to explore how social plans, such as investments in education or minimum-wage policies, affect both inequality and the monetary policy. Nevertheless, additional investigation into this "social-macro dynamics" requires a unified theoretical framework that encompasses both social and economic policies. This model is just a first step in this direction.

References

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Implementing Inflation Targeting in Brazil</td>
<td>Joel Bogdanski, Alexandre Antonio Tombini and Sérgio Ribeiro da Costa Werlang</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>2</td>
<td>Política Monetária e Supervisão do Sistema Financeiro Nacional no Banco Central do Brasil</td>
<td>Eduardo Lundberg</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>6</td>
<td>Optimal Interest Rate Rules in Inflation Targeting Frameworks</td>
<td>José Alvaro Rodrigues Neto, Fabio Araújo and Maria Baltar J. Moreira</td>
<td>Jul/2000</td>
</tr>
<tr>
<td>7</td>
<td>Leading Indicators of Inflation for Brazil</td>
<td>Marcelle Chauvet</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>8</td>
<td>The Correlation Matrix of the Brazilian Central Bank’s Standard Model for Interest Rate Market Risk</td>
<td>José Alvaro Rodrigues Neto</td>
<td>Sep/2000</td>
</tr>
<tr>
<td>9</td>
<td>Estimating Exchange Market Pressure and Intervention Activity</td>
<td>Emanuel-Werner Kohlscheen</td>
<td>Nov/2000</td>
</tr>
<tr>
<td>10</td>
<td>Análise do Financiamento Externo a uma Pequena Economia</td>
<td>Carlos Hamilton Vasconcelos Araújo and Renato Galvão Flôres Júnior</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>12</td>
<td>A Test of Competition in Brazilian Banking</td>
<td>Márcio I. Nakane</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>Número</td>
<td>Título da Publicação</td>
<td>Autor(es)</td>
<td>Data de Publicação</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>--</td>
<td>--------------------</td>
</tr>
<tr>
<td>13</td>
<td>Modelos de Previsão de Insolvência Bancária no Brasil</td>
<td>Marcio Magalhães Janot</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>14</td>
<td>Evaluating Core Inflation Measures for Brazil</td>
<td>Francisco Marcos Rodrigues Figueiredo</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>15</td>
<td>Is It Worth Tracking Dollar/Real Implied Volatility?</td>
<td>Sandro Canesso de Andrade and Benjamin Miranda Tabak</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>16</td>
<td>Avaliação das Projeções do Modelo Estrutural do Banco Central do Brasil para a Taxa de Variação do IPCA</td>
<td>Sergio Afonso Lago Alves</td>
<td>Mar/2001</td>
</tr>
<tr>
<td>17</td>
<td>Estimando o Produto Potencial Brasileiro: uma Abordagem de Função de Produção</td>
<td>Tito Nícias Teixeira da Silva Filho</td>
<td>Abr/2001</td>
</tr>
<tr>
<td>18</td>
<td>A Simple Model for Inflation Targeting in Brazil</td>
<td>Paulo Springer de Freitas and Marcelo Kfoury Muinhos</td>
<td>Apr/2001</td>
</tr>
<tr>
<td>19</td>
<td>Uncovered Interest Parity with Fundamentals: a Brazilian Exchange Rate Forecast Model</td>
<td>Marcelo Kfoury Muinhos, Paulo Springer de Freitas and Fabio Araújo</td>
<td>May/2001</td>
</tr>
<tr>
<td>20</td>
<td>Credit Channel without the LM Curve</td>
<td>Victorio Y. T. Chu and Márcio I. Nakane</td>
<td>May/2001</td>
</tr>
<tr>
<td>22</td>
<td>Decentralized Portfolio Management</td>
<td>Paulo Coutinho and Benjamin Miranda Tabak</td>
<td>Jun/2001</td>
</tr>
<tr>
<td>23</td>
<td>Os Efeitos da CPMF sobre a Intermediação Financeira</td>
<td>Sérgio Mikio Koyama e Márcio I. Nakane</td>
<td>Jul/2001</td>
</tr>
<tr>
<td>25</td>
<td>Inflation Targeting in Brazil: Reviewing Two Years of Monetary Policy 1999/00</td>
<td>Pedro Fachada</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>26</td>
<td>Inflation Targeting in an Open Financially Integrated Emerging Economy: the Case of Brazil</td>
<td>Marcelo Kfoury Muinhos</td>
<td>Aug/2001</td>
</tr>
<tr>
<td>27</td>
<td>Complementaridade e Fungibilidade dos Fluxos de Capitais Internacionais</td>
<td>Carlos Hamilton Vasconcelos Araújo e Renato Galvão Flôres Júnior</td>
<td>Set/2001</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Authors</td>
<td>Date</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>29</td>
<td>Using a Money Demand Model to Evaluate Monetary Policies in Brazil</td>
<td>Pedro H. Albuquerque and Solange Gouvêa</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>30</td>
<td>Testing the Expectations Hypothesis in the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak and Sandro Canesso de Andrade</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>31</td>
<td>Algumas Considerações sobre a Sazonalidade no IPCA</td>
<td>Francisco Marcos R. Figueiredo e Roberta Blass Staub</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>32</td>
<td>Crises Cambiais e Ataques Especulativos no Brasil</td>
<td>Mauro Costa Miranda</td>
<td>Nov/2001</td>
</tr>
<tr>
<td>35</td>
<td>Uma Definição Operacional de Estabilidade de Preços</td>
<td>Tito Nícius Teixeira da Silva Filho</td>
<td>Dez/2001</td>
</tr>
<tr>
<td>38</td>
<td>Volatilidade Implícita e Antecipação de Eventos de Stress: um Teste para o Mercado Brasileiro</td>
<td>Frederico Pechir Gomes</td>
<td>Mar/2002</td>
</tr>
<tr>
<td>40</td>
<td>Speculative Attacks on Debts, Dollarization and Optimum Currency Areas</td>
<td>Aloisio Araújo and Márcia Leon</td>
<td>Apr/2002</td>
</tr>
<tr>
<td>41</td>
<td>Mudanças de Regime no Câmbio Brasileiro</td>
<td>Carlos Hamilton V. Araújo e Getúlio B. da Silveira Filho</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>42</td>
<td>Modelo Estrutural com Setor Externo: Endogenização do Prêmio de Risco e do Câmbio</td>
<td>Marcelo Kfoury Muinhos, Sérgio Afonso Lago Alves e Gil Riella</td>
<td>Jun/2002</td>
</tr>
<tr>
<td>43</td>
<td>The Effects of the Brazilian ADRs Program on Domestic Market Efficiency</td>
<td>Benjamin Miranda Tabak and Eduardo José Araújo Lima</td>
<td>Jun/2002</td>
</tr>
</tbody>
</table>
44 Estrutura Competitiva, Produtividade Industrial e Liberação Comercial no Brasil
Pedro Cavalcanti Ferreira e Osmani Teixeira de Carvalho Guillén
Jun/2002

45 Optimal Monetary Policy, Gains from Commitment, and Inflation Persistence
André Minella
Aug/2002

46 The Determinants of Bank Interest Spread in Brazil
Tarsila Segalla Afanasieff, Priscilla Maria Villa Llacer and Márcio I. Nakane
Aug/2002

47 Indicadores Derivados de Agregados Monetários
Fernando de Aquino Fonseca Neto e José Albuquerque Júnior
Set/2002

48 Should Government Smooth Exchange Rate Risk?
Ilan Goldfajn and Marcos Antonio Silveira
Sep/2002

49 Desenvolvimento do Sistema Financeiro e Crescimento Econômico no Brasil; Evidências de Causalidade
Orlando Carneiro de Matos
Set/2002

50 Macroeconomic Coordination and Inflation Targeting in a Two-Country Model
Eui Jung Chang, Marcelo Kfoury Muinhos and Joanílio Rodolpho Teixeira
Sep/2002

51 Credit Channel with Sovereign Credit Risk: an Empirical Test
Victorio Yi Tson Chu
Sep/2002

52 Generalized Hyperbolic Distributions and Brazilian Data
José Fajardo and Aquiles Farias
Sep/2002

53 Inflation Targeting in Brazil: Lessons and Challenges
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Nov/2002

54 Stock Returns and Volatility
Benjamin Miranda Tabak and Solange Maria Guerra
Nov/2002

55 Componentes de Curto e Longo Prazo das Taxas de Juros no Brasil
Carlos Hamilton Vasconcelos Araújo e Osmani Teixeira de Carvalho de Guilénn
Nov/2002

56 Causality and Cointegration in Stock Markets: the Case of Latin America
Benjamin Miranda Tabak and Eduardo José Araújo Lima
Dec/2002

57 As Leis de Falência: uma Abordagem Econômica
Aloísio Araújo
Dez/2002

58 The Random Walk Hypothesis and the Behavior of Foreign Capital Portfolio Flows: the Brazilian Stock Market Case
Benjamin Miranda Tabak
Dec/2002

59 Os Preços Administrados e a Inflação no Brasil
Francisco Marcos R. Figueiredo e Thaís Porto Ferreira
Dez/2002

60 Delegated Portfolio Management
Paulo Coutinho and Benjamin Miranda Tabak
Dec/2002
<table>
<thead>
<tr>
<th>Artigo</th>
<th>Autor(es)</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>O Uso de Dados de Alta Frequência na Estimação da Volatilidade e</td>
<td>João Maurício de Souza Moreira e Eduardo Facó Lemgruber</td>
<td>Dez/2002</td>
</tr>
<tr>
<td>do Valor em Risco para o Ibovespa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taxa de Juros e Concentração Bancária no Brasil</td>
<td>Eduardo Kiyoshi Tonooka e Sérgio Mikio Koyama</td>
<td>Fev/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optimal Monetary Rules: the Case of Brazil</td>
<td>Charles Lima de Almeida, Marco Aurélio Peres, Geraldo da Silva e Souza</td>
<td>Feb/2003</td>
</tr>
<tr>
<td>and Benjamin Miranda Tabak</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medium-Size Macroeconomic Model for the Brazilian Economy</td>
<td>Marcelo Kfoury Muinhos and Sergio Afonso Lago Alves</td>
<td>Feb/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On the Information Content of Oil Future Prices</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Taxa de Juros de Equilíbrio: uma Abordagem Múltipla</td>
<td>Pedro Callmman de Miranda e Marcelo Kfoury Muinhos</td>
<td>Fev/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Avaliação de Métodos de Cálculo de Exigência de Capital para Risco de</td>
<td>Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Fev/2003</td>
</tr>
<tr>
<td>Mercado de Carteiras de Ações no Brasil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Real Balances in the Utility Function: Evidence for Brazil</td>
<td>Leonardo Soriano de Alencar and Márcio I. Nakane</td>
<td>Feb/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>r-filters: a Hodrick-Prescott Filter Generalization</td>
<td>Fabio Araújo, Marta Baltar Moreira Areosa and José Alvaro Rodrigues Neto</td>
<td>Feb/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monetary Policy Surprises and the Brazilian Term Structure of Interest Rates</td>
<td>Benjamin Miranda Tabak</td>
<td>Feb/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>On Shadow-Prices of Banks in Real-Time Gross Settlement Systems</td>
<td>Rodrigo Penaloza</td>
<td>Apr/2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O Prêmio pela Maturidade na Estrutura a Termo das Taxas de Juros</td>
<td>Ricardo Dias de Oliveira Brito, Angelo J. Mont'Alverne Duarte e Osman</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>Brasileiras</td>
<td>Teixeira de C. Guillen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicação às Estruturas a Termo de Taxas de Juros</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aplicação do Modelo de Black, Derman & Toy à Precificação de Opções</td>
<td>Octavio Manuel Bessada Lion, Carlos Alberto Nunes Cosenza e César das</td>
<td>Maio/2003</td>
</tr>
<tr>
<td>Sobre Títulos de Renda Fixa</td>
<td>Neves</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brazil’s Financial System: Resilience to Shocks, no Currency</td>
<td>Ilan Goldfajn, Katherine Hennings and Helio Mori</td>
<td>Jun/2003</td>
</tr>
<tr>
<td>Substitution, but Struggling to Promote Growth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
76 Inflation Targeting in Emerging Market Economies
Arminio Fraga, Ilan Goldfajn and André Minella
Jun/2003

77 Inflation Targeting in Brazil: Constructing Credibility under Exchange Rate Volatility
André Minella, Paulo Springer de Freitas, Ilan Goldfajn and Marcelo Kfoury Muinhos
Jul/2003

78 Contornando os Pressupostos de Black & Scholes: Aplicação do Modelo de Precificação de Opções de Duan no Mercado Brasileiro
Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Antonio Carlos Figueiredo, Eduardo Facó Lemgruber
Out/2003

79 Inclusão do Decaimento Temporal na Metodologia Delta-Gama para o Cálculo do VaR de Carteiras Compradas em Opções no Brasil
Claudio Henrique da Silveira Barbedo, Gustavo Silva Araújo, Eduardo Facó Lemgruber
Out/2003

80 Diferenças e Semelhanças entre Países da América Latina: uma Análise de Markov Switching para os Ciclos Econômicos de Brasil e Argentina
Arnildo da Silva Correa
Out/2003

81 Bank Competition, Agency Costs and the Performance of the Monetary Policy
Leonardo Soriano de Alencar and Márcio I. Nakane
Jan/2004

82 Carteiras de Opções: Avaliação de Metodologias de Exigência de Capital no Mercado Brasileiro
Cláudio Henrique da Silveira Barbedo e Gustavo Silva Araújo
Mar/2004

83 Does Inflation Targeting Reduce Inflation? An Analysis for the OECD Industrial Countries
Thomas Y. Wu
May/2004

84 Speculative Attacks on Debts and Optimum Currency Area: a Welfare Analysis
Aloisio Araujo and Marcia Leon
May/2004

André Soares Loureiro and Fernando de Holanda Barbosa
May/2004

86 Identificação do Fator Estocástico de Descontos e Algumas Implicações sobre Testes de Modelos de Consumo
Fabio Araujo e João Victor Issler
May/2004

87 Mercado de Crédito: uma Análise Econométrica dos Volumes de Crédito Total e Habitacional no Brasil
Ana Carla Abrão Costa
Dez/2004

88 Ciclos Internacionais de Negócios: uma Análise de Mudança de Regime Markoviano para Brasil, Argentina e Estados Unidos
Arnildo da Silva Correa e Ronald Otto Hillbrecht
Dez/2004

89 O Mercado de Hedge Cambial no Brasil: Reação das Instituições Financeiras a Intervenções do Banco Central
Fernando N. de Oliveira
Dez/2004
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>90</td>
<td>Bank Privatization and Productivity: Evidence for Brazil</td>
<td>Márcio I. Nakane and Daniela B. Weintraub</td>
<td>Dec/2004</td>
</tr>
<tr>
<td>92</td>
<td>Steady-State Analysis of an Open Economy General Equilibrium Model for Brazil</td>
<td>Mirta Noemi Sataka Bugarin, Roberto de Goes Ellery Jr., Victor Gomes Silva, Marcelo Kfoury Muinhos</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>93</td>
<td>Avaliação de Modelos de Cálculo de Exigência de Capital para Risco Cambial</td>
<td>Claudio H. da S. Barbedo, Gustavo S. Araújo, João Maurício S. Moreira e Ricardo S. Maia Clemente</td>
<td>Abr/2005</td>
</tr>
<tr>
<td>95</td>
<td>Comment on Market Discipline and Monetary Policy by Carl Walsh</td>
<td>Maurício S. Bugarin and Fábia A. de Carvalho</td>
<td>Apr/2005</td>
</tr>
<tr>
<td>96</td>
<td>O que É Estratégia: uma Abordagem Multiparadigmática para a Disciplina</td>
<td>Anthero de Moraes Meirelles</td>
<td>Ago/2005</td>
</tr>
<tr>
<td>99</td>
<td>Adequação das Medidas de Valor em Risco na Formulação da Exigência de Capital para Estratégias de Opções no Mercado Brasileiro</td>
<td>Gustavo Silva Araújo, Claudio Henrique da Silveira Barbedo, Eduardo Facó Lemgruber</td>
<td>Set/2005</td>
</tr>
<tr>
<td>100</td>
<td>Targets and Inflation Dynamics</td>
<td>Sergio A. L. Alves and Waldyr D. Areosa</td>
<td>Oct/2005</td>
</tr>
<tr>
<td>101</td>
<td>Comparing Equilibrium Real Interest Rates: Different Approaches to Measure Brazilian Rates</td>
<td>Marcelo Kfoury Muinhos and Márcio I. Nakane</td>
<td>Mar/2006</td>
</tr>
<tr>
<td>102</td>
<td>Judicial Risk and Credit Market Performance: Micro Evidence from Brazilian Payroll Loans</td>
<td>Ana Carla A. Costa and João M. P. de Mello</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>103</td>
<td>The Effect of Adverse Supply Shocks on Monetary Policy and Output</td>
<td>Maria da Glória D. S. Araújo, Mirta Bugarin, Marcelo Kfoury Muinhos and Jose Ricardo C. Silva</td>
<td>Apr/2006</td>
</tr>
<tr>
<td>104</td>
<td>Extração de Informação de Opções Cambiais no Brasil</td>
<td>Abr/2006</td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eui Jung Chang e Benjamin Miranda Tabak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>Representing Roomate’s Preferences with Symmetric Utilities</td>
<td>Apr/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>José Alvaro Rodrigues-Neto</td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>Testing Nonlinearities Between Brazilian Exchange Rates and Inflation Volatilities</td>
<td>May/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cristiane R. Albuquerque and Marcelo Portugal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>Demand for Bank Services and Market Power in Brazilian Banking</td>
<td>Jun/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Márcio I. Nakane, Leonardo S. Alencar and Fabio Kanczuk</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Eduardo A. S. Rodrigues, Victorio Chu, Leonardo S. Alencar and Tony Takeda</td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>The Recent Brazilian Disinflation Process and Costs</td>
<td>Jun/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alexandre A. Tombini and Sergio A. Lago Alves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>Fatores de Risco e o Spread Bancário no Brasil</td>
<td>Jul/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fernando G. Bignotto e Eduardo Augusto de Souza Rodrigues</td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>Avaliação de Modelos de Exigência de Capital para Risco de Mercado do Cupom Cambial</td>
<td>Jul/2006</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Alan Cosme Rodrigues da Silva, João Mauricio de Souza Moreira and Myrian Beatriz Eiras das Neves</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Angelo Marsiglia Fasolo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sergio Rubens Stancato de Souza, Benjamin Miranda Tabak e Daniel O. Cajueiro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>