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Abstract

In this paper, an unrestricted aggregation method for heterogeneous log-linear
functions is presented. It employs inequality measures derived from
information theory in the construction of an exact representation of the
aggregate behavior of the economy. A condition for the identification of
average micro parameters is proposed. It is shown that the method leads to
previous results in the field when adequate restrictions are imposed. Two
macroeconomic applications are discussed: the aggregation of the Lucas
supply function and the time-inconsistent behavior of an egalitarian socia

planner facing agents with heterogeneous discount rates.

The author would like to thank W. Brock, J. Faria, Y. Kitamura, A. Lewbel, R. Manuélli, A.
de Oliveira, H. Pesaran and K. West for helpful comments. Existing errors are nevertheless

the sole responsibility of the author.






The reaction of one man could be forecast by no known
mathematics; the reaction of a billion is something else

again.
— Foundation and Empire, 1saac Asimov (1952)

1 Introduction

Although the search for microeconomic underpinnings of macroeconomic models has led
to an increased interest in aggregation issues, the representative agent hypothesis is yet
common in macroeconomic research. One possible reason is the technical difficulty that

arises with heterogeneity.

On one hand, numerical simulation has been used to deal with the problem complexity. It
Is now common to find works that use simulation to analyze among other things how
heterogeneity across economic units affects the aggregate behavior of the economy. On
the other hand, symbolic approaches have been considered among others by Theil (1954,
1967 and 1971), Deaton and Muellbauer (1980), Stoker (1984, 1986 and 1993), Lewbel
(1992) and Garderen, Lee and Pesaran (2000).

Following Garderen, Lee and Pesaran (2000), the literature is mainly divided between the
aggregation problem and the model selection problem. The first deals with the conditions
for the identification of micro parameters from aggregate macroeconomic models. The
second deals with the optimal choice between aggregate and disaggregate models.

Although following the aggregation approach, this paper tries to go beyond identification
conditions. It is shown that, at least in the heterogeneous log-linear case, an aggregate
equation can represent the exact relationship among aggregate variables, as long as it
includes additional terms containing inequality measures from information theory. Note
that the log-linear case is of special interest, since it represents the usua modeling

approach in theoretical and empirical macroeconomics.

The paper has the following structure: it starts presenting the information theory concepts

that will be used throughout the paper, followed by the aggregation method. Then it states



the condition that conduces to the identification of micro parameters (or its means) in the
case of alog-linear model of the aggregate variables. Previous findings in the field are
verified through the imposition of adequate restrictions.

Two macroeconomic applications are provided in the last section. First, it is shown how
the Lucas supply function changes when its micro components are aggregated not in logs,
as usual, but rather in levels, as in reality. Second, it is verified that the behavior of an
egadlitarian socia planner is time-inconsistent when the planner faces agents with
heterogeneous exponential discount rates, since in this case the resulting aggregate

discount rate is not exponential.

2 Aggregation

To aggregate log-linear equations, consider the use of an information theory concept

caled expected information of an indirect message:

I(Y:X):IfY()l)InSfﬁ(%%i/\, Y ~£(1), X~f(2), (1.1)

which measures the expected information carried by a message that transforms a prior

probability density function £, to a posterior £;.!

Theil (1967, 1971) used the expected information concept to propose inequality

measures. One of them is known as Theil s second measure, which is defined as?

L(Y)=I(Y:X*)=J’fY(/\)InE¥EdA, Y ~1,(1), L

EN]

! See, for example, Theil (1967, p. 27, 1971, p. 641). It is also caled mean information; see Kullback

(1968, p. 5).

% The notation for this measure is L in Bourguignon (1979), I, in Shorrocks (1980), 7, in Nygérd &
Sandstrom (1981, pp. 146 and 251), apth Maasoumi (1986). Bourguignon (1979) offers the following
comment on Theil's second measure: “That the inequality medstiges seldom been used in applied
works on income distribution is somewhat surprising because it has very much to commend it. Besides the
fact that it is decomposable ... and satisfies the basic properties of an inequality niebsnds,itself to a

very simple interpretation in terms of social welfare. In the utilitarian framework, the social welfare
function is the sum of identical concave individual utility function. If we choose the logarithm form for
those utility functions/ is simply the difference between the maximum social welfare for a given total
income, which corresponds to the equalitarian distribution, and the actual social welfare.”



The sample analog of this measureis given by

E(Y):%: In%gz In%?

1
CRY Z o), Y=,y ], v=LSv . v=HIv.E .
¥ - [0,m) [ ] ;Z ]

, (1.2)

oo™

where

Note that Y is avector of N values taken by avariable ¥, Y isthe arithmetic mean of Y,

and Y is the geometric mean of Y. Theil’'s second measure represents the degree of

relative dispersion among the units.

Consider now the following:
Proposition 1: Given [+1 vectors representing the values taken by I+1 variables for N

units at time t, and given I parameter vectors,* as described below:

O Bens [k, O
g. O g. d U. d
g0 g- g 0 g
YI:D]nlD X/l :DXWD aizlllin D’
0" 0 0.0 0.0
u- g u- 0 U-
Hv H ECAS I M

Y>>0 X, >0,i=1,...,1,n=1,...

z
Cl
—

If a log-linear functional form with heterogeneous parameters across units describes the

microeconomic relationships in the economy:

Y, =Xon Xou - X, (1.3)

® Note that Theil’s first measure would be defined accordingly as 7(Y) = I(X*:Y).
4 Parameters could be time variant, with the same results.



then the relationship among the aggregate variables Y+ and Zt at each period t will be

given by
¥ = XX X D(@,), (14)
where
O - — O
ple)=epi(¥)- 3 [aZ(x,)-cov, .o ) 15
Y_’[:i NYnt’ >Tit:i S Xint’c_l/:iN am’
N & N & N £
_ 1 N
COV(XiI’aI) = N (Xint _iit )(ain _51)'
ch :(Xlz""’XIl’al""’al)’ Xy = [In(xilt) In(XiNt)] )
voExprerxy, xsfrg oxg],

and the symbol * represents the Hadamard product (the component-by-component
product). Note that cov(x,,a,) is the cross-sectional sample covariance between the

logarithm of the variables and their respective parameters.

The proof of Proposition 1 isgivenin Appendix 1.

Except for the term D(CDt), the aggregate equation is analogous to a representative unit
equation. The dispersions of the variables and parameters are relevant here, as expected,
with effects represented by D(®, ). The proposition shows, however, that it is possible to
isolate the effects of these dispersions from the effects of the aggregate variable. The
aggregate variable Y, depends not only on the aggregate variables X,, to X, , but also

on inequality measures of each variable vector. Additionally, note that Proposition 1 does

not rely on any hypothesis regarding statistical properties of variables and parameters.

Proposition 1 leads to an intuitive interpretation of the aggregation problem. The
inequality measures can be seen as aggregate measures of the loss of information caused

by the representative agent assumption. Given that, an exact aggregate model can be
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established by taking these measures in consideration when formulating the aggregate
equation.

3 Identification of Micro Parameters

Proposition 1 provides a simple condition for the identification of micro parametersor, in
the case where the units have heterogeneous parameters, for the identification of average

micro parameters.

Start adding a disturbance term to equation (1.3):

— a a, Qn AUnt
Ynt - >(1r'|tnX2r'|£1 "'Xln?e "

From Proposition 1, it is known that the aggregate equation is
Y, = X2 X% ... X3 D(d, )e™, (2.1)

where

1 ¢
0, :ﬁZum.
n=1

Note that E(X) =0 when all components of X are equal. Also, note that E(x,a) =0
when all components of either X or a are equal. If these two properties are applied to
equation (2.1) then it is easy to verify that D(®,) continues defined as in equation (1.5)
despite the introduction of a disturbance term in the micro equations. Now, consider the
logarithmic representation of equation (2.1):

A :a_1x1t+§2x2t+--~+§,x,t+d(CDt)+Ut, (2.2

where

|

Y, = In(Y_t), X, = In()?it), d(®,)=

(v [a (x,)-covtea)]

First, note that if the values of d(®,) were observed for each observation 7 in a time

series sample of aggregates, then they could be used to estimate the parameters in



equation (2.2). In genera, however, the inequality measures are not known. In this case,
the condition for obtaining consistent estimators of the average micro parameters using a
log-linear equation of aggregate variables would be

plimco_v Xip - XiT]"[(d((Dl)-I—Ul) (d((DT)-l'UT)]IE:O’Di- (2.3)

This condition is obtained, for example, when the aggregate disturbance # and the

;
population heterogeneity measured by d(CDt) (a combination of relative dispersion
measures) are both independent from every aggregate variable x, across time. Note that
an instrumental-variable estimator can be employed when this condition is not valid. In
terms of economic meaning, it is necessary to find instruments that explain the aggregate
variables but have no relationship in the covariance sense with d(d)t) +U,. For example,
consider a consumption model where consumption is a function of income. An
instrument could be a variable that, although capable of explaining the aggregate income,
has zero covariance with the dispersions of income and consumption, as measured by the

components of d(a,).

4 Special Cases of Log-Linear Aggregation

Some well-known log-linear aggregation properties can be reproduced using equation
(1.4) and imposing adequate restrictions. Note that proving tends to be simpler when the
approach developed here is employed. Consider the following examples.

10



4.1 Scale-Invariant Distributions

Lewbel (1992) and Garderen, Lee and Pesaran (2000) discuss the case of scale-invariant
distributions.’ They are defined as

pt(zlnt""’zlnt Ylt""’)?lt’et):pt(Zlnt""’Zlnt|Ot)’ Un,t,
_ X

Z —nt - Oj,n,t,

it

int

where X, isassumed to be independent of ©, over ¢ for every i.

Assume that the microeconomic functions are defined as
Ynt = Xlaétxzarit e X " eum . (3-1)

Int

The equation above is equivalent to equation (1.3) with homogeneous parameters. The

unobserved disturbances are distributed in accordance with a density

X X1,0;) = uley), Onit,

qt (unt
and their expected values obey to the condition
X X100, = EJun,

E,Ju., 0]=0.

Lewbel (1992) has shown that, given a scale-invariant distribution, the micro parameters
in equation (3.1) can be recovered from the log-linear aggregate equation. This result can
be verified using Proposition 1. Consider random realizations of Z;,,, for every n, i and ¢

in a sample, drawn from p, (Zlm,...,Z,m|®t). Note that, since the micro parameters are

constant across units, equation (1.5) simplifiesto

Do) =expL ()~ al(x,)3

1=1

® They are also called mean-scaled distributions.

11



Now, observe that
C(x,)=LC(X.z,)=L(z,),
L) = LlXE =Xy we )= DX zs +r Xz =e )0
L(v) =Tl =z *ev),
meaning that L(Y,) and L(X,,) areindependent from X,,, i . The independence is due
to two reasons. First, the vectors (th,...,Z,t) and the disturbance vector u, have been

drawn from distributions that are independent from X, . Second, the function E(Xit) IS

homogeneous of degree zero. Hence, after applying Proposition 1 to equation (3.1) and
taking the logarithm, it turns out that

Yi :aixlt+a2X2t+"'+a|X|t+d(¢t)+Ut’ (3-2)

CDt = (th,...,th,e“t’al,,,.,al), d(CDt) = E(Zlatl *"'*Z?tl *eut)_lzai

L(z.)-

Note that condition (2.3) isvalid since

cov(x,.,(d(®,)+ 1)) = cov(In X, [d(@,) + 1)) =0, i,
Theterm d(®,) was shown above to be independent from x,, = In X,,, and theterm 7 is

independent by assumption. Therefore, Lewbel’s result can be verified using Proposition
1: the micro parameters can be recovered from the log-linear aggregate equation when

the distributions are scale invariant.

4.2 Lognormal Distributions

An important simplification arises when the distributions are lognormal. First, consider

the relation between Theil's second measure, the characteristic fu%g;g(v\), the

moment generating functioM ;) (r), and the cumulant generating functis ) (7): ®

%(X)(A - _1) - Mg(X)(T :1) - E[eg(x)J = nE[X]-E[Inx] _ exp[L(X )]’

® See Theil (1971, p. 367) and Amemiya (1985, p. 91).
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Kyp(r =1) = In[M, (7 =1)] = | Sz (x), g(X)=x-E[x], x=In(X),
where «; isthej-th cumulant of g(X), for example:
k =Elo(x)]=0, k, =E[g(x)- &, F] = E[(x ] = var(x).
ks =El(0(x)-x.F = Elo(x}]. k, =El0(x)-x,}]-22 = E[o(x}]-3var(xy

From the relations above, the values of L(X) for different distributions of X can be

calculated using a characteristic function or cumulant table.

For example, if each element of X is randomly drawn from an independent lognormal

distribution, it means, In X, ~ N(/I,U'Z) for On, then

plim E(x):%z. (3.3)

Consider now the following fixed distribution case:’

Yor = Xint Xom o Xt (3.4)

2nt Int

where the variables for each unit and time are drawn from ajoint lognormal distribution

where
p(inz,,,....InZ,,)~N(M,%), On,t,
O [b? o, 0
M_D:lD _D:l 1I|:|X _HZ
- D’Z_D' [ “Nint it“~int 1
Qﬁ@ BTM ) U?E
and where

plimcov(a,,a,) = cov(a,a,)= 0, plimvar(a,)=var(a,)= 0?2,

aij ?

" Fixed distributions are discussed e.g. in Stoker (1984).
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meaning that
plimcov(a,,x, ) =0, (3.5)

plim cov(ai * X, @, *xjt): 0,05 + 0@, + 031X, X, U

aij " ij i aij
vl oo, )< oo + o + o - % B -G s
plimcovia; *X;,a; * X )= 0403 + 0388, + O i = Ft =~ (3.6)

and plimvar(a, *x, ) = 0%0? + 0?a? + 0% x2 [

ai i ai”tit
L 2
plim Var(ai *Xit) = J:iaiz + Jizaiz + U:i %it _%é’ (3.7)

where (1.2) was used to obtain the relationship X, = x;, — E(Xit).

Using Proposition 1, and assuming that N — o, it is shown in Appendix 2 that the
aggregate equation in its logarithmic formis

I o202 o2 ,0
- C + - al 1 i + al X
Yi ; %n 2 %lt 2 |t%

< <« J O-ai'o-'2 aai'aiz O
+ [@aiiXiXj ~ é - X — é X Ot s (3.8)
i1=1 j=i+1 [] O

where ¢ is a constant.

Note that the aggregate equation above is not log-linear: it includes squares and cross
products of the aggregate variables, and it can have higher-order terms through 7. It can
be seen from equation (3.8) that, as noted in Garderen, Lee and Pesaran (2000), “When
the parameters of the log-linear specifications differ across micro units, the slope
coefficients (or their means) are no longer identifiable from the [log-linear] aggregate

model.”
Finally, consider the particular case where the parameters do not vary across units. In this

case, equatiof8.8) simplifies to

Y = X ot X +d(th)’

14



where

is constant.

Therefore, the aggregate equation mimics the microeconomic equation in the case of
homogeneous parameters. This is a simple example of the scale-invariant distribution
case discussed before, where the micro parameters can be identified from a log-linear

aggregate equation.

The results of this section show that, under the hypothesis of fixed distributions, the
recoverability of the parameters from a log-linear aggregate equation is possible only
when the parameters are homogeneous across the economy. Thisisin agreement with the
aggregation properties of log-linear models that are discussed, for example, in Garderen,
Lee and Pesaran (2000). The parameters would be identifiable, however, if Theil's

second measures of the variables were known and were included in the equation.
5 Applications to Macroeconomic Modeling

5.1 The Lucas Supply Function

In this section, Proposition 1 is used to aggregate the Lucas supply function, which was
originally developed in Lucas (1973), this time not in its logarithm version as usual but

rather in its level versiof.

Consider the microeconomic function in the Lucas model:

2
Yt :lg(pnt _E[Et“t])’ ﬁ :bng’ Pt = Py tZps

2
o,t0

8 Following Blanchard and Fischer (1989, p. 366), “This is another instance in which the use of logarithms
creates problems. Output is implicitly defined as the product of individual outputs rather then their sum.”

15



where y,, isthe log of output for market » and time ¢, p,, is the log of price level for
market n, P, isthe log of the geometric mean of price levelsin all markets (the average
of logs), I, is the information before #, b is the slope of the supply function for each
market, o? is the variance of idiosyncratic price shocks z,,, z,, ~ |N(0,0'Z2), and o} is

the variance of the prior distribution of p,, P, ~ IN(E[ﬁt|It],a§).

The usual aggregation procedure is to sum over the logs, yielding a per capita function of
the type

v, = B(p. - E[p/1.))-

This is the Lucas supply function. Note that all the aggregate variables here are

constructed as geometric means.

If Proposition 1 is used to aggregate the microeconomic functions over the levels, a more
realistic approach, adifferent result is found. Start with

Yt :ﬁ(pnt _E[Et“t])’
and then using Proposition 1:
Yi :d(q)t)-'-ﬁ(pt _E[Et“t])'

where d(®,)=L(Y,)-A(P,), and
Yt:[ey“ eyNt]', Pt:[ep“ epN']'.

Given the assumptions about the distributions, it is known that

2

plimL(R) =%, plimL(Y,) = plimL(p?)= #°

N N

~|s~ oS

pIimE[ﬁt|It]:pIim{E[pt|It]—E( } E[pt|l]

where Pf:[eﬁ"“ e”"“t].

16



Therefore, for alarge enough N, the aggregate supply function is given by

Yi = ﬁ2%§+lg(pt - E[pt||t])'

Consequently, the aggregation over levels introduces an intercept in the equation that will
be affected by changes in the prior distribution of p,. The result indicates that the long-

run equilibrium level of aggregate supply in this economy will be affected by changes in

the governmenta policies. A change in policy that increases 05 will also decrease the

equilibrium level of output. Thisis, however, a purely aggregational result, generated by

the presence of nonlinearities in the microeconomic reaction functions.

5.2 The Time-Inconsistent Egalitarian Social Planner
Suppose that the household utility function in a heterogeneous economy commanded by

an egalitarian social planner is given by

Um:Z,BnJ'C,ij, 0<pB,<1,0<0<1,o0r
J:

—_ _jgn —_ _gn
Unt_Ze Crtwjt+j' 0n>0’ﬁn_e '
J:

The discount rates of the agents are assumed, as an example, to be randomly drawn from

an exponential distribution with density

_A=bhin
5 .
fg(/]):%e If/\ZQmin ’

E) If A < emin
El6]=6,,, +& var(@)=¢&, 6, >0, &>0.

Note that the discount rate of each agent is the only random element in this setup.
Assume that the number of families is large (N — o). The socia planner knows the

distribution of the discount rates, but cannot identify the discount rate of any specific

17



agent, being thereafter egalitarian, C_, =C,,00n.° Given these restrictions, the social

planner will try to maximize the utility function of a representative agent given by

N 00

.1 _ - © .1 N _ig. Ono
Ut:pllmﬁnz:“z ey, = ;Ebllmﬁnzle”’ ECHJ..

Using a characteristic function table, as in Abramowitz and Stegun (1972, p. 930), it can

e
lim Ege'jgl e @i H: In%e—_a
g ID +jE

and hence, using Proposition 1:

be easily shown that

} 1 N . } . . |:| e({_g)
lim—Y e% =plimex Efge e =plim 0
plim = Z p p ] EH 0 p

1+]j¢

. 1 N . e_jgmin i
pllm_ze 6 — — ﬁmax ﬁm

, —e BOmin
N & 1+j¢ 1+j¢

Thereafter

i

U, Zﬁl)cw Bli) = e

1+j&
meaning that the social planner faces a representative agent utility function with a
nonexponential discount rate. Nonexponential discount rates are associated with time-
inconsistent behavior,'® implying that, when dealing with heterogeneity, the egalitarian

socia planner would choose time-inconsistent consumption plans.

6 Conclusions

It is shown in this paper that inequality measures obtained from information theory can
be used to construct an exact and unrestricted aggregate representation of an economy
with log-linear microfoundations. Thisis true even when the units are heterogeneous both

on variable and parameter values.

® The distribution is obtained, for example, through an anonymous poll.
19 See, for example, Loewenstein and Thaler (1989), and Laibson (1997).
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The method can be used to verify previous propositions regarding the aggregation of this
class of functions, and it seems to simplify proving. The cases of scale-invariant

distributions and lognormal distributions, for example, were considered in this paper.

The choice of log-linear functions as the subject of analysis comes from the broad use of
log-linear aggregate macroeconomic  models in  theoretical and empirical
macroeconomics. Having a precise description of the relationship between those models
and their microeconomic foundations, as the paper tried to accomplish, seemed therefore
to be arelevant task.

The results obtained here can be used both in empirical and theoretical analysis.
Aggregate log-linear econometric models can be used to estimate micro parameters when
specific dispersion measures are included in the equation. The method can also be used to
generate analytical solutions to theoretical aggregation problems.

Two applications were presented. The Lucas supply function was aggregated not in its
logarithmic form, as usual, but rather in its level form, leading to a different solution for
the aggregate function. It was aso shown that, given agents with heterogeneous
exponential discount rates, an egalitarian social planner faces an aggregate utility

function that has a nonexponential discount rate, which generates time-inconsi stent plans.

The examples tried to demonstrate that the method could be helpful not only to
econometricians but also to macroeconomists. Maybe, given its relative smplicity, it
could also be useful to instructors willing to discuss aggregation issues at introductory

levels.
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Appendix 1

Starting with
Y., = XX X Y >0, X, >0, i=1,...,1,n=1,..,N,0t,
take the logarithm of each unit such that
Yoo = QnXine ¥t 80X
where lowercase represents the log of the variable.
Now, averaging this expression over units:
_ 13 13
Y = Wr; Yt :anl (ainxlnt + + a'Inxlnt) u
yt :al)?]tt-l- +al)?:t’
where
_ 1 d ., 1 &
a=—>»a,, X, =— —0 X,
1 N r; n t N ; al IE
Taking the exponential of the equation above gives
Y= XX (Li)
where
1 1
~ N ~ N 3
= K= xa "
=1 |:| =1 |:|
Using definition (1.2):
Y explC(x, )] = % (Lii)
it

explL(v,)]= 2,

and noting that



it o
An(Xw )8
then
exp[a(xit’ai )/ai] %

Substituting (1.ii) and (1.iii) into (1.i), it follows that

_ 0— A . " o A B uk

_t — Exlt exp Coz(xlt al)/allg Exlt exp CO\:(XIt a, )/al l% 0

exp[L (Yt)] E exp[L (Xlt)] B E exp[L (X It)] E

Appendix 2

Applying Proposition 1 to equation (3.4), the aggregate equation in its logarithmic form
turns out to be
Yt :§1X1t+§2X2t +"'+§|X|t +d(¢t)’ (2-i)

where

21



Taking the limit and using equations (3.3), (3.5), (3.6) and (3.7), this expression
simplifiesto

pIimd(CDt):pIimE(Yt)—%ZeTiaf. (2.i)

Note that generally Y,,, will not follow alognormal distribution:

- K, v.J
plimL(Y,) = —: pllmNn_M+l’tD

— Xt Xy, _alxlt)2 +r
2 v

= 1
plim L(Yt):pllmﬁz BunXin

_< X 1
= — X = (alnxlnt)
N Z

where r, summarizes the effects of remaining cumulants, implying:

-1 1

plim L (Y, pllm§2var cov(a, *x,,a, *x, )[|+rt O

1=1 j=1+1
_ 0 240
plimi(v,) = ws.a.2+afaf+a§§<.t—%§m
g aft
-1 1 [] o? [ 0._2
+ o.+o.aa +o - HK - .
;J:IZ:L ém.alj i [ I | aij %(It 2 :%jt 2 %’ t

From (2.ii)

22



and from (2.i), assumingthat N — oo,

0

O

X
2

o’

2
1
1

iJi
2

N @

%_a

2
i

0.0,

X, O+ 1, Q.E.D.

iy —
Xit

0,0,

0
[@aijXicXj ~
O]

=1+l

J
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