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$EVWUDFW

In this paper, an unrestricted aggregation method for heterogeneous log-linear

functions is presented. It employs inequality measures derived from

information theory in the construction of an exact representation of the

aggregate behavior of the economy. A condition for the identification of

average micro parameters is proposed. It is shown that the method leads to

previous results in the field when adequate restrictions are imposed. Two

macroeconomic applications are discussed: the aggregation of the Lucas

supply function and the time-inconsistent behavior of an egalitarian social

planner facing agents with heterogeneous discount rates.

The author would like to thank W. Brock, J. Faria, Y. Kitamura, A. Lewbel, R. Manuelli, A.

de Oliveira, H. Pesaran and K. West for helpful comments. Existing errors are nevertheless

the sole responsibility of the author.
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The reaction of one man could be forecast by no known
mathematics; the reaction of a billion is something else
again.

– )RXQGDWLRQ�DQG�(PSLUH, Isaac Asimov (1952)

�� ,QWURGXFWLRQ

Although the search for microeconomic underpinnings of macroeconomic models has led

to an increased interest in aggregation issues, the representative agent hypothesis is yet

common in macroeconomic research. One possible reason is the technical difficulty that

arises with heterogeneity.

On one hand, numerical simulation has been used to deal with the problem complexity. It

is now common to find works that use simulation to analyze among other things how

heterogeneity across economic units affects the aggregate behavior of the economy. On

the other hand, symbolic approaches have been considered among others by Theil (1954,

1967 and 1971), Deaton and Muellbauer (1980), Stoker (1984, 1986 and 1993), Lewbel

(1992) and Garderen, Lee and Pesaran (2000).

Following Garderen, Lee and Pesaran (2000), the literature is mainly divided between the

DJJUHJDWLRQ�SUREOHP and the PRGHO�VHOHFWLRQ�SUREOHP. The first deals with the conditions

for the identification of micro parameters from aggregate macroeconomic models. The

second deals with the optimal choice between aggregate and disaggregate models.

Although following the aggregation approach, this paper tries to go beyond identification

conditions. It is shown that, at least in the heterogeneous log-linear case, an aggregate

equation can represent the exact relationship among aggregate variables, as long as it

includes additional terms containing inequality measures from information theory. Note

that the log-linear case is of special interest, since it represents the usual modeling

approach in theoretical and empirical macroeconomics.

The paper has the following structure: it starts presenting the information theory concepts

that will be used throughout the paper, followed by the aggregation method. Then it states
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the condition that conduces to the identification of micro parameters (or its means) in the

case of a log-linear model of the aggregate variables. Previous findings in the field are

verified through the imposition of adequate restrictions.

Two macroeconomic applications are provided in the last section. First, it is shown how

the Lucas supply function changes when its micro components are aggregated not in logs,

as usual, but rather in levels, as in reality. Second, it is verified that the behavior of an

egalitarian social planner is time-inconsistent when the planner faces agents with

heterogeneous exponential discount rates, since in this case the resulting aggregate

discount rate is not exponential.

�� $JJUHJDWLRQ

To aggregate log-linear equations, consider the use of an information theory concept

called H[SHFWHG�LQIRUPDWLRQ�RI�DQ�LQGLUHFW�PHVVDJH:

( ) ( ) ( )
( )∫ 








= λ

λ
λλ d

f
f

fXYI
X

Y
Y ln: ,   ( )λYfY ~ ,   ( )λXfX ~ , (1.1)

which measures the expected information carried by a message that transforms a prior

probability density function I
;
 to a posterior I

<
.1

Theil (1967, 1971) used the expected information concept to propose inequality

measures. One of them is known as 7KHLO¶V�VHFRQG�PHDVXUH, which is defined as 2

( ) ( ) ( ) [ ]
∫ 





== λ

λ
λ d

YE
fXYIYL Y ln: * ,   ( )λYfY ~ ,   

( )
[ ]YE

f
X Y λλ

~* .3

                                      
1 See, for example, Theil (1967, p. 27, 1971, p. 641). It is also called PHDQ� LQIRUPDWLRQ; see Kullback
(1968, p. 5).
2 The notation for this measure is / in Bourguignon (1979), ,0 in Shorrocks (1980), 72 in Nygård &
Sandström (1981, pp. 146 and 251), and ,-1 in Maasoumi (1986). Bourguignon (1979) offers the following
comment on Theil’s second measure: “That the inequality measure / has seldom been used in applied
works on income distribution is somewhat surprising because it has very much to commend it. Besides the
fact that it is decomposable … and satisfies the basic properties of an inequality measure, / lends itself to a
very simple interpretation in terms of social welfare. In the utilitarian framework, the social welfare
function is the sum of identical concave individual utility function. If we choose the logarithm form for
those utility functions, / is simply the difference between the maximum social welfare for a given total
income, which corresponds to the equalitarian distribution, and the actual social welfare.”
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The sample analog of this measure is given by

( ) 







=





= ∑

= Y
Y

Y
Y

N
L

N

n n
~lnln

1

1

Y , (1.2)

where

[ )∞→+ ,0: NRL ,   [ ]′= NYY L1Y ,   ∑
=

=
N

n
nY

N
Y

1

1
,   

NN

n
nYY

1

1

~





= ∏
=

.

Note that�< is a vector of 1 values taken by a variable <, Y  is the arithmetic mean of <,

and Y~  is the geometric mean of <. Theil’s second measure represents the degree of

relative dispersion among the units.

Consider now the following:

3URSRVLWLRQ��: *LYHQ�,�1�YHFWRUV�UHSUHVHQWLQJ�WKH�YDOXHV�WDNHQ�E\�,�1�YDULDEOHV�IRU�1

XQLWV�DW�WLPH�W��DQG�JLYHQ�,�SDUDPHWHU�YHFWRUV�4�DV�GHVFULEHG�EHORZ�
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
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;
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;

<
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M

M
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111

,, D;< ,

tNnIiXY intnt ∀==>> ,,,1,,,1,0,0 KK .

,I�D�ORJ�OLQHDU�IXQFWLRQDO�IRUP�ZLWK�KHWHURJHQHRXV�SDUDPHWHUV�DFURVV�XQLWV�GHVFULEHV�WKH

PLFURHFRQRPLF�UHODWLRQVKLSV�LQ�WKH�HFRQRP\�

,QQQ D

,QW

D

QW

D

QWQW
;;;< L21

21= , (1.3)

                                                                                                                 
3 Note that 7KHLO¶V�ILUVW�PHDVXUH would be defined accordingly as 7(<) = ,(;
�<).
4 Parameters could be time variant, with the same results.
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WKHQ�WKH�UHODWLRQVKLS�DPRQJ�WKH�DJJUHJDWH�YDULDEOHV� tY �DQG� itX �DW�HDFK�SHULRG�W�ZLOO�EH

JLYHQ�E\

( )
W

D

,W

D

W

D

WW
';;;< , Φ= L21

21 , (1.4)

where

( ) ( ) ( ) ( )[ ]






 −−=Φ ∑

=

,

L

LLWLWLWW
/D/'

1

,covexp D[;< , (1.5)

∑
=

=
N

n
ntt Y

N
Y

1

1
, ∑

=

=
N

n
intit X

N
X

1

1
, ∑

=

=
1

Q

LQL
D

1
D

1

1
,

( ) ( )( )∑
=

−−=
1

Q

LLQLWLQWLLW 1 1

1
,cov DD[[D[ ,

( )
,,WWW

DD;; ,,,,, 11 KK=Φ ,     ( ) ( )[ ]′= iNttiit XX lnln 1 Lx ,

,

,WWW

DD ;;< **1
1 L= ,     [ ]′= L1LL D

L1W

D

WLLW
;; L1

1
D; ,

and the symbol * represents the Hadamard product (the component-by-component

product). Note that ( )
LLW

D[ ,cov  is the cross-sectional sample covariance between the

logarithm of the variables and their respective parameters.

The proof of Proposition 1 is given in Appendix 1.

Except for the term ( )tD Φ , the aggregate equation is analogous to a representative unit

equation. The dispersions of the variables and parameters are relevant here, as expected,

with effects represented by ( )tD Φ . The proposition shows, however, that it is possible to

isolate the effects of these dispersions from the effects of the aggregate variable. The

aggregate variable tY  depends not only on the aggregate variables tX1  to ItX , but also

on inequality measures of each variable vector. Additionally, note that Proposition 1 does

not rely on any hypothesis regarding statistical properties of variables and parameters.

Proposition 1 leads to an intuitive interpretation of the aggregation problem. The

inequality measures can be seen as aggregate measures of the loss of information caused

by the representative agent assumption. Given that, an exact aggregate model can be
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established by taking these measures in consideration when formulating the aggregate

equation.

�� ,GHQWLILFDWLRQ�RI�0LFUR�3DUDPHWHUV

Proposition 1 provides a simple condition for the identification of micro parameters or, in

the case where the units have heterogeneous parameters, for the identification of average

micro parameters.

Start adding a disturbance term to equation (1.3):

ntInnn ua
Int

a
nt

a
ntnt eXXXY L21

21= .

From Proposition 1, it is known that the aggregate equation is

( ) tI u
t

a
It

a
t

a
tt eDXXXY Φ= L21

21 , (2.1)

where

∑
=

=
N

n
ntt u

N
u

1

1
.

Note that ( ) 0=XL  when all components of ; are equal. Also, note that ( ) 0,cov =ax

when all components of either ; or D are equal. If these two properties are applied to

equation (2.1) then it is easy to verify that ( )tD Φ  continues defined as in equation (1.5)

despite the introduction of a disturbance term in the micro equations. Now, consider the

logarithmic representation of equation (2.1):

( ) ttItIttt udxaxaxay +Φ++++= L2211 , (2.2)

where

( )tt Yy ln= , ( )itit Xx ln= , ( ) ( ) ( ) ( )[ ]∑
=

−−=Φ
I

i
iitititt LaLd

1

,cov axXY .

First, note that if the values of ( )td Φ  were observed for each observation W in a time

series sample of aggregates, then they could be used to estimate the parameters in
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equation (2.2). In general, however, the inequality measures are not known. In this case,

the condition for obtaining consistent estimators of the average micro parameters using a

log-linear equation of aggregate variables would be

[ ] ( )( ) ( )( )[ ] 0,cov plim 111 =


 ′+Φ+Φ′
TTiTi ududxx LL , i∀ . (2.3)

This condition is obtained, for example, when the aggregate disturbance 
W
X  and the

population heterogeneity measured by ( )
W

G Φ  (a combination of relative dispersion

measures) are both independent from every aggregate variable 
LW
[  across time. Note that

an instrumental-variable estimator can be employed when this condition is not valid. In

terms of economic meaning, it is necessary to find instruments that explain the aggregate

variables but have no relationship in the covariance sense with ( ) tt ud +Φ . For example,

consider a consumption model where consumption is a function of income. An

instrument could be a variable that, although capable of explaining the aggregate income,

has zero covariance with the dispersions of income and consumption, as measured by the

components of ( )td Φ .

�� 6SHFLDO�&DVHV�RI�/RJ�/LQHDU�$JJUHJDWLRQ

Some well-known log-linear aggregation properties can be reproduced using equation

(1.4) and imposing adequate restrictions. Note that proving tends to be simpler when the

approach developed here is employed. Consider the following examples.
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���� 6FDOH�,QYDULDQW�'LVWULEXWLRQV

Lewbel (1992) and Garderen, Lee and Pesaran (2000) discuss the case of VFDOH�LQYDULDQW

GLVWULEXWLRQV.5 They are defined as

( ) ( )tIntntttIttIntntt ZZpXXZZp Θ=Θ ,,,,,,, 111 KKK ,   tn,∀ ,

it

int
int X

X
Z = ,   tni ,,∀ ,

where itX  is assumed to be independent of ΘW over W for every L.

Assume that the microeconomic functions are defined as

ntI ua
Int

a
nt

a
ntnt eXXXY L21

21= . (3.1)

The equation above is equivalent to equation (1.3) with homogeneous parameters. The

unobserved disturbances are distributed in accordance with a density

 ( ) ( )tntttIttntt uqXXuq Θ=Θ,,,1 K ,   tn,∀ ,

and their expected values obey to the condition

[ ] [ ] 0,,,1 =Θ=Θ tntttIttntt uEXXuE K .

Lewbel (1992) has shown that, given a scale-invariant distribution, the micro parameters

in equation (3.1) can be recovered from the log-linear aggregate equation. This result can

be verified using Proposition 1. Consider random realizations of =LQW for every Q, L and W

in a sample, drawn from ( )tIntntt ZZp Θ,,1 K . Note that, since the micro parameters are

constant across units, equation (1.5) simplifies to

( ) ( ) ( )






 −=Φ ∑

=

I

i
ititt LaLD

1

exp XY .

                                      
5 They are also called PHDQ�VFDOHG�GLVWULEXWLRQV.
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Now, observe that

( ) ( ) ( )itititit LXLL ZZX == ,

( ) ( ) ( ) ⇒== tIItI eXXLeLL a
It

a
It

a
t

a
t

a
It

a
tt

uu ZZXXY ****** 111
111 LL

( ) ( )tI eLL a
It

a
tt

uZZY ***1
1 L= ,

meaning that ( )tL Y  and ( )itL X  are independent from iXit ∀, . The independence is due

to two reasons. First, the vectors ( )Itt ZZ ,,1 K  and the disturbance vector XW have been

drawn from distributions that are independent from itX . Second, the function ( )itL X  is

homogeneous of degree zero. Hence, after applying Proposition 1 to equation (3.1) and

taking the logarithm, it turns out that

( ) ttItIttt udxaxaxay +Φ++++= L2211 , (3.2)

( )IIttt aae t ,,,,,, 11 KK uZZ=Φ , ( ) ( ) ( )∑
=

−=Φ
I

i
iti

a
It

a
tt LaeLd tI

1
1 ***1 ZZZ uK .

Note that condition (2.3) is valid since

( )( )( ) ( )( )( ) iudXudx ttitttit ∀=+Φ=+Φ ,0,lncov,cov .

The term ( )
W

G Φ  was shown above to be independent from itit Xx ln= , and the term 
W
X  is

independent by assumption. Therefore, Lewbel’s result can be verified using Proposition

1: the micro parameters can be recovered from the log-linear aggregate equation when

the distributions are scale invariant.

���� /RJQRUPDO�'LVWULEXWLRQV

An important simplification arises when the distributions are lognormal. First, consider

the relation between Theil’s second measure, the characteristic function ( ) ( )λφ Xg , the

moment generating function ( ) ( )τXgM , and the cumulant generating function ( ) ( )τXgK : 6

( )( ) ( )( ) ( )[ ] [ ] [ ] ( )[ ]XLeeEM XEXEXg
XgXg exp11 lnln =====−= −τλφ ,

                                      
6 See Theil (1971, p. 367) and Amemiya (1985, p. 91).
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( )( ) ( )( )[ ] ( )XL
j

MK
j

j
XgXg ===== ∑

∞

=1 !
1ln1

κ
ττ ,   ( ) [ ]xExXg −= ,   ( )Xx ln= ,

where jκ  is the M-th cumulant of ( )Xg , for example:

( )[ ] 01 == XgEκ , ( )( )[ ] ( )[ ] ( )xXgEXgE var22
12 ==−= κκ ,

( )( )[ ] ( )[ ]33
13 XgEXgE =−= κκ , ( )( )[ ] ( )[ ] ( )242

2
4

14 var33 xXgEXgE −=−−= κκκ .

From the relations above, the values of ( )XL  for different distributions of ; can be

calculated using a characteristic function or cumulant table.

For example, if each element of ; is randomly drawn from an independent lognormal

distribution, it means, ( )2,~ln σµNXn  for n∀ , then

( )
2

plim
2σ=XL . (3.3)

Consider now the following IL[HG�GLVWULEXWLRQ case:7

Innn a
Int

a
nt

a
ntnt XXXY L21

21= , (3.4)

where the variables for each unit and time are drawn from a joint lognormal distribution

where

( ) ( )ΣΜ,~ln,,ln 1 NZZp Intnt K , tn,∀ ,
















=Μ

Iµ

µ
M
1

, 















=Σ

2
1

1
2
1

II

I

σσ

σσ

L

MOM

L

, intitint ZX θ= ,

and where

( ) ( ) aijjiji aa σ== ,cov,covplim aa ,  ( ) ( ) 2varvarplim aiii a σ==a ,

                                      
7 Fixed distributions are discussed e.g. in Stoker (1984).
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meaning that

( ) 0,covplim =iti xa , (3.5)

( ) ⇒++= jtitaijjiijijaijjtjiti xxaa σσσσxaxa *,*covplim

( ) 









−





−++=

22
*,*covplim

22
j

jt
i

itaijjiijijaijjtjiti xxaa
σσσσσσxaxa , (3.6)

and ( ) ⇒++= 222222*varplim itaiiiiaiiti xa σσσσxa

( )
22

22222

2
*varplim 





−++= i

itaiiiiaiiti xa
σσσσσxa , (3.7)

where (1.2) was used to obtain the relationship ( )ititit Lxx X−= .

Using Proposition 1, and assuming that ∞→N , it is shown in Appendix 2 that the

aggregate equation in its logarithmic form is

∑
=









+





−+=

I

i
it

ai
it

iai
it xxacy

1

2
222

22
σσσ

                     t

I

i

I

ij
jt

iaij
it

jaij
jtitaij rxxxx +








−−+ ∑ ∑

−

= +=

1

1 1

22

22
σσσσ

σ , (3.8)

where F is a constant.

Note that the aggregate equation above is not log-linear: it includes squares and cross

products of the aggregate variables, and it can have higher-order terms through UW. It can

be seen from equation (3.8) that, as noted in Garderen, Lee and Pesaran (2000), “When

the parameters of the log-linear specifications differ across micro units, the slope

coefficients (or their means) are no longer identifiable from the [log-linear] aggregate

model.”

Finally, consider the particular case where the parameters do not vary across units. In this

case, equation (3.8) simplifies to

( )tItItt dxaxay Φ+++= L11 ,
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where

( ) ( ) [ ]∑ ∑∑
−

= +==

+







−=Φ

1

1 11

2

2
1

I

i

I

ij
jiij

I

i

i
iit aaaad σσ

is constant.

Therefore, the aggregate equation mimics the microeconomic equation in the case of

homogeneous parameters. This is a simple example of the scale-invariant distribution

case discussed before, where the micro parameters can be identified from a log-linear

aggregate equation.

The results of this section show that, under the hypothesis of fixed distributions, the

recoverability of the parameters from a log-linear aggregate equation is possible only

when the parameters are homogeneous across the economy. This is in agreement with the

aggregation properties of log-linear models that are discussed, for example, in Garderen,

Lee and Pesaran (2000). The parameters would be identifiable, however, if Theil’s

second measures of the variables were known and were included in the equation.

�� $SSOLFDWLRQV�WR�0DFURHFRQRPLF�0RGHOLQJ

���� 7KH�/XFDV�6XSSO\�)XQFWLRQ

In this section, Proposition 1 is used to aggregate the Lucas supply function, which was

originally developed in Lucas (1973), this time not in its logarithm version as usual but

rather in its level version.8

Consider the microeconomic function in the Lucas model:

[ ]( )ttntnt IpEpy −= β , 22

2

zp

zb
σσ

σβ
+

= , nttnt zpp += ,

                                      
8 Following Blanchard and Fischer (1989, p. 366), “This is another instance in which the use of logarithms
creates problems. Output is implicitly defined as the product of individual outputs rather then their sum.”
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where nty  is the log of output for market Q and time W, ntp  is the log of price level for

market Q, tp  is the log of the geometric mean of price levels in all markets (the average

of logs), tI  is the information before W, E is the slope of the supply function for each

market, 2
zσ  is the variance of idiosyncratic price shocks ntz , ( )2,0~ znt INz σ , and 2

pσ  is

the variance of the prior distribution of tp , [ ]( )2,~ pttt IpEINp σ .

The usual aggregation procedure is to sum over the logs, yielding a per capita function of

the type

[ ]( )tttt IpEpy −= β .

This is the Lucas supply function. Note that all the aggregate variables here are

constructed as geometric means.

If Proposition 1 is used to aggregate the microeconomic functions over the levels, a more

realistic approach, a different result is found. Start with

[ ]( )ttntnt IpEpy −= β ,

and then using Proposition 1:

( ) [ ]( )ttttt IpEpdy −+Φ= β ,

where ( ) ( ) ( )ttt LLd PY β−=Φ , and

[ ]′= Ntt yy
t ee L1Y ,   [ ]′= Ntt pp

t ee L1P .

Given the assumptions about the distributions, it is known that

( )
2

plim
2
z

tL
σ=P , ( ) ( )

2
plimplim

2
2 z

tt LL
σββ == PY ,

[ ] [ ] ( ){ } [ ]
2

plimplim
2

t
z

tttttt IpELIpEIpE
σ−=−= P ,

where  [ ]′= Ntt pp
t ee βββ L1P .
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Therefore, for a large enough 1, the aggregate supply function is given by

[ ]( )ttt
z

t IpEpy −+= βσβ
2

2
2 .

Consequently, the aggregation over levels introduces an intercept in the equation that will

be affected by changes in the prior distribution of tp . The result indicates that the long-

run equilibrium level of aggregate supply in this economy will be affected by changes in

the governmental policies. A change in policy that increases 2
pσ  will also decrease the

equilibrium level of output. This is, however, a purely aggregational result, generated by

the presence of nonlinearities in the microeconomic reaction functions.

���� 7KH�7LPH�,QFRQVLVWHQW�(JDOLWDULDQ�6RFLDO�3ODQQHU

Suppose that the household utility function in a heterogeneous economy commanded by

an egalitarian social planner is given by
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The discount rates of the agents are assumed, as an example, to be randomly drawn from

an exponential distribution with density
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Note that the discount rate of each agent is the only random element in this setup.

Assume that the number of families is large ( ∞→N ). The social planner knows the

distribution of the discount rates, but cannot identify the discount rate of any specific
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agent, being thereafter egalitarian, nCC tnt ∀= , .9 Given these restrictions, the social

planner will try to maximize the utility function of a representative agent given by
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Using a characteristic function table, as in Abramowitz and Stegun (1972, p. 930), it can

be easily shown that
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and hence, using Proposition 1:
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meaning that the social planner faces a representative agent utility function with a

nonexponential discount rate. Nonexponential discount rates are associated with time-

inconsistent behavior,10 implying that, when dealing with heterogeneity, the egalitarian

social planner would choose time-inconsistent consumption plans.

�� &RQFOXVLRQV

It is shown in this paper that inequality measures obtained from information theory can

be used to construct an exact and unrestricted aggregate representation of an economy

with log-linear microfoundations. This is true even when the units are heterogeneous both

on variable and parameter values.

                                      
9 The distribution is obtained, for example, through an anonymous poll.
10 See, for example, Loewenstein and Thaler (1989), and Laibson (1997).
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The method can be used to verify previous propositions regarding the aggregation of this

class of functions, and it seems to simplify proving. The cases of scale-invariant

distributions and lognormal distributions, for example, were considered in this paper.

The choice of log-linear functions as the subject of analysis comes from the broad use of

log-linear aggregate macroeconomic models in theoretical and empirical

macroeconomics. Having a precise description of the relationship between those models

and their microeconomic foundations, as the paper tried to accomplish, seemed therefore

to be a relevant task.

The results obtained here can be used both in empirical and theoretical analysis.

Aggregate log-linear econometric models can be used to estimate micro parameters when

specific dispersion measures are included in the equation. The method can also be used to

generate analytical solutions to theoretical aggregation problems.

Two applications were presented. The Lucas supply function was aggregated not in its

logarithmic form, as usual, but rather in its level form, leading to a different solution for

the aggregate function. It was also shown that, given agents with heterogeneous

exponential discount rates, an egalitarian social planner faces an aggregate utility

function that has a nonexponential discount rate, which generates time-inconsistent plans.

The examples tried to demonstrate that the method could be helpful not only to

econometricians but also to macroeconomists. Maybe, given its relative simplicity, it

could also be useful to instructors willing to discuss aggregation issues at introductory

levels.
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Starting with
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take the logarithm of each unit such that
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where lowercase represents the log of the variable.

Now, averaging this expression over units:
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Taking the exponential of the equation above gives
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Using definition (1.2):
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Substituting (1.ii) and (1.iii) into (1.i), it follows that
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Applying Proposition 1 to equation (3.4), the aggregate equation in its logarithmic form

turns out to be

( )tItIttt dxaxaxay Φ++++= L2211 , (2.i)
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Taking the limit and using equations (3.3), (3.5), (3.6) and (3.7), this expression

simplifies to
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Note that generally <QW will not follow a lognormal distribution:
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where UW summarizes the effects of remaining cumulants, implying:
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and from (2.i), assuming that ∞→N ,
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